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Translational Relevance 1 

Aberrant DNA methylation-mediated gene silencing frequently occurs in cancer. While 2 

substantial effort has been devoted to the elucidation of methylome changes associated 3 

with the development of breast cancer, comparatively little is known about the methylome 4 

alterations that accompany treatment resistance and their contribution to the metastatic 5 

phenotype. In this study we addressed this gap by generating a comprehensive epigenomic 6 

map of endocrine treatment resistance and identified a key potentiator, its effectors and 7 

their mechanistic and functional output. From this study, we established a methylation 8 

molecular marker set of 5 genes whose silencing mediated tumor aggressiveness. 9 

Subsequently these markers were confirmed to predict metastatic survival from a cohort of 10 

endocrine treated breast cancer patients. These novel insights provide vital clues to the 11 

epigenetic basis of on-treatment progression in endocrine resistant breast cancer and could 12 

advance the management of resistant disease. 13 
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Abstract 1 

Purpose: Despite the clinical utility of endocrine therapies for estrogen receptor positive 2 

(ER) breast cancer, up to 40% of patients eventually develop resistance, leading to disease 3 

progression. The molecular determinants that drive this adaptation to treatment remain 4 

poorly understood. Methylome aberrations drive cancer growth yet the functional role and 5 

mechanism of these epimutations in drug resistance are poorly elucidated. 6 

Experimental design: Genome-wide multi-omics sequencing approach identified a 7 

differentially methylated hub of pro-differentiation genes in endocrine resistant breast 8 

cancer patients and cell models. Clinical relevance of the functionally validated methyl-9 

targets was assessed in a cohort of endocrine treated human breast cancers and patient-10 

derived ex vivo metastatic tumours. 11 

Results: Enhanced global hypermethylation was observed in endocrine treatment resistant 12 

cells and patient metastasis relative to sensitive parent cells and matched primary breast 13 

tumor respectively. Using paired methylation and transcriptional profiles we found that SRC-14 

1-dependent alterations in endocrine resistance lead to aberrant hyper-methylation which 15 

resulted in reduced expression of a set of differentiation genes. Analysis of ER positive 16 

endocrine treated human breast tumors (n=669) demonstrated that low expression of this 17 

pro-differentiation gene set significantly associated with poor clinical outcome (p=0.00009). 18 

We demonstrate that the re-activation of these genes in vitro and ex vivo reverses the 19 

aggressive phenotype. 20 

Conclusion: Our work demonstrates that SRC-1-dependent epigenetic remodeling is a ‘high 21 

level’ regulator of the poorly differentiated state in ER -positive breast cancer. Collectively 22 

these data revealed an epigenetic reprograming pathway, whereby concerted differential 23 

DNA methylation is potentiated by SRC-1 in the endocrine resistant setting. 24 

 25 

 26 

 27 

 28 
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Introduction 1 

Breast cancer (BC) develops through the accumulation of genetic and epigenetic 2 

abnormalities to chief regulators of cell proliferation, differentiation and apoptosis. 3 

Estrogen receptor (ER) is a key driver of hormone-dependent BC and its expression is 4 

indicative of good prognosis. Despite the efficacy of endocrine treatment, including 5 

tamoxifen and aromatase inhibitors (AIs) in ER-positive BC, acquired therapy resistance is 6 

common and it remains a major clinical challenge (1). Mechanisms underlying this resistance 7 

are complex, highly adaptive and heterogeneous and can vary from patient to patient, from 8 

primary to metastatic tissue and even amongst different endocrine treatments. Recent 9 

studies of metastatic tissues from patients that have failed AIs revealed a number of 10 

mutations, including those activating ESR1 (2), as a feature of resistance. On the other hand, 11 

loss of ER function/expression can be found in 20% of metastatic tumors highlighting the 12 

dynamic nature of therapeutic resistance (3,4). 13 

Endocrine treatment-resistant cancer cells activate pathways co-operating and 14 

interacting with ER, its co-regulators and transcription factors providing survival advantage 15 

and therapeutic escape. One such ER regulator, SRC-1, has been shown to be central to the 16 

ability of ER tumors to adapt and facilitate metastatic disease progression (5,6). Typically, 17 

SRC-1 binds to and co-activates nuclear receptors such as ER to regulate a network of 18 

proliferation- and differentiation-associated genes critical to BC progression (7). Notably, 19 

aberrant up-regulation of SRC-1 has been implicated in the development of endocrine 20 

treatment resistance in BC, where high protein levels correlate with endocrine resistance 21 

and poor clinical outcome (8-10). Modulations of these endocrine resistant pathways can be 22 

driven by genomic, epigenetic or tumor microenvironment influences.  23 

Although current emphasis for tumor profiling is on mutation-level alterations, these 24 

approaches have failed to uncover the molecular determinants that drive adaptation to 25 

treatment. Conversely, transcriptional and epigenetic reprograming develops with higher 26 

frequency and has been observed to functionally affect oncogenes and related signalling 27 

pathways (11-13). Increasing evidence suggests that aberrant DNA methylation of tumor 28 

suppressors and differentiation/developmental genes may represent a major mechanism 29 

underlying tumor progression (11). The discovery of hypo and hyper-methylation (14-16) in 30 
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cancer has led to major advancements towards uncovering novel epigenetic drivers in 1 

tumor initiation and progression. Aberrant DNA hypermethylation is the most prominent 2 

epi-alteration reported in cancer, originating in regions marked with repressive histone 3 

marks (e.g. H3K27me3) (17) ,guided by DNA-methyl transferases (DNMTs) (18) and carefully 4 

regulated by transcriptional influencers such as polycomb-repressive complexes (PRCs) 5 

(17,19) and methyl-CpG-binding domain proteins (MBDs) (20-23). These methylome 6 

changes are potentially reversible making them prime candidates as novel targets for 7 

diagnosis and treatment strategies. Indeed, altered DNA methylation events in BC have 8 

been used to identify potential biomarkers (24,25), whilst DNA methylation signatures can 9 

be used to classify tumor subtypes (26-28) or inform endocrine response (29,30). Although, 10 

several studies have reported shifts in the epigenetic profile of endocrine resistant cell line 11 

models (29,31,32), the role of epigenetic dysregulation in endocrine treatment resistance is 12 

still poorly understood, as are the key potentiators of its function. 13 

In the current study, we have investigated the methylome profile of endocrine 14 

resistant tumors and we report on extensive global epigenomic remodeling events unique 15 

to treatment resistant disease. Our investigation places SRC-1 in a critical position in 16 

controlling the methylation reprograming in endocrine treatment resistant models and 17 

identifies it as a necessary component in the core regulatory circuitry. SRC-1’s role as a 18 

transcriptional repressor was further validated as SRC-1-dependent events mediate 19 

aberrant methylation leading to reduced expression of a set of differentiation genes. We 20 

demonstrate that SRC-1 is pivotal in recruiting the co-repressor complex to a hub of pro-21 

differentiation genes, thus remodeling BC cells to promote a more aggressive endocrine 22 

treatment resistant phenotype. Our data support a model where epigenetic reprograming 23 

towards a poorly differentiated cell profile, driven by an oncogenic co-regulator, is a crucial 24 

step in endocrine treatment resistance. 25 

 26 

Methods 27 

Cell culture  28 

The endocrine sensitive MCF7 cells (ATCC, USA) were cultured in Minimum Essential 29 

Medium Eagle (MEM) (M2279, Sigma) supplemented with 10 % fetal calf serum (FCS) 30 
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(F7524, Sigma). The endocrine resistant LY2 breast cancer cells were a gift from Robert 1 

Clarke (Georgetown, USA) and were cultured as previously described (33). Each cell line was 2 

tested for mycoplasma (LT07-118, Lonza), genotyped (SourceBioScience) and authenticated 3 

according to ATCC guidelines. The T347x brain metastatic primary cell line was derived from 4 

an ER+ PR- HER2+ patient tumor, which was expanded in NOD-SCID mice (34). The tumor 5 

was resected, dissociated and cultured in human breast epithelial cell (HBEC) media as 6 

described previously (34) for in-vitro experiments.   7 

CRISPR/Cas9, Lentiviral transduction, siRNA transfection 8 

The LY2 SRC-1 knockout (KO) cell line was created using CRISPR/CCas9 technology (Santa 9 

Cruz) details of the transfection procedure are provided in supplementary information. The 10 

LY2 luciferase (LY2-Luc), LY2 shSRC-1 KD (knockdown) and LY2 shNT (non-targeting) cells 11 

were created by transducing LY2 cells with viral particles as previously described (35). Gene 12 

silencing was carried out using predesigned siRNAs directed against NTRK2 (144201, 13 

Ambion), non-targeting siRNA control (NT siRNA) (AM4611, Ambion), NR2F2 (J-003422-06-14 

0002), CTDP1 (J-009326-080002), SETBP1 (J-013930-18-0002), POU3F2 (J-020029-06-0002) 15 

and NT siRNA (J.Human-xx-002) (Dharmacon, USA) and transfection was carried out using 16 

Lipofectamine 2000 (11668-019, Invitrogen) as per manufacturer’s instructions.  17 

Gene expression 18 

RNA extractions were performed using the RNeasy Mini Kit (74106, Qiagen) as per 19 

manufactures instructions and SuperScript III (18080400, Invitrogen) was utilized for cDNA 20 

conversion. Gene expression was confirmed by semi qPCR using pre-designed Taqman 21 

assays (Thermo Fischer Scientific) for β-actin (401846), NTRK2 (Hs00178811), NR2F2 22 

(Hs00819630), CTDP1 (Hs00364467), SETBP1 (Hs01098447), POU3F2 (Hs00271595), DNMT1 23 

(Hs0094587) and DMNT3A (Hs01027162) on the StepOnePlus Real Time System (Applied 24 

Biosystems). The comparative CT (ΔΔCT) method was applied to analyze relative mRNA 25 

expression. 26 

 27 

Flow cytometry  28 

Fluorescence-activated cell sorting (FACS) was performed on the FACS ARIA II (BD 29 

Biosciences). The LY2 CRISPR/Cas9 cells (clone 7c and 9c) were sorted for both CRISPR HDR 30 

plasmid (Red Florescent Protein) and luciferase (Green Florescent Protein).  Stem cell 31 
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analysis was carried out on the BD FACS Canto II (BD Biosciences). Cell lines which 1 

underwent gene silencing were analyzed by flow cytometry 48 hrs post siRNA transfection 2 

for with NTRK2, NR2F2, CTDP1, SETBP1, and POU3F2.  Cells were stained with CD24 3 

(555428; BD Biosciences), CD44 (555478; BD Biosciences), EpCam (12-9326-42, 4 

Thermofisher) and CD49f (17-0495-82, Thermofisher) antibodies. Data were analyzed using 5 

FlowJo Software (FlowJo, USA). 6 

Mammosphere forming, anchorage independence, 3D acini and motility assays 7 

Functional assays were performed in the LY2 luc control cell line, LY2 SRC-1 CRISPR/Cas9 KO 8 

cells (clones 7c and 9c), and LY2 shSRC-1 cells 24 hrs post gene silencing with NTRK2, NR2F2, 9 

CTDP1, SETBP1, POU3F2. All functional assays were carried out with cells treated with 4-10 

OHT [10-7 M].   11 

Mammosphere culture and analysis was performed as previously described. 12 

Anchorage independence was analyzed using the agarose colony formation assay as 13 

previously described (36).   14 

3D Acini assays were performed to assess cellular polarization/organization. Cells were 15 

cultured for 21 days, then fixed and stained as previously described (8).  16 

Cell migration was carried out using the Cellomics Cell Motility Kit (K0800011, Thermo 17 

Scientific) as previously described (8).  18 

Chromatin Immuno-precipitation (ChIP) 19 

ChIP was performed on the LY2 cells, LY2-luc and LY2 CRISPR/Cas9 SRC-1 KO cell line (clone 20 

7c) as previously described (4). Full details can be found in Supplementary Methods. 21 

Immunohistochemistry  22 

Immunohistochemistry (IHC) was performed on 5 μM formalin fixed paraffin embedded 23 

(FFPE) tumor sections as previously described using DAKO envision+ HRP kit (K400611-2, 24 

Agilent Technologies) (4). Full details on antibodies and protocols can be found in 25 

Supplementary Methods.  26 

Explant studies 27 

An LY2 luciferase cell line xenograft and patient breast cancer brain metastatic tumors 28 

(T347x and T638x) were expanded in NOD-SCID mice. The primary tumors were resected, 29 

grown on gelatin sponges (Spongostan, Johnson and Johnson) as previously described (37) 30 

and treated with estrogen combined with vehicle, 4-OHT, RG108 and a combination of 4-31 
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OHT and RG108 for 72 hrs. Following treatment tumor pieces were formalin fixed and 1 

paraffin embedded for IHC analysis. LY2 cell line-derived xenograft results shown are a 2 

representative of 3 individual experiments, T347x and T638x PDX results are individual 3 

experiments. The viability of the tumors was evaluated by screening for necrosis of the 4 

tissue and using proliferation markers to confirm viable, proliferating cells. 5 

Sequencing Acquisition 6 

SeqCap Epi targeted bisulfite methylation sequencing (Roche) was performed on breast 7 

cancer cell lines MCF7 (n=2) and LY2 (N=3) cells and in FFPE breast cancer primary and 8 

matched metastatic patient tumor samples (RCS_4). DNA was extracted using the DNA/RNA 9 

FFPE extraction kit (80234, Qiagen) as per manufacturer’s instructions.  Further details are 10 

available in Supplementary Information. 11 

MeDIP sequencing was carried out in the LY2 shNT (n=2) and LY2 shSRC-1 12 

knockdown (n=2) cells following 4-OHT treatment for 3 hrs. DNA extraction, MeDIP library 13 

construction and sequencing (50PE) were all performed by Beijing Genomics Institute (BGI, 14 

Hong Kong) following standard protocols on the Illumina platform.  15 

ChIP sequencing was performed in LY2 cells treated with vehicle or 4-OHT for 45 min 16 

and immunoprecipitated with SRC-1 antibody, as previously described (38).  17 

RNA sequencing was performed on 4 technical replicates of LY2 shNT shRNA and LY2 18 

shSRC-1 cells treated with 4-OHT for 8 hrs. RNA extraction and sequencing was carried out 19 

by Beijing Genomics Institute (BGI, Hong Kong) as per standard protocols (3). 20 

Bioinformatic Analysis 21 

Full details of the bioinformatic analysis undertaken for each of the sequencing methods is 22 

available in Supplementary Methods.  23 

Affymetrix microarray analysis 24 

Data from four published data sets (GSE66532, GSE9195, GSE17705 and GSE12093) (39) 25 

were utilized to generate the ranked gene expression heatmap for the SRC-1 target genes in 26 

ER+ve tamoxifen treated patient tumors (n=669). Data is summarized with Ensemble 27 

alternative CDF and normalized with Robust Multi-array Average (RMA), before integration 28 

using ComBat to remove dataset-specific bias. 29 

Statistical analysis  30 
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Gene expression, In-vitro assays and ki67 scores are shown as mean ±SEM. The student 1 

paired t test was used for two group comparisons and results for each assay are 2 

representative of 3 individual experiments unless otherwise stated and expressed as mean ± 3 

SEM, *p<0.05, **p<0.01 ***p<0.001. Treatment groups were compared to vehicle or 4 

parental cell line unless otherwise stated. With respect to randomization, for ex vivo 5 

experiments, similar sized tumors were equally divided into the control and experimental 6 

groups for subsequent drug treatment which was not blinded. The investigators were not 7 

blinded to allocation for ex vivo and immunohistochemical analyses. No statistical method 8 

was used to predetermine sample size. Gene Expression-Based Outcome for Breast Cancer 9 

Online (GOBO) was applied to analyze expression of the SRC-1 target genes (NTRK2, NR2F2, 10 

CTDP1, SETBP1 and POU3F2) in the Pam50 breast cancer tumor subtype (Basal, ERBB2, 11 

Luminal A, Luminal B, and Normal like). Kaplan-Meier plots were used as an estimate of 12 

Distant Metastatic Free Survival (DMFS) in SRC-1 target genes in ER+ve patients (n=669) and 13 

Recurrence Free Survival (RFS) in untreated patients (n=343) (39). 14 

Data availability 15 

RNA-seq, MeDIP-seq and SeqCap Epi targeted bisulfite sequencing data files were deposited 16 

and are available on Gene Expression Omnibus GSE99649. Data from tamoxifen treated 17 

SRC-1 ChIP-seq in LY2 cells is available on Gene Expression Omnibus GSE28987.  18 

Ethics 19 

Written and informed consent was acquired prior to collection of patient tumor tissue 20 

under The Royal College of Surgeons Institutional Review Board approved protocol 21 

(#13/09:ICORG 09/07). Mouse experiments were performed in accordance with the 22 

European Communities Council Directive 2010/63/EU and were reviewed and approved by 23 

Research Ethics Committee under license from the HPRA (Health Products and Research 24 

Authority). 25 

  26 

Results 27 

SRC-1 global gene methylation signature in endocrine resistant breast cancer. 28 

Perturbations in DNA methylation profiles may influence tumor initiation, metastatic 29 

progression and resistance to treatment. To investigate global aberrant DNA methylation as 30 
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a function of treatment resistant BC we undertook targeted bisulfite sequencing in 1 

endocrine sensitive and resistant samples. Density distribution of events examining 2 

differential methylation revealed increased hypermethylation in endocrine resistant cells 3 

and an ER+ve metastatic patient tumor, relative to parent sensitive cells and matched 4 

primary tumor tissue, respectively (Fig. 1a). Moreover genome wide CpG methylation was 5 

observed in the metastatic tumor in comparison to the matched primary tissue (Fig 1a). 6 

Having established the role of differential DNA methylation in acquired resistance the 7 

resulting changes to ER binding was examined as differential ER-binding is observed in 8 

tumors from patients with poor outcome (40). ER occupancy of CpG islands in endocrine 9 

resistant LY2 cells is greater than in the endocrine sensitive MCF7 cells. Furthermore, 10 

tamoxifen driven ER/SRC-1 co-occupancy at these sites suggests a role for the steroid 11 

receptor/coactivator complex in mediating these enhanced DNA-hypermethylation events 12 

(Fig 1b). This further supports the role of SRC-1 in transcriptional silencing (35). To 13 

understand the contribution of SRC-1 to global methylation, comprehensive genome–wide 14 

MeDIP-seq was undertaken in the presence and absence of SRC-1 (shNT and shSRC-1; Fig. 15 

S1a) in endocrine resistant cells. Consistent with its role as a coactivator protein, 16 

hypermethylation was enriched in the absence of SRC-1 (Fig. 1c,). However, SRC-1 17 

dependent hypermethylation events were also observed throughout the genome (Fig. 1c). 18 

Of interest, from SRC-1-ChIP-seq analysis in endocrine resistant cells (38) we observed an 19 

over-representation of methyl marks at CpG islands within 2Kb of an SRC-1 peak (Fig. 1d). 20 

The initial methylome data suggests that SRC-1-dependent events result in an 21 

altered methlyome profile and may in fact suppress specific gene sets in the resistant 22 

setting. Before attempting to dissect the underlying mechanism it was important to 23 

determine the identity of these suppressed genes and if such genes were likely to contribute 24 

to the resistant state. RNA-seq identified 736 genes down-regulated in the presence of SRC-25 

1 (Fig. 1e). Correspondence analysis and heatmap displayed separation between shNT and 26 

shSRC-1 gene expression (Fig. S1.b,c). Pathway analysis of the SRC-1 suppressed genes 27 

revealed a preponderance of genes pertinent to cell development and pro-differentiation 28 

(Fig. S2). This is particularly poignant since a significant function of DNA methylation is in 29 

modulating differentiation and developmental pathways. We integrated data from the SRC-30 

1- RNA-seq, ChIP-seq and MeDIP-seq assays to identify putative genes that were directly 31 
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suppressed by SRC-1-dependent DNA methylation (Fig. 1f, Table 1). From these 9 genes 1 

NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2 have described roles in cellular development 2 

and differentiation. ChIP and qPCR analysis confirmed these genes as direct SRC-1 targets 3 

(Fig. S3a, b). 4 

Functional role of SRC-1 in disease progression in endocrine resistance is mirrored by the 5 

roles of NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2 in tumor suppression. In endocrine 6 

treatment resistant cells SRC-1 is a known mediator of drug resistance phenotype (36,38). 7 

Loss of SRC-1 expression can lead to re-sensitization of endocrine resistant cell lines to 8 

tamoxifen treatment (Fig S4a,b).To assess the impact of SRC-1 and its suppressed pro-9 

differentiation target genes on tumor progression we investigated the role of the 10 

coregulatory protein and each of the individual pro-differentiation genes in classic 11 

mechanisms of tumor aggression including stemness and migration. Expression levels of 12 

each of the 5 target genes are elevated in the absence of SRC-1 (LY2 shSRC-1) in comparison 13 

to the parental resistant cells (LY2 shNT) (Fig. S3b).  14 

In endocrine resistant breast cancer cells CRISPR/Cas9 gene editing was used to 15 

specifically knockout SRC-1 (clone 9 (9c) and clone 7 (7c)) confirmed with mRNA (Fig S4a) 16 

and protein expression of SRC-1 (Fig. S4b). No effect on protein expression levels of SRC-2 or 17 

SRC-3 was observed (Fig S5a). Given relative importance of SRC-3 in breast cancer drug 18 

resistance and metastasis we further confirmed no upregulation of phosphorylated SRC-3 19 

protein when SRC-1 is suppressed (Fig. S5c). SRC-1 CRISPR/Cas9 KO cells demonstrated 20 

enhanced differentiated CD24+/44- cell populations in comparison to their control. siRNA 21 

was used in LY2 shSRC-1 cells to transiently silence the SRC-1 pro-differentiation target 22 

genes NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2 (Fig. S5b). Silencing of NTRK2 and 23 

POU3F2 significantly reduced the number of CD24+/44 differentiated cells (Fig. 2a). In these 24 

endocrine resistant cells, knockout of SRC-1 resulted in reduced self-renewal capacity (2nd 25 

generation mammosphere), colony formation, cell organization and migration (Fig. 2b-e). In 26 

contrast, silencing of each of the SRC-1 target genes displayed loss of cell differentiation 27 

through increased self-renewal capacity and colony formation along with loss of cellular 28 

organization (Fig. 2b-d). Furthermore, silencing of the pro-differentiation genes elevated 29 

migratory capacity of the endocrine resistant breast cancer cells (Fig. 2e). 30 
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NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2 expression in breast cancer patients. The 1 

clinical relevance of the SRC-1 pro-differentiation genes was examined in a cohort of breast 2 

cancer patients. We used GOBO to analyze transcript expression of the gene set in 3 

published clinically annotated primary tumors (39). The genes stratified according to PAM50 4 

subtype (p<0.0001) with the highest expression levels observed in luminal A and normal-like 5 

tumors (Fig.3a). Gene set expression also associated with ER+ve primary breast cancers 6 

(p<0.00001) (Fig.3a). In a cohort of ER+ve tamoxifen treated patients (n=669), ranked sum 7 

of SRC-1 suppression genes transcript significantly associated with reduced distant 8 

metastatic disease free survival (p=0.00009) (Fig.3b, c). The association of dysregulated gene 9 

set with good outcome strongly aligns with its pro-differentiation role and suggests that its 10 

suppression can be detected in a relatively large subset of human BC and could contribute 11 

to risk assessment for endocrine treatment resistance. This relationship would appear to be 12 

treatment dependent as the reverse relationship was observed in ER+ve untreated patients 13 

(n=343) where high transcript expression of the gene set associated with reduced 14 

recurrence free survival (p<0.05) (Fig. 3c, S6). 15 

  To enhance the translational value of our findings and further reinforce the role of 16 

aberrant DNA methylation in this dysregulated pathway we employed an ex vivo model of 17 

endocrine resistant metastatic tumors to evaluate the effect of DNA methylation disruption 18 

(Fig. 3d). These models recapitulate tissue heterogeneity, morphology and architecture and 19 

create a unique opportunity for drug efficacy studies and pose a good platform for 20 

mechanistic studies. Given our findings that SRC-1 target genes were regulated through 21 

inappropriate methylation-dependent silencing, we first used a DNA methyltransferase 22 

inhibitor, RG108, to confirm its capacity to re-express the SRC-1 target genes in endocrine 23 

resistant LY2 cells and those derived from endocrine resistant T347 metastatic tumor (Fig. 24 

3d; Fig. S7a). Silencing of the SRC-1 pro-differentiation target genes NTRK2, NR2F2, CTDP1, 25 

SETBP1 and POU3F2 resulted in an increase in proliferative capacity of LY2 shSRC-1 model 26 

(Fig. S7b). Additionally, in endocrine resistant metastatic-competent cell-line derived 27 

xenograft tumor (LY2) and endocrine resistant metastatic tumors (T347x and T638x, Fig 28 

S7c), cultured ex vivo, DNA methyltransferase treatment over 72 hours had a substantial 29 

anti-tumor effect as demonstrated by a significant decrease in proliferating cells (ki67+) 30 

compared to vehicle treated tumors (Fig. 3e and f).This proof of concept study further 31 
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supports methylation as a necessary and reversible mechanism promoting tumorigenesis in 1 

multiple models of endocrine treatment resistance.  2 

SRC-1 in combination with a complex of methylators represses expression of NTRK2, 3 

NR2F2, CTDP1, SETBP1 and POU3F2. We wanted to further delineate the mechanistic 4 

pathway involved. We interrogated the DNA methylation of the SRC-1 pro-differentiation 5 

genes by analyzing methyl sites from Seq Cap Epi data from endocrine resistant LY2 cells 6 

and matched primary and metastatic tumor from an endocrine resistant patient. The 7 

percentage methylation indicating the proportion of cytosine’s methylated at each CpG 8 

probe is reported for the LY2 cells and metastatic brain tissue (Fig. 4a). Differential 9 

methylated regions were analyzed from the resistant metastatic tumor and the matched 10 

primary. Hypermethylated regions were identified upstream of NTRK2, CTDP1, SETBP1 and 11 

POU3F2 and a hypomethylated region upstream of NR2F2 (Fig. 4a). These regions 12 

corresponded to SRC-1 peaks as determined from global ChIP-seq analyses in LY2 cells (Fig. 13 

4a). 14 

 The expression of the maintenance and de novo methyltransferases, DNMT1 and 15 

DMMT3a, respectively were found to be reduced in the absence of SRC-1 (LY2 shSRC-1) 16 

compared to the control (LY2 shNT) (Fig. 4b). As DNA and histone lysine methylation 17 

systems are highly interrelated and rely mechanistically on each other, we investigated 18 

histone methylation at the SRC-1 target genes. Consistent with this, elevated recruitment of 19 

the histone repression marker H3K27me3, a known mediator of de novo DNA 20 

hypermethylation, to the pro-differentiation genes was observed (Fig. 4c).  21 

Network of nuclear receptors and co-regulator proteins is highly complex, 22 

interconnected and regulates many transcriptionally active regions in the cistrome that are 23 

co-ordinately occupied by multiple nuclear receptors including ER, PR and AR (41,42). To 24 

further dissect the nuclear receptors’ contribution to the SRC-1 regulated processes we 25 

investigated ER, AR and PR binding to the target genes. Enhanced recruitment of ER and its 26 

coactivator protein SRC-1 were observed at each of the pro-differentiation genes (Fig. 4d). 27 

Interestingly, we found an enhanced, but non-significant, recruitment of PR to most of the 28 

target genes, but not AR (Fig. 4d, S8a). Treatment with antagonists against ER and PR 29 

produced no reduction in the recruitment of SRC-1 to each of the pro-differentiation genes 30 
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(Fig. S8b). Consistent with the specificity of SRC-1’s contribution in this process, no binding 1 

of SRC-3 was detected at any of the target genes (Fig. S8c). 2 

To unravel the complex that may regulate methylation at these SRC-1 target genes 3 

we examined the recruitment of MBD proteins to the pro-differentiation target genes. MBD 4 

proteins bind methylated DNA and are believed to participate in DNA methylation-mediated 5 

transcriptional repression (43). DNA binding of MECP2 and MBD2, two MBD family 6 

members, to each of the target genes was confirmed by ChIP and additionally with ChIP-re-7 

ChIP qPCR indicating co-occupancy (Fig. 4e, f). To determine if SRC-1 is essential for the 8 

recruitment of the methylation regulatory module we examined recruitment of the methyl 9 

proteins to the pro-differentiation genes in the absence of SRC-1 using the LY2 SRC-1 10 

CRISPR/Cas9 7c KO. Loss of MBD protein-DNA binding at each of the targets was observed in 11 

these cells in comparison to the luciferase control endocrine resistant cells (Fig.4g). 12 

Moreover, SRC-1-dependent recruitment of the histone deacetylase protein, HDAC2, a 13 

known complex partner of the MBD methyl proteins, was also observed in each of the 14 

target genes, in which loss of recruitment was again observed after SRC-1 KO (Fig. 4i). 15 

Interestingly, we detected no such consistent significant binding of the methyl complex to 16 

target genes in endocrine sensitive MCF7 cells (Fig. S8d-g). This finding is in line with our 17 

previous reports of a reduction of SRC-1-DNA binding in steroid depleted endocrine 18 

sensitive breast cancer cells in comparison to the endocrine resistant phenotype (35) . 19 

Variable occupancy of the methyl complex and subsequent loss following SRC-1 KO suggests 20 

a central role for the transcriptional regulatory protein in the management of the 21 

methylome. Together, these data suggest that SRC-1 plays a regulatory role in orchestrating 22 

the operational methyl complex at the DNA to bring about successful functional repression 23 

of pro-differentiation target genes to enable tumor progression in the context of endocrine 24 

resistance (Fig. 4i).  25 

 26 

Discussion 27 

A growing body of evidence suggests that breast cancer cells can develop resistance to 28 

endocrine therapy, not only through clonal selection of pre-existing progenitor/stem cell like 29 

populations and genetic mutations, but also via aberrant epigenetic regulation of gene 30 
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expression. Altered DNA methylation during early carcinogenesis has been associated with 1 

dysregulation of key transcriptional regulators including p53 (44). Further epigenetic 2 

remodeling occurs with disease progression and treatment resistance (45). Aberrant 3 

methylation has been associated with activation of cholesterol biosynthesis (32) and 4 

decreased gene expression of classic ER targets in endocrine resistant cell line models (30). 5 

Consistent with these studies we observed differential methylation patterns between 6 

sensitive and treatment resistant breast cancer cell lines and patient tumors and uncovered 7 

extensive hypermethylation and hypomethylation events unique to treatment resistant 8 

disease. To date the mechanism of communication between the key transcriptional 9 

mechanics of the resistant cell with the methylation process to drive the phenotype and 10 

promote disease progression has not been elucidated. We examined the global differential 11 

methylation observed between endocrine sensitive and resistant models and patient 12 

tumors, defining a role for the ER coregulatory protein SRC-1 in mediating gene repression 13 

which is both functional and clinically relevant. 14 

 Nuclear receptor gene repression is regulated, at least in part, through interactions 15 

with coregulatory proteins. The glucocorticoid receptor can utilize SRC-2 to activate and 16 

repress target gene expression depending on the transcriptional target (46). More recently, 17 

an amphipathic role for the ER co-regulator protein SRC-1 has also been described, where 18 

SRC-1 the classic steroid receptor coactivator protein, has been shown to transcriptionally 19 

repress the differentiation marker CD24 and the apoptotic protein PAWR (35). In this study, 20 

employing integrated multi-omics approach, we found specific global SRC-1 dependent 21 

hypermethylation, corresponding to regions of transcriptional repression, which were 22 

confirmed as direct SRC-1 targets. Though the complex interplay between nuclear receptors 23 

and coregulatory proteins is known to play a significant role in the development of breast 24 

cancer, data reported here suggest that SRC-1 repression of these target genes is not 25 

dependent on multiple nuclear receptor interactions. Importantly, pathway analysis 26 

revealed an over representation of these genes in development and differentiation 27 

processes, suppression of which are essential for tumor development. 28 

 In this study we defined five genes with described roles in cellular development and 29 

differentiation that are direct suppression targets of SRC-1. Aberrant methylation of these 30 

genes in endocrine resistant models and in patient tumors was observed. Increased 31 
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expression of the maintenance and de novo methyltransferases, DNMT1 and DMMT3a, 1 

were seen in the presence of SRC-1. Moreover the presence of the lysine methylator, 2 

H3k27me is consistent with the established mechanistic link between DNA- and histone- 3 

methylation (17) and is indicative of the epigenetic activity at these regions. 4 

 To elucidate the mechanism of repression and the regulatory link between 5 

methylation and the steroid receptor transcriptional system we investigated the methylome 6 

pertinent to the target genes. MBD2 and MECP2, members of the methyl binding domain 7 

(MBD) protein family which deciphers the DNA methylation code (47), were both found to 8 

be recruited to the target genes. Full suppression capacity of the MBD protein complex is 9 

dependent however on histone deacetylation (20). Recruitment to the target genes of the 10 

histone deacetylator, HDAC2, a known MECP2 binding partner (20), was also observed. The 11 

dependence of this regulatory methlyome on SRC-1 provides evidence of the central role of 12 

this transcriptional protein in coordinating these epigenetic events. 13 

De-repression of the SRC-1 epi-silenced genes influences a number of key functional 14 

pathways whose deregulation is a facet of endocrine treatment resistant phenotype. 15 

Integration with existing patient datasets and patient survival data (39) revealed that 16 

reduced expression of this gene set associated with poor outcome in tamoxifen-treated 17 

population. This was not true for treatment naïve populations suggesting that this is a 18 

feature of long-term endocrine treatment. Therefore, SRC-1 dependent methylated genes 19 

identified here underline key molecular features that distinguish between good outcome 20 

and poor outcome in endocrine treated ER+ve patients. Still, these interpretations warrant 21 

further clinical investigation in larger independent cohorts as methylation of specific genes 22 

have the power to be a valuable tool in the management of breast cancer (48). 23 

In contrast to mutational modifications, epigenetic alterations are potentially 24 

reversible (49). Demethylating agents have demonstrated therapeutic benefit at low dose 25 

long-term treatments in solid tumors (50). However, these agents can have broad impacts 26 

on gene expression and also the number of tumor-associated methylated genes could 27 

impact its efficacy. To demonstrate methylation as a crucial mechanism of the aggressive 28 

phenotype observed in our models, we show that DNA demethylator treatment re-29 

expressed SRC-1 suppression genes and significantly inhibited proliferation of ex vivo 30 
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endocrine resistant metastatic tumors. Promising observations reported here, warrant 1 

further studies using a larger cohort of patient tumor samples, providing full clinical 2 

relevance of these mechanisms in breast cancer patients. 3 

Taken together data presented here link, for the first time, the key transcriptional 4 

machinery of the endocrine resistant cell with global methyl-dependent gene suppression. 5 

We demonstrate that SRC-1 is one of the key orchestrators of the endocrine resistant 6 

methylome which has consequences that are both functionally and clinically relevant. 7 
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Figure Legends 1 

Figure 1. SRC-1 global gene methylation signature. (a) Colorimetric density plot of the 2 

correlation between the global methylation profile of endocrine sensitive MCF7 (n=2) and 3 

endocrine resistant LY2 (n=3) cell lines and patient primary breast tumor with a matched 4 

brain metastatic tumor (RCS_4) using Roche SeqCap Epi targeted bisulfite methylation 5 

sequencing. The correlation plot demonstrates an asymmetric density distribution: LY2 cells 6 

and the brain metastatic tumor have increased hyper-methylation relative to the MCF7 cells 7 

and matched primary tumor sample, respectively. Circos plot of differentially methylated 8 

CpGs detected in brain metastasis compared to primary tumor. (b) Analysis of ER and SRC-1 9 

ChIP-seq in MCF7 (n=2) and LY2 (n=2) cells. Bar plot demonstrates a greater percentage of 10 

ER binding at CpG islands in the resistant LY2 cells in comparison to the sensitive MCF7 cells. 11 

ER/SRC-1 DNA binding shows that 74% of ER peaks have SRC-1 co-bound at CpG islands in 12 

LY2 treated cells in comparison to 45% in untreated cells. (c) The circos plot demonstrates 13 

the distribution of the differentially methylated regions of shNT (n=2) and shSRC-1 (n=2) 14 

MeDIP-seq in LY2 cells treated with 4-OHT across all chromosomes using Log2 fold change 15 

difference. A bar plot illustrates the differences in differentially methylated regions in shNT 16 

and shSRC-1. (d) A higher proportion of MeDIP-seq hypermethylated regions located 17 

adjacent to SRC-1 ChIP-seq peaks (<2Kb) are observed in LY2 shNT cells in comparison to LY2 18 

shSRC-1 cells. (e) Volcano plot illustrating the differentially expressed genes between shNT 19 

and shSRC-1 RNA-seq from 4-OHT treated LY2 cells (fold change > 1, adjusted p-value <0.05, 20 

n=4). (f) The 736 genes down regulated in shNT (from RNA-seq analysis, Table S1) were 21 

filtered and 251 genes were identified within 5kb upstream of the transcription start site 22 

(ChIP-seq analysis, Table S2), from 251 genes, nine genes were found with adjacent 23 

differentially methylated regions (MeDIP-seq analysis). The chart illustrates the work flow 24 

from which nine genes were identified with known role in development and differentiation. 25 

Figure 2. SRC-1 tumorigenic potential, mirrored by NTRK2, NR2F2, CTDP1, SETBP1 and 26 

POU3F2 functional role in tumorigenic suppression. (a) In SRC-1 CRISPR/Cas9 KO cells 27 

(clone 9c and 7c) the CD24+CD44- differentiated cell population is significantly increased 28 

compared to control endocrine resistant LY2 luc cell lines (n=3). In contrast CD24+CD44- and 29 

CD49f-Epcam+differentiated cell population is significantly decreased after siRNA knock 30 

down of NTRK2 and POU3F2 and NTRK2, NR2F2, CTDP1 and POU3F2 respectively in LY2 31 
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shSRC-1 cells (n=3). (b) LY2 SRC-1 CRISPR/Cas9 knock out clones 9c and 7c have significantly 1 

less mammosphere forming efficiency compared to control LY2 luc cell line (n=3), whilst the 2 

siRNA knock down of NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2 in LY2 shSRC-1 cells 3 

significantly increases the cell lines mammosphere forming efficiency compared to LY2 4 

shSRC-1 control (n=3). (c) Anchorage independent growth in LY2 cell lines was significantly 5 

reduced in the absence of SRC-1 (LY2 SRC-1 CRISPR/Cas9 KO 9c and 7c) (n=3). Anchorage 6 

independent growth was significantly increased in all pro-differentiation genes, NTRK2, 7 

NR2F2, CTDP1, SETBP1 and POU3F2, after siRNA in LY2 shSRC-1 cells compared to scramble 8 

control (n=3) (d) Bar plot and representative images of acini formation from LY2 SRC-1 9 

CRISPR/Cas9 KO (clone 9c and 7c) showed more organized acini with superior apico-10 

basolateral structure compared to wild-type LY2 cells (n=3). In contrast, siRNA knock down 11 

of the pro-differentiation genes, NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2, showed 12 

decreased level of organization relative to the SRC-1 control cell line (LY2 shSRC-1) (n=3) . 13 

Phalloidin 594 (pink color) stains F-actin and DAPI (blue color) stains the nucleus. Organised 14 

acini structures were defined based upon presence of hollow lumen and structured apico-15 

basolateral layer.  16 

 (e) Scratch assay showed that LY2 SRC-1 CRISPR/Cas9 KO (clone 9c and 7c) were 17 

significantly less motile in comparison to wild type LY2 luc cells (n=3). Knock down of NTRK2, 18 

NR2F2, CTDP1, SETBP1 and POU3F2 in the absence of SRC-1 (LY2 shSRC-1) migratory 19 

capacity of the cells compared to siNT cells (fluorescent bead assay, n= 3). Results are 20 

expressed as mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. 21 

Figure 3. NTRK2, NR2F2, CTDP1, SETBP1, and POU3F2 expression in breast cancer patients. 22 

(a) GOBO analysis of combined expression of NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2, in 23 

PAM50 subtypes of breast cancer tumors, showed significantly higher expression in Luminal 24 

A subtype, (p<0.00001). Analysis of combined expression of NTRK2, NR2F2, CTDP1, SETBP1 25 

and POU3F2 stratified by estrogen receptor status in all tumors, showed significantly higher 26 

expression of these pro-differentiation genes in the ER positive tumors compared to ER 27 

negative tumors, (p<0.00001). (b) Ranked SRC-1 target gene set expression in 669 primary 28 

breast tumors from ER positive 4-OHT-treated patients (39). Colors are log2 mean-centered 29 

values, Red=high, Green=low. Data is from four published Affymetrix microarray datasets 30 

(GSE6532, GSE9195, GSE17705, GSE12093) summarized with Ensembl alternative CDF  and 31 
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normalized with Robust Multi-array Average (RMA), before integration using ComBat  to 1 

remove dataset-specific bias. White–gray–black bars indicate significance of all possible cut 2 

points from P = 1 to 0.001. (c) Kaplan–Meier analysis of distant metastatic free survival 3 

(DMFS) according to expression of the SRC-1 pro-differentiation target genes in ER positive 4 

4-OHT-treated patients (n=669) and Kaplan-Meier analysis of recurrence free survival (RFS) 5 

in untreated patients (n=343). (d) Schematic of the ex vivo experimental set up. (e) Tumors 6 

extracted from LY2 xenografts were assessed for proliferation by immunohistochemical 7 

analysis of Ki67 quantified using the Aperio digital pathology imaging, shows significantly 8 

less Ki67 in RG108 and RG108/4-OHT treated groups compared to DMSO control, (n=10 9 

images/group). (f) Patient breast cancer brain metastatic tumor explants (T347x, T638x) 10 

were assessed for Ki67 expression and quantified using the Aperio digital pathology imaging. 11 

The results shows significantly less Ki67 positivity in the RG-108 treated group and in 12 

RG108/4-OHT treated groups in both T347x and T638x tumor explant compared to DMSO 13 

control (n=10 images/group). Ki67 positive cells indicated with red triangles and negative 14 

cells indicated with a green triangle. Results are expressed as mean ± SEM, *p<0.05, 15 

**p<0.01, ***p<0.001. 16 

Figure 4. SRC-1 in combination with a complex of methylators drives repressive state of 17 

NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2. (a) Differentially methylated regions (DMR) of 18 

SRC-1 pro-differentiation genes were identified with SeqCap Epi sequencing by comparing 19 

primary breast tumor with matched brain metastatic tumor (case RCS_4). Plot shows 20 

regions of hypermethylation (red) and hypomethylation (blue) (meth.diff 30%; q-value < 21 

0.01) found in NTRK2, NR2F2, CTDP1, SETBP1 and POU3F2 genes. Tracks show: CpGs probed 22 

(purple), percentage of Methylation in LY2 cell line (green), differential methylation in brain 23 

metastatic patient over primary (case RCS_4) (grey), % Methylation in case RCS_4 prior to 24 

differential analysis (light grey), SRC-1 Chipset peaks in 4-OHT treated LY2 cells (yellow), 25 

SRC-1 ChIP-seq peaks in untreated LY2 cells (orange) and RefSeq HG19 gene model. (b) 26 

mRNA expression levels of DNA methyl transferases in the presence of SRC-1 (LY2 shNT) 27 

compared to its absence (shSRC-1). Expression of de novo transferases DNMT1 and 28 

DNMT3A are significantly increased in the presence of SRC-1 (shNT) in comparison to 29 

silenced (shSRC-1) cells (n=3). (c) ChIP assay showed significantly higher recruitment of 30 

histone repression marker H3K27me3 to pro-differentiation genes in 4-OHT treated LY2 cells 31 
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over IgG. (d) ChIP assays showed significantly higher recruitment of transcription regulators, 1 

SRC-1 and ER over IgG. ChIP assay of PR recruitment to the target genes is included. (e) 2 

Recruitment of methylators, MBD2 and MECP2, to NTRK2, NR2F2, CTDP1, SETBP1 and 3 

POU3F2, in 4-OHT treated LY2 cells over IgG (n=3). (f) ChIP-re-ChIP assay of SRC-1-MBD2 and 4 

SRC-1 MECP2 occupancy over SRC-1-IgG control at each of the target genes. (g) MBD2 and 5 

MECP2 recruitment to pro-differentiation genes in LY2 SRC-1 CRISPR/Cas9 KO (clone 7c) 6 

relative to LY2-luc parental cell line (n=3). (h) ChIP assays shows significantly higher 7 

recruitment of HDAC2 to the NTRK2, NR2F2, CTDP1, and SETBP1 in LY2 cells over IgG, which 8 

is significantly reduced in LY2 SRC-1 CRISPR/Cas9 KO (clone 7c) cells (n=3) compared to LY2 9 

luc in NR2F2, CTDP1, SETBP1 and POU3F2. (i) Heatmap demonstrating relative DNA 10 

recruitment of ER, SRC-1 and methyl proteins to the SRC-1 pro-differentiation genes in LY2 11 

cells. Cartoon illustrating complex recruitment of regulatory proteins driving methylation 12 

and subsequent repression to SRC-1 pro-differentiation genes. Results are expressed as 13 

mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. 14 
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Table 1. Pro-differentiation genes repressed by SRC-1- dependent DNA methylation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Ensemble ID Gene Function Methyl marks 

NTRK2 ENSG00000148053 
Regulation of neuron survival, proliferation, migration 
and differentiation 

Intronic 

NR2F2 ENSG00000185551 Nuclear receptor involved in neuronal differentiation 
Downstream (4kb) 
of TSS and upstream 
(380kb) 

CTDP1 ENSG00000060069 
Regulates RNA polymerase II, cellular organisation and 
differentiation 

Intronic near 
TSS/intergenic 

SETBP1 ENSG00000152217 DNA replication, differentiation Intronic 

POU3F2 ENSG00000184486 Differentiation 
2.5kb upstream of 
promoter 

MMP16 ENSG00000156103 
Involved in the breakdown of extracellular matrix in 
normal physiological processes 

Intergenic, intronic 
and exon 

NELL2 ENSG00000184613 Cell growth regulation Intronic 

RASD1 ENSG00000108551 
Negatively regulates the transcription regulation 
activity of the APBB1/FE65-APP complex via its 
interaction with APBB1/FE65 

Intergenic 

SDK1 ENSG00000146555 
Adhesion molecule that promotes lamina-specific 
synaptic connections in the retina 

Intronic and exon 
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