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Abstract 

A combination of mass spectrometry, DFT calculations and 31P{1H} NMR spectroscopy has been used to 

define the mode of action of the commercial cobalt extractant, bis(2,4,4-trimethylpentyl)phosphinic acid 

(CYANEX®272, L1H) in Co recovery. The nature of the Co(II)-complexes formed in the water-immiscible 

phase is determined largely by the propensity of phosphinates to form strong interligand H-bonds in the 

outer coordination sphere and also to form stable µ2-Co-O-P-O-Co bridges. At low Co loading levels, the 

predominant species is the 4:1 complex, [Co(L1.L1H)2], in which coordinated neutral phosphinic acid 

ligands form strong H-bonds to adjacent anionic phosphinates. At higher Co loading, oligomers such as 

[(L1.L1H)Co(L1
2Co)n(L1.L1H)] are formed with µ2-phosphinate bridging, resulting in a substantial increase in 

the viscosity of the water-immiscible phase. The presence of tris(2,4,4-trimethylpentyl)phosphine oxide 

(L2) in the commercial formulation reduces the viscosity because its incorporation into oligomeric 

complexes such as [(L2)Co{L1
3CoL1CoL1

3Co}mL1] can terminate chains, resulting in a lower average 

molecular weight. The uptake of Zn by L1H shows a very similar dependence of viscosity on loading, and 

DOSY spectra and mass spectrometry demonstrate that higher molecular weight species are present at 

high Zn loading.  

Introduction 

Society is increasingly dependent on metals to fuel technological advances,1 and consequently improving 

processes for their recovery from primary and secondary sources is of great socioeconomic importance.2  

Cobalt has been widely identified as a ‘critical material’,3–5  and, as an overwhelming majority of the 

world’s supply arises as a by-product of nickel and copper production,5 it is important to develop efficient 

separation processes for its recovery. Hydrophobic derivatives of phosphorus acids, including the 

commercially available reagents DEHPA® (the di-2-ethylhexyl ester of phosphoric acid), PC-88A (the 2-

ethylhexyl ester of 2-ethylhexylphosphonic acid) and CYANEX®272 (bis(2,4,4-trimethylpentyl)phosphinic 

acid), are known to show selectivity for Co over Ni in the recovery of these metals by solvent extraction; 

previous studies have determined cobalt/nickel separation factors of 2.2 and 5 for DEHPA®, 21 and 71 for 

PC-88A, and values as high as 380, 830 and 2700 for CYANEX®272.6,7,8  
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It is recognized that these reagents form very stable dimers (II in Figure 1) in the non-polar hydrocarbon 

diluents used commercially, and that interligand hydrogen bonding is usually retained when metal cations 

are bound, leading to the formation of pseudo-chelated structures.9 This results in the stoichiometry of 

extraction involving twice the number of phosphorus acid molecules that would be required to generate 

a charge-neutral, hydrocarbon-soluble, complex (Equation 1) if they were all present as their conjugate 

anions.  

 

 

 

Figure 1. Monomeric (I) and dimeric forms (II) of phosphorus acid proligands, LH, showing the retention 

of interligand hydrogen bonding on formation of a charge-neutral tetrahedral complex, [M(L.LH)2], with 

M2+. 

The pseudo-chelate rings formed by the [L.LH]−  units provide a good fit for tetrahedral 1st transition-metal 

series dications, which accounts for the selectivity for Co(II) over Ni(II) shown by CYANEX®272.6,7,8 

Similarly, the high selectivity for Zn(II) shown by DEHPA®,  applied widely in commercial Zn-recovery,10 is 

attributed to the formation of pseudo-chelates of the form [ZnL2.LH].11  

n[(LH)2]org   +  Mn+ ⇌ [M(L.LH)n]org + nH+   [Equation 1]  

As the application of CYANEX®272 in the separation of cobalt from nickel in sulfate media is of great 

commercial interest, it has been the subject of a number of literature reports.12–14 As would be expected 

for this pH-swing process (Equation 1), higher levels of metal loading into an organic phase are achieved 

when CYANEX®272 is used to extract metals as the pH of the aqueous phase is increased, but studies have 

also shown that a significant increase in the viscosity of the water-immiscible phase occurs at high Co 

loading. As a result, care must be taken to choose appropriate reagent concentrations in order to control 

viscosity and avoid disrupted flow and slow phase disengagement.   
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The origins of the increase in viscosity are poorly understood in the context of the supramolecular and 

coordination chemistry exhibited by CYANEX®272. While solid-state structures of metal complexes of 

phosphinates are well-defined, and their propensity to form polynuclear species with bridging 

phosphinate ligands widely reported, the relevance of this phenomenon to solution structures is less well-

studied. In the solid state, ten different binding motifs in both mono- and polynuclear complexes have 

been identified in which an individual phosphinate group can bind up to five metal atoms.15  Most 

commonly, phosphinate complexes contain M-O-PR2-O-M units (a in Figure 2) in oligomeric and polymeric 

structures. The implication that similarly high molecular weight complexes are formed in solution is 

particularly relevant to solvent extraction when metal-loading results in increased viscosity of the organic 

phase. Formation of 4-membered chelate rings (b in Figure 2) is very rare, being recorded only 3 times in 

solid state structures.   

 

Figure 2. (a) The most common binding motif identified in alkyl- or arylphosphinate complexes in the 

solid state has 260 occurrences compared with just 3 occurrences of the 4-membered chelate structure 

(b) in a total of 552 structures retrieved when the survey of the CCDC was conducted.15 

While the formation of aggregates at high Co(II) loading levels has been proposed,16 relatively little 

experimental evidence of aggregate formation, or of the structures of such aggregates, has been reported. 

Generally, studies of the solvent extraction of Co(II) from sulfate media using CYANEX®272 have proposed 

only mononuclear extracted species consisting of Co(II) and hydrogen-bonded dimers of phosphinic acid 

(Figure 1).12,13 

Herein, the speciation of the cobalt-compounds formed by CYANEX®272 is considered in the context of 

the propensity of phosphinate ligands to show unusual supramolecular chemistry based on H-bonding 

and to form oligomeric complexes rather than simple 4-membered chelate rings (see above). The work 

involves the application of a wide variety of experimental characterization techniques, including the 

combination of electrospray ionisation mass spectrometry (ESI-MS) and matrix-assisted laser desorption 

ionisation time-of-flight (MALDI-TOF) mass spectrometry, along with proton-decoupled 31P NMR 

spectroscopy of both paramagnetic and diamagnetic complexes and diffusion-ordered NMR spectroscopy 

(DOSY NMR). These are complemented by computational analysis, with DFT geometry optimization 

calculations identifying the most stable gas phase Co-containing species and determining the 

thermodynamic driving forces for their interconversion.  

 

Experimental 
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Solvents and reagents were used as received from Solvay, Sigma-Aldrich, Fisher Scientific UK, Alfa Aesar, 
Acros Organics or VWR International. Deionised water was obtained from a Milli-Q purification system.  

Reagent definitions: The structures of the main component of CYANEX®272, the phosphinic acid L1H, the 
phosphine oxide impurity L2, and their methyl analogues L3H and L4 used in computational studies, are 
shown in Figure 3.   

 

 

 

Figure 3. The structures of L1H, the main component of the extractant CYANEX®272 and its phosphine 

oxide impurity, L2. L3H and L4 were used as models in computational studies and L5H and L6H are present 

in the solid state structures of [py3Co(µ2-L5)3CoCl] and [Co(µ2L6)2]  discussed below.17,18 

 

General Extraction Procedures: All metal stock solutions contained 20 g L-1 metal (as CoSO4•7H2O, 
ZnSO4•7H2O or anhydrous Fe2(SO4)3 for Co(II), Zn(II) and Fe(III) respectively) in deionised water. Except 
where otherwise stated, the water-immiscible (organic) phases  consisted of 10% (by volume) 
CYANEX®272 (an extractant consisting of 85% bis(2,4,4-trimethylpentyl)phosphinic acid, along with small 
quantities of tris(2,4,4-trimethylpentyl)phosphine oxide and other impurities) in the commercial 
dearomatised kerosene diluent ISOPAR M. In experiments where the concentration of phosphine oxide 
impurity was varied, this was achieved by substituting varying proportions of CYANEX®272 with 
CYANEX®272Y (a purer formulation of CYANEX®272 with negligible phosphine oxide content). 
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All volumes were measured with 1 mL and 5 mL Rainin edp3 automatic pipettes. Extraction mixtures 
consisted of 8 mL organic phase, 4 mL metal stock solution and 4 mL of a mixture of deionised water and 
either 1 M H2SO4 or 1 M NaOH stock solutions, the proportions of which were varied in order to vary the 
pH of the extraction mixture (monitored using an Ionode IJ44 pH electrode). To perform extractions, 
mixtures were prepared in vials, sealed, and then subjected to vigorous magnetic stirring at a rate of 
approximately 900 rotations per minute overnight at room temperature, conditions under which 
equilibrium is known to be achieved.8 After separation, both the organic and aqueous phases were 
centrifuged for 15 minutes to remove entrained material. In some cases, where stated, the organic phase 
was pre-loaded with low concentrations of Fe(III) by performing an extraction by the procedure described 
above using Fe(III) stock solution in the aqueous phase, before using the resulting pre-loaded organic 
phase in a second extraction (of Co(II) ) by the same procedure. 

Loading levels were determined by measurement of the metal concentrations of aqueous phases (for Co 
and Zn) and organic phases (for Fe and S), using inductively coupled plasma optical emission spectroscopy 
(ICP-OES), with a Perkin Elmer Optima 5300DC spectrometer. Aqueous phase samples were diluted 1:400 
in 2% nitric acid and taken up by a peristaltic pump at a rate of 1.5 mL min−1 into a Gem Tip cross flow 
nebuliser and a Scotts spray chamber, while organic phase samples were diluted 1:400 in 1-methoxy-2-
propanol and taken up by a peristaltic pump at a rate of 2.0 mL min−1 into a Gem Tip cross flow nebuliser 
and a Glass Cyclonic spray chamber. Argon plasma conditions were: 1500 W RF forward power, argon gas 
flows of 20, 1.4 and 0.45 L min-1 for plasma, auxiliary and nebuliser flow, respectively. ICP-OES calibration 
standards for cobalt, zinc, iron and sulfur were obtained from VWR International or Sigma-Aldrich. 

Metal loading levels are reported as percentages, relative to the theoretical maximum quantity of metal 
which could be extracted by the amount of phosphinic acid present in the organic phase, assuming a 2:1 
stoichiometry of phosphinate to metal in the extracted metal complex (see ESI Section S1 for detail).  

Viscosity: Viscosities were recorded on a HAAKE MARS rotational viscometer using a constant shear rate 
of 70 s-1 over a period of 60 seconds at 293 K, a gap size of 0.5 mm and a sample volume of 1.45 mL. 

NMR spectroscopy: 31P{1H} NMR and DOSY spectra were recorded on a Bruker PRO500 spectrometer as 
d6-benzene solutions. All measurements were performed at 300 K, at a frequency of 202.40 MHz for 31P 
and 500.12 MHz for 1H. Spectra were analysed using the MestReNova software.19 

For Co extraction, peak integrals were calculated as a means of quantifying the relative proportions of 
species present in the organic phase. Assuming L2 to be insignificantly involved in the extracted cobalt 
species below high loading levels, the ratio of the integrals of the peaks corresponding to unassociated 
L1H and L2 was used to monitor the change in proportion of L1 associated to cobalt as Co loading increases. 
By comparison with the known absolute concentrations of unassociated L1H in the organic phase at 0% 
loading and of Co in the organic phase at 100% loading, the proportion of unassociated L1H versus Co 
uptake in the organic phase was calculated, and the stoichiometries of extracted species inferred (see ESI 
Section S2 for detail). 

Mass spectrometry: Electrospray ionisation mass spectra (ESI-MS) were recorded on a Bruker 12 T SolariX 
mass spectrometer, with samples diluted into a 3:1 mixture of methanol and chloroform. MALDI-TOF mass 
spectra were recorded on a Bruker UltraflexExtreme mass spectrometer, with solutions of sample (1 mg 
mL-1 in chloroform) mixed with solutions of dithranol (20 mg mL-1 in chloroform) in a 1:10 ratio before 
spotting on the sample plate. Spectra were analysed using the Bruker Compass DataAnalysis software, 
with peaks assigned manually. 
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Computational Methods 

All geometry optimisation calculations were performed using the Gaussian 09 software package.20 The 
M06 functional was used in all calculations,21 along with the LANL2DZ basis set and its associated 
pseudopotential for Co and the 6-31+G* basis set for all other atoms.22  Structures were considered 

optimised when the standard convergence criteria (maximum force of 4.5  10−4 Hartrees/Bohr on any 

atom, maximum RMS force of 3.0  10−4 over all atoms, maximum atomic displacement of 1.8  10−3 Bohr 

for any atom, and maximum RMS atomic displacement of 1.2  10−3 Bohr over all atoms) were reached. 

Results and Discussion 

Cobalt loading and organic-phase viscosity 

As much of the experimental work in this study involves comparison of the behaviour of organic-phase 

CYANEX®272 solutions at different levels of Co loading in a solvent extraction experiment, it was 

essential to devise protocols such that loading levels were reproducible. The pH-dependence of Co 

loading was established through a series of test extractions at varying pH (Figure 4) and these data 

dictated the amounts of acid or base required to obtain samples of particular Co loading levels for 

subsequent measurements.   
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Figure 4. The pH dependence of loading of Co(II) from an aqueous phase into an organic phase of 

CYANEX®272 (0.27 M) in ISOPAR M. 

In common with other reports,16 viscosity levels of the organic phase were found to rise sharply when Co- 

loading exceeded 80%. Very similar behavior was observed with the loading of Zn2+ [see Figure 5(a)].  
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Figure 5. The variation of viscosity of (a) CYANEX®272 in ISOPAR M loaded with Co (black circles) and Zn 

(blue triangles) and (b) ISOPAR M containing mixtures of CYANEX®272 and CYANEX®272Y in proportions 

of 100% CYANEX®272:0% CYANEX®272Y (black dots), 75%:25% (green squares), 50%:50% (pink triangles), 

25%:75% (blue stars) and 0%:100% (red crosses), at varying Co loading levels. 

The role of the impurities in CYANEX®272 (ca. 10%) was explored by repeating extractions using 

CYANEX®272Y, which contains negligible quantities of the phosphine oxide L2 (Figure 3). The 

CYANEX®272Y solution in ISOPAR M was diluted to ensure that it contained the same molar concentration 

(0.27 M) of the phosphinic acid, L1H, as corresponding solutions of CYANEX®272. The extractant 

formulation containing no phosphine oxide, L2, produced very similar viscosity levels at low Co loading 

levels to those using formulation containing L2, but once the critical loading level of 80%, had been 

reached, the subsequent rise in viscosity was considerably greater [Figure 5(b)]. This effect was 

investigated further by mixing CYANEX®272Y in different proportions with CYANEX®272 (whilst 

maintaining a consistent concentration of the phosphinic acid extractant L1H). The extractant formulations 

containing greater proportions of CYANEX®272Y (and therefore lower quantities of L2) exhibited higher 

levels of viscosity [Figure 5(b)].  

In order to determine the solution structures of the species responsible for high viscosity at high Co 

loading, various methods were applied to define the stoichiometry of the Co complexes formed in the 

water-immiscible phase. 

NMR analysis of extraction 

As the phosphinic acid L1H and the phosphine oxide impurity L2 each contain only a single phosphorus 

environment, 31P{1H} NMR spectroscopy offers the means to analyse the relative concentrations of species 

present in the organic phase. The 31P{1H} NMR spectrum for CYANEX®272 was recorded [Figure 6(a)] and 

showed an intense singlet at 58 ppm corresponding to the phosphinic acid, L1H, accompanied by a much 

smaller singlet at 46 ppm due to the phosphine oxide impurity L2. The resonance corresponding to L2 was 

not detected in the 31P{1H} NMR spectrum of CYANEX®272Y (see ESI, Figure S3).  
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The 31P{1H} NMR spectra of organic phases containing CYANEX®272 after loading with varying quantities 

of Co(II) showed dramatic changes (Figure 6). At 42% Co loading, the signal due to L1H was noticeably 

broadened and at 58% loading was hard to detect (spectra b and c). At that point, it can be assumed that 

all phosphinic acid, L1H, was bound to the paramagnetic Co2+ ion. The signal due to L2 remained sharp at 

42% Co loading, suggesting that none was bound to Co(II), although there was a shift to lower frequency 

associated with the change in bulk susceptibility of the solvent. No other 31P{1H} resonances were 

observed in the range -1000 to 1000 ppm at any the Co loading levels examined.  At 58% Co loading, the 

signal for L2 was broadened, and at 90% Co loading it was no longer detected. This is believed to be a 

consequence of the build-up of paramagnetic material in the system as Co loading reaches high levels, 

rather than incorporation of L2 in Co(II) complexes, as the signal due to L2 did not disappear in this manner 

at high loading in similar experiments involving diamagnetic Zn(II) (see Figure 8). 
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Figure 6. 31P{1H} NMR spectra obtained from ISOPAR M solutions of CYANEX®272 with (a) zero Co 

loading, (b) 42% Co loading, (c) 58% Co loading, and (d) 90% Co loading. 

If the assumptions are made that the phosphine oxide impurity, L2, does not contribute significantly to 

the formation of extracted cobalt species at loading levels, below that at which viscosity begins to rise, 

and that peak suppression due to residual paramagnetism affects both signals proportionately, then the 

ratio of the area of the L1H signal to that of the L2 signal can be used to evaluate the proportion of the 

uncomplexed phosphinic acid at a given (low) Co loading level. The proportion of free phosphinic acid, 

L1H, remaining in the organic phase does not vary linearly with Co uptake, with consumption of L1H being 
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greater at low (< 50%) Co loading (see Figure 7). The mean gradient of the graph in the range of 0-20% Co 

loading corresponds to the consumption of 3.92 moles of phosphinic acid for every mole of Co(II) 

transferred into the organic phase, and suggests that, at low Co concentration, the 4:1 ligand:metal 

complex [Co(L1.L1H)2] is formed (see Figure 1).  Similar calculations for the Co loading in the range 20-60% 

suggest that on average 2.42 moles of phosphinic acid are consumed per mole of Co(II) extracted, 

consistent with the presence of a mixture of the mononuclear complex [Co(L1.L1H)2] and polynuclear 

complexes with formulae such as [(L1H)Co(L1) 3Co(L1)]. 

The integral of the resonance due to L1H (and thus the L1H:L2 integral ratio) reaches zero at a Co loading 

level of around 70%, which is close to the critical Co loading level above which organic phase viscosity 

begins to rise rapidly. This supports the notion that the onset of the increase in viscosity occurs when Co 

loading reaches such a level that there is no free L1H in the system to allow further formation of 

mononuclear and small polynuclear species.  

The incorporation of the phosphine oxide L2 into oligomeric complexes could increase the total Co uptake 

as all the phosphinic acid is present as its conjugate anion [L1]− and the resulting complexes have a 1:2 

Co:L1 molar ratio. A corollary is that identical Co loadings will be associated with lower (average) molecular 

weights when L2 is part of the complex formed. This is consistent with the lower viscosity being observed 

when CYANEX®272, which contains 10% phosphine oxide, L2, is used as the extractant (see Figure 5).  

 

Figure 7. The ratio of the integrals of peaks L1H and L2 in 31P{1H} NMR spectra of ISOPAR M solutions of 

CYANEX®272 with different levels of Co loading.  

Diffusion-ordered NMR spectroscopy (DOSY) could be used to investigate whether high molecular weight 

compounds are formed under conditions that result in high Co loading. However, as complexes of Co(II) 
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are paramagnetic, studies of the uptake of Zn(II) by CYANEX®272 were undertaken, as this metal showed 

a similar loading profile and viscosity dependence on loading levels to those for Co(II) (see Figure 5). 

The diffusion coefficients (which vary inversely with the hydrodynamic radius of the corresponding 

species) were determined as a function of the chemical shifts of 31P{1H} signals for solutions of 

CYANEX®272 loaded with varying levels of Zn(II) (Figure 8). Resonances labelled A and B correspond to 

L1H and L2 in metal-free CYANEX®272. At 18% Zn loading, an additional resonance (C) of lower intensity 

and a higher hydrodynamic radius was observed which can be ascribed to a Zn-containing complex. At 

69% Zn loading, resonance A was absent (no uncomplexed phosphinic acid, L1H, remained) and two new 

resonances (D and E) appeared. These had different chemical shifts but identical diffusion coefficients, 

suggesting that they were due to two different phosphorus environments within a single oligomer. At 90% 

Zn loading, well above the critical level at which viscosity began to rise substantially, two further broad 

resonances (F and G) can be seen. These arise from compounds of significantly higher hydrodynamic radii, 

which is consistent with much larger oligomers being formed at high Zn loading. Generally, the intensity 

of resonance G is greater at lower values of diffusion coefficient than that of resonance F, indicating that 

the phosphorus environment responsible for resonance G occurs disproportionately in polymers of 

relatively low molecular weight. It is possible that resonance G corresponds to units of the phosphine 

oxide L2 which have become incorporated into the polymer structure, terminating the growth of the 

polymer and thus creating lower molecular-weight species. This provides an explanation for the 

observation that the inclusion of L2 in the organic phase moderates the increase in organic phase viscosity 

seen at high metal-loading levels (see Figure 5(b)). 
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Figure 8. DOSY spectra; plots of diffusion coefficient against 31P{1H} NMR chemical shift for solutions of 

CYANEX®272  with zero, 18%, 69% and 90% Zn loading (a to d respectively). 

Mass Spectrometry 

The ESI-MS of an organic phase solution with 42% Co loading was recorded (Figure 9) and no major ions 

with m/z > 1800 were observed. The ion at m/z 1218.9 was assigned to a protonated form of the 

mononuclear complex [Co(L1.L1H)2] which was assumed to be the dominant species at low Co loading. 12,13  
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Figure 9. Positive-ion ESI-MS obtained from an organic phase with 42% Co loading of CYANEX 272. 

 

The ion of m/z 1566.1 contains two Co atoms and five L1 units, and is most plausibly formulated as 

[(L1H)Co(L1)3Co(L1H)]+ with three bridging phosphinates and two capping phosphinic acids.  The linking of 

two Co(II) atoms with three bridging phosphinate ligands was observed in the solid state structure of 

[py3Co(µ2-L5)3CoCl].17 A dinuclear complex of this nature, with both bridging and terminal L1 units, is likely 

to be responsible for the resonances D and E in DOSY NMR spectra at medium and high loading (see Figure 

8). This is supported by the observation of exactly equivalent peaks in ESI-MS spectra of Zn-loaded organic 

phases (see ESI Section S6). 

The ions of m/z 1315.1, 1411.2, 1663.3 and 1759.4 can only be assigned with chemically reasonable 

formulae if one or two L1 units in [Co(L1.L1H)2]+ or [(L1H)Co(L1)3Co(L1H)]+ are replaced by the phosphine 

oxide L2, resulting in ions of empirical formulae [Co(L1)3(L2)H2]+, [Co(L1)2(L2)2H]+, [Co2(L1)4(L2)H]+ and 

[Co2(L1)3(L2)2]+ (Figure 9). A curious feature of this mass spectrum is that ions containing the phosphine 

oxide L2 have disproportionally high intensities compared with the concentration of L2 in CYANEX®272 as 

used in the extraction. The possibility that L2 is generated by disproportionation of L1H in the ESI-MS 

apparatus can be discounted because much lower intensities of L2-containing peaks are found in spectra 

using the ‘pure’ reagent CYANEX®272Y and there is no evidence in the mass spectrum for the formation 
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of 2,4,4-trimethylpentylphosphonic acid. A more credible alternative is that L2-containing cationic 

complexes are more stable or more readily generated in the electrospray ionization process.  

Further evidence for the formation of oligomeric/polymeric complexes at high Co loading is found in the 

MALDI-TOF mass spectrum of 100% Co-loaded CYANEX®272 in a chloroform/dithranol matrix (Figure 10).  

Ions of m/z 985.9, 1623.3 and 2260.6 can be assigned to fragments of the oligomers 

[(L1.L1H)Co{(L1)2Co}n(L1.L1H)] with a repeat unit of [Co(L1)2] (formulae [Co2(L1)3]+, [Co3(L1)5]+, and [Co4(L1)7]+ 

respectively) formed at high Co loading. The proposition that complexes of generic formula [Con(L1)n+1]+ 

are formed by fragmentation of a polymer during the ionization process is supported by the observation 

that the intensity of the higher m/z [Con(L1)n+1]+ peaks increases relative to that of the lower m/z peaks 

when the laser power is reduced.   

 

Figure 10. MALDI-TOF mass spectra obtained from a highly viscous organic phase containing 

CYANEX®272 with Co2+ loaded to a level of 100%, using laser power settings of (a) 70% and (b) 1%. 

Prominent peaks could be assigned to the fragments [Zn2(L1)3]+ and [Zn4(L1)7]+ in a spectrum of a viscous 

Zn-loaded sample (see ESI Section S7), indicating that a similar oligomerisation occurs at high Zn loading, 

and supporting the assignment of the low-diffusivity species observed in DOSY analysis (Figure 8(d) ) to 

oligomeric species. 

As the formation of oligomeric, phosphinate-bridged, species is of considerable significance to the 

efficiency of Co-transfer in commercial operations, it is appropriate to consider what factors could 

influence the effective concentration of L1H under various operating conditions. As mentioned above, it 

appears that the phosphine oxide L2 can replace L1H as end groups in oligomers at very high Co loadings 

and thus increase the effective concentration of extractant. The uptake of anions such as SO4
2−, HSO4

− or 

OH− from the aqueous phase and incorporation into complexes in the organic phase could also achieve 
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this. There is some evidence that sulfate is transferred in the extraction of copper, based on the Cu-loading 

dependence on sulfate concentration,23 but in this work no evidence for the presence of SO4
2− or HSO4

− 

was found by mass spectrometry or by ICP-OES analysis of organic phases.   

Computational analysis: 

DFT calculations were undertaken in order to assess the stability of the various complexes proposed 

above, and to rationalise their formation. For the purposes of these calculations, the phosphinic acid L1H 

and phosphine oxide L2 were replaced by their methyl-substituted analogues, L3H and L4, respectively (see 

Figure 3) in order to reduce computational expense associated with differentiating between very large 

numbers of conformers of the 2,4,4-trimethylpentyl groups in CYANEX®272. The thermodynamic stability 

of [Co(L3.L3H)2], used as a model for the mononuclear cobalt-containing species formed at low Co loading 

of CYANEX®272, was compared to that of the mononuclear complex containing two bidentate 

phosphinate ligands, [Co(L3)2], see Figure 11), by evaluating the internal energy charge associated with 

the reaction expressed in Equation 2: 

[Co(L3)2] + (L3H)2  ⇌  [Co(L3.L3H)2]           [Equation 2] 

The internal energy of [Co(L3.L3H)2] was calculated to be 112.6 kJ mol-1 lower than the sum of the internal 

energies of the compounds on the left hand side of Equation 2, indicating a strong thermodynamic 

impetus for the reaction to proceed in the forward direction (see ESI Section S4 for calculated energy 

values). Phosphinic acid dimers (LH)2 are generally accepted to be the lowest-energy forms of free 

phosphinic acids (in hydrocarbon solution),15 which suggests that the overwhelming difference in internal 

energy between the two sides of Equation 2 results from the instability of [Co(L3)2]. An explanation for 

this is that the phosphinate ligands are insufficiently flexible to allow for O-Co-O angles close to the ideal 

tetrahedral angle (109.5°) when in their bidentate co-ordination mode; the bite angles defined by the 

oxygen atoms in [Co(L3)2] were found to be only 74.6°. In contrast, the O-Co-O angles in the optimised 

geometry of [Co(L3.L3H)2] deviate from the ideal tetrahedral angle by only 4.8° on average, accounting for 

its much greater stability. These results are consistent with the rarity of solid-state structures containing 

the 4-membered chelate ring (see Figure 2).15 

It is recognized that the calculation of the energy of the gas phase reaction shown in Equation 2 takes no 

account of differences in solvation energies, which will likely influence the reaction equilibrium in solution. 

However, these differences are likely to be small in a non-polar solvent such as ISOPAR M because the 

polar and H-bond donor groups in the complexes and the proligand dimer will be effectively shielded by 

the 2,4,4-trimethylpentyl groups present in CYANEX®272. 
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Figure 11. Energy-minimised structures of [Co(L3.L3H)2] (left) and the hypothetical complex [Co(L3)2] 

(right). Hydrogen bonds are indicated by dotted lines. Co: blue, P: orange, O: red, C: grey, H: white 

Optimised geometries of the methyl analogues of the cationic complexes with empirical formulae 

[Co(L1)3(L2)H2]+, [Co2(L1)4(L2)H]+ and [Co2(L1)3(L2)2]+ (Figure 12), proposed as the structures of the ions 

observed by ESI-MS (Figure 9) with m/z 1566.1 1663.3 and 1759.4 respectively, were obtained. All 

optimized structures were found to contain O-Co-O bond angles in the range of 98.3-116.8°, close to the 

ideal tetrahedral geometry favoured by Co(II) ions (see ESI Section S5).  
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Figure 12. Energy-minimised structures of [(L3H. L4)Co(L3.L3H)]+, [(L3H)Co(L3)3Co(L3H)]+ and 

[(L4)Co(L3)3Co(L4)]+, the methyl-substituted models for ions with empirical formulae [Co(L1)3(L2)H2]+, 

[Co2(L1)5H2]+ and [Co2(L1)3(L2)2]+ (m/z 1315.1, 1566.1 and 1759.4) in the ESI-MS spectrum in Figure 9.   

Hydrogen bonds are indicated by dotted lines.  

Repeat units containing the symmetrical µ2-bridging mode (see Figure 2(a) ) were found to provide bond 

angles even closer to those favoured by tetrahedral metal ions. In the solid state structure of [Co2(µ2-L6)2], 

the bridging phenylphosphinate ligands define O-Co-O angles in the range 104.3-116.4°.18 Similar 

geometries are found in the repeat units of the geometry-optimised (gas phase) structures of the 

dinuclear [(L3.L3H)Co(L3)2Co(L3.L3H)] and the trinuclear [(L3.L3H)Co{(L3)2Co}2(L3.L3H)] (Figure 13). Angles 

subtended by the oxygen atoms in the pseudochelating units (L3.L3H)− fall in the range of 108.2-115.5° and 

those by the bridging phosphinate ligands in the range 107.9-112.2o. The possibility of adopting such 

favourable co-ordination geometries is likely to be a thermodynamic driving force towards the formation 

of complexes of this form. 
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Figure 13. Energy-minimised structures of the di- and trinuclear complexes [(L3.L3H)Co(L3)2Co(L3.L3H)] 

and [(L3.L3H)Co{(L3)2Co}2(L3.L3H)]. Hydrogen bonds are indicated by dotted lines. 

 

Fe(III) pre-loading: 

As CYANEX®272 readily forms stable complexes with Fe(III) cations,24 the presence of Fe(III) in feed 

solutions should reduce the concentration of L1H available to Co and therefore increase the viscosity of 

the organic phase at lower Co loading compared to an Fe(III)-free system. This was shown to be the case 
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by carrying out solvent extraction of Co into organic phases that were pre-loaded with low concentrations 

of Fe(III) (Figure 14). In this case, the presence of Fe(III) caused the viscosity of the organic phase to 

increase at lower Co loading (<80%), which is likely due to the loss of L1H in the formation of organic-

soluble Fe(III) phosphinate complexes. The requirement for a 3:1 phosphinate:Fe(III) stoichiometry to 

generate a charge neutral species in the organic phase compounds compounds this problem.  

 

Figure 14. A comparison of the variation in the viscosity with Co loading by a CYANEX®272 solution in 

ISOPAR M when preloaded to a level of 27% (of the theoretical limit assuming 2:1 L1:M stoichiometry) 

with Fe3+ (red squares) and in the absence of Fe(III) (black circles).  

The dependence of 31P{1H} NMR shifts on Co loading (as in Figure 6) was measured for samples in which 

the organic phase had been ‘pre-loaded’ with low concentrations of Fe(III) (Figure 15). As expected, the 

presence of Fe(III) decreased the proportion of “free” phosphinic acid, L1H, relative to phosphine oxide L2 

in solution. ICP-OES analysis of the aqueous phase following extraction of cobalt into an organic phase 

pre-loaded with iron confirmed that no iron was displaced into the aqueous phase upon Co loading. As 

such, the presence of Fe(III) in the Co-containing leach solution will decrease the Co extraction capacity 

of CYANEX®272 due to preferential coordination of Fe cations by the phosphinic acid.  
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Figure 15. The variation in the ratio of the integrals of peaks L1H  and L2
 in 31P{1H} NMR spectra with 

increasing Co loading for CYANEX®272 solutions in ISOPAR M which were pre-loaded with Fe(III)  to 

levels of 0% (black circles), 6% (blue triangles) and 27% (red squares). 

Conclusions 

The unusual features of Co-recovery by phosphinic acids such as CYANEX®272 in solvent extraction 

processes (abrupt viscosity increase at high loading and L:M change from 4:1 to 2:1) can be accounted for 

in terms of  two key aspects of the coordination and supramolecular chemistry of phosphinic acids: (i) the 

propensity to form outer-sphere hydrogen-bonding interactions between ligands in Co(II) complexes, 

leading to “pseudo-chelate” rings which favour tetrahedral coordination geometry (Figure 1) and (ii) the 

propensity to form M-O-P-O-M bridges between metal centres (Figure 2a). As Co-loading increases, the 

decreasing availability of neutral phosphinic acid favours the replacement of the pseudochelating 

hydrogen-bonded motif found in mononuclear complexes with the bridging motif, which leads to the 

formation of polynuclear Co(II) complexes and causes a major increase in the viscosity of the organic 

phase.  

The broadening of the signal for coordinated phosphinic acid L1H due to the paramagnetism of Co(II) 

permits the use of 31P{1H} NMR spectroscopy to infer the extent of complex formation between the 

phosphinic acid and Co(II) by comparing the integrals of the signals arising from L1H and the phosphine 

oxide modifier L2, which is not incorporated into Co(II) complexes until very high Co loading is achieved.  

The assignment of empirical formulae to ions in the ESI and MALDI-ToF mass spectra of Co-loaded 

solutions of CYANEX®272, combined with the computation of energy-minimised structures, provides very 

plausible structures for both mononuclear and polynuclear complexes formed as loading levels are 

increased. All of these are consistent with the phosphinic acid and, at high Co loading, the phosphine oxide 

components being able to present an unstrained tetrahedral O4-donor set for the cobalt cation. 31P{1H} 
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NMR spectra of Zn(II)-loaded solutions provide evidence for the formation of increasingly higher 

molecular weight species, consistent with increasing viscosity at high Zn loading which follows a similar 

profile to that of Co loading.  

In general there is a striking similarity between the extraction behaviour of Co(II) and Zn(II) when using 

CYANEX®272, in particular the dependence of viscosity on metal loading. This is consistent with the 

coordination chemistries of these metals being similar, especially when forming complexes with hard, 

anionic ligands.25,26 Co(II) has been used for some time as a structural probe for the active sites of zinc-

containing enzymes when replacing this “spectroscopically silent” metal ion,27 and this technique 

continues to find favour.28 In most cases the Co(II)-substituted enzymes retain their catalytic properties. 

As might be expected from the Irving Williams order,25,29 the apparent stability constants for Zn(II) binding 

to proteins are consistently slightly higher than those for Co(II) binding.27  The similarities of the 

coordination chemistry of cobalt and zinc do not extend to oxidizing conditions or to systems containing 

high field ligands which promote the formation of Co(III). This ion, which is kinetically inert,30,31 usually 

forms octahedral complexes which in solvent extraction, for example using the commercial phenolic 

oxime reagents,32 are very difficult to strip. Phosphinate ligands do not favour the formation of Co(III) and 

all the cobalt complexes found in the Cambridge X-ray structural database contain Co(II). Several such 

complexes are structurally identical to their zinc analogues, e.g. ALELIM and ALEKAD,33 and XAXJUC and 

XAXKAJ.34 

Whilst all the techniques described above provide results consistent with the proposed changes in 

speciation which lead to increased viscosity at high metal loadings they do not provide definitive 

structures for the complexes formed. The plausibility of the proposed structures formed in hydrocarbon 

solutions is supported by DFT calculations which demonstrate that these gas phase structures have very 

similar features to the most commonly observed structures in the solid state.15  
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