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SUMMARY 

AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 

protein has a relatively unique property for a chaperone in that it can bind sequence-specifically 

to a specific peptide motif (TTIYY).  A synthetic TTIYY-containing peptide column was used to 

affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. 

Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that 

interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 

(VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by 

measuring its activity against a mutant peptide library.  Screening the human proteome for 

proteins harboring this motif revealed an enrichment in transmembrane proteins and we 

focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM 

proteins formed a dose-dependent protein-protein interaction in vitro. Proximity ligation assays 

demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a 

single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in 

cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding 

site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM’s detergent 

binding site. These data define a dominant site on AGR2 that mediates its specific peptide-

binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident 

chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined 

for the secretory pathway.  
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INTRODUCTION 

Anterior Gradient-2 (AGR2) is an endoplasmic reticulum (ER) localized protein disulfide isomerase 

superfamily member (1) that is upregulated in a large number of human cancers (2). Three biological 

paradigms have emerged from studies on AGR2.  The first paradigm holds that the normal cell 

adhesion associated function of AGR2 is exploited as an oncogenic signal in cancer development.  

This concept was developed based on data demonstrating that AGR2 protein is required to assemble 

the dorso-anterior ectoderm that forms the cement gland in vertebrates thus maintaining forebrain 

integrity (3, 4). The cement gland mediates the attachment of the growing epithelium to a solid support 

(5). Subsequent data highlighting a role for AGR2 in mammalian cancer-associated cell adhesion (6) 

(7) provided the link between the normal developmental function of AGR2 and its oncogenic activity.   

 

The second paradigm maintains that the normal cell migration-promoting function of AGR2 that 

mediates the regeneration of limb of amphibian (8) is exploited as an oncogenic signal during cancer 

progression. Consistent with this data, recent studies have also highlighted that topical application of 

AGR2 protein can accelerate wound-healing in mammalian models (9). Finally, studies in transgenic 

mice have shown that AGR2-null animals are defective in mucin production, have alterations in 

asthma incidence (10), and are primed to develop inflammatory bowel disease (11). This third 

paradigm, therefore, claims that the ability of AGR2 to mediate oncogenic growth is linked to its 

ability to catalyze the maturation of cysteine-rich receptors that play cancer associated functions in 

vivo. Recent data has further highlighted an extracellular role for AGR2 in promoting cancer growth 

and complex organoid structures (12). Thus, the three paradigms derived from normal developmental 

biology have suggested that the cancer-associated function for AGR2 derives from its ability to 

promote cell adhesion, stimulate cell migration through an extra-cellular activity, and catalyze plasma 

membrane receptor trafficking through an intra-cellular function. The biochemical mechanisms 

underlying how AGR2 mediates these three biological pathways are not fully defined.  

The ER organelle is a site of protein folding and assembly.  Thioredoxin-type molecular chaperones 

like AGR2 presumably enable the folding and trafficking of cysteine-rich transmembrane receptors 

with complex protein folding requirements. Classic thioredoxins have a conserved thioredoxin fold 

comprised of the CxxC motif that mediates covalent bond formation with cysteine-containing client 

proteins followed by resolution through cycles of reduction-oxidation (13). AGR2, by contrast, is part 

of the thioredoxin superfamily that contain CxxS motifs and which lack the ability to exploit a two-

cysteine redox system that classically mediates client protein oxidation and reduction cycles (14). 

Through this single cysteine, AGR2 can mediate the maturation of receptors including MUC5 family 

and MUC2 (10) (15). Trafficking of EGFR to the plasma membrane through AGR2-dependent 

catalysis in cancers might also be important for its’ oncogenic function (16) since AGR2-negative 



 4 

cells fail to localize EGFR to its membrane destination. Presumably, AGR2 interacts with EGFR in 

the ER and facilitates its’ folding and maturation, although there is no evidence for this. There might 

also be trafficking-independent functions for AGR2 in cancer. AGR2 overexpression in isogenic 

cancer cells can upregulate the proliferation biomarker Ki67 and the tumor modifier TSG101 resulting 

in p53 protein degradation (17) and AGR2 has extra-cellular oncogenic roles independent of its intra-

cellular ER secretory activity (12). 

In addition to its classic thioredoxin fold, additional structure-function features of AGR2 protein are 

emerging. In addition to its N-terminal ER-leader sequence, and degenerated C-terminal ER-retention 

site (KTEL), there are additional peptide motifs that impact on its protein-protein interactions. The 

protein can exist as a homodimer through protein-protein contacts stabilized by an EALYK motif from 

amino acids 60-64 (7). An N-terminal stretch of amino acids from 21-40 are intrinsically disordered 

and negative regulatory dimer stability; it is striking that deletion of the N-terminal 40 amino acids of 

AGR2 can increase dimer stability by three orders of magnitude (7). These data indicate that the full-

length AGR2 might have a propensity to exist in a monomeric rather than a fully dimeric state.  The 

function of this weak dimeric structure of AGR2 is becoming apparent. The monomeric E60A mutant 

of AGR2 is fully active in cell-adhesion activity, whilst deletion of amino acids 21-40 that removes 

the intrinsically disordered domain attenuates its migration function(7). These data together suggest 

that monomeric form of AGR2 is responsible for its’ cell adhesion functions.  

There are very few well-validated binding proteins for AGR2 that explain its oncogenic activity. One 

yeast two-hybrid screen identified the oncogenic membrane receptor Dystroglycan, although this 

protein-protein interaction is largely unvalidated (18). Nevertheless, antibodies to Dystroglycan or 

AGR2 can inhibit cancer cell growth (19). Another yeast-two hybrid screen has identified a set of 

AGR2-interacting proteins that provide clues into its intracellular functions (20). One of the most 

well-validated of these protein-protein interactions is with the hexameric molecular chaperone and 

AAA+ superfamily protein Reptin (21). Reptin binds to a divergent hydrophobic peptide motif on 

AGR2 (amino acids 104-111) (20). New drug leads that bind to the Walker-A ATP-binding pocket of 

Reptin can also stimulate Reptin binding to AGR2 (22).  Deletion of the N-terminal domain of AGR2 

(e.g. stabilizing the dimeric form) can stimulate binding of AGR2 to Reptin (23).  These data together 

suggest that the monomeric and dimeric forms of AGR2 can have distinct functions. Whether Reptin 

and AGR2 cooperate in protein-folding pathways remains unknown. 

Molecular chaperones and protein disulfide isomerases are generally thought to interact non-

specifically with hydrophobic polypeptide regions or cysteine residues, respectively. Accordingly, 

then, perhaps the most striking feature of AGR2 protein is its ability to bind to peptides in a sequence-

specific manner. The AGR2 protein was screened for peptide binding aptamers using peptide-phage 

libraries resulting in the acquisition of two types of peptides that bind to different domains on the 
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protein (24). However, the function of this sequence-specific peptide binding function of AGR2 has 

not been defined. In the case of perhaps the most well-characterized specific peptide-binding protein, 

MDM2 (25), the function of this peptide binding motif is to drive selective interaction with several 

interacting proteins in cells (26).  

In this report, we probed this specific peptide binding function of AGR2 in order to define a possible 

biological function for this activity. For example, the interaction site could form a docking site for 

client proteins that enter the ER or it could simply be involved in trafficking AGR2 through adaptor 

proteins. Hydrogen-deuterium exchange mass spectrometry was first applied to determine whether a 

specific peptide-docking site could be mapped on AGR2. Subsequently, an optimized consensus site 

for AGR2 binding peptides was used to search for human proteins with this consensus motif. An 

enrichment of transmembrane proteins containing the motif was identified suggesting that a major role 

for this motif could be in binding to client proteins destined for membrane localizations. A specific 

protein-protein interaction with the oncogenic membrane receptor EpCAM was validated. This 

suggests a mechanism for how this docking site on EpCAM can impact on the AGR2-EpCAM 

protein-protein interaction. These data have implications for how this ER-resident chaperone mediates 

maturation of proteins destined for the plasma membrane. During the course of these studies, a clinical 

proteomics analysis using resected biopsies from patients with oesophageal adenocarcinoma identified 

AGR2 and EpCAM as highly expressed in primary adenocarcinoma as well as cancer-associated 

lymph nodes (27). Oesophageal adenocarcinoma forms one clinically relevant model to translate 

AGR2 and EpCAM pathway dynamics into a physiologically relevant system. 

 

EXPERIMENTAL PROCEDURES  

Chemicals, Antibodies, and Peptides. All chemicals and solvents were obtained from commercial 

sources and of high purity or HPLC spectral grade. AGR2 polyclonal antibody K47 (Moravian-

Biotechnology, Brno, Czech Republic) was used at 1:1000 dilution, EpCAM monoclonal antibody 

(VU-1D9, Calbiochem) was used at 1:1000, mCherry monoclonal antibody (ab125096, Abcam) was 

used at 1:1000, and GFP polyclonal antibody (A-11122, Thermo Fischer Scientific) was used at 

1:1000. Secondary antibodies were Horseradish-peroxidase (HRP) conjugated anti-Rabbit IgG 

(P0217, Dako) at 1:1000 and HRP-conjugated anti-Mouse IgG (P0260, Dako) at 1:1000. Peptides 

were from Chiron Mimotopes, Melbourne, Australia.  

 

Bacterial Strains and Growth Conditions. The bacterial strains and plasmids used in this work are 

described in Table 1A and B. E. coli strains harboring plasmids were grown aerobically at 37 ºC and 

200 rpm in Luria–Bertani (LB) broth medium, supplemented with ampicillin (100µg/mL).  
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Plasmid Name Description Reference 

A. Bacteria 

Escherichia coli 

DH5α 

 

 

F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 

(rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

 

 

Thermo Fisher 

Scientific 

BL21-DE(3) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS λ DE3 = λ sBamHIo 

∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

Thermo Fisher 

Scientific 

BL21-AI F– ompT hsdSB(rB–, mB–) gal dcm araB::T7RNAP-tetA Thermo Fisher 

Scientific 

B. Plasmids   

pmAGR2  Mature AGR2 (amino acids 21-175). N-term 6xHis-tag. AmpR This work 

pEpEX-CO Human codon optimized extracellular domain of EpCAM (amino 

acids 24-265). N-Term 6xHis-tag. AmpR 

Thermo Fisher 

Scientific 

pmAGR2D132A Asp132 of pmAGR2 mutated to Ala. AmpR This work 

pmAGR2P133A Pro133 of pmAGR2 mutated to Ala. AmpR This work 

pmAGR2S134A Ser133 of pmAGR2 mutated to Ala. AmpR This work 

pEpEXY251A-CO Tyrosine251 of pEpEX-CO mutated to Ala. AmpR This work 

pAGR2-C-mCherry Full-length AGR2 cloned into pcDNA3/GW-Cherry. AmpR This work 

pEpCAM-C-EGFP Full-length EpCAM cloned into pEGFP-N1. KanR This work 

pEpCAM-Y251A-C-

eGFP 

Tyrosine251 of pEpCAM-C-eGFP mutated to Ala. AmpR This work 

Table 1. Strains and plasmids used in this work 

Plasmids. The AGR2 recombinant plasmid (pmAGR2) encoding the mature version of the protein was 

described previously (24). AGR2 was previously cloned into pDEST17 using Gateway cloning system 

(Invitrogen). The plasmid pmAGR2 contains an in-frame 6x Histidine (His) epitope tag fused to the 

N-terminus of AGR2 (amino acid 21-175). EpEX (amino acid 24-265 of accession number 

NM_002354) was chemically synthesized and human codon optimized (GeneArt Gene Synthesis, 

ThermoFisher Scientific) and cloned into pET151/D-TOPO harboring 6x His epitope tag followed by 

TEV protease site fused to N-terminus of EpEX. Mutants His-AGR2 and His-EpCAM were made 

according to the protocol described in QuickChange site-directed mutagenesis (Agilent Technologies) 



 7 

using High Fidelity PCR, 2x Pfu Turbo master mix (Rovalab). AGR2 mutants pmAGR2D132A 

(containing Asp132 to Ala), pmAGR2P133A (containing Pro133 to Ala), pmAGR2S134A (containing 

Ser134 to Ala) were generated using AGR2-D132A-F and AGR2-D132-R, AGR2-P133A-F and 

AGR2-P133A-R, and AGR2-S134A-F and AGR2-S134A-R mutagenic primers respectively as 

described in Table 2 using pmAGR2 as a template. EpCAM mutants pEpEX-Y251A-CO and 

pEpCAM-Y251A-C-EGFP (containing Tyrosine251 to Ala) were generated using p-Y251A-F and 

pEpEX-Y251A-R and pEpCAMY251A-C-EGFP-F and pEpCAM-Y251A-C-EGFP-R mutagenic 

primers respectively as described in Table 2. Full-length AGR2 was previously cloned into 

pcDNA3/GW-Cherry(28). This construct harbors C-terminally tagged mCherry. Full-length EpCAM 

was PCR amplified using forward primer EpCAM-C-EGFP-F and reverse primer EpCAM-C-EGFP-R 

(Table 2) that contains XhoI and AgeI restriction sites at N and C-terminus respectively of FL-EpCAM 

and cloned into multiple cloning sites of pEGFP-N1 using the same restriction sites. FL-EpCAM from 

this construct harbors C-terminally tagged EGFP. All constructs were confirmed by DNA sequencing 

and analyzed using SnapGene v3.0.   
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Primer Names  Plasmid Sequence 5’-3’ 

AGR2-D132A-F 

 

pmAGR2D132A CC AGG ATT ATG TTT GTT GCC CCA TCT CTG 

ACA GTT AG 

AGR2-D132A-R 

 

 CT AAC TGT CAG AGA TGG GGC AAC AAA CAT 

AAT CCT GG 

AGR2-P133A-F pmAGR2P133A C AGG ATT ATG TTT GTT GAC GCA TCT CTG 

ACA GTT AGA GC 

AGR2-P133A-R  GC TCT AAC TGT CAG AGA TGC GTC AAC AAA 

CAT AAT CCT G 

AGR2-S134A-F pmAGR2S134A ATT ATG TTT GTT GAC CCA GCT CTG ACA GTT 

AGA GCC G 

AGR2-S134A-R  C GGC TCT AAC TGT CAG AGC TGG GTC AAC 

AAA CAT AAT 

pEpEX-Y251A-F pEpEX-CO T CCG GGT CAG ACC CTG ATC TAT GCT GTT 

GAT GAA AAA GCAC 

pEpEX-Y251A-R  G TGC TTT TTC ATC AAC AGC ATA GAT CAG 

GGT CTG ACC CGG A 

EpCAM-C-EGFP-F pEGFP-N1 GCT CTC GAG ATG GCG CCC CCG CAG GTC CTC 	

EpCAM-C-EGFP-R  C GAC CGG TGC ATT GAG TTC CCT ATG CAT 

CTC	

 

EpCAMY251A-C-

EGFP-F 

pEpCAM-C-

EGFP 

G GAT CTG GAT CCT GGT CAA ACT TTA ATT 

TAT GCT GTT GAT GAA AAA GCA CCT	

EpCAMY251A-C-

EGFP-R 

 AGG TGC TTT TTC ATC AAC AGC ATA AAT TAA 

AGT TTG ACC AGG ATC CAG ATC C	

Table 2. Nucleotide sequences of the oligonucleotide primers used in this study.
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Protein Purification. For purification of His-AGR2 WT and its mutant derivatives His-AGR2 D132A, 

His-AGR2 P133A, His-AGR2 S134A, E. coli strains BL21-AI transformed with His-AGR2 WT and 

mutant plasmids were grown aerobically at 37 °C and 200 rpm in LB broth medium supplemented with 

ampicillin (100 µg/ml). Cultures were induced at A600nm of 0.6-0.8 by the addition of 0.2 % arabinose (w/v) 

for 3 hours at 37 °C and 200 rpm. Cell pellets were collected by centrifugation 10,000 rpm for 10 minutes 

at 40C. Cell pellets were resuspended in buffer A (20mM Tris-HCL pH8, 150 mM NaCl, 10 mM MgCl2, 

0.1%NP40, 10% glycerol 20 mM Imidazole) supplemented with 0.1 mg/ml lysozyme and incubated on ice 

for 30 minutes. The resuspended cells were then sonicated 3 × 15 seconds on ice with a 30-second interval 

to prevent overheat using a small probe at 15 amplitude microns. Sonicated cells were then centrifuged at 

10,000 rpm for 10 minutes at 40C to remove cell debris. Cell lysates were mixed with 1 ml Ni-NTA 

agarose (Qiagen) for 1 hour before loading into 10 ml column with 35uM filter pore size (Mobitec) 

equilibrated with wash buffer A. After several washes with increasing amount of imidazole in wash buffer 

A and wash buffer B (buffer A with 40mM Imidazole), the proteins were eluted with the same buffer but 

with 150 mm Imidazole.  

 

For purification of His-EpEX-CO, E. coli strains BL21-DE3 were transformed with the pEpEX-CO 

construct and were grown aerobically at 37 °C at 200 rpm in LB medium supplemented with ampicillin 

(100 µg/ml). Cultures were induced at A600nm of 1.0 by the addition of 1 mM isopropyl β-d-1-

thiogalactopyranoside for 4 h at room temperature and 200rpm. Cell pellets were collected by 

centrifugation at 10,000 rpm for 10 minutes at 40C. The pellets were resuspended in resuspension buffer 

(10% Sucrose (w/v), 50 mM HEPES pH8.0). The pellets were supplemented with final concentrations of 

0.5M NaCl, 1mM Benzamidine, 1 mM DTT, 0.1% Triton X-100, 1x Protease Inhibitor Cocktails Tablet 

(Roche) and 0.1 mg/ml lysozyme followed by incubation on ice for 30 minutes. Cells were then sonicated 

3 × 15 seconds on ice with a 30-second interval to prevent overheat using a small probe at 10 amplitudes. 

Solid urea powder (7M) was added directly to the sonicated cells and incubated in rotating wheel at 4°C 

until the urea dissolves. Cell pellets containing cellular debris were collected by centrifugation at 10,000 

rpm and the lysate was added to 0.3 ml Ni-NTA agarose (Qiagen). The Ni-NTA agarose beads with bound 

His-EpEX-CO were transferred to a microfuge tube and were incubated overnight in a rotating wheel at 

40C. The beads were washed several times with wash buffer (50mM HEPES pH8.0, 0.5M NaCl, 1mM 

Benzamidine, 1 mM DTT, 2M Urea, 10mM Imidazole). His-pEpEX-CO was eluted from the beads by 

addition of elution buffer (50mM HEPES pH8.0, 0.5M NaCl, 1mM Benzamidine, 100mM DTT, 0.3M 

Imidazole).  
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Solid-Phase Binding Assay. Purified protein His-EpEX-CO as stated amounts was immobilized on 

polystyrene microtitre plates in 0.1 m NaHCO3 (pH 8.6) overnight at 4 °C. Alternatively, biotin-labelled 

AGR2 binding peptide at saturating amounts (5 µg/well in dH20) was captured onto a microtitre plate 

coated with streptavidin (1 µg/well in dH20) incubated at 37 o C overnight. Following washing in 4x PBS 

supplemented with 0.1% (v/v) Tween-20 (PBS-T), nonreactive sites were blocked using 3% (w/v) BSA in 

PBS-T. A titration of the protein and/or peptide of interest was added in 3% BSA in PBS-T for 1 h at 

room temperature. Remaining free protein in solution was removed and washed with 6x 0.1% PBS-T, and 

the portion of the partner protein bound to the immobilized protein was quantified through detection via 

AGR2 polyclonal primary antibody K47 followed by anti-rabbit/HRP secondary antibody, and quantified 

using Fluoroskan Ascent FL (Thermo Scientific) as relative light unit (RLU). 

 

SDS-PAGE and Immunoblot Analyses.  Cells were lysed in urea buffer (7M urea, 0.1 M DTT, 0.1% Triton 

X-100, 25mM NaCl, 20mM HEPES–KOH pH 7.6, 5 mM NaF, 2 mM Na3VO4, 2.5 mM Na4P2O7). 

Proteins were quantified using Protein Assay Dye Reagent (Bio-Rad) according to Bradford assay (29). 

Proteins were resolved by SDS-PAGE using 12-15% gels according to (30) and transferred onto 

nitrocellulose membranes (Amersham Protran, GE Healthcare). Membranes were probed with primary 

antibodies, followed by secondary antibodies conjugated to HRP. Bound antibody was detected by 

enhanced chemiluminescence (ECL) as RLU.  

Proteins used for Hydrogen-deuterium exchange mass spectrometry. The amino acid sequences of the 

AGR2 recombinant proteins with N-terminal His-tag EpCAM recombinant proteins are:  

wild-type AGR2: 

MSYYHHHHHHLESTSLYKKAGFEGDRTMRDTTVKPGAKKDTKDSRPKLPQTLSRGWGDQLIWT

QTYEEALYKSKTSSKPLMIIHHLDECPHSQALKKVFAENKEIQKLAEQFVLLNLVYETTDKHLSPD

GQYVPRIMFVDPSLTVRADITGRYSNRLYAYEPADTALLLDNMKKALKLLKTEL;  

and  

2) mutant AGR2S134A 

MSYYHHHHHHLESTSLYKKAGFEGDRTMRDTTVKPGAKKDTKDSRPKLPQTLSRGWGDQLIWT

QTYEEALYKSKTSSKPLMIIHHLDECPHSQALKKVFAENKEIQKLAEQFVLLNLVYETTDKHLSPD

GQYVPRIMFVDPALTVRADITGRYSNRLYAYEPADTALLLDNMKKALKLLKTEL. 

3) wild-type EpCAM 
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QEECVCENYKLAVNCFVNNNRQCQCTSVGAQNTVICSKLAAKCLVMKAEMNGSKLGRRAKPEGALQNN
DGLYDPDCDESGLFKAKQCNGTSMCWCVNTAGVRRTDKDTEITCSERVRTYWIIIELKHKAREKPYDSKSL
RTALQKEITTRYQLDPKFITSILYENNVITIDLVQNSSQKTQNDVDIADVAYYFEKDVKGESLFHSKKMDLT
VNGEQLDLDPGQTLIYYVDEKAPEFSMQGLK 
 

4) mutant EpCAMY251A 

QEECVCENYKLAVNCFVNNNRQCQCTSVGAQNTVICSKLAAKCLVMKAEMNGSKLGRRAKPEGALQNN
DGLYDPDCDESGLFKAKQCNGTSMCWCVNTAGVRRTDKDTEITCSERVRTYWIIIELKHKAREKPYDSKSL
RTALQKEITTRYQLDPKFITSILYENNVITIDLVQNSSQKTQNDVDIADVAYYFEKDVKGESLFHSKKMDLT
VNGEQLDLDPGQTLIYAVDEKAPEFSMQGLK 

The proteins were purified as described above and exchanged using gel filtration into a buffer with the 

composition of 20mM Tris pH8.0, 150mM NaCl and 10mM MgCl2. The 16mer AGR2-interacting peptide 

has the amino acid sequence SGSG-HLPTTIYYGPPG and the stock solution is at 5 mg/ml in DMSO. The 

peptide: AGR2 protein ratio was at 10:1 to give a final concentration of the AGR2-binding peptide at 10 

µM and a final concentration of DMSO was 1%.  

Experimental Design and Statistical Rationale for Hydrogen-deuterium exchange mass spectrometry. 

a.Sample preparation of AGR2 proteins. Deuteration of the His-AGR2 WT and His-AGR2S134A proteins 

was initiated by a sequential 10-fold dilution into a deuterated buffer (20 mM Tris-HCl, pD 7.6, 150 mM 

NaCl, and 10 mM MgCl2). In the peptide-binding mapping experiment, His-AGR2 WT at 1 µM final 

concentration was incubated with a final concentration of peptide at 10 µM (31). This higher 

concentration of peptide was used as we had previously defined the Kd to be 15-45 µM using fluorescence 

polarization (31).  Samples were processed in biological replicates (e.g. the deuteration reaction and 

sample processing were performed on four different days) with representative data from a time course of 

deuteration (AGR2 without and with peptides or wt-AGR2 compares to the AGR2S134A mutant) 

highlighted in each experiment. Multiple peptide replicates were used to select data and the HDExaminer 

software selects peptides with high confidence meaning the selected peptides are identified in all 

submitted MS data of all samples (non-deuterated and deuterated time intervals).  When peptic peptides 

are not identified in all time course samples, then the peptide is excluded from the analysis. Shorter 

peptides were used for HDX data interpretation (such as Figures 4 and 5) and all set of the peptides 

identified by LC-MS/MS and submitted for HDExaminer evaluation are included in the Supplementary 

Figures. Protein was incubated with peptide for 30 minutes prior to the exchange.  The deuterium 

exchange was carried out at room temperature and was quenched by the addition of 10 µl of 1 M HCl in 1 

M glycine at 30 seconds, 1 minutes, 3 minutes, 10 minutes, 30 minutes, 1 hour, and 3 hours followed by 

rapid freezing in liquid nitrogen.  
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b.Sample preparation of MDM2 protein. Deuteration of full-length MDM2 without or with Nutlin-3 was 

performed as described previously (32).  Full-length MDM2 was purified was expressed with a 

glutathione-S-transferase-tag from pGEX-6P1 and purified from Escherichia coli lysates using glutathione 

beads (GE Healthcare). Cells were lysed with 10% sucrose, 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 

0.5% NP40, 1 mM DTT, 1 mM benzamidine, 150 µg/ml lysozyme, and protease inhibitors for 30 minutes 

on ice prior to sonication. The sonicated supernatant was incubated with glutathione beads for 2 hours at 

4oC with rotation, followed by three washes with 20 mM Hepes (pH7.5), 150mM NaCl, and 1 mM DTT. 

Protein was cleaved off the beads using Precision protease (GE Healthcare) into a buffer with 20 mM 

Hepes (pH 7.5), 150 mM NaCl, 1 mM DTT, and 10% glycerol.  The Full-length MDM2 (2 µM) was 

incubated for 30 minutes at room temperature in a final 5 µl volume of buffer (20 mM Tris-HCl, pH 7.6, 

150 mM NaCl, and 10 mM MgCl2) with DMSO at 1% or with Nutlin-3 (8 µM final concentration). The 

deuteration was initiated by a tenfold dilution into a deuterated buffer (25 mM Hepes, pD 7.5, and 150 

mM NaCl) and was incubated with Nutlin-3 for 60 minutes prior to the exchange. Aliquots were taken 

various times (as in Figure legend 2) and reactions were quenched by the addition of 10 µl of 1 M HCl in 

1 M glycine followed by rapid freezing in liquid nitrogen.  

 

c.Sample preparation of EpCAM proteins. EpCAM WT or EpCAMY251A proteins purified with 1 mM 

DTT in the final elution buffer (1 µg; as tested in Figure 8) was incubated for 60 minutes at room 

temperature in a final 5 µl volume of buffer (20 mM Tris-HCl, pH 8, 150 mM NaCl, and 10 mM MgCl2) 

or with the AGR2 WT protein (2.2 µg in the matched buffer) prior to initiating the deuteration exchange. 

Under these conditions, the molar ratio of AGR2: EpCAM protein was 4:1 and incubations were carried 

out for 60 minutes at room temperature.  The deuteration was then initiated by a sequential 10-fold 

dilution into a deuterated buffer (20 mM Tris-HCl, pD 7.6, 150 mM NaCl, and 10 mM MgCl2) carried out 

at room temperature. The EpCAM internal disulfide bonds were subsequently reduced with dithiothreitol 

(14 mM final concentration, 2 min) followed quenching by the addition 0.875M HCl in 1M glycine with 

pepsin (0.042 mg/ml final concentration). 

 

d.LC-MS/MS analysis and data evaluation. 

EpCAM samples were immediately submitted to analysis (due to aggregation following freeze-thaw 

cycles (data not shown) but the remaining samples (AGR2 or MDM2) were snap-frozen, thawed, and 

injected onto an immobilized pepsin column (15 µl bed volume, flow rate 100 µl/minutes in 2% 

acetonitrile / 0.05% trifluoroacetic acid). Peptides were trapped and desalted on-line on a peptide 

microtrap (Michrom Bioresources, Auburn, CA) for 3 minutes at flow rate 50 µl/minutes. The peptides 

were eluted onto an analytical column (Jupiter C18, 1.0 x 50 mm, 5 µm, 300Å, Phenomenex, CA) and 
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separated using a linear gradient elution of 10 % B for 2 minutes, followed by 17 minutes isocratic elution 

at 40 % B. Solvents were: A – 0.1% formic acid in water, B – 80% acetonitrile / 0.08% formic acid. The 

immobilized pepsin column, trap cartridge, and the analytical column were kept at 1°C. Mass 

spectrometric analysis was carried out using an Orbitrap Elite mass spectrometer (Thermo Fisher 

Scientific) with ESI ionization on-line connected with a robotic system based on the HTS-XT platform 

(CTC Analytics). The instrument was operated in a data-dependent mode for peptide mapping (HPLC-

MS/MS). Each MS scan was followed by MS/MS scans of the top three most intensive ions from both 

CID and HCD fragmentation spectra. Tandem mass spectra were searched using SequestHT against the 

cRap protein database (ftp://ftp.thegpm.org/fasta/cRAP) containing sequences of the AGR2 proteins with 

the following search settings: mass tolerance for precursor ions of 10 ppm, mass tolerance for fragment 

ions of 0.6 Da, no enzyme specificity, two maximum missed cleavage sites, and no fixed or variable 

modifications were applied. The false discovery rate at peptide identification level was set to 1%. 

Sequence coverage was analyzed with Proteome Discoverer software version 1.4 (Thermo Fisher 

Scientific).  Analysis of deuterated samples was performed in HPLC-MS mode with ion detection in the 

orbital ion trap and the data were processed using HDExaminer (Sierra Analytics).  Graphs summarizing 

deuteration kinetics were plotted using the Draw H/D Protection Plot (34). All peptide plots (graphs 

showing % deuteration over a time course) are summarized in Supplementary Figures 1-8. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 

repository with the dataset identifier PXD005782"; Username: reviewer48115@ebi.ac.uk, Password: 

aiKTLOH0. 

 

Fluorescent microscopy of AGR2 and EpCAM proteins. MCF7 breast cancer cells were grown in DMEM 

(10% FCS). MCF-7 cells were seeded onto glass coverslips and incubated at 37 °C overnight. Cells were 

transiently transfected with DNA constructs as described using Lipofectamine 2000 (Thermo Fischer 

Scientific) according to manufacturer’s protocol and incubated 37 °C for 24 hours. Cells were then 

washed three times with sterile PBS before incubating with 4% paraformaldehyde for 15 minutes to fix 

the cells. Coverslips were mounted with DAPI nuclear stain (Invitrogen) diluted in Fluorescent Mounting 

Medium (Dako) and viewed using Zeiss Axioplan 2 fluorescent microscope. 

 

Proximity ligation assays. The method was performed using the Duolink kit (Sigma Aldrich; 92014) 

according to manufacturers recommendations. Cells were grown in 24 well plates over glass coverslips 

(diameter: 16mm). Cells were transfected as indicated in the legends of Figures 14 and 15. Twenty-four 

hours later, cells were fixed with 4% paraformaldehyde in PBS for 15 minutes at RT, permeabilized using 

0.25% TritonX-100 in PBS for 10 minutes, and blocked with 3% BSA in PBS for 30 minutes. Antibodies 
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from different species (as described in the Figure legends of Figures 13-15) were incubated on the slides, 

with combinations of AGR2 mouse (4.1 (34)) or rabbit antibodies (K47) and EpCAM antibodies (rabbit 

antibody, HPA026761, from Sigma, or mouse antibody, VU-1D9, from Calbiochem) at dilutions of 1:250 

overnight at 4oC. Proximity ligation was measured using the OLIGO Duolink designated protocol (35) 

using anti-mouse and anti-rabbit probes (Sigma, probe product number are 92004 (mouse minus) and 

92002 (rabbit plus)). Then coverslips were stained with DAPI and mounted. Images were captured at 40X 

by an Olympus BX51 epifluorescence microscope. 

 

RESULTS 

Defining the specificity of TTIYY peptide binding to AGR2 in crude cancer cell lysates. Peptide A4 with 

the sequence HLPTTIYYGPPG (containing the key functional pentapeptide sequence underlined) was 

previously shown to bind AGR2 (24).  We evaluated the specificity of the peptide in binding to and 

affinity purifying monomeric or dimerized AGR2 protein from human cell lysates. MCF7 cells were left 

untreated or treated with a cell-membrane permeable cross-linker that stabilizes the dimer via a K95-K95 

homodimeric cross-link (23). When lysates from untreated cells are incubated with streptavidin beads 

coated with Peptide A4, monomeric AGR2 protein can be affinity purified from the crude lysate (Figure 

1A, lane 4 vs Load, Flow-though, and wash, lanes 1-3). In addition, the chemically stabilized dimer 

(Figure 1A, lane 5) can also be affinity purified using the Peptide A4 coupled beads (Figure 1A, lane 8 vs 

5-7). We evaluated the specificity of the peptide in affinity capture of AGR2 protein from beads without 

peptide (Figure 1B, lane 2) and beads with peptide (Figure 1B, lane 3). These data indicate that Peptide 

A4 can be used to affinity purify dimeric or monomeric protein and suggest the bioactivity of this peptide 

motif in crude lysates to AGR2 is relatively specific. However, the silver stain gel does reveal high 

molecular mass proteins that might either be binding to the peptide direct or through association with 

AGR2. These potential AGR2 binding proteins that were in these fractions were not evaluated. 

Nevertheless, the relative specificity of this peptide for AGR2, as defined by its ability to affinity purify 

the protein from crude lysates, suggests that this feature of AGR2 might selectively drive (some of) its 

protein-protein interaction functions. Thus, we continued to characterize this specific peptide binding 

activity in an attempt to discover bonafide client proteins that harbor this consensus peptide motif.   

 

Mapping AGR2 peptide docking sites using hydrogen-deuterium exchange mass spectrometry. We next 

aimed to determine whether we could detect the peptide A4 binding to a specific region of AGR2 or 

whether its binding might “denature” or de-stabilize AGR2 protein. Such data might indicate whether 

specific peptide binding is a function of AGR2 or whether proteins with this motif that bind AGR2 impact 

on its’ structure. When a protein binds to a ligand the kinetics of hydrogen-deuterium exchange can be 
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altered at amide bonds that can reflect conformational changes or binding events (36) and this method was 

used to determine whether the peptide-A4 interacts with any specificity on AGR2 and/or whether it alters 

AGR2 protein conformation.  We had previously set up hydrogen-deuterium exchange using the N-

terminal domain of MDM2 protein (amino acids 1-126) as a model system to define effects of ligand 

binding on the exchange reaction (32) and the methodology in this study used ExPro Script to measure 

deuteration rates.  Since this data was published, a new software package became available for use by life 

scientists (HDExaminer).  This provides an additional robust tool to study protein dynamics in solution 

using deuterium exchange methodologies. We first evaluated, therefore, MDM2-ligand binding using 

HDExaminer as a positive control to measure the integrity of the data acquired using our methodology 

including; sample acidification after deuteration, freezing, thawing and injection onto an immobilized 

pepsin column (flow rate 100 µl/minute), peptide trapping and desalting using a peptide microtrap for 3 

minutes at flow rate 50 µl/minute, and, peptide separation using an analytical column with a linear 

gradient.  

 

MDM2 is an oncoprotein with a druggable peptide-binding pocket that can be studied using the ligand 

Nutlin-3 (37). This ligand mimics the p53 peptide and binds stably within its N-terminal hydrophobic 

pocket. Full-length MDM2 was deuterated without or with Nutlin-3 using the hydrogen-deuterium 

exchange methodology (Figure 2 and Supplementary Figure 1).  Purified full-length MDM2 (2 µM) was 

incubated with DMSO or the ligand Nutlin-3 (1:4 ratio) for one hour, diluted in a 10-fold excess of D2O 

buffer, and processed with immobilized pepsin (as described above) to define changes in deuteration of 

peptic products. The data show, as could be expected, suppression of deuteration at the N-terminal drug-

binding pocket of MDM2 from amino acids 56-103 (Figure 2).  Suppression of deuteration from amino 

acids 245-265 might reflect allosteric effects of the drug on MDM2 protein conformation or it might 

reflect an interaction with Nutlin-3 at this site (Figure 2) (38). Amino acid residues ranging from 20-50 

also show suppressed deuteration (Figure 2) suggesting conformational changes occur outside and 

adjacent to the Nutlin-3 binding pocket.  Visualization using a butterfly plot that incorporates several 

parameters including time and % deuteration further provides perspective on the impact of ligand on the 

overall conformational dynamics of full-length MDM2 (Supplementary Figure 2). These results establish 

HDExaminer in combination with the experimental approach as a reliable methodology for mapping the 

effects of a ligand on a protein.  

 

Using this optimized protocol, AGR2 protein (1 µM; Figure 3A and 3B) was incubated without ligand or 

with Peptide SGSGHLPTTIYYGPPG (10 µM) to allow complex formation. The samples were then 

diluted 10-fold in D2O buffer over a time course from 30 to 10800 seconds, reactions were quenched by 
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acidification and freezing, then the thawed samples were subjected to pepsin digestion (Supplementary 

Figure 3 contains all of the primary raw graphical data and Supplementary Figure 4 visualizes overall 

datasets using a butterfly plot). The peptic coverage of a representative experiment using ligand-free 

AGR2 is shown in Figure 3C. Peptic cleavage is not completely random throughout the sequence and can 

generally be grouped into four distinct domains (Figure 3C). These domains contain (i) the N-terminal 

domain from amino acids 21-53 that harbour intrinsically disordered sequences that negatively regulate 

dimer formation (7) (23); (ii) the central domain containing amino acids 54-108 that harbor the dimer 

interface (7), the CXXS thioredoxin fold, and the Reptin docking site (20); (iii) a region N-terminal to the 

specific peptide-binding domain (amino acids 109-130; this study); and (iv) the specific peptide binding 

domain adjacent to the ER retention site (Figure 3C). Preferred cleavage sites or hotspots of pepsin 

cleavage can be visualized such as Thr23 (in the N-terminal disordered region; Figure 3), Tyr63 (within 

the dimer interface of 60-EALYK-64), Ile74 (N-terminal to the CxxS motif), and Val110 (within the 

Reptin binding motif (20); Figure 3C).  The existence of four regions with a degree of pepsin preference, 

suggests some secondary/tertiary conformation is maintained upon acidification. It is interesting to note 

that very few peptides were obtained covering the complete dimerization motif from amino acids 60-64 

(Figure 3C; highlighted by bracketed amino acids within sequencing EALYK). In fact, a hotspot of 

cleavage is at Tyr63 (within the dimer interface of 60-EALYK-64) suggesting this region is relatively 

more susceptible to proteolysis when in the acidified and denatured state.  

 

Upon peptide binding by AGR2, peptic fragments within the intrinsically disordered N-terminal domain 

exhibited marginal changes in deuteration (Figure 4A-D), suggesting that this region is not significantly 

impacted upon peptide binding. Such small mass peptic fragments included the N-terminal tag 

(YKKAGFEGDRT; Figure 4A) and a peptic fragment N-terminal to the dimerization interface (45-

SRGWGDQL-52; Figure 4B). Interestingly, over the time course of deuteration, the peptide 53-

IWTQTYE-59 just adjacent to the dimerization motif was attenuated in its deuteration (Figure 4E) and 

marginal deuterium suppression over the time course from amino acids 62-LYKSKTSSKPLM-73.  These 

latter data suggest that peptide A4 binding can impact on this dimeric interface. There is a degree of 

specificity in this deuterium suppression around the dimeric interface since the peptide 74-

IIHHLDECPHSA-86 containing the thioredoxin fold does not exhibit significant deuteration changes in 

the presence of peptide A4 (Figure 4C).  Nor does a small mass peptic fragment adjacent to the Reptin 

docking site, 97-IQKLAEQF-104, exhibit significant changes in deuteration (Figure 4D).  

 

The C-terminal domain showed the most significant changes in deuteration after peptide binding across 

the time course (Figure 5). For example, peptide 138-RADITGRYSNRL-149 exhibited consistent 
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suppression of deuteration throughout the entire time course (Figure 5A) similar to the peptides 

surrounding the dimer interface. However, the most significantly suppressed minimal peptic fragment 

over the entire time course of deuteration was 131-VDPSLTVRA-139 (Figure 5B). By comparison, the 

minimal peptide fragment 150-YAYEPADTAL-159 exhibited minimal deuteration changes upon peptide 

binding (Figure 5C). A visualization of the global changes in peptide deuteration (from Figure 5) 

deuteration after early, after 30 seconds (Figure 5D) or later, after 10,800 seconds (Figure 5E), further 

highlights the most dominant impact of peptide A4 on the structural loop from amino acids 131-135 

(Figure 5E) but also extending C-terminal into the contiguous extended polypeptide chain from amino 

acids 138-149 (RADITGRYSNR). Presumably, once AGR2-peptide complexes reach some equilibrium 

after diluting 10-fold with D2O and incubations for 10,800 seconds, there is enhanced deuteration within 

the dimerization motif (compare Figure 5E to 5D). This suggests that specific peptide binding might 

destabilize the dimer into the monomeric state.  

 

The region containing amino acids 131-135 (the VDPSL-containing loop or turn) exhibited consistent 

suppression at early and late time points and it might project a “flexible docking site”. This core VDPSL 

motif (Figure 6A and 6B) was mutated in full-length AGR2 at the positions of D132, P133, and S134 to 

determine if alterations in PTTIYY peptide binding occur. The proteins were purified (Figure 6C and 6D) 

and tested for changes in consensus site peptide binding. The mutant AGR2D132A exhibited a high degree 

of proteolysis and instability in bacteria and its yield was lower than wild-type AGR2 (data not shown) 

suggesting it might have a different conformation. Nevertheless, the AGR2D132A mutant was evaluated in 

consensus site peptide binding assays.  Biotinylated peptide A4 was captured on the streptavidin solid 

phase (Figure 6E). The wild-type and docking-site mutated AGR2 proteins were titrated to determine 

whether these mutations increase, decrease, or have no effect on biotinylated peptide A4 binding. 

AGR2S134A exhibited wild-type levels of peptide binding, AGR2D132A exhibited attenuated levels of 

peptide-binding, and the AGR2P133A exhibited the lowest amounts of peptide binding (Figure 6F). The 

marginally attenuated activities of the AGR2 mutants encoded by the P133A and D132A alleles suggest 

that these two amino acids play more dominant roles than the S134 side-chain in biotinylated peptide A4 

peptide docking.  

 

Developing a consensus peptide-binding motif for AGR2. AGR2 is an ER-resident molecular chaperone 

that plays a role in the maturation of cysteine-rich receptors such as MUC5 (10) and EGFR (39).  To our 

knowledge, AGR2 protein is relatively unique as a “chaperone” in possessing a sequence-specific peptide 

binding activity (24). It was the main aim of this study to determine whether such a protein-protein 
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interaction plays any role in binding to potential client proteins. If so, this would place a potential filtering 

step for client proteins with such a motif on AGR2-dependent processing.   

 

The originally optimized AGR2-binding peptide, PTTIYY, was subjected to mutagenesis to produce a 

synthetic peptide library in which each of the six positions was mutated to a range of amino acids that are 

either charged, hydrophobic (bulky), and hydrophobic (small) (Figure 7A).  The extent to which AGR2 

binding to biotinylated Peptide A4 was changed in the presence of an excess of non-biotinylated 

‘competitor’ peptide was used to define the consensus site. Relative to the positive control of AGR2 

binding being inhibited by wt-peptide PTTIYY (Figure 7A, far left bar), mutating each position resulted in 

the production of the consensus Tx[IL][YF][YF] (Figure 7B).  For example, mutation of threonine at 

position 2 to any substitution abrogated inhibitory activity (Figure 7A) suggesting a critical role for 

Threonine. Similarly, mutation Tyrosine at position 5 or position 6 was only tolerated by substitution to 

the bulky hydrophobic residues Phenylalanine and Tryptophan (Figure 6A). Mutation of Isoleucine at 

position 4 was only tolerated by a Leucine substitution (Figure 7A). By contrast, a large set of amino acid 

substitutions were tolerated at Proline position 1 or Threonine position 3 (Figure 7A).  

 

Using the optimized stringent consensus site Tx[IL][YF][YF], Scanprosite was used to screen for motifs 

in the human proteome to identify potential human proteins that harbor the binding motif (Figure 7B). 

Interestingly out of 409 proteins, over 40% were predicted to be membrane associated (Figure 7C-D). As 

such, we focused on validating a key Tx[IL][YF][YF] motif-containing transmembrane receptor in this list 

(Figure 7D and Supplementary Tables 1 and 2) that also possesses oncogenic activity to form a model 

protein to validate the role of this linear motif on the AGR2 binding. Molecular functions and biological 

processes of such targets are listed in Figures 7E and 7F. SLiMSEARCH4 was also used as a linear motif 

discovery tool in order to identify proteins harboring the consensus peptide-binding motif (Supplementary 

Table 3).  Cellular components enriched are associated with the ER + Golgi apparatus (14.9%) and 

exosomes (19.4%) (Figure 7G). The overlap in proteins identified between the two search engines is 

shown in Figure 7H. The receptor EpCAM is commonly identified between both searches. EpCAM 

contains a single TLIYY motif (Figure 7D) as does its paralogue TACD2 (Figure 8A). The linear motif is 

located within a structural domain adjacent to the extracellular stalk near the plasma membrane (Figure 8B 

and 8C). We focus in this study on evaluating whether the TLIYY docking site on EpCAM plays a role in 

AGR2 binding in vitro and in cells. EpCAM is a relevant potential client protein of AGR2 since it is 

independently over-expressed in cancers, used as a targeted therapy with on-going clinical trials, and it’s a 

circulating tumor biomarker(40).  
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Validating the receptor EpCAM as a specific AGR2 interacting protein. Recombinant AGR2 (Figure 3A 

and 3B) and the extracellular domain of EpCAM (Figure 8D and 8E) were purified from bacterial 

expression systems. The AGR2 protein was the mature isoform without its hydrophobic N-terminal leader 

sequence and the EpCAM protein retained its extracellular domain (amino acids 24-265) containing the 

TLIYY consensus motif (Figure 8D). A dose-dependent titration of AGR2 in the liquid phase with 

increasing EpCAM protein on the solid phase (Figure 8F) demonstrated that the proteins form stable 

protein-protein interactions using ELISA (Figure 8G).  An EpCAM mutant was constructed in which the 

Tyrosine-251 was mutated to alanine to create the TLIYA motif in EpCAM (Figure 8H and 8I). The Y-A 

mutation at position 6 can attenuate, but not abrogate, AGR2 binding to the synthetic hexapeptides (Figure 

7A).  A titration of AGR2 against the wt-EpCAM or EpCAMY251A demonstrated that AGR2 binding was 

also attenuated on EpCAMY251A mutant (Figure 8J). These data highlight at least one binding site on 

EpCAM for AGR2 protein.  

 

Prior to continued validation of the AGR2-EpCAM protein-protein interaction, we next evaluated whether 

the PTTIYY motif in EpCAM plays a role in its localization and/or binding to AGR2 in MCF7 cells. If so, 

this would place more significance on its’ physiological relevance for further study. This MCF7 cell line 

expresses endogenous AGR2 and EpCAM (Figure 10A) and we thought it important to use such a cell that 

has a physiological and active AGR2 and EpCAM expression system. Transfection of mCHERRY-AGR2 

(Figure 9A and B) and EGFP-EpCAM (Figure 9A and C) proteins into cells confirmed that AGR2 

localization is cytosolic (Figure 9D) whilst EpCAM is largely plasma membrane bound (Figure 9E). The 

mCHERRY controls and EGFP controls are shown in Figure 9G and 9H, respectively, and exhibit 

distribution throughout the cell.  

 

Upon co-transfection of mCHERRY-AGR2 and EGFP-EpCAM, a degree of co-localization of the two 

proteins is observed in the cytosol (representative widefield fluorescent images in Figure 9I), suggesting 

that the two proteins can partially form stable interactions in-vivo. The three types of distributions patterns 

observed (Figure 9I) include: those with largely membrane bound EGFP-EpCAM and cytosolic 

mCHERRY-AGR2 without regions of apparent co-localization (top panel), a high degree of co-

localization in the cytosol (middle panel), and a mixture of co-localization with some membrane bound 

EGFP-EpCAM (bottom panel). By contrast to wt-EGFP-EpCAM, the mutant EGFP-EpCAMY251A mutant 

was not expressed at the plasma membrane when expressed in MCF7 cells (Figure 9F). Upon 

mCHERRY-AGR2 co-transfection, the EGFP-EpCAMY251A mutant remained localized predominantly to 

the cytosol and/or nuclear membrane and did not exhibit a distribution of wt-EGFP-EpCAM (Figure 9J).  

However, mCHERRY-AGR2 was, interestingly, mislocalized in EGFP-EpCAMY251A mutant co-
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transfected cells and was distributed largely to the periphery of the cell (Figure 9I). These data suggest 

that this protein-protein interaction pair has impacts on each other in cell systems. Thus, we conclude from 

the cell-based validation that, although that there is not a strikingly “stable” co-localization of 

mCHERRY-AGR2 and EGFP-EpCAM in every co-transfected cell, the key results are: (i) a degree of 

“transient” co-localization of mCHERRY-AGR2 and EGFP-EpCAM and (ii) that the EGFP-EpCAMY251A 

mutant is mislocalized suggesting that the AGR2 docking site is important, in cells, for the appropriate 

trafficking of EpCAM to its destination.  

 

The cell-based experiment evaluating the binding of AGR2 to EpCAM (Figure 9) used GFP or 

mCHERRY-tagged proteins. Using this methodology, EGFP-EpCAM can localize to the plasma 

membrane, where it has been published to reside (41). These data indicate that the GFP-tag does not 

preclude membrane localization of EpCAM. The advantage of this GFP-tag expression assay was that we 

could also mutate EpCAM at Y251 to create an attenuated AGR2-interacting mutant that in turn 

demonstrated its’ mislocalization in cells. The disadvantage of the GFP-tag expression methodology is 

that it relies on using tagged proteins that might alter protein functions. As such we also aimed to evaluate 

whether endogenous, authentically expressed AGR2 and EpCAM can form protein-protein interactions in-

situ using Proximity Ligation assays (Figure 10). Proximity ligations are emerging methodologies that 

have been shown to demonstrate the “association” of two proteins in cells (42, 43). Proximity ligation 

assays can identify a protein-protein association with a distance of 10-30 nm that is in the upper range of 

that observed using FRET (5-20 nm) and this methodology can detect authentic endogenous proteins in 

situ and does not rely on transfected or artificially GFP-tagged protein vectors (35, 44). It is important to 

highlight that the proximity ligation method does not prove a direct protein-protein interaction between 

two proteins, but it identifies an “association” within the fixed radius of two antibodies binding to two 

different epitopes in proximity of a distance constrained by the length of the oligonucleotides conjugated 

to two different secondary antibodies.   

 

 To study whether the method can detect an association of AGR2 and EpCAM, we required the use of 

cancer cell lines where AGR2 and EpCAM show mutual expression and where their assembly pathways 

are presumably intact.  In screening for cell lines that contain AGR2 and EpCAM (Figure 10A), we 

focused on the use of MCF7 cells since they express both proteins and have a wt-p53 pathway allowing 

for future impacts of AGR2 on p53 activity [27].   Proximity Ligation assays were performed in MCF7 

cells (AGR2+/EpCAM+) where the cells were incubated with different antibodies to the two proteins. We 

tested two sets of AGR2 and EpCAM antibodies. The first pair was an AGR2 mouse monoclonal antibody 

and an EpCAM rabbit polyclonal monoclonal (Figure 10B, top panel). The merged data reveal cytosolic 
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foci for the two proteins indicative of a protein-protein interaction. The second antibody set included an 

AGR2 rabbit polyclonal antibody and an EpCAM mouse monoclonal antibody (Figure 10B, middle 

panel).  The merged data also revealed significant cytosolic protein-protein interaction foci.  As a control, 

MCF-7 not incubated with the antibody pair but incubated with PLA probes which showed no or few foci 

(Figure 10B, lower panel). These data provide evidence that authentic AGR2 and EpCAM can interact in 

cells and is consistent with the fluorescently tagged expression assays (Figure 9).  Proximity Ligation 

assays were also performed in FLO-1 cells that do not express AGR2 and EpCAM (Figure 10A). This 

was done as another control for the Proximity Ligation assay to determine whether the antibody 

signals observed are dependent upon the presence of AGR2 and EpCAM. When non-transfected 

FLO-1 cells were incubated with AGR2 and EpCAM antibodies there was no significant foci 

formation (Figure 10C). There are no significant AGR2-EpCAM protein-protein association foci 

lining the plasma membrane in either MCF-7, suggesting that AGR2 interactions are confined to prior 

events in the maturation of the EpCAM receptor, within the cytoplasm.  This is consistent with the 

confocal microscopy using GFP and mCHERRY tagged proteins that also suggested a non-plasma 

membrane colocalization (Figure 9). These data together highlight that authentic AGR2 and EpCAM 

form protein-protein associations in cells and further affirms the “linear motif” screen using the 

TTIYY peptide (Figure 7) could be used to identify a novel, physiologically relevant protein-protein 

interaction for AGR2. 

 

Mutation of the peptide-docking site on AGR2 induced a gain-of-function activity in EpCAM protein 

binding. Given the data highlighting a cell-based protein-protein interaction in cells suggests a 

physiologically relevant protein interaction pair, we set out to further fine map the impact of mutagenesis 

on the AGR2 and EpCAM protein interactions. The peptide-binding AGR2 mutants (D132A, P133A, and 

S134A) that exhibit neutral or attenuated binding to the synthetic peptide A4 (containing the TTIYY 

motif) were evaluated in EpCAM protein binding to determine the effects of these mutations on the 

AGR2: EpCAM protein-protein interaction.  

 

The AGR2:EpCAM binding reaction revealed a gain-of-function of all three mutants, relative to wt-

AGR2. AGR2S134A exhibited the most elevated gain-of-function activity (Figure 11A). As AGR2 has a 

thioredoxin domain that can form covalent bonds with client receptors such as mucins (15), it can be 

expected that we evaluate the impact of reductant on its biochemical function. For example, the AGR2C81S 

mutant is as active as wt-AGR2 in stimulating ex-vivo cell growth (12). The inclusion of DTT into 

reactions at the AGR2-binding stage (Figure 11B and 11C), surprisingly, exacerbated the differences 
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between the mutants and wt AGR2, with the S134A followed by the D132A mutants exhibiting the most 

pronounced gain-of-function activity (Figure 11B and 11C).   

 

We next staged this effect of reductant by including DTT only in the blocking stage, after EpCAM 

absorption, but before AGR2 binding (Figure 11D). This would address whether this effect is due to the 

altered redox-imposed conformation of the substrate, EpCAM or the chaperone, AGR2.  The incubation of 

DTT in the blocking step (Figure 11D, upper panel) is the stage at which the effect of the S134A mutant 

of AGR2 shows the most dramatic difference compared to wt-AGR2 (Figure 11D, lower panel).  These 

data suggest that oxidized EpCAM, rather than AGR2, attenuates the impact of peptide docking site 

mutations on AGR2 functions. These data also suggest that the conformation of AGR2S134A is altered to 

drive it towards an oxidation-sensitive binding site on EpCAM; e.g. this AGR2-binding site on EpCAM is 

apparently sensitive to EpCAM redox state.  Lastly, these data suggest that the conformation of EpCAM 

can also have distinct impacts on the stable binding of AGR2 protein.  

 

To evaluate whether AGR2S134A does, in fact, have an altered conformation which is inferred from its-

gain-of-function activity, hydrogen-deuterium exchange mass spectrometry was used to probe whether 

amide hydrogen-bonding deuterium exchange rates differ.  Alterations in deuteration rates at amide bonds 

would infer an altered conformation of the mutated protein and/or its interaction with solvent. The wild-

type and AGR2S134A mutant proteins were diluted with D2O buffer and quenched from 30 seconds to 

10,800 seconds post dilution (Supplementary Figures 5 and 6).  Relative to wt-AGR2, there was enhanced 

deuteration at several regions throughout the mutated AGR2S134A protein (Figure 12A-F for representative 

peptic fragments). The most pronounced changes were observed at the dimer interface (amino acids 51-

71) and at the peptide-docking site (amino acids 131-141) (Figure 12G-I).  For instance, the relatively 

selective and enhanced deuteration of the peptide-binding domain at the 30-second site point (Figure 12G) 

suggests the region is intrinsically more solvent exposed, although this does not prevent binding of the 

AGR2S134A mutant protein to the TTIYY peptide (Figure 6). However, the increased deuteration at the 

dimer interface (minimal amino acids 60-64) at later time points (Figure 12 H and I) suggests that the 

AGR2S134A mutation can impact on monomer-dimer equilibrium. Indeed, at early time points after 

deuteration, when the protein is diluted 10-fold into D2O, there is little difference in deuteration at the 

dimer interface. Thus, we would suggest that allosteric effects in the AGR2S134A peptide-docking site 

could impact on the distal dimeric interface. For example, the 10-fold dilution of AGR2 (at a starting 

concentration of 1 µM before dilution with D2O and 0.1 µM after dilution) will take its final concentration 

lower than its published Kd of 8.8 µM (7). Thus, such a dilution that is intrinsic to the deuterium exchange 

methodology will shift AGR2 into its monomeric state. As a consequence, in the ELISA reaction 
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measuring EpCAM binding, the wt-AGR2 and AGR2S134A proteins are diluted to a final concentration 

from 0.01 to 0.2 µM. Under these conditions, we would expect AGR2S134A to be more conformationally 

altered and this might explain in part its gain-of-function activity towards EpCAM. Together, our 

biochemical data define a dominant peptide-binding pocket on AGR2 and highlight that mutation of this 

motif can impact on heterologous protein-protein interaction such as EpCAM protein (Figure 13).  

 

Mapping the stable AGR2-binding site on EpCAM 

The key advances in this study included mapping the specific-peptide docking site on AGR2 in vitro and 

determining whether this specific peptide motif can be identified on putative AGR2-interacting proteins. 

We finally asked whether we can identify a role for the TLIYY motif in EpCAM on its specific interaction 

with AGR2 in vitro. Hydrogen-deuterium exchange mass spectrometry was performed on wt-EpCAM and 

the EpCAMY251A mutant to determine; (i) if AGR2 binds specifically to a particular site on EpCAM or 

whether it interacts non-specifically as could be generally expected for a molecular chaperone; (ii) if 

AGR2 binds specifically, where this stable docking site might be located especially in relation to the 

TLIYY motif in EpCAM; and (iii) how the Y251A mutation in EpCAM impacts on the specific or non-

specific interaction with AGR2.  

 

AGR2 protein or buffer control was pre-incubated with wt-EpCAM in a molar ratio of 4:1 for 60 minutes 

to allow stable protein-protein complex formation. Subsequently, the samples were slowly diluted 10x 

using deuterated buffer and incubated for various time points at which point reactions were acidified and 

processed for analysis by mass spectrometry (Supplementary Figures 7-9).  At the earlier time point of 

600 seconds of incubation in deuterated buffer, there was selective suppression of deuteration of peptide 

fragments from amino acids 147-206 (Figure 14A). Increasing time of deuteration to 3600 seconds 

resulted in maintenance of deuterium suppression from amino acids 147-206 with additional suppression 

of deuteration form aa 217-241 (Figure 14B).  These two regions form a discontinuous epitope in 2-

dimensions but are proximal in 3-dimensions (Figure 14D, in red). These two regions also map adjacent to 

the TLIYY motif (Figure 14D, in green) and overlap the detergent (decyl-beta-d-maltopyranoside 

decylmaltoside) binding pocket (Figure 14D, molecule imbedded from PDB code 4MZV).  The mutant 

EpCAMY251A protein (verified for Y-A mutation in Supplementary Figure 10) did not show stable 

interaction with AGR2 under these conditions (Figure 14C).  Higher AGR2:EpCAM protein ratios 

(greater than 4:1) resulted in general deuterium suppression over the majority of the EpCAM peptic 

fragments (data not shown), thus the ratio we used is optimized to capture the most dominant and 

‘specific’ AGR2 interaction sites on EpCAM protein.   
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Since we pre-incubate the AGR2 and EpCAM proteins for 60 minutes prior to processing, these data 

suggest that stable (e.g. equilibrium) binding of AGR2 occurs not at the TLIYY motif, but adjacent to the 

TLIYY motif and overlapping the hydrophobic pocket capable of crystallizing with the detergent.  This 

also suggests the detergent binding pocket might also represent a protein-interaction site in EpCAM. 

Another interpretation of this data is that AGR2 ‘chaperonin’ functions might alter the conformation of 

EpCAM near the TLIYY motif and then dissociate from EpCAM. Accordingly, the deuterium suppression 

observed (Figure 14B) might relate to a conformational change in EpCAM and not reflect the direct stable 

binding site of AGR2 protein. Nevertheless, there appears to be a role for the TLIYY motif in the 

deuterium suppression on EpCAM, since AGR2 does not induce any detectable change in EpCAMY251A 

protein under these same conditions (Figure 14C). This is consistent with the attenuated binding of AGR2 

to EpCAMY251A protein using ELISA (Figure 8). The data together suggest that the “weak” TLIYY 

docking site in EpCAM might form a “landing pad” that directs AGR2 into a more stable fit at adjacent 

motifs. This is reminiscent of previous mapping of a novel, “weak” or transient Nutlin-3 binding site on 

the rim of the hydrophobic pocket of MDM2 using hydrogen-deuterium exchange mass spectrometry. 

This latter data suggested that the weak Nutlin-3 nucleation site in MDM2 directs the molecule into the 

deep MDM2 pocket for a more stable fit at equilibrium (32).  

 

DISCUSSION 

Discovering protein-protein interactions for a target is a key aim in life sciences(45) and is especially 

important where genetic screens are not available to define pathway functions. AGR2 exists only in 

vertebrate lineage thus limiting the possibility for developing genetic screens to define function. Thus, we 

need to rely on interactomics to expand on our knowledge of AGR2 function. Yeast-two hybrid methods 

have identified potentially important AGR2-binding proteins. The first yeast-two hybrid identified the 

membrane receptor and pro-metastatic protein Dystroglycan/C4.4a as an AGR2 interactor (18) and that 

the newt homolog of AGR2 was shown to bind to the receptor Prod1 (8).  These data are consistent with 

the emerging paradigm that AGR2 stimulates receptor maturation linked to growth or adhesion (46).  

Another yeast-two hybrid screen revealed that AGR2 could bind not only to membrane receptors but 

many nuclear proteins such as RIP140 and Reptin, which might reflect a role for the form of AGR2 that 

escapes the ER through its non-canonical KDEL retention sequence (47).  The most well characterized 

AGR2 binding interactor is the AAA+ superfamily chaperone protein Reptin (20) (48) (23). However, 

perhaps the most intriguing biochemical function for AGR2 is in its intrinsic sequence-specific peptide-

binding activity (24). In this report, we exploit this specific “peptide-binding” function of AGR2 to (i) 

propose a consensus-binding motif for its client proteins; (ii) highlight that this motif is enriched in 

transmembrane proteins; and (iii) characterize one such novel client protein, the oncogenic receptor 



 25 

EpCAM.  

 

The majority of protein sequence information in higher eukaryotes is encoded by the “linear motif”; 

perhaps millions of such motifs are comprised of small stretches of amino acids that drive relatively weak 

but specific protein-protein interactions (49). A powerful tool to define the linear motif repertoire for a 

protein is the peptide-phage combinatorial library (50). This methodology has been used to define the 

peptide consensus motif for the peptide binding groove of the oncoprotein MDM2 (25). This information 

stimulated the development of peptide mimetics that inhibit MDM2 in vivo (37) (51).  This methodology 

has also been used to define PxxP consensus binding motifs for the transcriptional co-activator p300 (52). 

When AGR2 was subjected to a peptide-phage library screen, a pentapeptide docking motif emerged as 

TTIYY (24).  There were two distinct peptides selected in this latter study, but we had only focused on the 

one with the TTIYY motif.  The specificity of the TTIYY peptide in binding to its target in crude lysates 

was evaluated using affinity purification (Figure 1). The TTIYY containing peptide could be used to 

affinity purify AGR2 from cell lines (Figure 1) or human tissue biopsies with a high specificity (24). This 

suggests that the peptide could act as a highly specific recognition motif for AGR2 target proteins.  

However, our data using fluorescence polarization assays indicate that the Kd for AGR2 binding to free 

consensus site containing peptides in solution is in the range of 15-45 µM (data not shown), suggesting the 

interaction, though very specific, is also very weak. These data suggest that although AGR2 might bind 

specifically to such motifs, the affinity is weak enough to allow rapid association-dissociation events that 

would presumably be important for its chaperone cycle in cells.  

 

The human proteome was scanned for proteins containing this motif in order to produce a set of potential 

AGR2-client proteins and there was a relative enrichment in transmembrane proteins (Figure 7). EpCAM 

was chosen as the target of choice and its paralogue also shows identity in this region (Figure 8A). The 

consensus motif within EpCAM forms a b-strand within the main a-b fold in the EpCAM structure and is 

adjacent to a detergent binding pocket, defined by PDB (4MZV).  EpCAM mutation at Y251 prevents the 

receptor from reaching its normal destination at the plasma membrane (Figure 9) and this mutation also 

attenuates stable AGR2-binding as defined using hydrogen-deuterium exchange mass spectrometry 

(Figure 14). It has been noted that linear motifs can reside within intrinsically disordered domains or they 

can reside within structural domains (53). In the case of the linear motif within disordered regions, it is 

known that they can acquire distinct secondary structures depending upon the nature of the protein-

interaction. If the linear motif resides within a structural domain, the protein-protein interaction 

presumably requires an alternate conformation at the target site. Using EpCAM as a model, we can 

speculate that AGR2 might interact with an unfolded version of EpCAM as the receptor is being 
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assembled in the ER. Alternatively, AGR2 might interaction with the receptor as receptor conformation is 

altered especially as the peptide-docking site is near single-pass transmembrane domain.   

 

By defining a peptide consensus for AGR2 (Figure 7B), we were able to search for additional human 

proteins that might harbor this motif. Two different search engines were used for this. Transmembrane 

proteins predominated using ScanProsite (Figure 7C) whilst proteins within the Golgi/ER or exosomes 

particles predominant using SLiMSEARCH4 (Figure 7G). There is a degree of specificity in this peptide 

motif, as a prior selection of peptides from phage libraries to p300 identified PxxP motif proteins that 

predominate in transcription factors like SMAD4 and p53 (52). The implication of this data is that the 

specific docking site of AGR2 is used to interact with client proteins that enter the ER or through 

trafficking. We had also characterized another receptor that has the AGR2 consensus linear motif site; the 

transmembrane protein Meckelin-3 (TMEM67; Figure 7D). Mutating one of the several AGR2 consensus 

motifs on MKS3 impaired its ability to be assembled into the plasma membrane (M. Lawrence, PhD thesis 

(University of Edinburgh), manuscript in preparation) providing the proof-of-concept that receptors other 

than EpCAM might exploit an AGR2 docking motif for polypeptide folding or maturation. 

 

The EpCAM receptor was validated as a putative, novel AGR2 client protein.  We can speculate that since 

the docking site is in the C-terminus of EpCAM adjacent to the single pass transmembrane domain if 

AGR2 binds to this inside the ER, the motif could impact upon how the protein folds as it enters the ER. 

Since stable binding exists adjacent to this TLIYY motif within a detergent binding site (Figure 14), this 

might reflect a chaperonin binding domain for AGR2 as it directs EpCAM folding in cells. The docking 

site might direct AGR2 to EpCAM to allow the correct formation of key disulfide bonds. Alternatively, 

the docking site might facilitate AGR2-mediated transport of EpCAM cargo as it is transported in a 

partially folded state to the plasma membrane.  A key observation is that in cells, the EpCAM-Y251A 

mutant protein fails to reach its normal plasma membrane destination, but is present in the cytosol or 

nuclear membrane (Figure 9). There is a redox component to this docking site in vitro (Figure 11), 

suggesting that disulfide bridge formation in the EpCAM protein can impact on how AGR2 binds in cells, 

although cell-based di-sulfide shuttling assays might be more difficult to reconstitute in cell systems.  

Future cell-based assay developments can impact on understanding how the “detergent binding site” 

(Figure 14) and/or the EpCAM docking site (amino acids 247-251) facilitates its maturation or trafficking.  

For example, it would be interesting to generate a gain-of-function AGR2-S134, cysteine-mutated 

EpCAM, or “detergent-binding domain” mutant EpCAM derived cell models using CRISPR gene editing 

to measure changes in the flux of EpCAM receptor maturation as a result of such mutations. A second key 

observation in cellular based assays is that untagged endogenously expressed EpCAM and AGR2 can co-
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localize in cells, as defined by Proximity Ligation assays. This method is a tool that improves on the 

“immunoprecipitation” method for validating or identifying interacting proteins since the proteins are 

analyzed in situ and the interaction is limited by distance constraints(61). The cytosolic association 

between AGR2 and EpCAM using proximity ligation (Figure 10) is consistent with cytosolic interaction 

observed using GFP and mCHERRY tagged ectopically expressed proteins (Figure 9).  

 

Hydrogen-deuterium exchange mass spectrometry was applied to determine whether a specific binding 

site of the TTIYY containing peptide could be identified on AGR2. Hydrogen-deuterium exchange mass 

spectrometry is a powerful method to evaluate ligand binding to a target protein (54), protein-protein 

interaction sites (55) and effects of mutations on conformational dynamics (56).  The methodology has 

been validated using proteins for nearly twenty years (57). Although the translation from mass 

spectrometric laboratories to cell biology fields has not been so widespread, new software might 

accelerate translation to the life sciences. The technical methodology uses certain assumptions that can 

impact on data interpretation. For example, the use of pepsin at low pH to fragment a “denatured”, 

deuterated protein into “random” overlapping polypeptides has limitations. As highlighted in Figure 3, 

pepsin treatment of AGR2 does not produce a theoretically perfect overlapping peptic series, with 

“hotspots” of cleavage that reside proximal to particular functional domains. This suggests that there are 

significant secondary structural elements at low pH that can hinder pepsin cleavage, as the target protein is 

not fully denatured. Such an imperfect peptic product series reduces the extent of high-resolution fine-

mapping of ligand binding effects (Figure 5) and/or conformational effects of a missense mutation (Figure 

12). In our report, the most likely peptide A4-binding site on AGR2 was localized to amino acids 131-139 

(Figure 5) and on Nutlin-3 binding to MDM2 to broad regions within two distinct functional domains 

(Figure 2). Under these conditions, hydrogen-deuterium exchange can be considered a low-resolution 

structural tool that identifies functional motifs. The method also has the advantage of requiring relatively 

small amounts of protein, although another limitation is that the target protein requires significant dilution 

with D2O that might impact on conformational dynamics.  Nevertheless, the hydrogen-deuterium 

exchange data allowed for orthogonal approaches that validated using mutagenesis the role of amino acids 

131-135 in AGR2-peptide binding (Figure 11) or rationalized the differences in the specific activity of the 

S134A mutant of AGR2 by conformational alterations (Figure 12).  

 

A small region from amino acids 131-135 was identified in AGR2 as a likely, primary binding site for 

TTIYY motif-containing peptides, since it is here that the most significant deuterium suppression was 

observed after peptide binding (Figure 5). Additional residues C-terminal to the 131-135 amino acids 

motif, including RADITGRYSNRL, also show deuterium suppression by the consensus site peptide A4, 
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however, this region was not evaluated by mutagenesis. We focused on amino acids 131-135 since this 

represent an exposed surface unstructured turn that might form a binding finger into hydrophobic TTIYY 

docking sites. To further validate this data, a set of mutants were created that exhibit a loss-of-function on 

synthetic peptides (Figure 6), suggesting that this motif is the major peptide-docking site. By contrast, the 

same series of AGR2 mutant proteins exhibited an inverse gain-of-function activity on the client protein 

EpCAM (Figure 11 and 12), whose interpretation is complicated due to the oxidation-dependent resilience 

of EpCAM to this AGR2 mutant series (Figure 11). Nevertheless, the ability to create a loss or gain-of-

function mutations in this region suggests that it not only provides a primary peptide- interaction site, but 

that the conformation of this region can allosterically effect distal regions that impact on monomer-dimer 

equilibrium. The enhanced binding of EpCAM to this S134A mutant, in particular, also suggests that 

AGR2 might have a secondary binding site on EpCAM that is stabilized by the altered conformation of 

the S134A mutant (Figure 12). This potential secondary site appears to play only a minor role on wt-

AGR2 protein since the EpCAMY251A mutation attenuates wt-AGR2 binding (Figure 8).   

 

Another feature of the deuterated peptide data (for example, observed in Supplementary Figure 1, 3, 5, 

and 7) and in other studies using HDX Workbench (56) or HDExaminer (55) is that larger peptide 

fragments can have a different number of deuteron exchanges than predicted within smaller or partially 

overlapping fragments. For example, in AGR2 (Supplementary Figure 3), the peptic peptide 17-56 shows 

a 30% deuteration exchange (corresponding to 10.8 deuterons), the embedded peptide 17-30 shows 55% 

deuteration (corresponding to 7.1 deuterons), and the overlapping peptide 31-52 shows 50% deuteration 

(corresponding to 9.5 deuterons). These inconsistencies in the number of deuterons exchanged relative to 

the expected levels, within overlapping peptides of different lengths or within smaller peptides embedded 

within larger peptides highlights, putative, could be due many factors such as secondary structural 

constraints under the low pH of the peptic reactions (as suggested by Figure 3) or by peptide length/charge 

state (58).  In addition, it is also possible that high levels of deuterium suppression in a small stretch of the 

polypeptide are compensated by elevated deuteration in adjacent regions (due to conformational changes) 

so that the net deuteration in larger peptides is different than the smaller peptide. This is relevant to AGR2 

since it is diluted 10-fold in D2O during the deuteration reaction, during which the AGR2 concentration is 

far lower than the Kd (of dimerization) that could in turn impact on its monomer-dimer equilibrium.  

Alternatively, there could also be variability in peptide back exchange where it has been reported that 

higher-order structures in a polypeptide might reduce or elevate the rates of hydrogen-deuterium exchange 

depending upon the peptide length and/or sequence. The degree of secondary structural effects through 

peptide-column interactions can also impact on exchange rates (59).  Systematic studies on factors that 

can impact on back-exchange have identified an unexpected dependence on ionic strength (60). 
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Considering these properties of the methodology, we can speculate that the linear gradient used in the 

separation of AGR2 peptic peptides might increase back-exchange on the column because they are eluted 

much later in the gradient than then their corresponding nested fragments. Despite these quantitative 

differences in expected deuteration rates due to the complexities of the methodology, the software can 

accurately quantify deuterium exchange rates using peptic peptides of the same length (sequence) but 

under different conditions (e.g. ligand or protein mutation; e.g example peptides include Figure 4C or 5B).  

With these limitations of the methodology, useful data can be acquired on ligand binding (as in Figures 2 

and 5) or on heterologous protein-protein interaction motifs (55). 

 

To conclude, a methodology has been developed to exploit the linear peptide motif as a tool to discover 

new protein-protein interactions for a molecular chaperone. This includes (i) validating the specificity of a 

peptide(s) acquired from combinatorial peptide libraries as an affinity purification tool from crude cellular 

lysates (Figure 1); (ii) using hydrogen-deuterium exchange to demonstrate a specific interaction site for 

the peptide that allowed the creation of mutants for validation (Figure 2-6); (iii) using alanine scan 

mutagenesis to derive a linear motif consensus site (Figure 7); and (iii) validating the EpCAM-AGR2 

protein interaction in vitro and in cells (Figure 8-14).  These in-vitro and cell-based methodologies 

provide a complementing approach to the yeast-two-hybrid and immunoprecipitation methodology to 

identify and validate new protein-protein interactions by exploiting the linear peptide motif as a common 

type of protein-protein interaction that is involved in dynamic protein-protein assembly reactions (49).  

Our data highlight that the EpCAM receptor has specific AGR2 binding regions.  The recent identification 

that EpCAM and AGR2 proteins are co-expressed at a very high frequency in human oesophageal 

adenocarcinoma cancer biopsies (27) provides a clinical rationale to further dissect the AGR2-EpCAM 

pathway control in relation to carcinogenesis and potential therapeutics in this cancer type.  

 

 

 

 

  



 30 

REFERENCES 
1. Higa, A., Mulot, A., Delom, F., Bouchecareilh, M., Nguyen, D. T., Boismenu, D., Wise, M. J., and Chevet, 
E. (2011) Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) in the 
control of endoplasmic reticulum homeostasis. The Journal of biological chemistry 286, 44855-44868 
2. Brychtova, V., Mohtar, A., Vojtesek, B., and Hupp, T. R. (2015) Mechanisms of anterior gradient-2 
regulation and function in cancer. Semin Cancer Biol 33, 16-24 
3. Thompson, D. A., and Weigel, R. J. (1998) hAG-2, the human homologue of the Xenopus laevis cement 
gland gene XAG-2, is coexpressed with estrogen receptor in breast cancer cell lines. Biochemical and biophysical 
research communications 251, 111-116 
4. Aberger, F., Weidinger, G., Grunz, H., and Richter, K. (1998) Anterior specification of embryonic 
ectoderm: the role of the Xenopus cement gland-specific gene XAG-2. Mechanisms of development 72, 115-130 
5. Sive, H. L., Hattori, K., and Weintraub, H. (1989) Progressive determination during formation of the 
anteroposterior axis in Xenopus laevis. Cell 58, 171-180 
6. Liu, D., Rudland, P. S., Sibson, D. R., Platt-Higgins, A., and Barraclough, R. (2005) Human homologue of 
cement gland protein, a novel metastasis inducer associated with breast carcinomas. Cancer research 65, 3796-3805 
7. Patel, P., Clarke, C., Barraclough, D. L., Jowitt, T. A., Rudland, P. S., Barraclough, R., and Lian, L. Y. 
(2013) Metastasis-promoting anterior gradient 2 protein has a dimeric thioredoxin fold structure and a role in cell 
adhesion. Journal of molecular biology 425, 929-943 
8. Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A., and Brockes, J. P. (2007) Molecular basis for 
the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772-777 
9. Zhu, Q., Mangukiya, H. B., Mashausi, D. S., Guo, H., Negi, H., Merugu, S. B., Wu, Z., and Li, D. (2017) 
Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain. The 
FEBS journal 
10. Schroeder, B. W., Verhaeghe, C., Park, S. W., Nguyenvu, L. T., Huang, X., Zhen, G., and Erle, D. J. (2012) 
AGR2 is induced in asthma and promotes allergen-induced mucin overproduction. American journal of respiratory 
cell and molecular biology 47, 178-185 
11. Di Valentin, E., Crahay, C., Garbacki, N., Hennuy, B., Gueders, M., Noel, A., Foidart, J. M., Grooten, J., 
Colige, A., Piette, J., and Cataldo, D. (2009) New asthma biomarkers: lessons from murine models of acute and 
chronic asthma. American journal of physiology. Lung cellular and molecular physiology 296, L185-197 
12. Fessart, D., Domblides, C., Avril, T., Eriksson, L. A., Begueret, H., Pineau, R., Malrieux, C., Dugot-Senant, 
N., Lucchesi, C., Chevet, E., and Delom, F. (2016) Secretion of protein disulphide isomerase AGR2 confers 
tumorigenic properties. Elife 5 
13. Jessop, C. E., Watkins, R. H., Simmons, J. J., Tasab, M., and Bulleid, N. J. (2009) Protein disulphide 
isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. Journal of cell 
science 122, 4287-4295 
14. Persson, S., Rosenquist, M., Knoblach, B., Khosravi-Far, R., Sommarin, M., and Michalak, M. (2005) 
Diversity of the protein disulfide isomerase family: identification of breast tumor induced Hag2 and Hag3 as novel 
members of the protein family. Mol Phylogenet Evol 36, 734-740 
15. Park, S. W., Zhen, G., Verhaeghe, C., Nakagami, Y., Nguyenvu, L. T., Barczak, A. J., Killeen, N., and Erle, 
D. J. (2009) The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proceedings of the 
National Academy of Sciences of the United States of America 106, 6950-6955 
16. Dong, A., Wodziak, D., and Lowe, A. W. (2015) Epidermal growth factor receptor (EGFR) signaling 
requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the 
cell surface. J Biol Chem 290, 8016-8027 
17. Gray, T. A., Alsamman, K., Murray, E., Sims, A. H., and Hupp, T. R. (2014) Engineering a synthetic cell 
panel to identify signalling components reprogrammed by the cell growth regulator anterior gradient-2. Molecular 
bioSystems 10, 1409-1425 
18. Fletcher, G. C., Patel, S., Tyson, K., Adam, P. J., Schenker, M., Loader, J. A., Daviet, L., Legrain, P., 
Parekh, R., Harris, A. L., and Terrett, J. A. (2003) hAG-2 and hAG-3, human homologues of genes involved in 
differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene 
C4.4a and dystroglycan. British journal of cancer 88, 579-585 
19. Arumugam, T., Deng, D., Bover, L., Wang, H., Logsdon, C. D., and Ramachandran, V. (2015) New 
Blocking Antibodies against Novel AGR2-C4.4A Pathway Reduce Growth and Metastasis of Pancreatic Tumors and 
Increase Survival in Mice. Molecular cancer therapeutics 14, 941-951 



 31 

20. Maslon, M. M., Hrstka, R., Vojtesek, B., and Hupp, T. R. (2010) A divergent substrate-binding loop within 
the pro-oncogenic protein anterior gradient-2 forms a docking site for Reptin. Journal of molecular biology 404, 
418-438 
21. Rosenbaum, J., Baek, S. H., Dutta, A., Houry, W. A., Huber, O., Hupp, T. R., and Matias, P. M. (2013) The 
emergence of the conserved AAA+ ATPases Pontin and Reptin on the signaling landscape. Science signaling 6, mr1 
22. Healy, A. R., Houston, D. R., Remnant, L., Huart, A. S., Brychtova, V., Maslon, M. M., Meers, O., Muller, 
P., Krejci, A., Blackburn, E. A., Vojtesek, B., Hernychova, L., Walkinshaw, M. D., Westwood, N. J., and Hupp, T. 
R. (2015) Discovery of a novel ligand that modulates the protein-protein interactions of the AAA+ superfamily 
oncoprotein reptin. Chem Sci 6, 3109-3116 
23. Gray, T. A., Murray, E., Nowicki, M. W., Remnant, L., Scherl, A., Muller, P., Vojtesek, B., and Hupp, T. R. 
(2013) Development of a fluorescent monoclonal antibody-based assay to measure the allosteric effects of synthetic 
peptides on self-oligomerization of AGR2 protein. Protein science : a publication of the Protein Society 22, 1266-
1278 
24. Murray, E., McKenna, E. O., Burch, L. R., Dillon, J., Langridge-Smith, P., Kolch, W., Pitt, A., and Hupp, T. 
R. (2007) Microarray-formatted clinical biomarker assay development using peptide aptamers to anterior gradient-2. 
Biochemistry 46, 13742-13751 
25. Bottger, V., Bottger, A., Howard, S. F., Picksley, S. M., Chene, P., Garcia-Echeverria, C., Hochkeppel, H. 
K., and Lane, D. P. (1996) Identification of novel mdm2 binding peptides by phage display. Oncogene 13, 2141-
2147 
26. Nicholson, J., Scherl, A., Way, L., Blackburn, E. A., Walkinshaw, M. D., Ball, K. L., and Hupp, T. R. 
(2014) A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins 
for the ubiquitin ligase MDM2. Cell Signal 26, 1243-1257 
27. O'Neill, J. R., Pak, H. S., Pairo-Castineira, E., Save, V., Paterson-Brown, S., Nenutil, R., Vojtesek, B., 
Overton, I., Scherl, A., and Hupp, T. R. (2017) Quantitative Shotgun Proteomics Unveils Candidate Novel 
Esophageal Adenocarcinoma (EAC)-specific Proteins. Molecular & cellular proteomics : MCP 16, 1138-1150 
28. Fourtouna, A., Murray, E., Nicholson, J., Maslon, M. M., Pang, L., Dryden, D., and Hupp, T. (2009) The 
anterior gradient-2 pathway as a model for developing peptide-aptamer anti-cancer dtug leads that stimulate p53 
function. current chemical biology 3, 124-137. 
29. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein 
utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248-254 
30. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. 
Nature 227, 680-685 
31. Fourtouna, A., Murray, E., Nicholson, J., Maslon, M. M., Pang, L., Dryden, D. T. F., and Hupp, T. R. 
(2009) The Anterior Gradient-2 Pathway as a Model for Developing Peptide-Aptamer Anti-Cancer Drug Leads that 
Stimulate p53 Function. Curr Chem Biol 3, 124-137 
32. Hernychova, L., Man, P., Verma, C., Nicholson, J., Sharma, C. A., Ruckova, E., Teo, J. Y., Ball, K., 
Vojtesek, B., and Hupp, T. R. (2013) Identification of a second Nutlin-3 responsive interaction site in the N-terminal 
domain of MDM2 using hydrogen/deuterium exchange mass spectrometry. Proteomics 13, 2512-2525 
33. Kavan, D., and Man, P. (2011) MSTools - Web based application for visualization and presentation of 
HXMS data. International Journal of  Mass Spectrometry 302, 53-58 
34. Gray, T. A., MacLaine, N. J., Michie, C. O., Bouchalova, P., Murray, E., Howie, J., Hrstka, R., Maslon, M. 
M., Nenutil, R., Vojtesek, B., Langdon, S., Hayward, L., Gourley, C., and Hupp, T. R. (2012) Anterior Gradient-3: a 
novel biomarker for ovarian cancer that mediates cisplatin resistance in xenograft models. Journal of immunological 
methods 378, 20-32 
35. Soderberg, O., Leuchowius, K. J., Gullberg, M., Jarvius, M., Weibrecht, I., Larsson, L. G., and Landegren, 
U. (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. 
Methods 45, 227-232 
36. Lee, J. J., Park, Y. S., and Lee, K. J. (2015) Hydrogen-deuterium exchange mass spectrometry for 
determining protein structural changes in drug discovery. Arch Pharm Res 38, 1737-1745 
37. Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., 
Lukacs, C., Klein, C., Fotouhi, N., and Liu, E. A. (2004) In vivo activation of the p53 pathway by small-molecule 
antagonists of MDM2. Science 303, 844-848 
38. Fraser, J. A., Worrall, E. G., Lin, Y., Landre, V., Pettersson, S., Blackburn, E., Walkinshaw, M., Muller, P., 
Vojtesek, B., Ball, K., and Hupp, T. R. (2015) Phosphomimetic mutation of the N-terminal lid of MDM2 enhances 
the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis. Journal of molecular biology 
427, 1728-1747 



 32 

39. Gupta, A., Dong, A., and Lowe, A. W. (2012) AGR2 gene function requires a unique endoplasmic 
reticulum localization motif. The Journal of biological chemistry 287, 4773-4782 
40. Martowicz, A., Seeber, A., and Untergasser, G. (2016) The role of EpCAM in physiology and pathology of 
the epithelium. Histology and histopathology 31, 349-355 
41. Ladwein, M., Pape, U. F., Schmidt, D. S., Schnolzer, M., Fiedler, S., Langbein, L., Franke, W. W., 
Moldenhauer, G., and Zoller, M. (2005) The cell-cell adhesion molecule EpCAM interacts directly with the tight 
junction protein claudin-7. Experimental cell research 309, 345-357 
42. Blokzijl, A., Zieba, A., Hust, M., Schirrmann, T., Helmsing, S., Grannas, K., Hertz, E., Moren, A., Chen, L., 
Soderberg, O., Moustakas, A., Dubel, S., and Landegren, U. (2016) Single Chain Antibodies as Tools to Study 
transforming growth factor-beta-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens. 
Molecular & cellular proteomics : MCP 15, 1848-1856 
43. Weibrecht, I., Leuchowius, K. J., Clausson, C. M., Conze, T., Jarvius, M., Howell, W. M., Kamali-
Moghaddam, M., and Soderberg, O. (2010) Proximity ligation assays: a recent addition to the proteomics toolbox. 
Expert Rev Proteomics 7, 401-409 
44. Koos, B., Andersson, L., Clausson, C. M., Grannas, K., Klaesson, A., Cane, G., and Soderberg, O. (2014) 
Analysis of Protein Interactions in situ by Proximity Ligation Assays. Curr Top Microbiol Immunol 377, 111-126 
45. Morelli, X., and Hupp, T. (2012) Searching for the Holy Grail; protein-protein interaction analysis and 
modulation. EMBO reports 13, 877-879 
46. Chevet, E., Fessart, D., Delom, F., Mulot, A., Vojtesek, B., Hrstka, R., Murray, E., Gray, T., and Hupp, T. 
(2013) Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene 32, 2499-2509 
47. Maslon, M. M., Hrstka, R., Vojtesek, B., and Hupp, T. R. (2010) A divergent substrate-binding loop within 
the pro-oncogenic protein anterior gradient-2 forms a docking site for Reptin. J Mol Biol 404, 418-438 
48. Healy, A., Houston, D., Remnant, L., Huart, A., Brychtova, V., Maslon, M., Meers, O., Muller, P., Krejci, 
A., Blackburn, E., Vojtesek, B., Hernychova, L., Walkinshaw, M., Westwood, N., and T.R., H. (2015) Discovery of 
a novel ligand that modulates theprotein-protein interactions of the AAA+ superfamily oncoprotein reptin. Chemical 
Science 6(5)        3109-3116. IF: 3109,3211.   
49. Tompa, P., Davey, N. E., Gibson, T. J., and Babu, M. M. (2014) A million peptide motifs for the molecular 
biologist. Molecular cell 55, 161-169 
50. Yu, J., and Smith, G. P. (1996) Affinity maturation of phage-displayed peptide ligands. Methods in 
enzymology 267, 3-27 
51. Ray-Coquard, I., Blay, J. Y., Italiano, A., Le Cesne, A., Penel, N., Zhi, J., Heil, F., Rueger, R., Graves, B., 
Ding, M., Geho, D., Middleton, S. A., Vassilev, L. T., Nichols, G. L., and Bui, B. N. (2012) Effect of the MDM2 
antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated 
liposarcoma: an exploratory proof-of-mechanism study. The Lancet. Oncology 13, 1133-1140 
52. Dornan, D., Shimizu, H., Burch, L., Smith, A. J., and Hupp, T. R. (2003) The proline repeat domain of p53 
binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. 
Molecular and cellular biology 23, 8846-8861 
53. Neduva, V., and Russell, R. B. (2006) Peptides mediating interaction networks: new leads at last. Curr Opin 
Biotechnol 17, 465-471 
54. Chodavarapu, S., Jones, A. D., Feig, M., and Kaguni, J. M. (2016) DnaC traps DnaB as an open ring and 
remodels the domain that binds primase. Nucleic acids research 44, 210-220 
55. Durech, M., Trcka, F., Man, P., Blackburn, E. A., Hernychova, L., Dvorakova, P., Coufalova, D., Kavan, 
D., Vojtesek, B., and Muller, P. (2016) Novel Entropically Driven Conformation-specific Interactions with Tomm34 
Protein Modulate Hsp70 Protein Folding and ATPase Activities. Molecular & cellular proteomics : MCP 15, 1710-
1727 
56. Narayan, V., Landre, V., Ning, J., Hernychova, L., Muller, P., Verma, C., Walkinshaw, M. D., Blackburn, 
E. A., and Ball, K. L. (2015) Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase 
Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP). Molecular & cellular proteomics : MCP 14, 
2973-2987 
57. Mandell, J. G., Falick, A. M., and Komives, E. A. (1998) Measurement of amide hydrogen exchange by 
MALDI-TOF mass spectrometry. Analytical chemistry 70, 3987-3995 
58. Burns, K. M., Rey, M., Baker, C. A., and Schriemer, D. C. (2013) Platform dependencies in bottom-up 
hydrogen/deuterium exchange mass spectrometry. Molecular & cellular proteomics : MCP 12, 539-548 
59. Sheff, J. G., and Schriemer, D. C. (2014) Toward standardizing deuterium content reporting in hydrogen 
exchange-MS. Analytical chemistry 86, 11962-11965 



 33 

60. Walters, B. T., Ricciuti, A., Mayne, L., and Englander, S. W. (2012) Minimizing back exchange in the 
hydrogen exchange-mass spectrometry experiment. Journal of the American Society for Mass Spectrometry 23, 
2132-2139 
61. Koos, B., and Soderberg, O. (2015) Closing in on life: proximity dependent methods for life sciences. 
Oncotarget 6, 17867-17868 
62. Pathan, M., Keerthikumar, S., Ang, C. S., Gangoda, L., Quek, C. Y., Williamson, N. A., Mouradov, D., 
Sieber, O. M., Simpson, R. J., Salim, A., Bacic, A., Hill, A. F., Stroud, D. A., Ryan, M. T., Agbinya, J. I., 
Mariadason, J. M., Burgess, A. W., and Mathivanan, S. (2015) FunRich: An open access standalone functional 
enrichment and interaction network analysis tool. Proteomics 15, 2597-2601 
 

  



 34 

FIGURE LEGENDS 

Figure 1. The specificity of an AGR2-binding peptide aptamer for use in the affinity purification of 

in vivo cross-linked AGR2 protein from crude lysates. Affinity purification of AGR2 from crude cell 

lysates. MCF7 cells grown in media with 10% FCS were incubated with DMSO (lanes 1-4) or with a fixed 

concentration of the cell-membrane permeable cross-linker DSS (lanes 5-8) for 1 hour at 37oC.  Cells were 

harvested, lysed using a Tris-HCl (pH 8.0) buffer containing 1% NP-40, lysates were incubated with an 

optimized biotinylated peptide aptamer (named A4) linked to streptavidin beads, which can be used to 

affinity purify the AGR2 protein in crude cell lysates (24). The input lysates (Load, lanes 1 and 5), flow-

through fractions (lanes 2 and 6), washes (lanes 3 and 7), and eluates (lanes 4 and 8) were separated by 

electrophoresis.  The protein in the polyacrylamide gel was (A) immunoblotted to determine whether 

intermediary species of cross-linked AGR2 could be affinity purified and (B) stained with silver to 

measure total protein captured.  In part B, streptavidin beads were incubated with buffer only (lane 1), 

lysates (lane 2), and lysates with pre-conjugated peptide-A4-beads (lane 3). The 18 kDa and 36 kDa cross-

linked and affinity purified silver-stained proteins (arrows, lane 3 vs lane 2) were excised using trypsin 

and AGR2 protein was confirmed present by MALDI-TOF mass spectrometry (data not shown; dimeric 

excised band; only human AGR2 peptides were detected, Score=161; queries matched=4;  emPAI=0.86).  

 

 

Figure 2. Establishing methodology for measuring the effects of a ligand on the target protein 

MDM2 using hydrogen-deuterium exchange mass spectrometry.  MDM2 protein (2 µM final 

concentration) was assembled with DMSO or with Nutlin-3 (8 µM) at room temperature for 30 minutes, 

as described previously for the N-terminal domain of MDM2 (amino acids 1-126) (32). The reactions 

were then diluted with D2O by sequentially adding, slowly with mixing, 5.14 µl, 10 µl, 20 µl, and 27 µl of 

D2O.  The reactions were incubated from 40 to 18,000 seconds and quenched with 3 µl of 0.87M HCl with 

1 M Glycine, frozen, and processed for pepsinization as in the materials and methods. The deuterium 

exchange rates of individual peptides (Supplementary Figure 1) is summarized using the HDX exchange 

plots for the 300-second deuteration time course.  

 

 

Figure 3. Peptic coverage of AGR2 protein in the seven-point deuteration reaction time course. (A) 

Gene structure of the recombinant AGR2 protein. The panel highlights the functional motifs within 

recombinant human AGR2; the poly-His-tag used for nickel affinity purification; an N-terminal 

intrinsically disordered region; a dimerization motif; a thioredoxin fold, the Reptin docking site, and the 

ER retention site. (B) Coomassie Blue staining of purified His-AGR2 showing the major band at 20 kDa 
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under reducing SDS-PAGE condition. (C) Peptic peptides recovered from ligand-free mature AGR2 

protein (with the N-terminal 20 amino acids containing the hydrophobic ER leader sequence removed). 

The proteolytic peptide fragments can be grouped into four regions based on extents of recovery after 

mass spectrometry; (i) The N-terminal region containing the poly his-tag and amino acids Arg21-Leu52 

containing the intrinsically disordered region that plays a negative regulatory role in dimer stability (23) 

(7); (ii) a central grouping from Ile53 to Asn108, containing the beginning of the dimerization motif (60-

EALYK-64), the CxxS thioredoxin fold, and the Reptin binding motif (104-FVLLNLVY-111); (iii) a third 

pepsin resistant region from amino acids 109-130; and (iv) a region of a cluster of overlapping peptic 

fragments including the specific peptide binding domain (this study) and the degenerate KTEL 

endoplasmic  reticulum retention site. 

 

Figure 4. Representative deuteration rates of peptides derived from the N-terminal domain of 

AGR2 after binding of peptide A4. Ligand-free AGR2 or AGR2-peptide A4 complexes were deuterated 

over a 7-point time course from 30 seconds to 10,800 seconds followed by acidification, pepsinization, 

and separation of fragments using mass spectrometry. (A-C)  Representative segments of AGR2 protein 

that do not exhibit significant changes in deuteration after peptide A4 binding over the time course are 

highlighted including; (A) YKKAGFEGDRT from the N-terminal HIS tag; (B) a peptic fragment N-

terminal to the dimerization interface containing amino acids 45-SRGWGDQL-52; (C) a peptide 

containing the thioredoxin fold, from amino acids 74-IIHHLDECPHSA-86; and (D) a peptic fragment 

adjacent to the Reptin docking site, containing amino acids 97-IQKLAEQF-104. Segments of AGR2 

protein that do show a degree of deuterium suppression over the entire time course included; (E) a peptide 

containing amino acids 53-IWTQTYE-59 just adjacent to and N-terminal to the dimerization motif; and 

(F) peptide containing half of the dimerization motif from amino acids 62-LYKSKTSSKPLM-73.  The 

data are plotted as % of deuteron exchange as a function of time (log10 in seconds; from 30, 60, 180, 600, 

1800, 3600, and 10800).  

 

Figure 5. Representative deuteration rates of peptides derived from the C-terminal domain of 

AGR2 after binding of peptide A4.  Ligand-free AGR2 or AGR2-peptide A4 complexes were deuterated 

over a 7-point time course from 30 seconds to 10,800 seconds followed by acidification, pepsinization, 

and separation of fragments using mass spectrometry. The C-terminal domain showed the most significant 

global changes (suppression) in deuteration of individual peptic fragments after peptide A4 binding across 

the time course are highlighted, including: (A) Peptide containing amino acids 138-RADITGRYSNRL-

149, and (B) the peptide contiguous and N-terminal to (A) containing amino acids 131-VDPSLTVRA-

139. (C) The peptide contiguous and C-terminal to (A) containing amino acids 150-YAYEPADTAL-159 
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exhibited minimal deuteration changes upon peptide A4 binding. (D and E). A visualization of the global 

changes in peptide deuteration without (blue) and with peptide A4 ligand (red) after (D) 30 seconds of 

incubation in D2O or (E) after 10,800 seconds of incubation in D2O. The data are plotted as % of deuteron 

exchange as a function of time (log10 in seconds; from 30, 60, 180, 600, 1800, 3600, and 10800).  

 

Figure 6. Mutations in the dominant deuteration responsive motif impact on AGR2 peptide binding 

activity in vitro.  (A) A secondary structure summary of changes in deuteration in the presence of the 

consensus peptide. The diagram shows the full amino acid sequence of the mature AGR2 protein (amino 

acids 21-175) with the alpha helices and b-sheets highlighted.  The block colors highlight the changes in 

fold deuteration after 30 seconds or 10800 seconds, with dominant changes at the region 131-139 (in 

between two b-sheets) and the dimer interface (a 50-60). (B) A representation of the minimal deuteration 

responsive motif from amino acids 131-135 motif (highlighted in pink) in AGR2 (PDB code:  2LNS ) that 

is most significantly suppressed by peptide A4 binding. The main amino acids of focus were D132, P133, 

and S134 flanked by the hydrophobic amino acids V131 and L135. (C) Data showing alanine substitution 

mutations generated at codons D132, P133, and S134 in bacterial expression plasmids with the 

corresponding DNA sequencing chromatogram traces of three of AGR2 peptide docking site mutations at 

position Asp132 to Ala, Pro133 to Ala, and Ser134 to Ala.  (D) An SDS-Coomassie blue gel showing the 

relative purity of the indicated mutant proteins expressed in E.coli after nickel affinity purification. (E-F) 

An ELISA assay was developed to measure the binding of AGR2 to synthetic biotinylated peptide A4 

captured on the streptavidin coated solid phase. Reactions were added to the solid phase to measure 

binding to biotinylated peptide A4 on the solid phase.  The data plot the binding of AGR2 in relative light 

units (RLU) as a function of increasing wt or mutant AGR2 protein isoforms, as indicate (in µg) that was 

quantified using AGR2 specific antibody. 

 

Figure 7. Mining of the human proteome for proteins containing the AGR2 linear peptide consensus 

motif. (A) The PTTIYY hexapeptide was previously defined as a minimal peptide sequence that binds to 

AGR2 (24). A mutational scan library was synthesized containing a subset of amino acid substitutions at 

positions 1-6, from left PTTIYY. The substitutions included small hydrophobic (L, V, I, M, A, G), bulky 

hydrophobic (W, F, P), charged (D, C) and hydrophilic (S, T) of the linear peptide motif. The peptides 

sequences created are shown on the X-axis.  The biotinylated peptide A4 was bound to the streptavidin-

coated solid phase and fixed amounts (1 µg) of AGR2 protein with 100 ng of the indicated synthetic 

peptide was added.  AGR2 binding was detected using a secondary antibody and binding is measured in as 

RLU.  The data revealed that amino acids at positions 2, 4, 5, and 6 are relatively fixed whilst changes at 

positions 1 and 3 can be relatively well tolerated. B). Schematic illustrating strategy to find novel AGR2 
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client proteins using linear peptide motif database mining. The AGR2 linear peptide consensus motif was 

used as input using a ScanProsite tool (http://prosite.expasy.org/scanprosite/) and the human proteome 

database was screened to identify proteins containing the motif. (C) The scan resulted in 409 protein hits 

when splice variants were excluded (Supplementary Tables 1 and 2). The hits were scored as subcellular 

localization using FunRich (v2.1.2) (62) where the majority of the proteins found were membrane 

proteins. A large proportion of the hits were membrane-related proteins, which foreshadows AGR2 

function in receptor maturation. Enriched terms were ranked by p-value (Hypergeometric test). (D) 

Representative of possible AGR2 binding proteins is shown containing the consensus peptide-binding 

motif. (E) Bar graph of molecular function overrepresented in AGR2 linear peptide motif hits. (F)  Bar 

graph of biological processes overrepresented in AGR2 linear peptide motif hits (Supplementary Tables 1 

and 2). The percentage of genes linking to the individual enriched terms were ranked by p-value and are 

shown together with the p-value from the Hypergeometric test (depicted in red) and the reference p = 0.05 

value (depicted in yellow). (G) The AGR2 linear peptide consensus motif was used as input using the 

SLiMSEARCH4 linear motif discovery tool (http://slim.ucd.ie/slimsearch/index.php) and the human 

proteome database was screened to identify proteins containing the motif. Enriched terms were ranked by 

p-value (Hypergeometric test). (H) Venn diagram highlighting the overlap and number of linear motifs 

identified between ScanProsite and SLiMSEARCH4 tools.  

 

Figure 8. EpCAM as a candidate AGR2 client protein. (A) Homology between EpCAM and its 

paralogue TACD2 as aligned using Clustal Omega. Both proteins were identified using ScanProsite 

(Supplementary Table 1) and harbor the TLIYY motif implicated as an AGR2 linear peptide docking site. 

(B) Secondary structure of EpCAM which consists of a N-domain (ND, green), Thyroglobulin type-1 

domain (TY, blue) and C-domain (CD, dark pink) which altogether make up for extracellular domain 

(EpEX), transmembrane domain (TM, grey), intracellular domain (EpIC, yellow), and the amino acids 

from 247-251 containing the sequence TLIYY. (C) Three-dimensional cartoon representation of 

extracellular part of human EpCAM (PDB code: 4MZ) highlighting the AGR2 linear peptide motif at 

amino acid position Thr247 to Tyr251 9 (gray). Color coding is the same as in (B). (D) Schematic 

representation of his-tagged EpCAM protein sequence highlighting the extracellular domain (EpEX), the 

TEV cleavage site, and the TLIYY motif. (E) Coomassie Blue staining of purified His-EpCAM showing 

the major band at 32 kDa under reducing SDS-PAGE condition.  (F-G) Solid-phase binding assay to 

measure AGR2 binding to EpCAM protein. Increasing amounts of EpCAM were immobilized on the 

surface of a microtiter plate (0-1 µg). AGR2 (0-1 µg) was titrated in the mobile phase and AGR2 binding 

to immobilized EpCAM was quantified using AGR2 specific antibody. The binding of AGR2 is plotted as 

the extent of protein-protein complex formation as RLU as a function of increasing protein in the mobile 
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phase. (H) DNA sequencing chromatogram traces of EpCAMY251A .(I) Coomassie Blue staining of 

purified His- EpCAMY251A mutant protein showing the major band at 32 kDa under denaturing SDS-

PAGE. (J) His-EpCAM or His-EpCAMY251A (1 µg) was immobilized onto the well surface of a microtiter 

plate as in (F) His-AGR2 WT (0-1 µg) was titrated in the mobile phase. AGR2 binding to immobilized 

EpCAM was quantified using AGR2 specific antibody. The binding is plotted as the extent of protein-

protein complex formation as RLU as a function of increasing protein in the mobile phase. 

 

Figure 9. Effects of Y251A mutation on EpCAM localization in cells.  (A-C). Fluorescently labeled 

versions of AGR2 (mCHERRY) and EpCAM (EGFP) with the signal peptides were generated and 

expression validated in cells using immunoblotting (B and C).  (B) The immunoblotting of mCHERRY 

and mCHERRY-AGR2 transfected cells highlights the expression of mCHERRY alone (lane 1) and 

mCHERRY-AGR2 (lane 2). Blots were incubated with an anti-mCHERRY antibody. The arrow marks the 

location of full-length mCHERRY-AGR2 and the asterisk marks the location of mCHERRY. We noticed 

the reproducible small molecular mass “cleavage” or synthesis products when mCHERRY was transfected 

into cells. (C) The immunoblotting of EGFP and EGFP–EpCAM transfected cells highlights the 

expression of EGFP alone (lane 1) and EGFP–EpCAM (lane 2). Blots were incubated with a GFP 

antibody. The arrow marks the location of full-length EGFP–EpCAM and the asterisk mark the location of 

EGFP. The EGFP was not subjected to the production of smaller molecular mass adducts as was the 

mCHERRY protein. Fluorescent microscopy was used to measure the relative localization of the 

following proteins; (D) mCHERRY-AGR2 (E) EGFP-EpCAM (F) EGFP-EpCAMY251A (G) mCHERRY 

and (H) EGFP. (I and J) The impact of co-transfection of mCHERRY-AGR2 and EGFP-EpCAM or 

EGFP-EpCAMY251A on their respective localizations. Representative images of the wild-type and mutant 

EpCAM, as well as AGR2, are highlighted in both panels. The arrow in J highlights AGR2 

mislocalization to the plasma membrane periphery in EpCAM mutant co-transfections that mirrors the 

mutant EpCAM mislocalization to the nuclear membrane in the same cells.  

 

Figure 10. Developing Proximity Ligation Models to define AGR2-EpCAM localization in cells. (A) 

Expression of AGR2 and its binding partner EpCAM in a panel of cancer cell lines. Breast cancer cell line 

(MCF-7) and oesophageal cancer cell line (FLO-1, OE33, and OE19) was analyzed by western blot using 

AGR2 polyclonal antibody K47 and EpCAM monoclonal antibody. Tumour suppressor protein p53 status 

was also analyzed p53 monoclonal antibody. β-actin was used as loading control. (B) Representative 

image of a proximity ligation assay performed with antibody pair of AGR2 mouse monoclonal antibody 

and EpCAM rabbit polyclonal antibody (upper panel) or AGR2 rabbit polyclonal antibody and EpCAM 

mouse monoclonal antibody Ab (middle panel) in MCF-7 cells. PLA probes (Anti-rabbit PLUS probe and 
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anti-mouse MINUS probe) were then added to the samples. Following ligation and amplification, protein-

protein interaction complex was detected with green fluorescent probes (Duolink). Green fluorescence 

foci indicate the interaction between the two proteins. As a control, MCF-7 was not incubated with the 

antibody pair but incubated with proximity ligation assay probes (lower panel) that showed no or few foci. 

Scale bar 25 µm. (C) As a negative control, proximity ligation assay also was also performed in cells that 

do not express AGR2 and EpCAM (FLO-1). AGR2 mouse monoclonal antibody and EpCAM rabbit 

polyclonal antibody was used to show that non-transfected FLO-1 demonstrated no significant amount of 

foci. Scale bar 10 µm. Nuclei were counterstained with DAPI and cells were visualized with an 

epifluorescence microscope. 

 

Figure 11. Effect of AGR2 peptide docking mutants binding to EpCAM. (A) His-EpCAM was 

immobilized onto the well surface of a microtiter plate. Titration of AGR2 WT and mutants (0-0.5 µg) 

were added in mobile phase and AGR2 binding without (A) and with 1mM DTT (B) to immobilized 

EpCAM was quantified using a specific AGR2 antibody. The binding is plotted as the extent of protein-

protein complex formation in RLU as a function of increasing protein in the mobile phase. Reactions in 

(A) have no DTT included in the AGR2-binding reactions and (B) includes DTT at the stage of addition 

of AGR2 binding to reveal any effects of potential cysteine oxidation on protein-protein interactions (as 

highlighted in C where both AGR2 and EpCAM should be in the reduced state). (D) Staging the effects of 

DTT by including reductant in the blocking step to determine whether the DTT effect (from B) on the 

reaction is due to EpCAM substrate and not AGR2 itself.  (E) A titration of wt-AGR2 and AGR2S134A in 

the presence or absence of reductant in the blocking stage.  As in (A and B), the binding is plotted as the 

extent of protein-protein complex formation in RLU as a function of increasing protein in the mobile 

phase.  

 

Figure 12. Measuring conformational changes in the gain-of-function mutant AGR2S134A using 

hydrogen-deuterium mass spectrometry. Wt-AGR2 or AGR2S134A was deuterated over a 7-point time 

course from 30 seconds to 10,800 seconds followed by acidification, pepsinization, and separation of 

fragments using mass spectrometry (Supplementary Figure 3) (A-C) Representative peptic ions of AGR2 

protein that do not exhibit significant changes in deuteration between wt and mutant AGR2S134A (D-F) 

Representative peptic ions of AGR2 protein that do exhibit significant changes in deuteration between wt 

and mutant AGR2S134A. The data are plotted as % of deuteron exchange as a function of time (log10 in 

seconds; from 30, 60, 180, 600, 1800, 3600, and 10800). The deuterium exchange rates of individual 

peptides are summarized using the HDX exchange plots for (G) 30 seconds (H) 600 seconds, and (I) 3,600 

seconds time course. In (G), we highlight that the most noticeable difference is enhanced deuteration at 
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the “peptide binding domain”, including amino acids 131-135. However, at elevated times of deuteration 

(H-I), there is apparent exposure of the dimerization domain and the peptide-binding loop to solvent, 

suggestive of global conformational changes induced by the S134A mutation.  

 

Figure 13. Summary of the biochemical properties of the peptide-docking site mutations in AGR2 

produced based on hydrogen-deuterium exchange mapping. Based on the hydrogen-deuterium 

exchange mapping data (Figure 4 and 5), we focused on creating three alanine substitutions mutations in 

the VDPSL loop motif, from amino acids 131-135, residing between two b-sheets (Figure 6). The mutant 

proteins exhibit inverse trends in their specific activity. Consensus peptide binding reactions demonstrate 

that wt-AGR2=S134A>D132A>P133A with two mutants showing a loss-of-function. Whilst in EpCAM 

binding, S134A>D132A>P133A=wt-AGR2 with two mutants showing a gain-of-function. These data 

suggest that although mutating some amino acids in the VDPSL motif can impact on specific peptide 

binding, the global conformation changed induced by loop mutation (for example in the gain-of-function 

S134A mutation (Figure 11) might result in binding to a distinct site on the EpCAM molecule. Thus, one 

interpretation of such data is that one purpose of the VDPSL motif is to not only drive specific peptide 

binding by AGR2 but to constrain the conformational dynamics (or monomer-dimer equilibrium) of 

AGR2 so as to minimize its “binding to other sites” on its client proteins.  

 

Figure 14. Mapping the AGR2-binding site on EpCAM using hydrogen-deuterium exchange mass 

spectrometry. The indicated wt or mutated (Y251A) versions of EpCAM were incubated for 60 minutes 

at room temperature with buffer only or AGR2 protein at a molar ratio of AGR2:EpCAM of 4:1. The 

proteins were then deuterated by dilution into deuterated buffer then incubated over a time course of up to 

3600 seconds followed by reduction, acidification, pepsinization, and separation of fragments using mass 

spectrometry as indicated in the methods. The deuterium exchange rates of individual EpCAM peptides 

(Supplementary Figure 7) is summarized using the HDX exchange plots highlighting % deuteration as a 

function of amino acid position. The numbering of amino acids in the deuteration plots ranges from 1-241, 

in which the EpCAM used was from amino acids 24-265 creating a 24-amino acid stagger. (A) wt-

EpCAM deuteration alone or with AGR2 after 600 seconds; (B) wt-EpCAM deuteration alone or with 

AGR2 after 3600 seconds; (C) EpCAMY251A deuteration alone or with AGR2 after 3600 seconds; (D) a 

summary of the key regions in EpCAM whose deuteration is suppressed by AGR2 (in red) based on 

EpCAM PDB (4MZV) and (E) a table summarizing the key peptic peptides derived from wt or mutated 

EpCAM and how their deuteration changes as a function of Y251A mutation without or after stable AGR2 

binding. In D, the detergent decyl-beta-d-maltopyranoside decylmaltoside (PDB 4MZV) is included in the 

image to highlight the proximity of the detergent binding domain to the stable AGR2-binding site. The 
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green highlights the location of the TLIYY motif in the b-strand residing at the extreme C-terminus of the 

recombinant EpCAM protein. In E, the yellow highlights the raw deuteration data of the overlapping 

TLIYY motif containing peptide that reveal no changes in deuteration after the 60 minute preincubation 

allowing the complex to form between AGR2 and EpCAM. The pale green highlights the wt or mutated 

EpCAM peptic peptides identified that exhibit suppressed deuteration in the presence of AGR2 protein.   
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 11 
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