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Abstract.  
When we wish to coordinate complex, cooperative tasks in open multi-agent systems, where each 
agent has autonomy and the agents have not been designed to work together, we need a way for 
the agents themselves to determine the social norms that govern collective behaviour. An effective 
way to define social norms for agent communication is through the use of interaction models such 
as those expressed in the Lightweight Coordination Calculus (LCC), a compact executable 
specification language based on logic programming and pi-calculus. Open multi-agent systems 
have experienced growing popularity in the multi-agent community and gain importance as large 
scale distributed systems become more widespread. A major practical limitation to such systems 
is security, because the very openness of such systems opens the doors to adversaries to exploit 
vulnerabilities introduced through acceptance of social norms.  
This paper addresses a key vulnerability of security of open multi-agent systems governed by 
formal models of social norms (as exemplified by LCC). A fundamental limitation of 
conventional security mechanisms (e.g. access control and encryption) is the inability to prevent 
information from being propagated. Focusing on information leakage in choreography systems 
using LCC, we suggest a framework to detect insecure information flows. A novel security-typed 
LCC language is proposed to prevent information leakage.  
Both static (design-time) and dynamic (run-time) security type checking are employed to 
guarantee no information leakage can occur in annotated agent interaction models. The proposed 
security type system is discussed and then formally evaluated by proving its properties.  
Two disadvantages of the pure dynamic analysis are its late detection and its inability to detect 
implicit information flows. We overcome these issues by performing static analysis. The proposed 
security type system supports non-interference, i.e. high-security input to the program never affect 
low-security output. However, it disregards information leaks due to the termination of the 
program.  
 

Keywords: Multi-Agent Systems (MASs), Open Systems, Language-based Security, Information Leakage, 

Information Flow Analysis, Lightweight Coordination Calculus (LCC). 

 

1. Introduction 

Security is a major practical limitation to the advancement of open systems and open multi-agent systems 

(MASs) is no exception. Although openness in open MASs makes them attractive for different new applications, 

new problems emerge, among which security is a key issue. Unfortunately, there remain many potential gaps in 

the security of open MASs and little research has been done in this area.  

A MAS could be defined as a subcategory of a software system, a high level application on top of the OSI1 

networking model; therefore the security of MASs is not a completely different and new concept; it is a sub-

category of computing security. However, some traditional security mechanisms resist use in MAS directly, 

because of the social nature of MASs and the consequent special security needs (Robles 2008). Open MASs are 
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particularly difficult to protect, because we can provide only minimum guarantees about the identity and 

behaviour of agents.  

Confidentiality is one of the main features of a secure system that is challenging to be assured in open 

MAS. Open MASs are convenient platforms to share knowledge and information, however usually there exists 

some sensitive information that we want to protect. The openness of these systems increases the potential for 

unintentional leaking of sensitive information. Thus, it is crucial to have mechanisms that guarantee 

confidentiality and to assure that the publicly accessible information during the interactions is what we 

deliberately want to share. 

Information leakage denotes disclosure of secret information to unauthorised parties via insecure 

information flows. Information leaks in agent interactions occur when secret data are revealed through message 

transfers, constraints or assigning roles to agents.  

An electronic institution (Esteva, et al. 2001) or an interaction model is an organisation model for MASs 

that provides a framework to describe, specify and deploy agent interaction environments (Joseph, et al. 2006). 

It is a formalism which defines agents’ interaction rules and their permitted and prohibited actions. While 

interaction models can be used to implement security requirements of a multi-agent system, they also can be 

turned against agents to breach their security in a variety of ways, as we will show in this paper.  

To employ a language-based approach to secure interaction models, we need to select an agent language. 

We chose the Lightweight Coordination Calculus (LCC) as the agents’ communication language (see Section 2 

for a summary of LCC).  

Common security techniques such as conventional access control, encryption, digital signatures, virus 

signature detection and information filtering are necessary but they do not address the fundamental problem of 

tracking information flow in information systems, therefore, they cannot prevent all information leaks. Access 

control mechanisms only prevent illegal access to information resources and cannot be a substitute for 

information flow control (Sabelfeld and Myers 2003). Encryption-based techniques guarantee the origin and 

integrity of information, but not its behaviour.  

This paper is laid out as follows. First, different types of insecure information flows in open MAS governed 

by interaction models are introduced. Second, a security type system is proposed by defining security types and 

the type inference rules. Then, the security type system is evaluated by proving some of its properties. Next, the 

dynamic and the static approaches in the interaction type checking are reviewed and non-interference and 

declassification are discussed. 

2. Lightweight Coordination Calculus (LCC) 

In our security analysis Lightweight Coordination Calculus (LCC) is used to implement agents’ interaction 

models and formulate attacks. LCC (Robertson 2005), is a declarative language used to specify and execute 

social norms in a peer to peer style. LCC is a compact executable specification based on logic programming.  

An interaction model in LCC is defined as a set of clauses, each of which specifies a role and its process of 

execution and message passing. The LCC syntax is shown in Fig. 2-1. 



Interaction Model := {Clause,...} 

Clause := Role::Def 

Role := a(Type, Id) 

Def := Role | Message | Def then Def | Def or Def | null<- C | Role <- C 

Message := M => Role  |  M => Role <- C  |  M <= Role  | C <- M <= Role  

C:= Constant | P(Term,...) | ¬ C | C  C | C  C 

Type := Term 

Id := Constant | Variable 

M:= Term 

Term:= Constant | Variable | P(Term,...) 

Constant:= lower case character sequence or number 

Variable := upper case character sequence or number 

Fig. 2-1: LCC language syntax; principal operators are: messages (and), conditional (<-), 

sequence (then) and committed choice (or)   

Each role definition specifies all of the information needed to perform that role. The definition of a role 

starts with: a(roleName,PeerID). The principal operators are outgoing message (=>), incoming message 

(<=), conditional (<-), sequence (then) and committed choice (or). Constants start with lower case characters 

and variables (which are local to a clause) start with upper case characters. LCC terms are similar to Prolog 

terms, including support for list expressions. Matching of input/output messages is achieved by structure 

matching, as in Prolog.  

The right-hand side of a conditional statement is a constraint. Constraints provide the interface between the 

interaction model and the internal state of the agent. These would typically be implemented as a Java component 

which may be private to the peer, or a shared component registered with a discovery service. 

Role definitions in LCC can be recursive and the language supports structured terms in addition to variables 

and constants so that, although its syntax is simple, it can represent sophisticated interactions.  Notice also that 

role definitions are “stand alone” in the sense that each role definition specifies all the information needed to 

complete that role.  This means that definitions for roles can be distributed across a network of computers and 

(assuming the LCC definition is well engineered) will synchronise through message passing while otherwise 

operating independently.  

Robertson (2005) defined the following clause expansion mechanism for agents to unpack any LCC 

interaction model they receive and suggested applying rewrite rules to expand the interaction state: 

𝐶𝑖  
𝑀𝑖,𝑀𝑖+1,𝑃,𝑂𝑖
→        𝐶𝑖+1𝑠, … , 𝐶𝑛−1  

𝑀𝑛−1, 𝑀𝑛,𝑃,𝑂𝑛
→          𝐶𝑛 

where Cn is an expansion of the original LCC clause Ci in terms of the interaction model P and in response to 

the set of received messages Mi, On is an output message set, Mn is a remaining unprocessed set of messages. 

 The rewrite rules allow an agent to conform to the interaction model by unpacking clauses, finding the next 

step and updating the interaction state. The rewrite rules are defined in the LCC interpreter, which should be 



installed on each agent running LCC codes. For more information about the LCC expansion algorithm see 

(Robertson 2005) and (Robertson, Barker, et al. 2009). 

3. Related Work 

Security of MAS has been explored extensively in the literature but only a few studies have focused on 

open MAS social interactions and most research has dealt with the security of mobile agent environments, so 

most of the security solutions address threats from agents to hosts or from hosts to agents. A review of attacks 

and countermeasures for open MASs is presented by (Bijani and Robertson, A Review of Attacks and Security 

Approaches in Open Multi-agent Systems 2014). Trust measures have also important role in implementing 

security strategies in open MAS. E.g. The trust service of the MAS is responsible for preventing the fake 

identity attacks. This issue has been considered in several recent works e.g. (Rosaci 2012) and (Buccafurri, et al. 

2016). 

There have been many attempts to protect mobile agents from the host platform in the literature (Jansen and 

Karygiannis 2000), (Oey, Warnier and Brazier 2010) and (Ngereki 2015);  some are based on cryptography 

while others are not; e.g. code obfuscation (Majumdar and Thomborson 2005), function encryption (Lee, Alves-

Foss and Harrison 2004) and (Zhu and Xiang 2011), environmental key generation (Riordan and Schneier 

1998), execution tracing (Tan and Moreau 2002), and agent monitoring (Page, Zaslavsky and Indrawan 2005). 

Another important security issue in mobile agent systems is protecting the agent platform from mobile agents. 

Some example techniques are: Proof Carrying Code (Necula and Lee 1998), sandboxing (Wahbe, Lucco and 

Anderson 1993) and code signing (Jansen and Karygiannis 2000). However, the importance of these security 

issues originating from the mobility of agents should not diminish the importance of many other security threats 

in open MASs and a subset of these will be our concern henceforth in this paper. 

Security approaches in the multi-agent security domain can be divided into two parts; the first approach is 

prevention, in which usually encryption-based techniques and authentication methods (e.g.: certificates and 

PKI2) are used. Most research on secure MASs follows this approach. (Wong and Sycara 1999), (Idrissi, Souidi 

and Revel 2015) and (Ohno, et al. 2016) are some examples of using encryption to prevent MASs from 

malicious attacks. For instance, (Poslad and Calisti 2000), (Wang, Varadharajan and Zhang 1999) and (Odubiyi 

and Choudhary 2007) suggest security architectures for the IEEE FIPA agent standard by means of 

authentication, PKI and VPN3. (Sarhan and Alnaser 2014) propose a public-key based solution for multi-agent 

virtual learning environment. Other prevention methods for secure MASs are: policy driven and secure 

development methodologies such as (Mouratidis, Giorgini and Weiss 2003) and (Hedina and Moradian 2015) 

that guarantee security requirements and design are integrated with system functionalities. Policy driven 

methodologies are based on applying security policies, which may be used for access control, e.g. (Quillinan, et 

al. 2008), definition of acceptable behaviour, e.g. (Vazquez-Salceda, et al. 2003) or policy randomisation to 

prevent adversaries guess the next agent action, e.g. (Tan, Poslad and Xi 2004). 
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The second approach is detection, which tries to detect attacks on MASs and then respond to them. Little 

research has been done in this area and the focus of the work has been on attacks and countermeasures in mobile 

agents, e.g., (Jansen and Karygiannis 2000), (Endsuleit and Wagner 2004), and (Ogunnusi and Ogunlola 2015). 

The main problems in mobile agent systems, which are not in the scope of our review, are threats from agents to 

hosts and vice versa. 

We employed a language-based information flow analysis approach in the context of open MASs. In static 

information flow analysis, agent interaction models are validated before being run. Static analysis of 

programmes using security type systems conservatively detects implicit and explicit information flows and 

provides stronger security assurance (Sabelfeld and Myers 2003). Dynamic security checks may be 

accomplished via two similar approaches: monitors (Russo and Sabelfeld 2010) or dynamic security typing 

(Hennigan, et al. 2011). 

4. Insecure Information Flows 

The first step in language-based information flow analysis for agent interaction models is defining security 

levels for terms and components in the code. A set of security levels is a finite lattice i.e. a partially ordered set 

with a top element H and a bottom element L, ordered by ≤. Lower in the lattice denotes “less secure” and 

higher in the lattice indicates “more secure”. Without loss of generality, a two-element security lattice is 

assumed with levels l, for low security (public information), and h, for high security (secret information).  

The following definition characterises the concept of security levels in this paper.  

Definition 4-1 (Security Levels): 

We consider a simple lattice L with two security levels, low l and high h, security level l ∈ (L, ≤), where l ≤ h 

and ≤ is a partial order relation.  

We need to ensure that information flows only upwards in the lattice (D. E. Denning 1976) e.g. when l ≤ h, 

permissible information flows are from l to l, from l to h and from h to h, but flow from h to l is not allowed.   

A MAS keeps secrets confidential during agents’ interaction if it only allows secure information flow. There are 

two types of information flows: explicit flow and implicit flow. Distinctions between explicit and implicit flows 

in LCC interaction models are shown with the following examples. It is assumed that all the LCC terms in the 

given examples are public information (which have security level l ), except for the following secret variables 

(which have security level h ): 

SecretMessage, SecretID, S, PrivateAgent, secretAgent. 

In the following examples SecretMessage is a secret message,  are sec is for the following secret variables 

(which have security level h ): 

 

4.1 Explicit flows 

Insecure explicit information flow denotes direct sending or assigning of secrets. Explicit flows in LCC 

interaction models may occur in three situations: (a) message passing, (b) invoking a constraint and (c) 



assigning a role to an agent. In explicit information flows, the operations are performed independently of the 

value of their terms (Denning and Denning 1977), e.g. the content of an LCC message does not affect the 

sending operation. Insecure explicit flow may cause secret information to be leaked to a publicly observable 

term. Consider the following LCC codes as examples of explicit information flows: 

a) Message passing 

The following explicit flow, in which the instance of a variable SecretMessage is sent to a low level 

agent P with the risk of secret information leakage: 

SecretMessage => a(publicAgent, P)   

The secret message can also be received by another agent: 

SecretMessage <= a(publicAgent, P) 

This breach of security can occur in an LCC clause, when a public agent P sends the SecretMessage 

to any (public or secret) receiver agent R: 

a(publicAgent, P):: 

... 

SecretMessage => a(receiver, R) 

...  

On the other hand, a message passing pattern can occur without a security breach. The following 

explicit flows that sends (receives) a PublicMessage variable to (from) a secretAgent S is 

permissible. 

PublicMessage => a(secretAgent, S) 

and 

PublicMessage <= a(secretAgent, S) 

 

b) Invoking a constraint 

An example of an explicit flow that discloses the value of a secret variable to a publicly observed 

variable is assigning SecretID to a PublicVariable in an LCC constraint:  

null <- assign(PublicVariable, SecretID) 

Any constraint that updates the value of a public term using a secret term causes an unacceptable 

information flow. The constraints in LCC play an important role, although the implementation details 

of constraint solvers are invisible to LCC clauses and the constraint solver might even be a remote web 

service. However, it is the responsibility of the LCC programmer to prevent any illegal information 

flow caused by invoking a constraint.   

 

c) Assigning a role to an agent 



When a role is assigned to an agent in the definition of an LCC clause, the security level of the role and 

the agent identifier need to be compatible. The following role definition is not a permissible flow, 

because it assigns a secret role secretAgent to a low security agent PublicAgent.   

a(secretAgent, PublicAgent)::  

  ... 

On the other hand, a publicAgent role (or a secretAgent role) can be assigned to a 

PrivateAgent: 

a(publicAgent, Private Agent)::   ... 

4.2 Implicit Flows 

Insecure implicit flows disclose some information through the program control flow. In other words, based on a 

definition from Denning and Denning (1977), we can define an implicit information flow from term T1 to term 

T2, when a performed operation causes a flow from some arbitrary T3 to T2, based on the value of T1. Thus, 

conditional LCC expressions are the sources of insecure flows. 

The following example is a conditional statement, in which a public message is sent to a public agent P, if 

the constraint is satisfied (SecretID ≤ 10). The explicit flow in sending the message is permitted, but the 

implicit flow from the constraint to the public agent P that leaks information about the range of SecretID 

variable is illegal. If a public message is sent to agent P, it reveals that the SecretID is less than or equal to 10 

and if it is not sent, the SecretID is greater than 10.  

PublicMessage => a(publicAgent,P) <- lessOrEqual(SecretID, 10) 

In another example below, the public agent P can guess the range of SecretID, by receiving a public 

message containing a public variable X, although the message passing part does not explicitly disclose any 

information. Either the public agent receives publicMsg(X) or publicMsg(1), knowing the value of X, some 

information about SecretID is leaked.    

publicMsg(X) => a(publicAgent,P) <- lessOrEqual(SecretID,X) 

or 

publicMsg(1) => a(publicAgent,P) 

 

The above example might leak information about SecretID, but not the exact value of it. The following 

example discloses the value of SecretID; assuming SecretID is not negative, the initial value of X is set to 0 

and the constraint increase(X1,X,1) means X1=X+1. In the recursive clause below, if SecretID is not 

equal to 0, the value of X1 is X+1 and the clause is called again with the updated X1; i.e. a(myAgent(X1),Q). 

Finally, when X equals to SecretID+1, publicMsg(X) reveals the value of SecretID to the public agent P. 

a(myAgent1(X), Q):: ... 

( 

   a(myAgent1(X1), Q) <- lessOrEqual(SecretID,X) ∧ increase(X1,X,1)  



   or 

   publicMsg(X)=>a(publicAgent,P)        % when X equals SecretID +1 

 ) 

In a similar example, the following LCC clause binds R to the precise value of SecretID if the role 

completes successfully. So, it discloses the value of SecretID to the public agent P by sending publicMsg(R) 

message. In this example, even if R is not sent as a message parameter (i.e. publicMsg instead of 

publicMsg(R)), the public agent P can discover the value of SecretID by counting the number of received 

messages. 

a(myAgent2(X,R), Q):: 

 ... 

 ( 

   publicMsg(R)=>a(publicAgent,P) <- lessOrEqual(SecretID,X) ∧ increase(X1,X,1)  

   then a(myAgent2(X1,R), Q)  

 )  or 

   a(myAgent2(X,X), Q) <- equals(SecretID,X)  

Information may leak because of the termination behaviour of the interaction model4. Recursion is the key 

to this type of leaks. In the following sample LCC clause, the adversary learns that the value of the SecretID is 

0 if the interaction model terminates. 

a(myAgent3, Q):: 

   a(myAgent3, Q) <- ¬equals(SecretID,0)  

 

Adversaries can exploit explicit or implicit information flows to perform attacks. We need to prevent both 

explicit and implicit insecure information flows in order to ensure no information leaks to unauthorised parties.   

4.3 Countermeasures 

Two approaches to address information flow problems in MASs governed by interaction models are conceptual 

modelling by analysing the abstract models of the code and language-based information flow analysis. In the 

first approach, an LCC interaction model is translated into an abstract model, in which information leakage is 

investigated using an existing reasoning tool (Bijani, Robertson and Aspinall 2011). In language-based analysis 

of the agents’ code, we employ security types for the LCC terms and enforce a security policy by type checking. 
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5. Information Flow Analysis in LCC 

We propose a language-based information flow analysis technique for the LCC language to prevent information 

leaks problem by introducing a novel security type system. The proposed framework is inspired by the security 

type system of Volpano and Smith (1997).  

A security type system is defined by a set of type definitions and typing rules to determine if an interaction 

model is well-typed.  

5.1 Security Types 

The type rules are judgments of the form:  ⊢ T : where  is a type environment that maps term T to type . 

Here are some definitions: 

Definition 5-1 (Security Type Environment):  

A security type environment (context)  is a finite map from LCC terms to security types and is defined by 

  ::=  empty  | , T: ,     (5-1) 

in which  is empty (with no binding) or an updated environment that contains a mapping of the term T to the 

type . If there exists a  that  ⊢ T : , then T is called a well-typed  LCC expression under the security context 

of .   

Definition 5-2 (Security Types): 

The security types of our system are defined as following: 

= | uTrm | agent | con | op     (5-2) 

where  ranges over elements of security levels, agent identifiers have only type “uTrm ”, agents have only 

type “agent ”, constraint expressions have only type “con ”, operational commands5 have only type “op ” and 

messages, Constraint arguments have type “uTrm ” or . Role names and other terms (variables, constants and 

structures) have only type .  

To have a better understanding of the meanings of the security types, the following description explains the 

intuition behind them:   

a. ⊢ X: uTrm means that an updated agent identifier in a role assignment or message passing 

operation or an updated argument in a constraint has a security level higher than or equal to in 

context . 

b. ⊢ T : means that an identifier, a role name, or a message T  (with every identifier inside it) has a 

security level lower than or equal to in context . 
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c. ⊢ a(Role,Id): agent means in the agent definition, agent identifier Id, to which a role is 

assigned has a security level or higher in context . 

d. ⊢ C : con means that the constraint name and every argument within C has a security level or 

lower  in context .  

e. ⊢D: op means that every receiver of a message or any updated identifier in an operational 

command (i.e. Def) has a security level τ or higher in context . 

 

 (T) denotes the security level of the term Te.g. if we have t1 : h   and  f1 : con l, then  (t1) = h   and  

(f1) = l. 

Security levels are directly assigned to LCC terms by annotations of the LCC code n 

label(Term, Level). 

in which label is a keyword,  Term is any LCC term and Level is the security levels high (h) or low (l). The 

security types are then assigned based on the term definitions. All security types can be inferred from the term 

structure automatically, except constraints’ arguments, which need to be defined explicitly (by the user). By 

default, a constraint’s arguments are assumed to be non-updatable and to have a security type, τ, assigned to 

them.  

  

5.2 Type Inference for LCC 

The proposed security type system for LCC programs is described by two sets of typing rules (Fig. 5-1) and 

subtyping rules (Fig. 5-2). Each rule is read from bottom left and is applied recursively, e.g. rule Agnt states that 

in order to assign a role to an agent in form of a(R, ID) that has security type of agent τ, we must first check 

whether the security type of the role R is τ and then whether the security type of the agent identifier is uTrm τ. It 

guarantees that a high level role will not be assigned to a low agent. The environment Γ is a confidentiality 

policy, which is an input of our secure interpreter (Fig. 7-1-a). Security labels are assigned to LCC terms as 

annotation of LCC interaction models (Fig. 5-3). 

The security typing rules Id and uId explain if an LCC identifier (a constant or a variable) is defined in the 

environment Γ, security types τ or uTrm τ  may be assigned to it. Selection of τ or uTrm τ is based on the 

structure of the LCC expression. The security label of the current clause (this) is important while message 

passing and calling a constraint. This is created and added to the security environment Γ by the Init rule. 

 𝑇: 𝜏 𝜖 𝛤

𝛤 ⊢ 𝑇: 𝜏
𝐼𝑑                                         

 𝑇: 𝜏 𝜖 𝛤

𝛤 ⊢ 𝑇: 𝑢𝑇𝑟𝑚 𝜏
𝑢𝐼𝑑   

 
 

𝛤 ⊢  𝑛𝑢𝑙𝑙: 𝑜𝑝 ℎ
𝑁𝑢𝑙𝑙                       

 

𝛤 ⊢ 𝑓𝑎𝑙𝑠𝑒: 𝑜𝑝 ℎ
𝐹𝑎𝑙𝑠𝑒        

 
 𝛤 ⊢ 𝑇: 𝜑

𝛤 ⊢ 𝑐(𝑇): 𝜑
𝐶𝑙𝑜𝑠𝑒                         

𝛤 ⊢ 𝑅: 𝜏, 𝛤 ⊢ 𝐼𝐷: 𝑢𝑇𝑟𝑚 𝜏  

𝛤 ⊢ 𝑎(𝑅, 𝐼𝐷): 𝑎𝑔𝑒𝑛𝑡 𝜏
𝐴𝑔𝑛𝑡      



𝛤 ⊢ 𝑎(𝑅, 𝐼𝐷): 𝑎𝑔𝑒𝑛𝑡 𝜏 

𝛤, 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏 ⊢ 𝑎(𝑅, 𝐼𝐷) ∷ 𝑎𝑔𝑒𝑛𝑡 𝜏
𝐼𝑛𝑖𝑡∗ 

𝛤 ⊢ 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝑀: 𝜏, 𝛤 ⊢ 𝐴 ∶ 𝑎𝑔𝑒𝑛𝑡 𝜏

𝛤 ⊢ 𝑀 ⇒ 𝐴 ∶ 𝑜𝑝 𝜏  
𝑆𝑛𝑑  

 
𝛤 ⊢ 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝑀: 𝜏, 𝛤 ⊢ 𝐴 ∶ 𝑎𝑔𝑒𝑛𝑡 𝜏

𝛤 ⊢ 𝑀 ⇐ 𝐴: 𝑜𝑝 𝜏 
𝑅𝑠𝑣 

𝛤 ⊢ 𝑡ℎ𝑖𝑠: 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝑓: 𝜏, 𝛤 ⊢ 𝑇𝑖: 𝜌

𝛤 ⊢ 𝑓(𝑇𝑖): 𝑐𝑜𝑛 𝜏
𝐶𝑎𝑙𝑙   𝜌 = 𝜏| 𝑢𝑇𝑟𝑚 𝜏, 𝑖 = 1,… , 𝑛 

𝛤 ⊢ 𝑓: 𝜏, 𝛤 ⊢ 𝑇𝑖 : 𝜏

𝛤 ⊢ 𝑓(𝑇𝑖): 𝜏
𝑆𝑡𝑟𝑢𝑐𝑡    𝑖 = 1, … , 𝑛         

𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏

  𝛤¬𝐶: 𝑐𝑜𝑛 𝜏 
𝑁𝑜𝑡   

𝛤 ⊢ 𝐶1: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝐶2: 𝑐𝑜𝑛 𝜏

𝛤 ⊢ 𝐶1 ∧ 𝐶2 : 𝑐𝑜𝑛 𝜏
𝐴𝑛𝑑                    

𝛤 ⊢ 𝐶1: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝐶2: 𝑐𝑜𝑛 𝜏

𝛤 ⊢ 𝐶1 ∨ 𝐶2 : 𝑐𝑜𝑛 𝜏
𝑂𝑟 

𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏 

𝛤 ⊢  𝑀 ⇒ 𝐴 ← 𝐶: 𝑜𝑝 𝜏  
𝐼𝑓1      

𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏, 𝛤 ⊢ 𝑀 ⇐ 𝐴: 𝑜𝑝 𝜏 

𝛤 ⊢ 𝐶 ← 𝑀 ⇐ 𝐴: 𝑜𝑝 𝜏 
𝐼𝑓2 

𝛤 ⊢ 𝑛𝑢𝑙𝑙: 𝑜𝑝 𝜏 , 𝛤 ⊢ 𝐶: 𝑜𝑝 𝜏 

𝛤 ⊢ 𝑛𝑢𝑙𝑙 ← 𝐶: 𝑜𝑝 𝜏  
𝐼𝑓3      

𝛤 ⊢ 𝑎(𝑅, 𝐼): 𝑎𝑔𝑒𝑛𝑡 𝜏 , 𝛤 ⊢ 𝐶: 𝑐𝑜𝑛 𝜏 

𝛤 ⊢ 𝑎(𝑅, 𝐼) ← 𝐶: 𝑜𝑝 𝜏  
𝐼𝑓4 

𝛤 ⊢ 𝐴1: 𝑜𝑝 𝜏 , 𝛤 ⊢ 𝐴2: 𝑜𝑝 𝜏 

𝛤 ⊢ 𝐴1 𝑡ℎ𝑒𝑛 𝐴2: 𝑜𝑝 𝜏   
𝑆𝑒𝑞              

𝛤 ⊢ 𝐴1: 𝑜𝑝 𝜏 , 𝛤 ⊢ 𝐴2: 𝑜𝑝 𝜏 

𝛤 ⊢ 𝐴1 𝑝𝑎𝑟 𝐴2: 𝑜𝑝 𝜏   
𝑃𝑎𝑟 

 
𝛤 ⊢ 𝐴1: 𝑜𝑝 𝜏 ,   𝛤, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡[𝐴1] ⊢ 𝐴2: 𝑜𝑝 𝜏  

𝛤 ⊢ 𝐴1 𝑜𝑟 𝐴2: 𝑜𝑝 𝜏 
𝐶ℎ𝑜𝑖𝑐𝑒 

𝛤 ⊢ 𝑎(𝑅, 𝐼𝐷): 𝑎𝑔𝑒𝑛𝑡 𝜏, 𝛤 ⊢ 𝐷𝑒𝑓 𝑜𝑝 𝜏 

𝛤, ⊢ 𝑎(𝑅, 𝐼𝐷) ∷ 𝐷𝑒𝑓: 𝑜𝑝 𝜏
𝑅𝑜𝑙𝑒 

Fig. 5-1: The security typing rules for LCC 

𝜑 ≤ 𝜑   𝑅𝑒𝑓𝑙𝑒𝑥       
 Γ ⊢ 𝑇: 𝜑, 𝜑 ≤ 𝜑′

Γ ⊢ 𝑇: 𝜑′
𝑆𝑢𝑏       

 𝜑1 ≤ 𝜑2 , 𝜑2 ≤ 𝜑3
 𝜑1 ≤ 𝜑3

  𝑇𝑟𝑎𝑛𝑠 

 𝜏′ ≤ 𝜏

 𝑎𝑔𝑒𝑛𝑡 𝜏 ≤ 𝑎𝑔𝑒𝑛𝑡 𝜏′
 𝐴𝑔𝑒𝑛𝑡𝑅𝑢𝑙𝑒                        

 𝜏 ≤ 𝜏′

 𝑐𝑜𝑛 𝜏 ≤ 𝑐𝑜𝑛 𝜏′
 𝐶𝑜𝑛𝑅𝑢𝑙𝑒 

 𝜏′ ≤ 𝜏

 𝑢𝑇𝑟𝑚 𝜏 ≤ 𝑢𝑇𝑟𝑚 𝜏′
 𝑢𝑇𝑟𝑚𝑅𝑢𝑙𝑒                           

 𝜏′ ≤ 𝜏

 𝑜𝑝 𝜏 ≤ 𝑜𝑝 𝜏′
 𝑂𝑝𝑅𝑢𝑙𝑒       

Fig. 5-2: Subtyping rules 

 

The rule Snd expresses that if the sender (this), the receiver A and the message M have security level τ, then 

the sending operation (M  A) can have the security type op τ. The rule Rsv is the same as Snd. We need to 

assure that no high security message is accessed and sent by a low security agent; checking the security level of 

the sender along with the security level of the massage in Snd and Rsv rules guarantees this. Sending and 

receiving operations in LCC are dual, so if there exists a leakage in message sending in one clause, the same 

leakage will be detected in receiving the message in the counterpart clause. The rules Agnt, Snd and Rsv in 



conjunction with subtyping rules prevent explicit flows; they imply that assigning or sending public information 

to secret agents is possible, but not vice versa. This is similar to the concepts of “write up is possible” and “write 

down is forbidden” in the security type system for imperative programming languages, e.g. (Volpano and Smith 

1997). 

The Call rule states that when we call a constraint, the security level of its functor6, the security level of the 

current clause (this) and the security level of either read-only arguments (Ti: τ ) or write-only arguments (Ti: 

uTrm τ ) have to be the same. This ensures us that a public agent can not access secret constraints and a public 

constraint may not reveal secret information to a public agent. The Struct rule denotes that in structured non-

updatable terms (such as messages, role names and read-only arguments) the security types and levels of the 

functor f and the arguments Ti must be the same. The rules And, Or and Not regulate the composition of 

constraints in LCC. The rule If1 states that the security type of constraint C and the message sending operation 

(M  A) needs to be matched so that the conditional expression is allowed. Security typing of other conditional 

expressions (If2 to If4) is performed in a similar way to If1.  

The rule Seq say that if two LCC expressions have the same security level, their composition has also that 

security level. The Choice rule functions in the same way, only it also considers the security level of the 

constraint of the first part A1 to prevent implicit information flow from the constraint in A2. The rule Role 

checks whether the role definition a(R,ID) agrees with the body of the LCC clause. The remaining rules of the 

security type system are subtyping rules in Fig. 5-2. The subtyping rules AgentRule, uTrmRule and opRule are 

contravariant7 and the conRule is covariant8.  

5.3 Implementation 

The security type system and a prototype of dynamic security checking application have been implemented to 

demonstrate that the proposed framework is feasible and can be automated. The original version of LCC which 

is implemented in Prolog has been extended to support security type checking. The security type system is 

implemented in SICStus Prolog and a user interface for security analysis of LCC codes is designed in Visual 

C#.NET. This tool is designed for annotation of LCC interaction models with security labels and performing the 

security type checking.    

                                                           
6 Non-numeric constant 
7 Contravariant denotes the possibility of converting from a narrower type to a wider type, e.g. from h to l.  
8 Covariant means the possibility of converting from a wider type to a narrower type, e.g. from l to h. 



 

An example annotation of an LCC interaction model that assigns security levels to LCC terms is shown in 

Fig. 5-3. 

  

 a(buyer, B) :: 

ask(X) => a(Seller, S)    then    price(X,P)  a(Seller, S)   then 

buy(X,P) => a(Seller, S) <- afford(X, P)   then 

sold(X, P) <= a(Seller, S) 

 

 a(Seller, S) :: 

ask(X) <= a(buyer, B) then  price(X,P)=>a(buyer, B)<-in_stock(X,P) then 

buy(X,P) <= a(buyer, B) then sold(X, P) => a(buyer, B) 

 

label(buyer, l).    label(B, l).      label(ask, l).    label(X, l). 

label(Seller, h).   label(S, h).      label(price, l).  label(P, l).      

label(buy, l).      label(afford, l). label(sold, l).   label(P, l).      

Fig. 5-3: Annotation of an LCC interaction model 

 

6. Key Properties of the Type System  

Having defined a type system for a class of security properties, our purpose in this section is to prove key 

security properties of the system.  Other work (S. Bijani 2013) gives empirical examples of the consequences of 

these properties in specific interactions but, to save space, we focus here on generic properties across all 

appropriate LCC interactions.  

Type soundness (or type safety) is the most basic feature of a type system (Pierce 2002). Two properties that 

show the type soundness in a type system are progress and preservation. In our security type system, 

preservation means that expansion of a well-typed term by the LCC rewrite rules is a well-typed term (clause 

expansion preserves well-typedness). Progress guarantees that a well-typed LCC expression does not get stuck 

in the execution of LCC clauses, assuming that agents can evaluate (satisfy/dissatisfy) the constraints and the 

necessary input/output messages are generated. 



Definition 6-1 (Final Step): An LCC expression is in its final step when either it can be marked as a closed 

expression by an LCC rewrite rule or it is a constraint that is evaluated by a satisfy or satisfied rule.  

Definition 6-2 (Transition L ⇝L’ ): transition of L⇝L’ means L’  is an expansion of LCC expression L, 

either as a result of an LCC rewrite rule 𝐿 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→         𝐿′  or as a structural expansion of a compound 

constraint. 

 

This is an example of a compound constraint expansion: assume L is null ←C  and the compound 

constraint C  is C1 ∧ C2 , when C  is unfolded into C1 ∧ C2  then L’ is null ← C1 ∧ C2 and we can write L ⇝L’. 

Theorem 6-1 (Progress): 

If  ⊢ L : , i.e. L is a well-typed LCC expression, then either L is a final step or else there exists some L’  

that L⇝L’. 

By induction on the structure of  ⊢ L :  and proceed by case analysis  (Appendix) □ 

Theorem 6-2 (Preservation): 

If  ⊢ L: , i.e. L is a well-typed LCC expression and L⇝L’, then  ⊢ L’ : ’.  

By induction on the structure of  ⊢ L :  and proceed by case analysis  (Appendix) □ 

Two important properties of a security type system are ‘No Read Up’ and ‘No Write Down’ or ‘simple 

security’ and ‘confinement’ as referred to by (Smith and Volpano 1998). No Read Up means that identifiers 

within a message or a constraint can not have security level higher than the massage level or the constraint level. 

In other words, when a message (or a constraint) has a security level τ, it assures us that it will not reveal any 

information with security level more than τ. 

‘No Write Down’ means having an operational command with the security level of op τ (any operational 

command), any updatable identifier within it has a security level higher than or equal to τ. By updatable 

identifier, we mean an agent when a role is assigned to it or a message is sent to it. We also mean an argument 

in a constraint whose value is updated. E.g. this denotes that it is not possible to assign (send) a higher role 

(higher message) to a lower agent.  

 

Proposition 6-3 (No Read Up): 

If T  is a well-typed LCC constraint, message or identifier with security type τ; i.e.  ⊢T: τ  or  ⊢T: con 

τ, then T  contains only identifiers with security level not higher than τ.  

This can be proved by induction on derivation of  ⊢ T : τ and  ⊢ T : con τ; i.e. induction on the 

smaller derivations that are used to derive  ⊢ T : τ and  ⊢ T : con τ, then proceeding by case 

analysis on the typing rule that was applied last in the proof of  ⊢ T. 

 



Proposition 6-4 (Confinement): 

If T is a well-typed agent definition or LCC operation; i.e.  ⊢T: agent τ  or  ⊢T: op τ, then any agent 

identifier in the agent definition, any receiver of a message, or any updated term in an operation, has a 

security level equal or higher than τ. 

 

This can be proved by case analysis on the rule that was applied last in the proof of  ⊢ T :  and by 

induction on the type rules that are used to derive  ⊢ T : .  

 

In the next section, we show how the security type system can be used in the agent interaction to verify 

whether an interaction model is secure. 

7. Discussion 

7.1 Dynamic Information Analysis 

We used both dynamic and static security typing approaches to implement our type system for agent 

interactions. Dynamic (run-time) information flow analysis such as (Santos, et al. 2015) can appropriately be 

added to the LCC language interpreter because of the dynamic nature of LCC language.  

Based on the reaction policy, type checking could result in termination of the execution or breach detection 

and continuation of the clause expansion ((a)                                                                (b) 

Fig. 7-1).   

 

(a)                                                                (b) 

Fig. 7-1: Upgrading the agent code interpreter (a) The interpreter executes codes (b) The 

improved interpreter performs the security type checking and executes the annotated agent 

codes  

LCC clauses are well-typed by ensuring that every expansion of them is performed according the 

corresponding security typing rule. Security type checking is performed using the proposed formal type system 

which ensures that the security types of LCC terms are used consistently. 
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In order to integrate dynamic information flow analysis into the LCC interpreter and to detect or prevent 

information leakage, the LCC clause expansion mechanism (Robertson 2005) (explained in section 2) has been 

upgraded by amending the LCC rewrite rules.  

The extended LCC rewrite rules augmented with dynamic type checking are shown in Fig. 7-2. The updated 

rewrite rules in Fig. 7-2 are of the form 𝑋 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂
→         ∆  𝑌, where Y is the expansion of X performing role Ri, Mi 

is the initial set of messages, O is the output message set, and Mo is the subset of Mi which is not yet processed 

and P is the interaction model.  is the current security environment. Δ=(, K, Π, L, Σ ), where  is the 

mapping between LCC terms and secrecy labels (the confidentiality policy), K is the agents’ current state of 

knowledge, Π is the reaction policy defining the desired behaviour when an unacceptable information flow is 

found and L is the set of possible information leakages found. Σ is an optional part of Δ that keeps a record of 

provenance information about the agent’s counterparts, who have interacted with the current agent. Elements of 

Δ could be denoted as Δ(member); e.g. Δ( ) is  or Δ(Π ) is Π. Consequently, the LCC expansion of the 

initial clause Ci to the final clause Cn under the security environment  is as follows.  

𝐶𝑖  
𝑀𝑖, 𝑀𝑖+1,𝑃,𝑂𝑖
→         ∆ 𝐶𝑖+1, … , 𝐶𝑛−1  

𝑀𝑛−1, 𝑀𝑛,𝑃,𝑂𝑛
→          ∆ 𝐶𝑛 

typeChk(X,Δ) is in charge of checking the possibility of information leakage from LCC expression X using 

the security type system introduced in section 5.2. Type checking is performed when the other conditions for 

rewriting an expression are met. E.g. only if (𝑀 ⇐ 𝐴) ∈ 𝑀𝑖 in (8) or satisfied(C) in (9) return true, then 

typeChk(X,Δ) is called.  

As a result of rewrite rules in Fig. 7-2, the clause of the interaction model appropriate to the given role is 

expanded. The first rule starts unpacking a clause by expanding its body (B) and the rules (2) to (12) expand 

different parts of the clause body. The closed rules in (13) to (18), determine whether an interaction rule has 

been completed through earlier interpretation (in which case we say that it is closed).   

The interpreter tries to find a matching rewrite rule for each LCC expression, if no match is found, it means 

that there is a syntax error in the LCC code. If a match is found but the conditions of the rewrite rule are not 

fulfilled, it returns false and continues to search for another rewrite rule that matches the expression. 

𝑎(𝑅, 𝐼) ∷ 𝐵 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         ∆ 𝑎(𝑅, 𝐼) ∷ 𝐸      𝑖𝑓  𝐵 

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         ∆ 𝐸 ∧  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ∷  𝐸, ∆)    (1) 

𝐴1 𝑜𝑟 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         ∆ 𝐸                                 𝑖𝑓 ¬𝑐𝑙𝑜𝑠𝑒𝑑(𝐴2)  ∧   𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         ∆ 𝐸      (2) 

𝐴1 𝑜𝑟 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         ∆ 𝐸                                  𝑖𝑓 ¬𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1)  ∧  𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         ∆ 𝐸      (3) 



𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→          𝐸 𝑡ℎ𝑒𝑛 𝐴2          𝑖𝑓 𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  

→         ∆ 𝐸       (4) 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         ∆ 𝐴1 𝑡ℎ𝑒𝑛 𝐸     𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1)  ∧  𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  

→         ∆ 𝐸 ∧  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐴1 𝑡ℎ𝑒𝑛 𝐸, ∆) (5) 

𝐴1 𝑝𝑎𝑟 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂1∪𝑂2 
→             ∆ 𝐸1 𝑝𝑎𝑟 𝐸2   

  𝑖𝑓 𝐴1
𝑅𝑖,𝑀𝑖, 𝑀𝑛,𝑃,𝑂1  
→          ∆ 𝐸1  ∧  𝐴2

𝑅𝑖,𝑀𝑛, 𝑀𝑜,𝑃,𝑂2  
→          ∆ 𝐸2 ∧  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐸1 𝑝𝑎𝑟 𝐸2, ∆) (6) 

𝐶 ← 𝑀 ⇐ 𝐴
𝑅𝑖,𝑀𝑖, 𝑀𝑖−{𝑀⇐𝐴},𝑃,∅  
→               ∆ 𝑐(𝐶 ← 𝑀 ⇐ 𝐴, ∆(𝐿))   

𝑖𝑓 (𝑀 ⇐ 𝐴) ∈ 𝑀𝑖 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐶 ← 𝑀 ⇐ 𝐴, ∆) ∧ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦(𝐶)  (7) 

𝑀 ⇐ 𝐴
𝑅𝑖,𝑀𝑖, 𝑀𝑖−{𝑀⇐𝐴},𝑃,∅  
→               ∆ 𝑐(𝑀 ⇐ 𝐴,∆(𝐿))                  𝑖𝑓 (𝑀 ⇐ 𝐴) ∈ 𝑀𝑖 ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇐ 𝐴, ∆)    (8) 

𝑀 ⇒ 𝐴 ← 𝐶 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             ∆ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶, ∆(𝐿))    𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴 ← 𝐶, ∆)       (9) 

𝑀 ⇒ 𝐴 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             ∆ 𝑐(𝑀 ⇒ 𝐴, ∆(𝐿))                         𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴, ∆)                 (10) 

𝑛𝑢𝑙𝑙 ← 𝐶 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅,
→         ∆  𝑐(𝑛𝑢𝑙𝑙 ← 𝐶, ∆(𝐿))      𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑛𝑢𝑙𝑙 ← 𝐶, ∆)                    (11) 

𝑎(𝑅, 𝐼) ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅  
→         ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵      

           𝑖𝑓 𝑐𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵) ∧ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶)  ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ← 𝐶, ∆)      (12)   

𝑎(𝑅, 𝐼)
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅  
→         ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵        𝑖𝑓 𝑐𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵)       (13) 

𝑐𝑙𝑜𝑠𝑒𝑑(𝑐(𝑋, 𝐿))                (14) 

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑜𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴)  ∨  𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)             (15) 

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑝𝑎𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴)  ∧  𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)            (16) 

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑡ℎ𝑒𝑛 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴)  ∧  𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)            (17) 

𝑐𝑙𝑜𝑠𝑒𝑑(𝑋 ∷ 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)              (18) 

Fig. 7-2: The amended LCC rewrite rules, which include security type checking, for 

expansion of one clause in an interaction model in the LCC interpreter.  

 

It is the agents’ responsibility to satisfy the constraints in the clause and it is assumed that agents have a 

mechanism to fulfil the constraints. satisfied(C) is true if C can be satisfied from the current knowledge state K 

of the agent and satisfy(C) is true when K can be made to fulfil the constraint C. clause (P, X) is true if clause X 

exists in the interaction model P.  

The algorithm for simple type checking (typeChk) is defined in Fig. 7-3. In Fig. 7-4, an updated typeChk 

algorithm is defined, in which based on the result of the type checking and the reaction policy Π, true or false is 

returned.  

In this version of LCC clause expansion, three secrecy policies affect the behaviour of the LCC interpreter: 

prevention, detection and no-detection. The default policy is prevention (prevMode) that averts expansion of the 

current expression when a leakage is found. If the detection policy (detectMode) is selected in Π, the interpreter 

only keeps a record of the confidentiality breaches and continues to expand the expression X. Selection of the 

no-detection policy (noChkMode) bypass the information flow analysis and the LCC interpreter do not perform 

the type checking procedure. The false result from typeChk(X,Δ) shows that a breach is found and the true result 



means either the type checking option is off, no leakage is found, or a leakage is found but the detection mode is 

on.  

Table 7-1: Different reaction policy modes in security type checking: prevention, detection 

and no-detection modes. 

Reaction Policy 

modes 

Priority (Pre, Det, NoCk) Type checking typeChk result 

when a leakage is found 

prevMode 1 1 0 0 Yes False 

detectMode 2 0 1 0 Yes True 

noChkMode 3 0 0 1 No True 

 

typeChk(X, Δ) { 

TR = findTypeRule(X);  // find a security typing rule that matches X  

Br = checkBreach(X, TR, Δ);      // type check to find a breach   

if ( Br  null ) {      // if a leakage is found 

Update (Δ(L), Δ(Σ), Br, X); // save the new leakage info in L and Σ 

Continue = FALSE;           // prevent the clause expansion  

} else   Continue = TRUE;      // no information leaks   

return Continue; 

}  

 

Fig. 7-3:  A basic security type checking algorithm of typeCkh(X,Δ)  

 

typeChk(X, Δ) { 

  if( ¬noChkMode(Δ) ){  // perform the information flow analysis 

TR = findTypeRule(X);  // find a security typing rule that matches X  

Br = checkBreach(X, TR, Δ);      // type check to find a breach   

if ( Br  null ) {      // if a leakage is found 

Update (Δ(L), Δ(Σ), Br, X); // save the new breach in L and Σ 

if ( prevMode(Δ) )   

   Continue = FALSE;       // prevent the clause expansion  

else         // detectMode(Δ) 

     Continue = TRUE;      // detect and continue 

} 

} else   Continue = TRUE;      // no information leaks   

} else Continue = TRUE;           // no information flow analysis 

return Continue; 

}  

Fig. 7-4:  The updated security type checking algorithm of typeCkh(X,Δ)  

When a leakage is found, there might be cases in which the clause expansion failure itself leaks some 

information to the adversary and informs them that some high level information is blocked from them.  



To minimise this kind of information leakage and to have more flexible secrecy policies, new options 

forming the type checking strategy can be defined in Π. In Table 7-1, the following three reaction policy modes 

and their priorities are shown: prevention (prevMode), detection (detectMode) and no-detection (noChkMode). 

The new secrecy policy is defined as the following:     Π = (Pre, Det, NoCk), 

in which users can choose a policy by selecting one of the Boolean values Pre, Det and NoCk (Table 7-1). 

Only one policy may be activated at a time; which means if more than one option is chosen, based on the 

defined priorities they may be overridden. E.g. both Π=(1,0,1) and (1,0,0) have the same effect, as Pre overrides 

Det and NoChk values and results in prevention mode. 

7.2 Drawbacks of Dynamic Type Checking 

The main disadvantage of purely run-time information flow analysis similar to the one discussed above, is that 

they can produce false negative results as they cannot detect implicit information flows. This is because in 

dynamic security analysis of LCC, not all execution paths of the program are checked. The following simple 

example show when the dynamic analysis can go wrong. All terms are low security and the only terms with high 

security levels are Secret and this (i.e. the current clause environment). 

( publicMessage1 => a(publicAgent, P) <- check(Secret) ) 

or    

 publicMessage2 => a(publicAgent, P)  

The following rewrite rule handles the first part of the code: 

𝑀 ⇒ 𝐴 ← 𝐶 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             ∆ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶, ∆(𝐿))       𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴 ← 𝐶, ∆)  

Let us assume the constraint does not hold; i.e. satisfied (check(Secret)) return false, so the first 

part of the conditional statement fails and the second part is processed by this rewrite rule: 

𝑀 ⇒ 𝐴 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             ∆ 𝑐(𝑀 ⇒ 𝐴, ∆(𝐿))                         𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴, ∆),  

then the type checking is as below: 

 

 

𝑡ℎ𝑖𝑠:𝑎𝑔𝑒𝑛𝑡 ℎ 𝜖 𝛤
𝛤⊢𝑃𝐼𝐷2:𝑢𝑇𝑟𝑚 ℎ

𝐼𝑑,𝑎𝑔𝑒𝑛𝑡 ℎ≤𝑎𝑔𝑒𝑛𝑡 𝑙

𝛤⊢𝑡ℎ𝑖𝑠:𝑎𝑔𝑒𝑛𝑡 𝑙 𝑗
𝑆𝑢𝑏,                                                                               

                                         
𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑒𝑠𝑠𝑎𝑔𝑒2∶𝑙 𝜖 𝛤 

𝛤⊢𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑒𝑠𝑠𝑎𝑔𝑒2∶𝑙
𝐼𝑑,

  
𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡:𝑙 𝜖 𝛤 
𝛤⊢𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡:𝑙 𝑗

𝐼𝑑,
𝑃:𝑙 𝜖 𝛤

𝛤⊢𝑃:𝑢𝑇𝑟𝑚 𝑙
𝐼𝑑

𝛤⊢𝑎(𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡,𝑃): 𝑎𝑔𝑒𝑛𝑡 𝑙
𝐴𝑔𝑛𝑡

𝛤⊢𝑝𝑢𝑏𝑙𝑖𝑐𝑀𝑒𝑠𝑠𝑎𝑔𝑒2 => 𝑎(𝑝𝑢𝑏𝑙𝑖𝑐𝐴𝑔𝑒𝑛𝑡,𝑃):𝑜𝑝 𝑙 
𝑆𝑛𝑑 

This is detected as a well-typed LCC command, which is wrong! This is because of a high security 

constraint as described in the Appendix. 

Another possible problem is late detection of the insecure flow in run-time security checking of LCC 

interaction models. This may result in the rewriting of some illegal LCC expressions, thus changing the state of 

the agent before finding the breach - for example,detection of the breach after a high security message is sent to 

a low security agent is too late. 



Generally, dynamic checking (in the best case), may assure that the current execution of an interaction 

model does not leak information, but does not tell us that the code is safe and will never reveal any confidential 

information in future, because it does not check all possible execution paths of the LCC program. In other 

words, if no breach occurs in dynamic checking, it means that there exists a secure execution path in the LCC 

interaction model. This is a Liveness property, which specifies that eventually "good things" do happen versus a 

Safety property, which states that no "bad things" occur during program execution (Halpern and Schneider 

1987).  

7.3 Static Information Flow Analysis 

We can perform static analysis to overcome the drawbacks of dynamic methods.   

The static checking explores all execution paths in LCC interaction models, hence it guarantees that 

detection of any insecure flow based on the defined type system. To perform a static type check, we can modify 

the LCC rewrite rules for the static type check, in a way that the whole expansion tree of an LCC clause is 

explored. In recursions, the clause is expanded if it has not already been expanded (Fig. 7-5).  

𝑎(𝑅, 𝐼) ∷ 𝐵 
 𝑅𝑖,𝑃,∆   
→    ∆ 𝑎(𝑅, 𝐼) ∷ 𝐸            𝑖𝑓  𝐵 

 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸 ∧  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼): : 𝐸, ∆)  (19) 

𝐴1 𝑜𝑟 𝐴2
 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸                                    𝑖𝑓 𝐴1

 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸     (20) 

𝐴1 𝑜𝑟 𝐴2
 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸                                    𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1)  ∧  𝐴2

 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸 ∧  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐴1 𝑜𝑟 𝐸, ∆) (21) 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
 𝑅𝑖,𝑃,∆   
→    ∆  𝐸 𝑡ℎ𝑒𝑛 𝐴2               𝑖𝑓 𝐴1

 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸     (22) 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
 𝑅𝑖,𝑃,∆   
→    ∆ 𝐴1 𝑡ℎ𝑒𝑛 𝐸            𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1)  ∧  𝐴2

 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸 ∧  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐴1 𝑡ℎ𝑒𝑛 𝐸, ∆) (23) 

𝐴1 𝑝𝑎𝑟 𝐴2
 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸1 𝑝𝑎𝑟 𝐸2             𝑖𝑓 𝐴1

 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸1  ∧  𝐴2

 𝑅𝑖,𝑃,∆   
→    ∆ 𝐸2 ∧  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐸1 𝑝𝑎𝑟 𝐸2, ∆) (24) 

𝐶 ← 𝑀 ⇐ 𝐴
 𝑅𝑖,𝑃,∆   
→    ∆ 𝑐(𝐶 ← 𝑀 ⇐ 𝐴, ∆(𝐿))         𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝐶 ← 𝑀 ⇐ 𝐴, ∆)    (25) 

𝑀 ⇐ 𝐴
 𝑅𝑖,𝑃,∆   
→    ∆ 𝑐(𝑀 ⇐ 𝐴, ∆(𝐿))                             𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇐ 𝐴, ∆)     (26) 

𝑀 ⇒ 𝐴 ← 𝐶 
 𝑅𝑖,𝑃,∆   
→    ∆ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶, ∆(𝐿))       𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴 ← 𝐶, ∆)   (27) 

𝑀 ⇒ 𝐴 
 𝑅𝑖,𝑃,∆   
→    ∆ 𝑐(𝑀 ⇒ 𝐴, ∆(𝐿))                          𝑖𝑓 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑀 ⇒ 𝐴, ∆)    (28) 

𝑛𝑢𝑙𝑙 ← 𝐶 
 𝑅𝑖,𝑃,∆   
→    ∆  𝑐(𝑛𝑢𝑙𝑙 ← 𝐶, ∆(𝐿))                𝑖𝑓  𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑛𝑢𝑙𝑙 ← 𝐶, ∆)        (29) 

𝑎(𝑅, 𝐼) ← 𝐶
 𝑅𝑖,𝑃,∆   
→    ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵       𝑖𝑓 𝑛𝑒𝑤𝐶𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵)  ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ← 𝐶, ∆)  (30) 

𝑎(𝑅, 𝐼)
 𝑅𝑖,𝑃,∆   
→    ∆ 𝑎(𝑅, 𝐼) ∷ 𝐵               𝑖𝑓 𝑛𝑒𝑤𝐶𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵)  ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑘(𝑎(𝑅, 𝐼) ← 𝐶, ∆)    (31) 

𝑐𝑙𝑜𝑠𝑒𝑑(𝑐(𝑋, 𝐿))          (32) 

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑜𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴)  ∧ 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)       (33) 
𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑝𝑎𝑟 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴)  ∧  𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)         (34) 
𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑡ℎ𝑒𝑛 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴)  ∧  𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)         (35) 
𝑐𝑙𝑜𝑠𝑒𝑑(𝑋 ∷ 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐵)          (36) 

Fig. 7-5: Static analysis of an LCC clause by expansion of an LCC clause.  



7.4 Drawbacks of Static Type Checking  

Static type checking to prevent insecure information flows conservatively detects implicit and explicit 

information flows, provides stronger security assurance and proves program correctness with reasonable 

computation cost (Sabelfeld and Myers 2003) and (Huang, et al. 2004), but it has some drawbacks. The main 

disadvantages of static type checking are: 

1) False positive results: non-permissiveness of some secure information flows; static type checks suffer 

from over-approximation and may prevent genuinely useful interaction models.   

2) Lack of information in static checking; we may not know the security level of all peers and components 

of the program, especially in an open MAS we may not know who will join the system during the 

interactions. In practice, security policies cannot be determined at the time of program analysis and 

may vary dynamically.  

 

3) The proposed type system which is based on Denning's work ignores leaks via the termination 

behaviour of programs. Therefore they satisfy only termination-insensitive non-interference (Sabelfeld 

and Russo 2010), which is defined in the next section.  

4) Exhaustive checking of every possible path in the execution tree of the LCC code is time-consuming, 

while dynamic checking is faster, because it concerns only one execution path of the program. 

 

Some role names, constraints, variables and the security level of the terms may not be available to our static 

analysis. The LCC programmer or the expert who annotates the code by security levels may not know about the 

behaviour of some constraints and other variables, which will be available at run-time. E.g. in the cloud 

configuration case study, some general patterns are used and some constraints and roles’ arguments are defined 

at execution time by the counterpart agent. 

The following codes presents some examples that the static type checking rejects, although they do not 

cause any information leakage: 

SecretMessage => a(publicAgent, P)<- smallerThan(PublicVar, PublicVar)  

in which the constraint is never satisfied (because the public variable PublicVar cannot be smaller than 

itself), so under no circumstances will the secret message be sent to the public agent P. In a similar example 

bellow, the constraint is always satisfied, therefore the second part of the conditional statement, in which a 

secret message leaks, never runs and no message is sent. 

( null <- equals(PublicVar, PublicVar)  

 or  

 SecretMessage => a(publicAgent, P) ) 

 

In general, any LCC code containing a low security expression within a high security constraint, which does 

not hold at run-time is rejected by static type checking, even though it is permissible. This is due to the fact that 



the security checker is not guaranteed to know whether or not a constraint holds at the time the interaction 

model is checked, so it conservatively rejects the interaction model.  

As mentioned before, information might also leak via termination behaviour of the program, e.g. in the 

following code: 

a(secretAgent, S):: 

null <- notEqual(SecretID, 0) then 

a(secretAgent, S) 

 

The adversary learns that SecretID was 0, by observing the termination of the clause.  

 

7.5 Non-interference 

Non-interference is a popular information flow property that guarantees secrecy of information flow and tells us 

whether there is any information leakage in the information system. Non-interference was introduced by 

Goguen and Meseguer (1982), but its concept goes back to the notion of strong dependency introduced by 

Cohen (1977).  

The intuition behind the non-interference property is that high-security input to the program must never 

affect low-security output. In other words, public outputs are not dependent on secret inputs. In the following 

secrecy analysis of the agents’ interaction models, we consider received messages, role arguments, and 

sometimes constraint arguments as input and the sent messages as output. There are formulations of non-

interference. In this section, we define the notion of non-interference for the LCC interaction models inspired by 

the definitions of Hedin and Sabelfeld (2011) and Becker (2010).  

Before defining non-interference, we need to define visibility, alikeness, and observational equivalence as 

prerequisites: 

Definition 7-1 (Visibility): The set visiblei () denotes the LCC terms in the context  that can be observed 

by other agents (or adversaries) with the security level l or higher:  

visiblel () = { T   |  (T) l } 

Definition 7-2 (Alikeness9)  

 l : Two security contexts 1 and 2 are alike up to the level l iff: visiblel () = visiblel ().  

For example, if we have the following two contexts: = { m1: l, m2: l, m3: h } and = { m1: l, m2: l, m3: 

h , m4: h }, then: visiblel ()={m1, m2} and visiblel ()={m1, m2}, which means other agents with security 

level of at least l can see these information. We also have  l  

                                                           
9 Alikeness up to level l is known as low equivalence in the literature. 



Recall the LCC clause expansion mechanism of an original LCC clause Ci into Cn in terms of the 

interaction model P:  

𝐶𝑖  
𝑀𝑖, 𝑀𝑖+1,𝑃,𝑂𝑖
→         ∆ 𝐶𝑖+1, … , 𝐶𝑛−1  

𝑀𝑛−1, 𝑀𝑛,𝑃,𝑂𝑛
→          ∆ 𝐶𝑛 

where security environment Δ=(, K, Π, L, Σ ) and On is an output message set that can expresse the 

observable behaviour of an agent by its counterpart agents. We now define the Observational Equivalence 

relation on behaviour as follows.   

Definition 7-3 (Observational Equivalence10)  

On1lOn2: The observable behaviours of two clause expansions in terms of the interaction model P are 

observationally equivalent up to level l, if an adversary of level l cannot distinguish between On1 and On2. 

Observational equivalence of On1 and On2 can (imprecisely) be understood as two runs of an interaction 

model that are the same from the adversary’s point of view. Alikeness and observational equivalence are then 

used to define the notion of non-interference for the LCC interaction models. In the following, for the sake of 

clarity, the notion of the security context  is used instead of the security environment . This is safe to do, 

because in our investigation,  only changes within . 

Definition 7-4 (Non-interference)  

 1, 2. (1l 2)  ∧  𝐶𝑖  
𝑀𝑖, 𝑀𝑛1,𝑃,𝑶𝒏𝟏
→         𝟏 𝐶𝑛1  ∧  𝐶𝑖  

𝑀𝑖, 𝑀𝑛2,𝑃,𝑶𝒏𝟐
→         𝟐 𝐶𝑛2   (On1l On2) 

This states that for any two contexts 1 and 2 which are alike up to level of l, a successful expansion of 

the LCC clause Ci in one of the contexts with behaviour On1 and a successful expansion in the other context with 

behaviour On1 guarantee that the behaviours are observationally equivalent. 

Informally, if two clauses look the same to an adversary, they also behave the same. In other words, low 

output (the sent messages to an adversary) depends on low inputs (the immutable visible parts of the contexts).  

The proposed security type system supports non-interference; Suppose Ci is a message sending operation 

𝑀 ⇒ 𝐴. If the type of the agent A is agent h, the typing rule Snd allows sending a message (with any security 

level) to the high security agent A, in either case, an adversary of level l cannot observe any output message.  If 

the type of A is agent l , then the type system requires that M : l , then any the observable output of the LCC 

rewrite rule for an adversary of level l will be message M. The other cases of Ci that can have an observable 

behaviour are similar. 

This definition of non-interference is termination-insensitive, by which we mean that it disregards 

information leaks due to the termination of the program (e.g. the last example in section 4.2). Thus, our type 

system cannot detect this type of insecure flow. 

                                                           
10 Observational Equivalence is also called indistinguishability. 



Although the notion of non-interference is a popular and natural way of describing confidentiality and 

integrity, it may be too restrictive for many applications (Hedin and Sabelfeld 2011). The next section addresses 

this issue. 

7.6 Declassification 

Declassification is intentional release of secret information by lowering security levels of information 

(Zdancewic and Myers 2001). Sometimes, we need a way of information declassification in our security system.  

A typical example is any system that asks the user credentials for authentication. Consider the access 

request to a patient record by a specialist. Rejection of an incorrect password violates non-interference, because 

of the dependency between high input (i.e. password) and low output (i.e. rejection message). That implies the 

system leaks partial information about the password (i.e. incorrectness of the password) to a potential attacker. 

However, this leakage is unlikely, in this case, to give valuable information to the attacker.  

To support declassification in our security type system, we can deliberately downgrade the security 

classification of information by adding the following rule: 

declassify(h) = l 

 This violates non-interference, but it may be necessary for some applications. We should carefully 

declassify information. In (Sabelfeld and Sands 2005) the principles and dimensions of declassification are 

described by identifying what can be declassified, who controls the declassification, where the declassification 

happens and when the declassification can occur relative to other events in the program. 

8. Conclusions and Future Work 

In this paper, we have addressed information leakage problems in open MAS governed by interaction models 

and, consequently, developed secrecy analysis frameworks for an agent language called LCC. Explicit and 

implicit insecure information flows have been explained using a number of LCC examples.  

We have proposed and implemented a language-based information flow framework to analyse information leaks 

in LCC interaction models. The security-typed LCC has been introduced by inventing a security type system, 

which formally defines security levels, security types and the type inference rules. Next, the proposed type 

system has been evaluated and proven to hold basic, important properties: type soundness, simple security and 

confinement.  

We have discussed two approaches for applying the security type system on the agent interaction models; 

dynamic (run-time) and static type checking. Two disadvantages of dynamic information flow analysis are its 

inability to detect implicit information flows and late detection of insecure flow. All execution paths of the 

program are not checked in dynamic analysis and some paths are disregarded, which could lead to implicit 

information flows. To overcome this problem, we provide the following options: 

a) Extending the dynamic approach with the control flow stack mechanism described in (S. Bijani 2013, 

103) 

b) Using the static approach instead of dynamic analysis:  



The static approach is a promising method that prevents insecure implicit and explicit flows, but it 

suffers mainly from non-permissiveness, so it may also reject genuine flows. Another drawback of the 

static analysis problem is that due to the dynamic behaviour of open MAS, there is a lack of 

information about the security classification of agents, constraints, etc. before run-time. 

c)  The combined approach: using both static and dynamic methods 

In this approach, static analysis is performed on an interaction model and if it is rejected, the system 

informs the user. The user then can decide to continue with the interaction model and perform dynamic 

checking at run-time. There is also a hybrid approach (Russo and Sabelfeld 2010), in which static and 

dynamic analysis are merged to take the best of both worlds. This is especially useful in flow sensitive 

analysis. In flow sensitivity, variables may store values of different sensitivity (low and high) over the 

course of the interaction. We leave flow-sensitivity analysis in LCC interaction models as a topic for 

future research.   

To address the false alarm of static approach, static analysis is performed on an interaction model and if it is 

rejected, the system informs the user. The user then can decide to continue with the interaction model and 

perform dynamic checking at run-time. The proposed security type system supports non-interference. The 

intuition behind the non-interference property is that high-security input to the program must never affect low-

security output. This definition of non-interference is termination-insensitive, by which we mean that it 

disregards information leaks due to the termination of the program. As non-interference may be too restrictive 

for many applications, the proposed framework supports declassification.  

Adaptation of the proposed security type system for similar first-class agent protocol languages such as 

MAP11 and RASA is straightforward. Similar idea can be applied on other agent languages with further edition. 

We have focused on one aspect of security, i.e. confidentiality. The other important aspect of security is 

integrity. We would suggest defining other security properties for security typing that guarantee integrity 

through analysis of agents’ interactions in this regard. We also leave automatic security annotation of agent 

interaction models (with secrecy labels) as another topic for future research. 
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Appendix A 

Table 0-1 to Table 0-3 summarise the acceptable and unacceptable explicit and implicit information flows in 

message passing, role assignment and conditional statements in LCC codes. It is assumed that a secret LCC term 

and a public LCC term are shown by H and L, respectively.  

In Table 0-1, permissible and impermissible information flows in sending a message, based on the security 

levels of the sender, the receiver and the message are shown. The three undesirable flows are: 1) sending a high 

security message by a low security sender to a low security receiver, 2) sending a high security message by a 

low security sender to a high security receiver and 3) sending a high security message by a high security sender 

to a low security receiver. 

Table 0-1. Permissible and impermissible information flows in sending a message based on 

the security levels of the sender, the receiver and the message   

Sender Receiver Message Permissible Flow 

L L L Yes 
L L H No 

L H L Yes 
L H H No 

H L L Yes 

H L H No 
H H L Yes 

H H H Yes 

Table 0-2 shows different combinations of role allocation (without arguments) to 

agent identifiers, in which the only illegal flow is from a high security role to a low security agent. 

 

 Table 0-2. Permissible information flows in the LCC role definition regarding the security 

levels of the role and the agent identifier   

Agent Identifier Role Permissible Flow 

L L Yes 

L H No 

H L Yes 

H H Yes 

The sources of implicit information flows are conditional operations. Table 0-3 summarises secure and 

insecure information flows in LCC via conditional expressions in the form of (Operation1 <- 

Constraint) or Operation2. There is one generic insecure flow from constraints to operations, when the 

operation is public but the constraint is secret. In Table 0-3, Max_Operation is the maximum security level of 

Operation1 and Operation2.  

Table 0-3. Permissible and impermissible information flows in LCC conditional expressions 

regarding the security levels of the operations and the constraint. Max_Operation = max 

(Operation1 level, Operation2 level). 

Constraint Max_Operation Permissible Flow 

L L Yes 

L H Yes 
H L No 

H H Yes 

Appendix B 

Proof of Theorem 6.1 (Progress): 



 By induction on the structure of  ⊢ L :  ; we apply the induction on the smaller derivations of typing 

rules assuming this property holds for all of these sub-derivations (above the line in typing rules) and 

proceed by case analysis.  

Case Seq: 𝐿 = 𝐴1 𝑡ℎ𝑒𝑛 𝐴2 and 𝐿: 𝑜𝑝 𝜏, so 𝐴1: 𝑜𝑝 𝜏,   𝐴2: 𝑜𝑝 𝜏 

By the induction hypothesis either A1 is a final step or else some A1’ exists that A1⇝ A1’. Similarly, 
either A2 is a final step or else some A2’ exists that A2⇝A2’. If both A1 and A2 are final steps (closed), 

based on the following LCC rewriting rule in Fig 7-2: 

𝑐𝑙𝑜𝑠𝑒𝑑(𝐴 𝑡ℎ𝑒𝑛 𝐵) ← 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴)  ∧  𝑐𝑙𝑜𝑠𝑒𝑑(𝐵) 

A1 then A2 is a final step.  If A1 is a final step and A2⇝A2’, according to the following rewrite rule: 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐴1 𝑡ℎ𝑒𝑛 𝐸             𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1)  ∧  𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐸 

 A1 then A2 ⇝ A2’. If both A1 and A2 are not final steps, which means A1⇝A1’ and A2⇝A2’, based on 

the following LCC rewriting rule: 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→          𝐸 𝑡ℎ𝑒𝑛 𝐴2                                  𝑖𝑓 𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐸 

A1 then A2 ⇝ A1’.  If A1⇝A1’ and  A2 is a final step, it is not an acceptable state in LCC, so the result 

is false: A1 then A2 ⇝false. 

Case If1:  𝐿 = 𝑀 ⇒ 𝐴 ← 𝐶 and 𝐿: 𝑜𝑝 𝜏, so 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏 and 𝐶: 𝑐𝑜𝑛  𝜏, 

By the induction hypothesis either C is a final step or else some C’ exists that C⇝C’. If C is a final 

step, in the following LCC rewriting rule in Fig 7-2: 

𝑀 ⇒ 𝐴 ← 𝐶 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             𝑐(𝑀 ⇒ 𝐴 ← 𝐶)                 𝑖𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶), 

either the evaluation of satisfied(C) is true, so 𝑀 ⇒ 𝐴 ← 𝐶 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             𝑐(𝑀 ⇒ 𝐴 ← 𝐶)  or else it 

returns false, which indicates 𝑀 ⇒ 𝐴 ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑖,𝑃,∅  
→         𝑓𝑎𝑙𝑠𝑒. In either case, L ends up in a closed state 

which means a final step.   

If C⇝C’, it means that C is a compound constraint C’‘ that is equal to C1,  C1 ∧ C2 or C1 ∨ C2, so 

based on one of the following rewrite rules in Fig 7-2: 

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1) ← 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1), 

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1 ∨ 𝐶2) ← 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1)  ∨  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶2) , 

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1 ∧ 𝐶2) ← 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶1)  ∧  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶2) , 

then we have 𝐿⇝ 𝑀 ⇒ 𝐴 ← 𝐶′. 

We showed only a subset of the cases; other cases are similar. □ 

Proof of Theorem 6.2: 

 By induction on the structure of  ⊢ L :  and proceed by case analysis  (similar to the proof of Theorem 

6-1). 

Case Seq: 𝐿 = 𝐴1 𝑡ℎ𝑒𝑛 𝐴2 and 𝐿: 𝑜𝑝 𝜏 

We know that L is well-typed, so we have 𝐴1: 𝑜𝑝 τ 𝑎𝑛𝑑 𝐴2: 𝑜𝑝 τ. According to the following rewrite 

rules: 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→          𝐸 𝑡ℎ𝑒𝑛 𝐴2            𝑖𝑓 𝐴1

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐸) 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐴1 𝑡ℎ𝑒𝑛 𝐸            𝑖𝑓 𝑐𝑙𝑜𝑠𝑒𝑑(𝐴1)  ∧  𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐸      

the transition L⇝L’ happens either by 𝐴1
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐸 or when A1 is a final step (closed(A1)), by 𝐴2

𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐸. 

If closed(A1), the 𝐴1
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,𝑂  
→         𝐸 can be derived by any of the clause expansion rewrite rules, some 

of the cases are shown; others are similar: 



1) Subcase 𝐴1 = 𝑎(𝑅, 𝐼) ← 𝐶 

By the induction hypothesis, we have 𝑎(𝑅, 𝐼) ← 𝐶: 𝑜𝑝 𝜏, A1⇝A1’ and 𝐴1′: 𝑜𝑝 𝜏. The following rewrite 

rule, which deals with recursion in LCC, is the only rule that expands A1:  

 𝑎(𝑅, 𝐼) ← 𝐶
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,∅  
→         𝑎(𝑅, 𝐼) ∷ 𝐵 𝑖𝑓 𝑐𝑙𝑎𝑢𝑠𝑒(𝑃, 𝑎(𝑅, 𝐼) ∷ 𝐵) ∧ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝐶). 

So we have  𝐴1
′ = 𝑎(𝑅, 𝐼) ∷ B. Consequently, 𝐴1 𝑡ℎ𝑒𝑛 𝐴2⇝  𝑎(𝑅, 𝐼) ∷ B 𝑡ℎ𝑒𝑛 𝐴2 and 𝐴1 𝑡ℎ𝑒𝑛 𝐴2: 

op τ. 

2) Subcase 𝐴1 = 𝑀 ⇒ 𝐴 

By the induction hypothesis, we have 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏, A1⇝A1’ and 𝐴1′: 𝑜𝑝 𝜏. The rewrite rule that 

handles A1 is only 𝑀 ⇒ 𝐴 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             𝑐(𝑀 ⇒ 𝐴). So we have 𝐴1

′ = 𝑐(𝑀 ⇒ 𝐴). Consequently, 

𝐴1 𝑡ℎ𝑒𝑛 𝐴2⇝  𝑀 ⇒ 𝐴 𝑡ℎ𝑒𝑛 𝐴2 and 𝐴1 𝑡ℎ𝑒𝑛 𝐴2: op τ. 

Other subcases are similar. 

Case If1:  

We know that 𝐿 ≡ 𝑀 ⇒ 𝐴 ← 𝐶 is well-typed; 𝐿: 𝑜𝑝 𝜏, so 𝑀 ⇒ 𝐴: 𝑜𝑝 𝜏 and 𝐶: 𝑐𝑜𝑛  𝜏, we also have 

L⇝L’. 

Based on the LCC rewriting rule (9) in Fig 7-2 and the definition of transition ⇝, the possible 

expansions of L to L’ are: 

1) If C⇝C’, it means that C is equal to a compound constraint C’‘ that might be C1,  C1 ∧ C2 or C1 
∨ C2 . Then we have 𝐿′ ≡ 𝑀 ⇒ 𝐴 ← 𝐶′. By the induction hypothesis, 𝐶′: 𝑐𝑜𝑛  𝜏, hence, based on 

the type rule If1,   𝑀 ⇒ 𝐴 ← 𝐶′: 𝑜𝑝 𝜏. 

2) If satisfied (C) returns true, then it is a final step: 𝑀 ⇒ 𝐴 ← 𝐶 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,{𝑀⇒𝐴}
→             𝑐(𝑀 ⇒ 𝐴 ← 𝐶) 

and based on the type rule Close, the typing of the LCC expression will not be changed: 

 𝛤 ⊢ 𝑀 ⇒ 𝐴 ← 𝐶: 𝑜𝑝 𝜏

𝛤 ⊢ 𝑐(𝑀 ⇒ 𝐴 ← 𝐶): 𝑜𝑝 𝜏
𝐶𝑙𝑜𝑠𝑒 

3) If satisfied (C) returns false which means: 𝑀 ⇒ 𝐴 ← 𝐶 
𝑅𝑖,𝑀𝑖, 𝑀𝑜,𝑃,,∅
→         𝑓𝑎𝑙𝑠𝑒 , then based on the type 

rule False we have: false: op h, i.e. L’: op h     

We showed only a subset of the cases; other cases are similar. □ 

   

 


