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Abstract

In modern applications of molecular epidemiology, genetic sequence data are routinely used to

identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional ’shoe-

leather’ epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological

connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular

transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements

an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic

relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are

constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic

distance estimation among all sequences. This approach is computationally tractable and is capable

of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds

of thousands of sequences in near real time, i.e., on the order of minutes to hours. HIV-TRACE is

available at www.hivtrace.org and from github.com/veg/hivtrace, along with the accompanying

result visualization module from github.com/veg/hivtrace-viz. Importantly, the approach underlying

HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of

other rapidly evolving pathogens.

Key words: molecular epidemiology; HIV; network; transmission cluster; surveillance

Introduction

Research into fundamental questions of

epidemiology and public health, such as ”Who

infected whom?” (Romero-Severson et al., 2016;

Volz and Frost, 2013), ”How does pathogen

X spread through a population”? (Dennis

et al., 2014), and ”Is a particular prevention

or treatment effective at slowing or stopping

the spread of disease?” (Little et al., 2014) has

greatly benefited from large-scale analyses of

molecular sequences obtained during surveillance

or through routine diagnostics. For rapidly
c© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

For permissions, please email: journals.permissions@oup.com
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evolving pathogens, such as HIV-1 or hepatitis

C virus, viral isolates from different hosts will

typically not be genetically identical, and analyses

of these genetic differences via phylogenetic,

phylodynamic, or other evolutionary methods

have proven tremendously powerful. Phylogenetic

analyses have been used in criminal cases

involving deliberate HIV-1 transmission (Scaduto

et al., 2010), to understand the introduction of

HIV-1 into regions and countries (Gilbert et al.,

2007), and to define recent clusters of transmission

cases (Peters et al., 2016). Recent work in the

field of phylodynamics has established a template

on how to use sequence data to inform inference

of epidemiological transmission parameters, e.g.,

R0 or transmission rates between different risk

groups (Frost and Volz, 2013; Volz and Frost,

2014). The fundamental insight shared by all

these methods is that genetic similarity, or

relatedness, between pathogen sequences can be

used to identify strains that are connected in an

epidemiologically meaningful way: as potential

source-recipient pairs (Campbell et al., 2011) or

members of the a distinct transmission cluster

(Campbell et al., 2017; Wertheim et al., 2017a).

Real time or near real time surveillance of

pathogen transmission is an area of great interest

to local, national, and global public health

agencies (Division of HIV/AIDS Prevention,

2017). Real time surveillance seeks to quickly

analyze newly obtained pathogen genetic

sequences in the context of large, preexisting

reference samples and to deliver actionable

inference results: ”A new rapidly growing HIV-1

transmission cluster has been identified”, or ”An

unusual pattern of transmission between people

with different risk factors has been detected”, or

”An HIV-1 transmission prevention is effectively

reducing population level incidence”.

Defining molecular transmission clusters is a

challenging problem, and currently there is no

consensus in the field of molecular epidemiology

of what should or should not constitute a

transmission cluster or whether certain definitions

are more germane to particular research questions

or public health interventions (Grabowski and

Redd, 2014; Hassan et al., 2017; Novitsky et al.,

2017; Wertheim et al., 2014).

Here, we present the algorithmic, software

implementation, and operational usage details

for HIV-TRACE, a platform that has been used

extensively for rapid inference of transmission

networks from large sets of pathogen genetic

sequences to identify potential transmission links

and to describe putative transmission clusters.

An early version of HIV-TRACE was used to

analyze nearly 100,000 HIV-1 sequences sampled

worldwide, and this analysis revealed that there

was a surprising amount of global (country-to-

country) connectivity in this network (Wertheim

et al., 2014). Since then, HIV-TRACE has been

used to investigate transmission patterns among

risk groups (Oster et al., 2015; Whiteside et al.,

2015), characterize transmission fitness of HIV

2
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Table 1. Key parameters controlling HIV-TRACE

Parameter Meaning Phase

-r, --reference Reference sequence for mapping Alignment

-m, --minoverlap Sequences must have at least this many aligned characters Distance estimation

-a, --ambiguities Sets policy for handling ambiguous nucleotides Distance estimation

-g, --fraction Sets the maximum fraction of resolvable ambiguous nucleotides Distance estimation

-s, --strip drams Mask HIV-1 drug resistance associated sites Distance estimation

-t, --threshold Distance threshold for drawing a network link Network construction

-u, --curate Sets policy for handling potential contaminants Network construction

drug-resistance associated mutations (Wertheim

et al., 2017b), and to identify rapidly growing

transmission clusters (Campbell et al., 2017;

Monterosso et al., 2017).

The source code, installation instruction (via

pip3), and documentation for HIV-TRACE is

available at github.com/veg/hivtrace, and the

accompanying result visualization module – at

github.com/veg/hivtrace-viz. In addition, a

public instance of the HIV-TRACE web-application

is hosted at www.hivtrace.org, as a part of the

Datamonkey family of services (Weaver et al.,

2018).

New Approaches

HIV-TRACE does not infer a phylogenetic tree from

sequence data because phylogenetic inference

is a computational bottleneck and because

the phylogenies themselves are typically not

directly useful for epidemiological inference. In

most applications, phylogenies are converted

to summary features (e.g., clades) or summary

statistics (e.g., patristic distances) to identify

clusters. In lieu of phylogenetic inference,

HIV-TRACE identifies groups of putative

transmission partners and assembles these

partners in transmission clusters. This approach

is analogous to the traditional epidemiological

definition of an infectious disease transmission

cluster: a group of infected people with direct

or indirect epidemiological connections. In

HIV-TRACE, genetic linkage serves as a proxy

for these direct or indirect epidemiological

connections, and a cluster is constructed

based on these connections. This approach

is fundamentally different from phylogenetic-

based cluster inference (Grabowski and Redd,

2014; Wertheim et al., 2014), which seeks to

identify a point in evolutionary history from

which all cluster members descend (i.e., a point

that gives rise to a clade on a phylogeny).

Importantly, several independent studies have

shown that in many cases relevant to HIV-1

epidemiology, HIV-TRACE reports very similar sets

of clusters to phylogeny-based methods (Poon,

3
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2016; Rose et al., 2017b), although whether or

not clusters arise due to increased transmission

rate or from increased sampling rates or recent

transmission is potentially difficult to identify

with this (or alternative) approaches (Le Vu

et al., 2017; McCloskey and Poon, 2017).

Inference procedure

HIV-TRACE takes in a collection of N unaligned

coding viral sequences sampled from M≤N

individuals (multiple sequences per individual are

supported) formatted as a FASTA file, and it

outputs a JSON file containing the description

of the inferred transmission network as nodes

(individuals) and links (potential transmission

partners). When additional clinical, demographic,

or other data are available, they can be included

in the network as attributes. Key parameters

controlling network inference are summarized in

Table 1, and the schematic of program flow is

depicted in Figure 1.

To demonstrate method performance, we

downloaded all publicly available HIV-

1 polymerase sequence (one sequence per

patient, minimum length 500 nt) from the Los

Alamos National Laboratories HIV database

(hiv.lanl.gov), resulting in N=M=185,849

sequences. We randomly sampled a set of 256,

1,024, 4,096, 16,384, and 65,536 sequences to plot

computational time scaling. We ran each step of

the pipeline 10 times (to average out computing

environment stochasticity) on a 64-core (2x32

AMD Opteron 6356) system running at 2 GHz

clock rate (Figure 1).

Sequence alignment. HIV-TRACE first aligns each

of the input sequences to a single reference

sequence using a codon-aware extension of

the Smith-Waterman dynamic programming

algorithm (Smith and Waterman, 1981),

previously developed by us in the context of

high throughput sequencing read mapping

(e.g., Gianella et al. (2011)). For standard

HIV-1 analyses, the HXB2 sequence (GenBank

Accession number: K03455) is used as a reference

sequence, although any in-frame coding sequence

can be supplied as reference. Both the forward

and the reverse-complement versions of each

sequence are considered, and the one with the

higher alignment score is retained. Codon-aware

alignment leverages protein homology to align

nucleotide data and is able to identify and correct

relatively frequent (i.e., up to 5% of sequences

in some datasets) frame-shifting insertions or

deletions involving one or two nucleotides. In

this case, correction means maintaining the

frame relative to the reference. The resulting

pairwise alignment is merged into a single

multiple-sequence alignment (MSA). As the vast

majority of HIV-1 sequence data arise from

surveillance screening for drug resistance in a

1497 nucleotide protease and reverse transcriptase

genomic region, which only rarely exhibit

insertions/deletions relative to the reference

4
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sequence, this ”mapping” approach is effective

and scales linearly in the number of sequences.

Traditional progressive alignment methods have

superlinear (e.g., up to quadratic) computational

cost. In our example, computational complexity

scaled linearly as expected, and the alignment

of 185,849 sequences to a reference took about

20 minutes on average. Importantly, HIV-TRACE

is also capable of handling previously aligned

sequences, which may be desirable for analyses of

HIV-1 envelope sequences or other pathogens with

low evolutionary conservation, where “all-to-one”

alignment is not likely to recover more distant

homologies. However, genes or sequence regions

that are challenging to align may be suboptimal

for molecular epidemiology applications.

Estimation of genetic distances. Given a multiple

sequence alignment on N sequences, HIV-TRACE

computes all N×(N−1)/2 pairwise genetic

distances under the Tamura-Nei 93 (TN93)

(Tamura and Nei, 1993) nucleotide substitution

model, which is the most general nucleotide

substitution model for which distances can be

estimated directly from counts of nucleotide

pairs in aligned sequences. Whereas more

complex models substitution models are typically

preferable in the context of phylogenetic inference,

especially for more distantly related strains,

(Posada and Crandall, 2001), when genetic

distances are low (e.g. 0.05), all sensible

nucleotide distance measures perform comparably

(Wertheim and Kosakovsky Pond, 2011). A key

option controlling this step in HIV-TRACE is how

to handle ambiguous nucleotide characters that

represent within-host population polymorphisms

or sequencing errors (see Parameterizing genetic

distance estimates). An important example of

epidemiological processes that yield sequences

with high fractions of ambiguous nucleotides is

multiple (super- or dual-) HIV infection (Pacold

et al., 2010).

Pairwise distances are reported to a comma

separated file, and are typically limited only

to those pairs that are below a user-specified

threshold (e.g., 0.015 substitutions/site) to

retain only pairs of sequences that have an

epidemiological link. This step is computationally

costly, scaling as N2, but an efficient parallelized

implementation of the tool allows rapid processing

of 105−106 sequences. For instance, it took

approximately 32 minutes to compute all

pairwise distances between 185,849 sequences.

Our implementation is also memory efficient,

requiring O(NL) space, where L is the sequence

length. For datasets of this size, traditional

rapid phylogeny reconstruction techniques, such

as Neighbor Joining are already infeasible,

because they scale as N3 and require the

storage of the entire distance matrix (this would

require approximately 256GiB of RAM for our

example), which HIV-TRACE deliberately avoids.

Because most phylogenetic methods for cluster

definition require some measure of clade support

5
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(e.g. Grabowski and Redd (2014)), it is also

necessary to perform a version of bootstrapping.

Our implementation compares favorably to even

the fastest tree construction methods, such as

FastTree 2 (Price et al., 2010a) or IQ-Tree

(Nguyen et al., 2015), which takes at least 10x

longer to process these sizes of data; for example,

typical run times of FastTree 2 (the fastest

tool to our knowledge) on ∼200,000 sequences

is on the order of 10−20 hours (Price et al.,

2010a). It is worth noting that FastTree 2 has

an asymptotically better run time O(N3/2 logN),

but it does considerably more work than needed

for our application (resulting in slower run times),

and uses heuristics which are not guaranteed to

always find all distances below a certain threshold.

Network construction. The transmission network

is inferred from the file of pairwise distances and

optionally annotated with data from attribute

files. Nodes within the network are all keyed

on either the entire sequence name or parts

thereof extracted by regular expressions. A link

is drawn between two individuals if and only

if the pairwise distances between any of the

paired sequences from these individuals is below

a user specified threshold, D. e.g. D=0.015. A

cluster is defined as a connected component of the

network. Optionally, the network can be screened

for contaminants (i.e., any query sequences

that link to lab strains or other user-specified

contaminant sequences). Global statistics of the

network, such as the number of nodes, edges,

clusters, cluster sizes, and the degree distribution,

are computed and reported. Lastly, the degree

distribution is fit to one of four generative

models of network growth: random attachment,

preferential attachment, preferential attachment

mixed with a component of random attachment,

and power law, using the methods described by

(Handcock and Jones, 2004). If the best fitting

model is from a scale-free family (i.e., preferential

attachment), the characteristic exponent ρ of the

network is estimated and reported. This step

is computationally relatively inexpensive, taking

only a few seconds.

Parameterizing genetic distance estimates

Selecting appropriate parameters governing

genetic distance estimation is critical to

HIV-TRACE analysis. Investigations in the

U.S., the U.K., and Canada have consistently

found natural breakpoints in genetic distance

between putative transmission partners and

’random’ cases or within-host and between-

host diversity (Lewis et al., 2008; Poon et al.,

2015; Rose et al., 2017a; Smith et al., 2009;

Wertheim et al., 2017a). In New York City,

genetic distance thresholds between 0.01 and

0.02 substitutions/site were more strongly

associated with probable transmission partners

than traditional epidemiological connections

(i.e., naming of sexual and injection drug using

partners) and that a distance of 0.015 could serve

6
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as a use proxy for epidemiological relatedness in

a surveillance setting (Wertheim et al., 2017a).

Moreover, these genetic distance thresholds have

been validated by molecular epidemiological

studies in U.S. public health surveillance

populations (Oster et al., 2015; Wertheim et al.,

2016, 2017b; Whiteside et al., 2015), which

have reported results that are typically robust to

thresholds in this range. Lower distance thresholds

(e.g., 0.005 substitutions/site) may be more

appropriate for distinguishing rapidly growing

clusters (Division of HIV/AIDS Prevention,

2017) or populations where faster evolving

(i.e., non-B subtypes) predominate. As distance

thresholds increase, smaller clusters merge into

larger, less informative clusters Figure 2A. At

the extreme, all sequences would belong to a

single cluster, which while technically correct,

since all HIV-1 sequences are related through a

series of transmissions, this finding is unlikely

to be of interest in the context of molecular

epidemiology. The same principle – that D

should separate within-host or epidemiologically

recent diversity from between-host diversity

has been used successfully for other epidemics,

genetic regions and viruses. For example Rose

et al. (2017b) used D=0.053 for HIV-1 gp41,

Bartlett et al. (2017) selected D=0.03 for the

core gene of Hepatitis C virus. Regional and

national epidemics HIV-1 also tend to require

larger thresholds due to sparser sampling and

the prevalence of chronically infected individuals

(Hassan et al., 2017).

Nucleotide ambiguities (e.g., Y indicating

a mixed population of both C and T at the

same genomic position) have the potential to

compromise HIV-TRACE analysis, or phylogenetic

inference in general. By default, HIV-TRACE

will resolve (here, to ’resolve’ means to

choose the value of the ambiguity to match

the other nucleotide if possible) the genetic

distance between ambiguities (i.e., Y is 0

substitutions from both C and T). However,

sequences with a high fraction of nucleotide

ambiguities have the tendency to link to distantly

related sequences when ambiguities are resolved,

resulting in artifactual larger clusters Figure 2B.

When ambiguities are properly accounted for,

HIV-TRACE clusters tend to resemble clades on

a phylogenetic tree Figure 2C. However, when

distances ambiguities are resolved irrespective of

ambiguity fraction, distantly related sequences

are connected through these high ambiguity

sequences, forming large artifactual clusters

(Figure 2D and Aldous et al. (2012)). Therefore,

HIV-TRACE includes a parameter (ambiguity

fraction) that averages the genetic distance from

ambiguities (i.e., Y is 0.5 substitutions from both

C and T) in sequences with a higher proportion of

ambiguities than the indicated ambiguity fraction.

In cohorts of fewer than 1000 individuals (i.e., San

Diego Primary Infection Cohort), an ambiguity

fraction of 0.05 is appropriate based on empirical

7
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network sensitivity analyses. For US surveillance

data, an ambiguity fraction above 0.015 produces

spurious clusters. As a consequence, sequences

with high ambiguity fractions are less likely to

cluster using HIV-TRACE.

In HIV-TRACE, excluding sites containing

ambiguities has a similar effect on network

construction as resolving ambiguities. Many

popular phylogenetic packages used for

constructing HIV-1 molecular transmission

networks (e.g., BEAST (Drummond et al.,

2012) and FastTree (Price et al., 2010b) exclude

sites containing ambiguities from likelihood

calculations. It remains unclear how treatment

of nucleotide ambiguities will affect phylogenetic

inference of HIV transmission clusters (Fearnhill

et al., 2017).

Visualization

The JSON file output by HIV-TRACE can

be explored using an interactive JavaScript

application which we call hivtrace-viz. It is

based on the open source data visualization

library d3.js. This application runs within any

modern web-browser and provides means to view

the overall structure of the network, explore

individual clusters, display network summary,

and explore associations among attributes for

connected nodes. When clinical and demographic

attributes are available, they can be overlaid on

the network structure as shown in Figure 3.

Software components

Alignment. bealign is implemented in Python

3 as a part of BioExt library (github.com/

veg/BioExt) which extends the functionality of

the popular BioPython library (Cock et al.,

2009). The core alignment routine is implemented

in C and incorporated via Cython. When the

program is run in a multicore/multiprocessing

environment, it will distribute alignment tasks

across cores.

Distance calculation. tn93 is a self-contained C++

program (available from github.com/veg/tn93)

which is tuned to allow ∼105−106 distance

calculations per second per core on ∼1000 bp long

sequences. It uses OpenMP to distribute distance

calculations across multiple CPU cores whenever

possible. For example, tn93 achieved parallelized

(64 cores) throughput of ∼107 pairwise distance

calculations per second when computing distances

on the LANL example dataset.

Network inference. hivnetworkcsv is a Python

3 module, which is available from github.com/

veg/hivclustering, along with the attendant

documentation.

Concluding Remarks

HIV-TRACE is a powerful computational tool for

the rapid and automated characterization of

molecular transmission clusters in populations

of HIV infected individuals. Its applicability

for HIV research and public health surveillance

and prevention activities is apparent, as first

8
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illustrated by the unsupervised recovery of

many previously characterized clusters (defined

via phylogenetic analyses) in our global-scale

analysis of HIV-1 databases (Wertheim et al.,

2014). As viral sequence sequence databases

increase in size and transition to using Next

Generation Sequencing (NGS) data, scalable tools

like HIV-TRACE will be increasingly relevant.

HIV-TRACE can accommodate NGS data in three

different ways . Firstly, NGS data can be used to

generate a consensus sequence for each individual,

which is then handled the same way as Sanger

sequences are now. Phylogenetic approaches most

commonly use this route, and HIV-TRACE has

already been used in this context (Rose et al.,

2017b). Secondly NGS reads could be converted

into a smaller collection of individual haplotypes;

HIV-TRACE can directly handle multiple sequences

per individual, and supports two mode of drawing

links between individuals A and B: single linkage

(at least one pair of sequences from A and B are

closer than D substitutions per site) or complete

linkage (all pairs of sequences are closer than D

substitutions per site. Lastly, for NGS amplicon

data that have been mapped to the reference,

HIV-TRACE can be used to quickly compute the

distribution of genetic distances between reads

from individuals A and B; links can then be drawn

if the distribution meets a particular condition, for

example, at least X% of read pairs are closer than

D substitutions per site.

In addition to extensive applications in the

HIV-1 domain, HIV-TRACE has demonstrated

utility for other pathogens including acute

hepatitis C virus infection (Bartlett et al., 2017;

Rose et al., 2017a) and norovirus (Drumright

et al., 2014). As any computational tool,

HIV-TRACE has advantages and drawbacks.

Speed, easy to understand clusters definitions,

persistence of clusters when more sequences

are added, robustness to recombination, and

systematic handling of mixed bases count among

the former. The latter include the difficulty

in interpreting what variables drive cluster

formation and growth, inability to ascertain

that any particular link is a direct transmission

(i.e., source attribution), and loss of information

contained in the phylogenetic tree, including

timing (which can be leveraged by molecular

clock methods), and branching (which can be

taken advantage of by phylodynamics methods).

For most rigorous analyses, clusters identified

by HIV-TRACE are further analyzed using

compute-intensive molecular clock phylogenetic

inference tools (e.g., BEAST; Drummond et al.

(2012)) (Chaillon et al., 2017; Wertheim et al.,

2016, 2017b). By using HIV-TRACE first to

identify transmission cluster of interest, these

more computationally intensive tools can be

reserved for smaller, focused analyses.

9
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N unalighned FASTA sequences Reference Sequence, e.g. HXB2 pr_rt

Map each read to reference 
with bealign

Aligned FASTA sequences

CCTCAGATCACTCTTTGGCAACGACCMC…
CAAATCACTCTTTGGCAACGACCTCTTG…
ATCACTCTTTGGCAGCGACCACTCGTCC…
TCACTCTTTGGCAACGACCCCTTGTCAC…

CCTCAGATCACTCTTTGGCAACGACCMCTCGTCACAATAAAGATAGGGGGGCAATTAAAG
---CAAATCACTCTTTGGCAACGACCTCTTGTCACAGTAAAAATAGCAGGACAGCTAAAA
------ATCACTCTTTGGCAGCGACCACTCGTCCCAATAAGGATAGGGGGGCAACTAAAG
-------TCACTCTTTGGCAACGACCCCTTGTCACAGTAAAAATAGGAGGACAGATGATA

CCTCAGGTCACTCTTTGGCAACGACCCCTC…

Compute pairwise distances
with tn93, reporting those 
under 0.02

O(N)

O(N2)

ID1 ID2 Distance

B_US_KT167882_1985 B_US_GQ209649_2002 0.0152805

07_BC_CN_KT379202_2011 07_BC_CN_KR187686_2011 0.0100482

07_BC_CN_KT379202_2011 07_BC_CN_KR187866_2012 0.0110194

01_AE_CN_KX583284_2014 01_AE_CN_KU050634_2007 0.0186584

07_BC_CN_KR187686_2011 07_BC_CN_KR187866_2012 0.0124912

Distances between pairs of sequences, up to a threshold

Construct and describe the 
network using 
hivnetworkcsv

~O(N)

Network file (JSON), network visualization

…
Nodes": [
        {
            "attributes": [],
            "baseline": null,
            "cluster": 1,
            "edi": null,
            "id": "B_JP_AB868660_2010"
        },
…

Network Network + DB Statistics Clusters Nodes Attributes Settings

Network Statistics

Clusters 1396

Edges 22138

Nodes 5466

Sequences used to make links 5466

Links/node

  Mean 8.1

  Median 1.0

  Range 1 - 247

  Interquartile range 1 - 4

Cluster sizes

  Mean 3.9

  Median 2.0

  Range 2 - 361

  Interquartile range 2 - 3

Genetic distances among linked nodes.
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FIG. 1. A schematic of the HIV-TRACE workflow. For each stage, we show example input and output data, indicate
computational complexity, and provide empirical run-times as functions of the number of sequences on the example HIV-1
datasets described in the text. Trend lines show linear fits in the log-log space.
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FIG. 2. Effect of genetic distance threshold and ambiguity fraction on network construction. (A) Number of clusters and
size of largest cluster across increasing genetic distance thresholds. (B) Number of clusters and size of largest cluster across
increasing ambiguity fractions. (C) Largest clusters (≥7 nodes) from the San Diego Primary Infection Cohort, inferred with
a 0.015 substitutions/site genetic distance threshold and a 0.05 ambiguity fraction on a phylogenetic tree (each cluster has
its own color and is shown in bold). (D) Members of the large, artifactual cluster when ambiguity fraction is increased to
1.0 and distances from ambiguities in all sequences are resolved (shown in bold, colored in red). San Diego sequence data
are from Little et al. (2014), and phylogeny was inferred using FastTree2 (Price et al., 2010b)

.

15



“HIV-Trace” — 2018/1/24 — 16:18 — page 16 — #16i
i

i
i

i
i

i
i

Pond et al · doi:10.1093/molbev/mstHIV-TRACE MBE
Network Network + DB Statistics Clusters Nodes Attributes Settings

Color: TxRisk
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Other/unknown
missing

Shape: gender
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Male
Trans M2F
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+ − " # $ Clusters Color: Risk Factor Shape: Gender Opacity: None % Hide others Show small clusters ?Text in attributes

FIG. 3. Visualization of the San Diego Primary Infection Cohort cluster (Little et al., 2014) using hivtrace-viz. Circles
without connections and darker borders represent clusters, and their are is proportional to cluster size. 9 of the clusters
have been expanded, showing individual nodes (individuals) and edges (putative transmission links). Nodes and clusters are
colored by risk factor (this is user selectable, and is obtained from network annotation data); for clusters, the distribution
of risk factors is shown as a pie chart. The shape of individual nodes indicates the gender of the corresponding individual.
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