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Abstract

We propose an adaptation of a convolutional neural network (CNN) scheme proposed for segmenting brain
lesions with considerable mass-effect, to segment white matter hyperintensities (WMH) characteristic of
brains with none or mild vascular pathology in routine clinical brain magnetic resonance images (MRI).
This is a rather difficult segmentation problem because of the small area (i.e., volume) of the WMH and
their similarity to non-pathological brain tissue. We investigate the effectiveness of the 2D CNN scheme
by comparing its performance against those obtained from another deep learning approach: Deep Boltz-
mann Machine (DBM), two conventional machine learning approaches: Support Vector Machine (SVM) and
Random Forest (RF), and a public toolbox: Lesion Segmentation Tool (LST), all reported to be useful for
segmenting WMH in MRI. We also introduce a way to incorporate spatial information in convolution level of
CNN for WMH segmentation named global spatial information (GSI). Analysis of covariance corroborated
known associations between WMH progression, as assessed by all methods evaluated, and demographic and
clinical data. Deep learning algorithms outperform conventional machine learning algorithms by excluding
MRI artefacts and pathologies that appear similar to WMH. Our proposed approach of incorporating GSI
also successfully helped CNN to achieve better automatic WMH segmentation regardless of network’s set-
tings tested. The mean Dice Similarity Coefficient (DSC) values for LST-LGA, SVM, RF, DBM, CNN and
CNN-GSI were 0.2963, 0.1194, 0.1633, 0.3264, 0.5359 and 5389 respectively.

Keywords: Alzheimer’s Disease, convolutional neural network, deep learning, global spatial information,
segmentation, white matter hyperintensities

1. Introduction

White matter hyperintensities (WMH) are brain
regions that exhibit intensity levels higher than
those of normal tissues on T2-weighted magnetic
resonance images (MRI). These regions are of ut-
most importance because they have been reported

1Data used in preparation of this article were ob-
tained from the Alzheimers Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found
at: http://adni.loni.usc.edu/wp-content/uploads/how_

to_apply/ADNI_Acknowledgement_List.pdf

to be associated with a number of neurological dis-
orders and psychiatric illnesses, are also a com-
mon finding in brain MRI of older individuals,
and known to have a modest association with age-
related cognitive decline (Wardlaw et al., 2013).
For example, In Alzheimers disease (AD) patients,
higher load of WMH has been associated with
higher amyloid beta deposits, presence of markers
of small vessel disease and reduced amyloid beta
clearance, all these contributing to an overall wors-
ening of the cognitive functions on these patients
(Birdsill et al., 2014).

WMH are considered a feature of small vessel dis-
ease (Wardlaw et al., 2013), partly because in many
occasions they have been reported as having vascu-
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lar origin. Nevertheless, they have been also seen
in autoimmune diseases that have effects on the
brain (Theodoridou and Settas, 2006), in neurode-
generative diseases (Ge, 2006) and in psychiatric
illnesses (Kempton et al., 2008; Videbech, 1997),
none of which necessarily encompasses the presence
of small vessel disease indicators. The prominence,
distribution, textural characteristics and shape of
WMH differ with the degree of vascular pathology.
This variation is observed in regions clinically rele-
vant and anatomically distinct, e.g. periventricular
caps or rims or halos, subcortical multiple punctu-
ate or patchy lesions, partially confluent or conflu-
ent lesions. It has been suggested that this vari-
ation is partly due to histopathological differences
between WMH in different anatomical regions (Kim
et al., 2008). For example, caps and smooth halo
around the brain ventricles are reported to be re-
gions of demyelination associated with subependy-
mal gliosis and discontinuity of the ependymal lin-
ing, which are non-ischaemic in nature, contrary to
profuse patches of WMH in the deep white mat-
ter (Thomas et al., 2003). However, there are also
variations depending on the characteristics of the
population. For example, punctate WMH smaller
than 3 mm have been found to be predominantly is-
chaemic in depressed individuals but not in normal
elderly (Thomas et al., 2002). This heterogeneity
constitutes a challenge for WMH assessment meth-
ods, which, not surprisingly, underperform if ap-
plied to populations different than the one used for
their development (Wardlaw et al., 2015).

MRI is known to rely on natural properties of
the hydrogen molecules that form part of fluids
(i.e. water) or lipids. Two of these properties,
known as T1 and T2, depend on the nature of
the tissues imaged. For example, fluids (e.g. cere-
brospinal fluid (CSF)) have long T1 and the longest
T2, while water-based tissues (e.g. WMH) have
usually mid-range T1 and T2, and fat-based tis-
sues (e.g. normal white matter) have short T1
and T2. MR sequences that enhance the T1 dif-
ferences between tissues, namely T1-weighted, dis-
play fluids very dark, water-based tissues mid-grey
and fat-based tissues very bright. In turn, those
that enhance the T2 differences between tissues,
namely T2-weighted, display fluids with the high-
est intensities, and water-and fat-based tissues mid-
grey. A sequence particularly sensitive to the pres-
ence of WMH is fluid-attenuation inversion recovery
(FLAIR), which is a T2-weighted sequence that nul-
lifies the signal produced by the CSF, thus allowing

Figure 1: Example image of WMH visualisation in two dif-
ferent types of MRI structural sequences: T2 based-fluid
attenuated inversion recovery (T2-FLAIR) and T1-weighted
(T1-W). WMH regions are overlaid with red masks.

the WMH to be easily detected, and reduces the sig-
nal from the brain grey matter, allowing enhance-
ment of WMH contrast with respect to the sur-
rounding brain tissue. However, at the same time,
it is also sensitive to the directionality of healthy
white matter fibres, artefactually enhancing the in-
tensity of white matter fibres that run perpendic-
ularly to the plane of the MR slice, mimicking
WMH. Not surprisingly, WMH assessment meth-
ods combining simultaneously different sequences
have reported to perform better than when only
one MR sequence (e.g. FLAIR) is used (Hernández
et al., 2010; Lao et al., 2008; Schmidt et al., 2012;
Steenwijk et al., 2013). Given the MR sequences’
properties and WMH signal characteristics previ-
ously mentioned, in this study we are using T1-
weighted (T1-W) and T2-FLAIR. Figure 1 shows
WMH (masked in red) in these two sequences: T2-
FLAIR (left) and T1-W (right).

2. Relevant Literature and Contribution

In this section, some previous studies that eval-
uate automatic methods for segmentation of white
matter hyperintensities, its challenges and contri-
bution of this study are presented.

2.1. Existent Methods for Automatic WMH Seg-
mentation

Due to WMH’s clinical importance and the in-
creasingly large sample sizes of current clinical tri-
als and observational studies considerable efforts
have been made to assess WMH from brain MRI
(Caligiuri et al., 2015) (Garćıa-Lorenzo et al., 2013)
(Wardlaw et al., 2015). Amongst the several at-
tempts to automatically segment WMH from MRI
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(Lao et al., 2008)(Schmidt et al., 2012)(Steenwijk
et al., 2013) (Roy et al., 2015) (Yu et al., 2015)
(Khademi et al., 2012), few works show promis-
ing results. One of these works, done by Ithapu
et al. (2014), evaluates the application of super-
vised machine learning algorithms, namely Support
Vector Machine (SVM) and Random Forest (RF),
on WMH segmentation using brain MRI from AD
patients. For predictors or features that charac-
terise WMH, Ithapu et al. use three dimensional
region of interests (ROI) with size of 5 × 5 × 5 to
extract greyscale values and feed them to a texton-
based feature extraction space (Malik et al., 1999).
In their study, T2-FLAIR was used as the source
for feature extraction and T1-W was used for co-
registration and pre-processing. From precision, re-
call and Dice Similarity Coefficient (DSC) values
obtained for each algorithm, Ithapu et al. con-
cluded that RF was the best machine learning algo-
rithm to do automatic WMH segmentation on their
sample.

Another work was done by Leite et al. (2015).
They used manually segmented regions from human
brain images to train their automatic classifiers,
namely: SVM, k-nearest neighbour (k-NN), opti-
mum path forest (OPF), linear discriminant anal-
ysis (LDA) and a bagging method. In their study,
T2-FLAIR was also used as the main source for
feature extraction. Features from T2-FLAIR were
extracted using statistical analyses based on grey-
level histogram, grey-level co-occurrence matrix
(GLCM), grey-level run-length matrix (GLRLM)
and image gradients. Principal component analysis
(PCA) was used to reduce the dimension of the fea-
ture vector. Leite et al. concluded that SVM was
the best classifier in terms of accuracy.

Klöppel et al. (2011) also investigated differ-
ent methods for WMH segmentation such as
greyscale thresholding based on Otsu’s method
(Otsu, 1975) (thresholding method), k-NN (unsu-
pervised method), and SVM (supervised method).
Both T2-FLAIR and T1-W were used as sources in
feature extraction, and the features were formed by
three dimensional spherical ROI of image intensity
values, probability distribution of WMH based on
their anatomical location in the brain and Gabor
filters in 1 × 1 × 3 three dimensional ROIs. The
best algorithm in this study in terms of area under
the curve (AUC) of precision-recall and DSC was
SVM.

While there have been many evidences in pre-
vious studies that SVM and RF work well on

WMH segmentation, they have a major drawback
as for these conventional machine learning algo-
rithms hand-crafted features are always needed.
This major drawback is eliminated in the current
state-of-the-art approach, deep learning (Rachmadi
et al., 2017). CNN (LeCun et al., 1995) as one of
deep learning models is known as the state-of-the-
art approach for object recognition in natural im-
ages. In recent works, CNN has been widely used in
MRI for brain tumour segmentation (Havaei et al.,
2015; Kamnitsas et al., 2017) or WMH detection
(Ghafoorian et al., 2017) with promising results. In
MICCAI 2017 WMH Segmentation Challenge1, 14
of the total 20 schemes presented used deep learning
models. The results and discussion, published on-
line2, show that the majority of the deep learning
models outperformed conventional machine learn-
ing models but did not perform well for cases with
mild vascular pathology.

2.2. Challenges and Contribution

WMH at early stages of several neurodegener-
ative diseases are difficult to assess for two main
reasons. The first is their subtlety, which makes
WMH hard to identify, even by human eyes, and
easily mistaken by imaging artefacts (Hernández
et al., 2014). The second is their small volume,
as shown in Figure 2. These two facts make the de-
velopment of automatic WMH segmentations meth-
ods for brains with mild or none vascular pathology
challenging.

Figure 2: Individuals with mild or none vascular pathology
have, in general, small WMH burden. Histogram showing
the burden of brain WMH, represented by their volume (in
mm3)in our sample.

1http://wmh.isi.uu.nl
2http://wmh.isi.uu.nl/results/
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The success of deep learning algorithms in pat-
tern recognition have made them a good candidate
for the automatic identification of WMH. In the
past two years, few works in the field of brain im-
age analysis have used deep learning algorithms.
For example, Lyksborg et al. (2015), Havaei et al.
(2015) and Pereira et al. (2016) use convolutional
neural networks (CNN) for segmenting brain tu-
mours, Kleesiek et al. (2016) and Stollenga et al.
(2015) also use CNN for brain extraction and seg-
menting conventional tissues in general, respec-
tively, and Liu et al. (2012) classify MRI data into
AD vs. non-AD using deep Boltzmann machine.
These works obtained better results from these deep
learning methods than from classical feature extrac-
tion methods, suggesting that the use of deep learn-
ing can significantly improve the precision of auto-
matic segmentation of brain MRI features.

In this study, we propose and evaluate a novel
way to incorporate spatial information into a CNN
scheme for segmenting WMH in the convolution
level. We called this approach as CNN-GSI, where
GSI stands for global spatial information. Spatial
information becomes important in WMH segmen-
tation because appearance of WMH partly depends
on their location in the brain where there are re-
gions reported to have more (versus others that
have less) incidence of WMH (Valdés Hernández
et al., 2015, 2016). These indicate that WMH have
different characteristics, given their diverse aetiol-
ogy, in different locations. Their appearances also
depend on clinical factors like blood pressure, type
of pathology, disease stage, etc. Therefore not only
local and contextual, but also global information
are necessary for accurate WMH segmentation.

The most common strategy for incorporating GSI
to WMH segmentation schemes consists in, either
before or after applying the segmentation technique
per se, mask or weight the region where the segmen-
tation is applied, using a probabilistic template of
each voxel to be WMH (Schmidt et al., 2012; Shiee
et al., 2010). These templates are either results
of averaging and rescaling multiple co-registered
WMH segmentations from cohorts of similar clin-
ical characteristics to the one studied, or results
from classifiers of the probability for each voxel
to belong to a certain class (Caligiuri et al., 2015;
Garćıa-Lorenzo et al., 2013).

Specifically in the case of CNNs, Van Nguyen
et al. (2015) and de Brebisson and Montana (2015)
introduce coordinates for brain synthesis and seg-
mentation respectively. Ghafoorian et al. (2017)

also proposed adding eight hand-crafted spatial lo-
cation features to segmentation layer of CNN to
improve the results. While these approaches have
been shown to be useful, we think that relying on
maps that are too discrete may result in ignoring
some subtle features of WMH. Hence, we propose
to incorporate such coordinate values in the form
of a synthetic volume (Steenwijk et al., 2013; Roy
et al., 2015) as input to a CNN segmentation archi-
tecture through additional channels, which means
providing spatial information at the convolutional
level of the CNN. In this way, we can learn the
tendency of WMH from more simple and weaker
contextual data such as Cartesian coordinates and
polar coordinates of the area in brain images.

We compare the performance of the proposed
CNN with GSI (CNN-GSI) framework with those
of existing CNN (i.e., CNN without GSI), Sup-
port Vector Machine (SVM), Random Forest (RF)
and Deep Boltzmann Machine (DBM) frameworks.
Both of SVM and RF have been reported to work
well for WMH segmentation (Ithapu et al., 2014;
Klöppel et al., 2011) whereas DBM is a semi-
supervised deep neural network which works well
for feature extraction of MRI (Liu et al., 2012). In
this study, we use greyscale value and texton fea-
tures as features for SVM and RF, as per (Ithapu
et al., 2014). Whereas, we only use greyscale value
for DBM. We also evaluate the results obtained by
our deep-learning schemes against those obtained
from a popular public tool, namely Lesion Segmen-
tation Tool (LST) (Schmidt et al., 2012). The re-
sults of all methods are compared and analysed. Fi-
nally, we evaluate the results from the six schemes
that performed best against the performance of
trained human observers and neuroradiological clin-
ical assessments.

In summary, our contributions in this paper
are 1) comparing the use of CNN with the other
algorithms evaluated in this study, namely SVM,
RF and DBM, for automatic WMH segmentation in
routine clinical brain MRI of individuals with none
or mild vascular pathology and 2) proposing and
evaluating a way for incorporating spatial informa-
tion into CNN in the convolution level by creating
an artificial volume that provides GSI.

3. Subject and its corresponding MRI data,
Pre-processing and Post-processing

In this section, we describe MRI data sam-
ples, pre-processing steps and post-processing steps
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used in this study. All pre-processing and post-
processing steps are used in both conventional ma-
chine learning and deep learning.

3.1. Subjects and MRI Data

The data used in this study is obtained from
the Alzheimers Disease Neuroimaging Initiative
(ADNI) public database (Mueller et al., 2005;
Weiner et al., 2012). The ADNI was launched in
2003 as a public-private partnership, led by Princi-
pal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers,
and clinical and neuropsychological assessment can
be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimers
disease (AD).

The first dataset used in this study contains MRI
data from 20 ADNI participants (12 men and 8
women, mean age at baseline 71.7(SD 7.18) years),
randomly selected from the database, blind from
any clinical, imaging or demographic information
at the time of selection, with MRI data acquired on
three consecutive years, resulting in data from a to-
tal of 60 MRI scans. Three of them were cognitively
normal (CN), 12 had early mild cognitive impair-
ment (EMCI) and 5 had late mild cognitive impair-
ment (LMCI). But the Mini Mental State Exami-
nation scores did not differ considerably between
these 3 cognitive groups of individuals: mean val-
ues were 28.5(SD 2.12) for the CN, 27.83(SD 1.75)
for EMCI and 27.67(SD 2.08) for LMCI. The cog-
nitive status of the individuals that provided data
for this study did not change across the 3 visits.

The second dataset used in this study contains
268 MRI data from 268 different ADNI partici-
pants, for which WMH reference masks are un-
available. The only labels available for each MRI
data from this second dataset are Fazekas scores
consisting of visual ratings of WMH burden in
the periventricular and deep white matter regions
(Fazekas et al., 1987). Fazekas scores are known to
be highly correlated to WMH volume (Hernández
et al., 2013). In this study, Spearman’s correlation
is used to calculate correlation between the total
Fazekas score (calculated as the sum of the periven-
tricular and deep scores) and the WMH volume au-
tomatically produced by the CNN configurations.

The mean and standard deviation of the clini-
cal data that has been reported to be relevant to
WMH burden and progression (cited by (Wardlaw

et al., 2013)), and which is acquired at each MRI
visit (i.e. diastolic blood pressure, systolic blood
pressure and pulse rate) are summarised in Table
1. To evaluate the clinical relevance of our re-
sults, we also use the serum cholesterol and glu-
cose levels obtained on visit 1. Studies have shown
these factors could play a role in WMH progres-
sion (Dickie et al., 2016). The mean (SD) values
for cholesterol were 206.2(35.38) mg/dL, and for
glucose 96.4(11.35) mg/dL. MRI data acquisition
parameters are shown in Table 2.

Table 1: Mean and standard deviation of the clinical data
(diastolic blood pressure, systolic blood pressure and pulse)
of the individuals that provided data for this study.

Parameter
Year 1 Year 2 Year 3

mean (SD) mean (SD) mean (SD)

Diastolic BP (mmHg) 72.60 (8.95) 73.25 (11.01) 73.80 (11.81)
Systolic BP (mmHg) 125.55 (12.56) 127.00 (12.94) 128.70 (13.97)
Pulse rate (bpm) 65.10 (10.78) 61.00 (9.53) 62.45 (13.82)

Table 2: Data acquisition protocol parameters.

Parameter T1-weighted T2-FLAIR

In-plane matrix (pixels) 256 × 256 256 × 256
Number of Slices 256 35
Thickness (mm) 1.2 5
In-plane resolution (mm) 1.0 x 1.0 0.8594 x 0.8594
Repetition Time (TR)(ms) 2300 9000
Echo Time (TE)(ms) 2.98 90 or 91
Flip Angle 9.0 90 or 150
Pulse Sequence GR/IR SE/IR

3.2. Ground Truth

Ground truth WMH segmentations of the first
dataset were produced by an experienced image an-
alyst, semi-automatically by thresholding the T2-
FLAIR images using the region-growing algorithm
in the Object Extractor tool of AnalyzeTM soft-
ware, simultaneously guided by the co-registered
T1- and T2-weighted sequences. Each brain scan
was processed independently, blind to any clinical,
cognitive or demographic information and to the
results of the WMH segmentations from the same
individual at different time points. The resultant
mean WMH volume of the ground truth segmen-
tations for Year 1 was 6002.1 (mm3) (SD 4112.7),
for Year 2 it was 5794.9 (mm3) (SD 4281.6) and for
Year 3 7004.2 (mm3) (SD 5274.7). For more details
and to access these segmentations, please refer to
our datashare url3.

3http://hdl.handle.net/10283/2214
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3.3. Measurements for inter-/intra-observer relia-
bility analyses

A second image analyst (Observer 2) gener-
ated two sets of longitudinal WMH binary masks
for 7/20 subjects (i.e. 42 measurements in to-
tal), blind to the ground truth measurements and
to previous assessments. These were done semi-
automatically using Mango4, individually thresh-
olding each WMH 3D cluster in the original FLAIR
images. Information and segmentations of the 7
subjects for intra-/inter-observer reliability evalua-
tion can be accessed in another datashare url5.

3.4. Preprocessing

The preprocessing steps of the data comprise
co-registration of the MRI sequences on each
scanning session, skull stripping and intracra-
nial volume mask generation, cortical grey mat-
ter/cerebrospinal fluid/brain ventricle extraction
and intensity value normalisation. Rigid-body lin-
ear registration of the T1-W to the T2-FLAIR im-
age -as T2-FLAIR is the base sequence for identify-
ing WMH- is achieved using FSL-FLIRT (Jenkin-
son et al., 2002). Skull stripping and generation of
the intracranial volume mask are done using opti-
BET (Lutkenhoff et al., 2014). OptiBET, while at-
tempting to extract the brain, also excludes parts
of the brain ventricles from the intracranial volume.
Therefore, we perform fill holes morphological op-
eration to the binary mask created by optiBET to
obtain the intracranial volume.

Cortical grey matter, cerebrospinal fluid and
brain ventricles are three brain regions where WMH
do not appear and can present artefacts often
wrongly mislabelled as WMH (Wardlaw et al.,
2015). Because of that, these regions are excluded
by masking them out as follows: Binary masks of
normal-appearing white matter and cerebrospinal
fluid are obtained using FSL-FAST (Zhang et al.,
2001). The holes in the obtained white matter mask
are filled. Subsequently, the ventricles (and possible
lacunes) are removed from it by subtracting the re-
sults of a logical ”and” operation between the ’filled
white matter’ mask and the mask of cerebrospinal
fluid.

Intensity value normalisation is done in two steps.
The first step is adjusting the maximum grey scale
value of the brain without skull to 10 percent of

4http://ric.uthscsa.edu/mango/
5http://hdl.handle.net/10283/2706

the maximum T2-FLAIR intensity value. The sec-
ond step is adjusting the contrast and brightness
of the MR images such that their histograms are
consistent. To equalise contrast and brightness, we
used the histogram matching algorithm for MR im-
ages developed by Nyúl et al. (2000) where an MR
image is used as a reference image. The approach
of using histogram matching for pre-processing im-
ages with non-healthy tissue has been reported to
be promising (Shah et al., 2011) and previously
used for pre-processing in CNN approaches (Pereira
et al., 2016). Furthermore, normalisation of the in-
tensities into zero-mean and unit-variance were also
necessary so that the modifications implemented to
optimise the CNN can run smoothly.

3.5. Post-Processing

Results from all segmentation schemes are in
probability maps of a particular voxel being WMH.
To make a clear-cut segmentation, we threshold the
probability maps using a probability value thresh-
old of t ≥ 0.5 and then remove the voxels that be-
long to 3D clusters smaller than 3mm3 maximum
in-plane diameter (as per definition of WMH in
Wardlaw et al. (2013)). Furthermore, the normal
appearing white matter (NAWM) mask is used in a
final post-processing step to get more refined WMH
segmentation by eliminating the spurious false pos-
itives that may appear in the cortical brain region.
In the evaluation, we use both: probability maps
and clear-cut segmentation results.

4. Conventional Machine Learning Algo-
rithms, Feature Extraction and Public
Toolbox

We compare the performance of the CNN against
the output from two conventional machine learning
algorithms, Support Vector Machine (SVM) and
Random Forest (RF), and one public toolbox com-
monly used in medical image analysis for WMH seg-
mentation. SVM is a supervised machine learning
algorithm that separates data points by using a hy-
perplane (Cortes and Vapnik, 1995). Whereas, RF
is a collection of decision trees trained individually
to produce outputs that are collected and combined
together (Opitz and Maclin, 1999). We modified
the public toolbox, W2MHS6, developed by Ithapu

6https://www.nitrc.org/projects/w2mhs/
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et al. (2014) so that we can train the desired conven-
tional machine learning algorithms, SVM and RF,
with our ground truth whilst using the same fea-
ture extraction methods for repeatability and repro-
ducibility reasons. The modified version extracts
greyscale values and texton based features from ei-
ther FLAIR or T1W MRI sequences on 5×5×5 re-
gions of interest. Texton-based features are formed
by concatenating all responses from low-pass, high-
pass, band-pass and edge filters (full explanation in
Ithapu et al. (2014)). After feature extraction, an
array of 2000 values in total was used for SVM and
RF.

We also compare our results against those from
the public toolbox Lesion Segmentation Tool (LST)
version 2.0.15. This toolbox uses the lesion growth
algorithm (LGA) (Schmidt et al., 2012) to segment
the WMH7. We applied the LGA with kappa-values
(κ = 0.05), the lowest recommended kappa-value
from LST, to increase sensitivity to hyperintensi-
ties.

5. Deep Learning Algorithms

In this section, we first explain briefly the semi-
supervised deep learning algorithm Deep Boltz-
mann Machine (DBM). Then, we describe in de-
tails our setup of the Convolutional Neural Net-
work (CNN) scheme (i.e. DeepMedic) for WMH
segmentation and how global spatial information is
encoded into the CNN.

5.1. Deep Boltzmann Machine

Deep Boltzmann Machine (DBM) (Salakhut-
dinov and Hinton, 2009) is a variant of re-
stricted Boltzmann machine (RBM) (Hinton, 2010;
Larochelle and Bengio, 2008), a generative neu-
ral network that works by minimizing its energy
function, where multiple layers of RBM are used
instead of only one layer, and each hidden layer
captures more complex high-order correlations be-
tween activities of hidden units than the layer below
(Salakhutdinov and Hinton, 2009).

In this study, the DBM, implemented for a direct
comparison with the conventional machine learning
algorithms of SVM and RF, uses a 5 × 5 × 5 3D
ROI to capture greyscale intensity values from the
MRI’s FLAIR modality. The intensity values are
feed-forwarded into a 2-layer DBM with 125-50-50

7www.statisticalmodelling.de/lst.html

structure where 125 is the number of units for the
input layer and 50 is the number of units for the
first and second hidden layers. Each RBM layer
is pre-trained for 200 epochs, and the whole DBM
is trained for 500 epochs. After the DBM train-
ing process is finished, the supervised fine-tuning is
done using a gradient descent process. We modi-
fied and used Salakhutdinov’s public code for DBM
implementation8.

5.2. Convolutional Neural Network

Convolutional Neural Network (CNN) (LeCun
et al., 1995) has emerged as a powerful supervised
learning scheme on natural images that can learn
highly discriminative features from a given dataset
(Kamnitsas et al., 2017). CNN uses sparse local
connections instead of dense, which is realized in
CNN by the convolutional layers that apply local
filters to a portion of input image called receptive
field of the CNN. Multiple filters are used to learn
more variants of object’s features in each convolu-
tional layer where their activations generate mul-
tiple number of feature maps. The convolutional
layers of CNN have fewer parameters to train, and
it can naturally learn contextual information from
the data which is important in object detection and
recognition (LeCun et al., 2015). Several number
of convolutional layers can also be stacked together
to capture more complex feature representations of
the input image.

In this study, we use the CNN framework
named deepmedic proposed by Kamnitsas et al.
(2017), which efficiently implements a dual-
pathway scheme for CNN (will be discussed later
in the next subsection). We use publicly available
deepmedic toolbox for reproducibility and repeata-
bility reasons and further improve deepmedic’s per-
formance by incorporating global spatial informa-
tion (GSI) into the network. Also, we use 2D CNN
instead of 3D CNN like in the original study due to
the anisotropy of the MR images used in this study
(i.e., the T2-FLAIR MRI from ADNI database have
dimensions of 256 × 256 × 35 and voxel size of
0.86 × 0.86 × 5 mm3).

Global spatial information for CNN. Global spa-
tial information (GSI) in this study refers to a set
of synthetic images that encode spatial information
of brain in MRI. CNN is a powerful method to ex-
tract features from a set of images when these are

8http://www.cs.toronto.edu/ rsalakhu/DBM.html
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local features of an object. However, CNNs are not
designed to learn global spatial information of some
specific features. As spatiality of features is an im-
portant information for WMH segmentation (Kim
et al., 2008), our GSI is designed to augment the
CNN’s performance for this task.

In this study, GSI is a set of four different spatial
information from the three MRI axes, which are x,
y and z, and a radial filter that encodes the dis-
tance from the centre of the MR image. In each
axis, numbers in the range of 0 to 1 (i.e., [0, ..., 1])
are generated to realise a spatial information slide
for each axis. The radial filter is generated using a
2D Gaussian function where σ = 51, which is an ar-
bitrary value that generates a nice cover of the 2D
Gaussian function to an MRI slice sized 256 × 256.
In this study, we use only spatial information of
the three axes in one experiment and then incor-
porate the radial filter in another experiment. The
final experiment uses six MRI channels where two
of them are MRI sequences (i.e., FLAIR and T1W)
and four are the spatial information (i.e., x, y, z
and radial). The illustration of GSI can be seen in
Figure 3. Whereas, illustration of CNN-GSI (i.e.,
CNN with GSI) is depicted in Figure 4.

Figure 3: Illustration of four different types of global spatial
information (GSI) of MRI proposed in this study, which are
x, y, z and radial. Upper ones are the synthesised images of
spatial information, while the lower ones are MRI overlaid
by spatial information.

Network Architecture. We use small-sized kernels,
which are preferred for MR images (Simonyan and
Zisserman, 2014), and single stride in all convolu-
tional layers. We create two different CNN architec-
tures: 5 convolutional layers of 2D CNN and 8 con-
volutional layers of 2D CNN using the deepmedic
framework implemented by Kamnitsas et al. (2017).
We use two different architectures to see different
impacts of spatial information (i.e., GSI), which is
our contribution, in different CNN architectures.
The first network has a receptive field of 15 × 15

while the second one has 17 × 17. Performance of
two architectures are compared with each other and
with other conventional and deep machine learning
algorithms.

To ease comparability between schemes (and
with works that may use deepmedic for the same
purpose), we only change the number of convolu-
tional layers and their kernel size but not the en-
tire network architecture. The original 3D CNN
of deepmedic is formed by 8 convolutional lay-
ers, 2 fully connected layers and 1 segmentation
layer. Fully connected layers (FC) are used to com-
bine normal and sub-sampled pathways (will be ex-
plained in the next sub-section) whereas the seg-
mentation layer is an output layer for voxel clas-
sification. There is a naive up-sampling operation
layer in the sub-sampled pathway to make sure that
the size of input segment for fully connected layers
from both pathways are the same. For regulari-
sation, deepmedic uses dropout (Srivastava et al.,
2014; Hinton et al., 2012) in the two last layers
(i.e., the second fully connected layer and the clas-
sification layer), where some nodes from fully con-
nected layers are removed with some probability p
thus forcing the network to learn better represen-
tations of the data. In this study, dropout is set
to p = 0.5. Data augmentation which is useful
for reducing overfitting (Krizhevsky et al., 2012),
is also used with some variances in rotation space
(i.e., where the original training data are rotated
by x axis with a probability of rotating the data
p = 0.5). We do not use any pooling layer because,
while pooling is usually used to make feature repre-
sentation invariant to small change and more com-
pact (LeCun et al., 2015), it might introduce some
spatial invariances undesirable for lesion segmenta-
tion (Kamnitsas et al., 2017). A diagram of the
CNN architecture used in this study can be seen in
Figure 4.

Kernel function and loss function. Transformation
in convolutional layers is achieved by convolving
kernels to the input image segments and applying
the output to an activation function. Each convolu-
tion computes a linear transformation between in-
put values and weight values of kernels whereas the
activation function applies a non-linear transforma-
tion to its input. The calculation can be written as
in Equation 1 where h is output to the neuron, x is
input vector, W is kernel matrix values, b is a bias
term and σ is a non-linear activation function. In
this study, parametric rectifier linear units (PreLU)
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activation function (Equation 2) is used where a is
a trainable parameter (He et al., 2015).

h = σ
(
x>W + b

)
(1)

σ(x) =

{
x, if x > 0
ax, otherwise

(2)

Voxels in our WMH segmentation scheme will be
of only two classes: WMH and non-WMH. Hence,
binary cross-entropy loss function, written in Equa-
tion 3, is used where x is input data (i.e., voxels),
q(x) is the probabilistic prediction and p(x) is the
target.

H(p, q) = −
∑
x

p(x) log q(x) (3)

Multiple-pathway architecture of CNN. Multiple-
pathway architecture refers to the use of addi-
tional path(s) to extract more contextual infor-
mation. Different approaches of multiple-pathway
CNNs have been previously studied by Havaei et al.
(2016), Moeskops et al. (2016) and Kamnitsas et al.
(2017). By applying a multiple-pathway archi-
tecture, different amounts of contextual informa-
tion can be used simultaneously by the CNN. In
Moeskops et al. (2016), for example, authors use
three paths of CNN where the second and third
paths use twice and thrice the size of the first path’s
receptive field. Note that the amount of contextual
information is decided by the size of the receptive
field.

Multiple-pathway structures introduce more pa-
rameters and thus results in larger memory usage
and computation time. To avoid the explosion
of memory usage and processing time, Kamnitsas
et al. (2017) introduced a new scheme of multiple-
pathway (i.e., two-pathway) where different reso-
lutions of input images are fed into two different
pathways of CNN which are merged together at the
end. For example, by resizing MR images to be
1/3 of the original size, three times bigger receptive
fields of MR images can be obtained without adding
the number of parameters. Full reports on its ap-
plication can be read in (Kamnitsas et al., 2017).
In this study, we use resizing factor of either 1/3
(i.e., default parameter) or 1/5 to see whether dif-
ferent resizing factor affects performance of CNN-
GSI. For the rest of this paper, the original and
resized paths will be referred as normal and sub-
sampled pathways respectively. The illustration of

the dual-pathway architecture of CNN proposed by
Kamnitsas et al. (2017) and used in this study can
be seen in Figure 4.

Image segments and training. Image segments are
image patches that will be used as input to the
CNN. As WMH segmentation is performed on a
voxel basis, we do not have to load a full MR image
into the CNN. Image segments used in the training
process are selected using the scheme developed in
deepmedic framework where probability of 50% is
used to extract an image segment centred on a non-
WMH or WMH (Kamnitsas et al., 2017). We also
use RMSProp optimiser (Dauphin et al., 2015) to
minimise the binary cross-entropy loss function. To
speed up the training process in low curvature we
use Nesterov’s Accelerated Momentum (Sutskever
et al., 2013). Momentum value is kept constant to
0.6 while learning rate decreases linearly from its
initial value of 0.001.

6. Experimental Setup

In this section, training and testing processes,
parameter setup of machine learning methods and
evaluation methods used in this study are pre-
sented.

6.1. Training and Testing Processes

Due to the limited number of data available in
the first dataset (i.e. from 60 MRI scans), we used
5-fold cross validation across the dataset, where 48
samples (i.e., 16 individuals) are used as training
samples and 12 samples (i.e., 4 individuals) are used
for testing. The selection of individuals/subjects
for training and testing in each cross validation was
done randomly. On the other hand, all MRI scans
from the first dataset are used as training samples
for generating the WMH segmentations of the sec-
ond dataset (i.e. 268 MRI scans), which is used as
testing sample, evaluated using the Fazekas scores.

Data sampling for each label of WMH and non-
WMH from training datasets is done differently de-
pending on the machine learning algorithm used.
For SVM and RF algorithms, we use the same sam-
pling scheme as in (Ithapu et al., 2014), which is
to equally sample WMH and non-WMH data from
the training dataset. Whereas, for DBM, we use
weighted sampling method of WMH and non-WMH
data, where the number of non-WMH data are four
times more than the WMH data. For CNN, dense
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Figure 4: A diagram of two CNN architectures used in this study, which are based from 3D CNN deepmedic framework
(Kamnitsas et al., 2017). The upper one, (a), is formed of 8 convolution layers whereas the lower one, (b), is formed of 5
convolution layers. Dash arrows refer to the normal pathways whereas non-dash arrows refer to the sub-sampled pathways.
On the other hand, red arrows refer to the global spatial information’s (GSI’s) paths proposed in this study. The GSI itself is
represented by red boxes.

training on image segments that adjusts to the true
distribution of non-WMH and WMH provided in
deepmedic framework (Kamnitsas et al., 2017) is
used.

6.2. Parameter Setup

There are some parameters for each machine
learning method that need to be set before starting
the training process. In this study, for each machine
learning method, we used the sets of parameters
that previous studies referred gave the best results,
verified in our preliminary experiments (Rachmadi
et al., 2017). Radial basis (RBF) kernel is used for
SVM classifier and extracted features for conven-
tional machine learning, discussed in Section 4, is
reduced to 10 using PCA and then whitened before
training. Whereas, RF model used in this training
is set using the following parameters: 300 trees, 2
minimum samples in a leaf and 4 minimum sam-
ples before splitting. On the other hand, we con-
struct 2-layer DBM with 125-50-50 structure where
125 is the number of units of the input layer and

50 is the number of units of both hidden layers.
Each RBM layer is pre-trained for 200 epochs, and
the whole DBM is trained for 500 epochs. In the
end of the training process, a label layer is added
on top of the DBM’s structure and fine-tuning is
done using gradient descent for supervised learning
of WMH segmentation. CNN has many parame-
ters inside the network, so we left default parame-
ters provided by deepmedic framework as they have
been reported work well for segmentation and also
for reproducibility reason. The CNN’s parameters
are listed in Table 3.

6.3. Evaluation

We calculate area under the curve of precision-
recall metrics (AUC-PR) and Dice Similarity Co-
efficient (DSC) metrics: the most commonly used
metrics to evaluate medical image segmentation re-
sults. AUC-PR generates a confusion matrix be-
tween ground truth and the automatic segmenta-
tion result. Whereas, DSC (Dice, 1945) measures
similarity (i.e. spatial coincidence) between ground
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Table 3: Parameters of Convolutional Neural Network
(adopted directly from (Kamnitsas et al., 2017))

Convolutional Neural Network

Stage Parameter Value

Initialisation weights (He et al., 2015)

Regularisation
L1 0.000001

L2 0.0001

Dropout
p - 2nd last layer 0.5

p - Last layer 0.5

Training
epochs 35

momentum 0.5

Initial LR 0.001

truth and automatic segmentation results. Preci-
sion, recall and DSC are defined as per Equations
4, 5 and 6 where TP, FP and FN are the values
of true positive, false positive and false negative re-
spectively. We performed the two-sided Wilcoxon
signed rank significance test to see whether the im-
provements were significant or not.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

DSC =
2 × TP

FP + 2 × TP + FN
(6)

As an additional evaluation, we also calculated
the non-parametric Spearman correlation coeffi-
cient between the total Fazekas scores (Fazekas
et al., 1987) and the WMH volumes produced by
our automatic schemes, as it is known these two
metrics are highly correlated (Hernández et al.,
2013). Fazekas scores are widely used for describing
severity of WMH (Scheltens et al., 1993). Fazekas
scores consider the WMH subdivided into periven-
tricular white matter hyperintensities(PVWMH)
and deep white matter hyperintensities (DWMH).
PVWMH’s ratings are: 0) absence of WMH, 1) caps
or pencil-thin lining around ventricle, 2) smooth
”halo” and 3) irregular periventricular signal ex-
tending into the deep white matter. DWMH’s rat-
ings are: 0) absence of WMH, 1) punctate foci, 2)
beginning confluence and 3) large confluent areas.
For our evaluation, we summed the PVWMH and
DWMH ratings for each of the 268 unlabelled MRI
data.

We also calculated two additional metrics called
Volume Difference (VD) (Equation 7) and volu-
metric disagreement (D) (Equation 8) for evalu-
ating our results against intra-/inter-observer re-
liability measurements. VD evaluates volumetric
different between automated schemes and manual
segmentations. D evaluates volumetric disagree-
ment between automated schemes and two WMH
segmentation masks produced manually by one ob-
server (i.e. Observer #1) in 12 randomly selected
datasets, and between automated schemes and two
WMH segmentation masks produced manually by
two different observers (i.e. Observer #1 and Ob-
server #2) for 20 randomly chosen datasets.

V D =
Vol(Seg.) − Vol(GT)

Vol(GT)
(7)

D = abs

(
Vol(GT) − Vol(Seg.)

mean(Vol(GT), Vol(Seg.))

)
× 100%

(8)

In addition, we evaluated the outcome of each
segmentation method in relation with age, gen-
der and clinical parameters selected based on clin-
ical plausibility and/or previous research, namely:
blood pressure parameters (systolic and diastolic),
pulse rate, cholesterol and serum glucose. One-way
analyses of covariance (ANCOVA) were performed
to evaluate candidate variables (clinical data) asso-
ciated with potential change in WMH volume at
each time-point. Since WMH volumes were ob-
tained at three time-points (year one (Y1), year
two (Y2) and year three (Y3)) evaluation was per-
formed for potential change from Y1 to Y2, Y2 to
Y3 and Y1 to Y3. Prior to conducting each AN-
COVA model, we assessed collinearity through Bel-
sley collinearity diagnostics (Belsley et al., 2005),
independence between each covariate and the in-
dependent variable, and homogeneity of regression
slope assumptions, all using MATLAB 2015a.

Finally, the results of our six best-performing
schemes were visually evaluated by a neuroradi-
ologist using a proforma (given as Supplementary
material), which records the number of WMHs not
identified, missed partially and misclassified in the
following anatomical brain regions: pons, periven-
tricular, corpus striatum, and anterior, central and
posterior white matter bundles.
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7. Results and Discussion

In this section, we discuss the use and impact
of using multiple MRI sequences for automatic seg-
mentation of WMH, the difference in performance
between conventional machine learning algorithms
(i.e., SVM and RF) and deep learning algorithms
(i.e., DBM and CNN), the differences in perfor-
mance of the public toolbox evaluated versus other
algorithms, the use and impact of using global in-
formation in CNN, the influence of WMH volume
in the performance of each algorithm, longitudinal,
intra- and inter-observer analyses, the processing
time needed for training and testing each algorithm,
and the clinical evaluation of automatic WMH seg-
mentation schemes.

In total, 5 machine learnings with 24 different
schemes/settings were tested in this study for au-
tomatic WMH segmentation. List of the machine
learning algorithms can be seen in Table 4, whereas
all schemes/settings and their general evaluation
can be seen in Table 5.

Table 4: List of all machine learning algorithms and their
category used in this study . ML, SPV, DL, NHL and SN
stand for ’Machine Learning’, ’Supervised’, ’Deep Learning’,
’Number of Hidden Layer’ and ’Scheme Number’.

No. ML SPV DL NHL Input(s) SN
1 LST-LGA No No - FLAIR 1
2 SVM Yes No - FLAIR & T1W 2,3
3 RF Yes No - FLAIR & T1W 4,5
4 DBM Yes Yes 2 FLAIR 6
5 CNN Yes Yes 5 or 8 FLAIR & T1W 7-24

7.1. Conventional Machine Learning vs. Deep
Learning

Generally, deep learning algorithms (i.e., DBM
and CNN) performed better than conventional ma-
chine learning algorithms (i.e., SVM and RF). In
our experiments, SVM’s performance was low in
both AUC-PR and DSC while RF’s performance
was a lot better than SVM in AUC-PR. On the
other hand, DBM’s performance was a lot bet-
ter than SVM/RF, especially in DSC, even though
DBM used the same ROI with SVM/RF. These re-
sults suggest that a simple DBM architecture (i.e.,
2-hidden layer) is still more powerful than SVM/RF
in WMH segmentation. However, in this study
CNN outperformed all other methods, including
DBM, with much better AUC-PR and DSC values.

7.2. LST Toolbox vs. Other Methods

Interestingly, the average DSC value for the LST
toolbox (LGA with κ = 0.05) was higher than that
for SVM, RF and DBM, but the AUC for LST was
the lowest from all methods. A low value of AUC
means that the algorithm failed to detect subtle
hyperintensities, even though the kappa-value pa-
rameter used in experiment for LST-LGA is recom-
mended as the most sensitive one.

7.3. Impact of using multiple MRI sequences

In general, segmentation results improved
when additional information (i.e., MRI se-
quence/channel) was added, especially in DSC. Im-
provement in AUC-PR was not always seen, as
adding T1W in SVM/RF decreased the value of
AUC-PR (Table 5 Scheme No. 2-5). However,
AUC-PR always increased for CNN when both se-
quences were used although the improvement was
very subtle (i.e., improves 0.02% and 0.48% in
Scheme No. 13 vs. Scheme No. 19 and Scheme
No. 16 vs. Scheme No. 22 respectively).

7.4. Impact of incorporating GSI into CNN

The use of synthetic GSI sequences in CNN im-
proved CNN’s performance in all cases with vari-
ations in the level of improvement, both in AUC-
PR and DSC (Table 5). The least improvement
occurred in Scheme No. 17 (i.e., 0.14% DSC im-
provement) while the highest improvement hap-
pened in Scheme No. 18 (i.e., 3.33% DSC improve-
ment). Similar improvement was also seen after
post-processing: from 0.07% to 0.52% in DSC met-
ric. Two different architectures of CNN (i.e., 5 con-
volution layer CNN and 8 convolution layer CNN)
and different input of MRI sequences were deliber-
ately tested in different experiments to see whether
the improvements could be observed in different
cases. With the same intention, only one-pathway
(i.e., normal pathway) CNN was evaluated (Scheme
No. 7-12). General improvement of incorporating
GSI into CNN can be appreciated in Figure 6, which
shows average DSC score curves produced by dif-
ferent threshold values. Furthermore, all improve-
ments listed in Table 5 were tested using the two
sided Wilcoxon signed rank and all of them were
significant by p ≤ 0.00015.

Interestingly, the impact of adding GSI into the
CNN was greater than adding an MRI sequence
(i.e., T1W) into the CNN, especially in AUC-PR
values. Adding T1W to Scheme No. 13 only
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Table 5: Experiment results reporting Dice Similarity Coefficient (DSC) and area under the curve of precision-recall (AUC-PR)
metrics. A token named ’one’ in scheme’s name refers to one-pathway CNN, and ’two’ refers to two-pathway CNN. Label ’diff’
refers to the mean difference between CNN without GSI and CNN with GSI. Whereas, ’avg.’ and ’std.’ refer to the mean
and standard deviation of the corresponding metric. Automated WMH segmentation is produced by using threshold value of
t = 0.5. Values in bold are the best score whereas values in italic are the second-best score.

DSC DSC post-processing AUC-PR
No. Scheme’s Name avg. diff. avg. diff. std. avg. std.

1 LST-LGA (Schmidt et al., 2012) 0.2921 - 0.2963 - 0.1620 0.0942 0.0682
2 SVM FLAIR 0.0855 - 0.0891 - 0.1266 0.1698 0.1203
3 SVM FLAIR T1W 0.1148 - 0.1194 - 0.1036 0.1207 0.0958
4 RF FLAIR 0.1516 - 0.1621 - 0.1464 0.4126 0.1671
5 RF FLAIR T1W 0.1589 - 0.1633 - 0.1513 0.3624 0.1767
6 DBM FLAIR 0.3152 - 0.3264 - 0.1425 0.3188 0.1592
7 CNN one FLAIR T1W (5-layer) 0.4332 - 0.5118 - 0.1519 0.5248 0.1838
8 CNN one FLAIR T1W GSI-xyz (5-layer) 0.4570 2.36% 0.5125 0.07% 0.1489 0.5498 0.1846
9 CNN one FLAIR T1W GSI-xyz-rad (5-layer) 0.4524 1.92% 0.5150 0.32% 0.1476 0.5485 0.1795
10 CNN one FLAIR T1W 0.4601 - 0.5178 - 0.1417 0.5418 0.1737
11 CNN one FLAIR T1W GSI-xyz 0.4789 1.87% 0.5227 0.49% 0.1474 0.5548 0.1777
12 CNN one FLAIR T1W GSI-xyz-rad 0.4738 1.37% 0.5230 0.52% 0.1508 0.5566 0.1761
13 CNN two FLAIR (5-layer) 0.4843 - 0.5226 - 0.1538 0.5673 0.1824
14 CNN two FLAIR GSI-xyz (5-layer) 0.4987 1.45% 0.5268 0.42% 0.1517 0.5738 0.1820
15 CNN two FLAIR GSI-xyz-rad (5-layer) 0.4984 1.41% 0.5273 0.47% 0.1542 0.5767 0.1831
16 CNN two FLAIR 0.4842 - 0.5287 - 0.1486 0.5716 0.1724
17 CNN two FLAIR GSI-xyz 0.4856 0.14% 0.5305 0.18% 0.1507 0.5637 0.1770
18 CNN two FLAIR GSI-xyz-rad 0.5174 3.33% 0.5307 0.20% 0.1485 0.5872 0.1754
19 CNN two FLAIR T1W (5-layer) 0.5051 - 0.5333 - 0.1505 0.5676 0.1869
20 CNN two FLAIR T1W GSI-xyz (5-layer) 0.5090 0.39% 0.5348 0.15% 0.1530 0.5768 0.1891
21 CNN two FLAIR T1W GSI-xyz-rad (5-layer) 0.5129 0.78% 0.5381 0.48% 0.1500 0.5778 0.1869
22 CNN two FLAIR T1W 0.4972 - 0.5359 - 0.1434 0.5764 0.1773
23 CNN two FLAIR T1W GSI-xyz 0.5147 1.75% 0.5390 0.31% 0.1437 0.5806 0.1796
24 CNN two FLAIR TW1 GSI-xyz-rad 0.5159 1.87% 0.5389 0.30% 0.1436 0.5815 0.1831

Figure 5: DSC values of automatic WMH segmentation in relation to the volume of WMH for each patient based on automated
WMH segmentation done by using LST-LGA (Scheme No. 1), SVM (Scheme No. 3), RF (Scheme No. 5), DBM (Scheme No.
6), CNN without GSI (Scheme No. 22) and CNN with GSI (Schemes No. 23 and 24). Each dot represents one patient and its
colour refers to its DSC value: red dot for low DSC whereas green dot for high DSC. The x axis indicates the mean volume of
WMH between the ground truth and the segmentation resulted from applying the scheme in question (given in mm3) for each
patient, whereas y indicates the correspondent DSC value. Red horizontal line indicates the mean of DSC values.

improved AUC-PR from 0.5673 to 0.5676 (i.e.,
0.03% improvement). Whereas, adding GSI to the
same scheme improved AUC-PR up to 0.5767 (i.e.,
0.94% improvement). Similarly happened adding
T1W to Scheme No. 16: AUC-PR only improved
from 0.5716 to 0.5764 (i.e., 0.48% improvement).

Whereas, adding GSI to the same scheme improved
AUC-PR up to 0.5872 (i.e., 1.56% improvement).

On the other hand, additional evaluation of
Fazekas scores to the unlabelled MRI data in the
second dataset was done using Spearman’s corre-
lation, where the resulted variable −1 ≤ r ≤ 1
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Figure 6: Average DSC score curve produced by using dif-
ferent threshold values where general improvement of incor-
porating GSI into CNN on WMH segmentation can be seen.

Table 6: Spearman’s correlation coefficient (r) between
WMH volume of MRI data automatically produced by CNN
and visual rating Fazekas score. High r values with low p
values are better.

Corr. val.
No. Scheme’s Name r p

1 CNN without GSI 0.4275 1.92E-72
2 CNN with XYZ spatial info. 0.4341 7.00E-75
3 CNN with XYZ and radial spatial info. 0.4367 7.66E-76
4 CNN one FLAIR T1W (5-layer) 0.3626 9.45E-10
5 CNN one FLAIR T1W GSI-xyz (5-layer) 0.3631 8.96E-10
6 CNN one FLAIR T1W GSI-xyz-rad (5-layer) 0.3779 1.60E-10
7 CNN one FLAIR T1W 0.3816 1.02E-10
8 CNN one FLAIR T1W GSI-xyz 0.3894 3.92E-11
9 CNN one FLAIR T1W GSI-xyz-rad 0.3818 9.91E-11
10 CNN two FLAIR (5-layer) 0.4479 1.25E-14
11 CNN two FLAIR GSI-xyz (5-layer) 0.4831 4.49E-17
12 CNN two FLAIR GSI-xyz-rad (5-layer) 0.4981 3.26E-18
13 CNN two FLAIR 0.4864 2.54E-17
14 CNN two FLAIR GSI-xyz 0.4865 2.51E-18
15 CNN two FLAIR GSI-xyz-rad 0.5104 3.51E-19
16 CNN two FLAIR T1W (5-layer) 0.4344 9.19E-14
17 CNN two FLAIR T1W GSI-xyz (5-layer) 0.4312 1.47E-13
18 CNN two FLAIR T1W GSI-xyz-rad (5-layer) 0.4369 6.39E-14
19 CNN two FLAIR T1W 0.4691 4.55E-16
20 CNN two FLAIR T1W GSI-xyz 0.4702 4.48E-17
21 CNN two FLAIR TW1 GSI-xyz-rad 0.4713 4.46E-17

is used to describe monotonic relationship between
paired data. The variable r indicates the strength
in the correlation, whilst p indicates significance. A
preliminary experiment in our first dataset showed
that Spearman’s correlation between total Fazekas
scores and the manual reference WMH segmenta-
tions was r = 0.7385 (p < 0.0001). As Table
6 shows, WMH volumes produced by CNN with
GSI correlated better with the corresponding to-
tal Fazekas score than the ones produced by CNN
without GSI.

7.5. Influence of WMH burden

DSC metrics in this study are low partly because
almost half of MRI data have very small WMH bur-

Table 7: Five groups of MRI data based on WMH volume.

No. Group Range of Number of
WMH Vol. (mm3) MRI Data

1 Very Small [0, 1500] 5
2 Small (1500, 4500] 22
3 Medium (4500, 13000] 24
4 Large (13000, 24000] 5
5 Very Large > 24000 3

den. This can be easily observed in Figure 5 where
all schemes evaluated performed better on brains
with medium and high load of WMH, including the
LST toolbox. Segmentation of small WMH was the
most challenging. The DSC metrics of scans with
small burden of WMH were low in most of machine
learning algorithms except for deep learning algo-
rithms, especially the CNN, which performed much
better than the others. Furthermore, it is also im-
portant to see in the left-side of the Figure 5 how
incorporating GSI into CNN can push the dots to
the top of the graphs, which means better perfor-
mance of the CNN. Please note that CNN schemes
depicted in Figure 5 are Schemes No. 22-24.

For clarity in this analysis we divided all MRI
data into 5 different groups based on WMH vol-
ume (Table 7) and plotted the DSC and AUC-PR
values in two separate boxplots (Figure 7). We
plotted seven different schemes as depicted in Fig-
ure 5: LST-LGA (Scheme No. 1), SVM (Scheme
No. 3), RF (Scheme No. 5), DBM (Scheme No.
6), CNN (Scheme No. 22), CNN-GSI-xyz (Scheme
No. 23) and CNN-GSI-xyz-rad (Scheme No. 24).
From Figure 7 we can see that GSI, both three
axes and radial spatial information, helped to im-
prove CNN’s performance. This marks one of our
purposes: to improve WMH segmentation in brain
MRI data from subjects with small WMH burden.
Full report of average values from DSC, AUC-PR
and Value Difference (VD) metrics from grouped
evaluation can be seen in Table 8: adding GSI im-
proved CNN’s performance up to 2.27% in the ’Very
Small’ group and gives an overall similar rate of im-
provement in other groups.

7.6. Visual Evaluation of the WMH Segmentation
results

Some visual examples of results from automatic
WMH segmentation without post-processing can be
seen in Figure 8. In the figure, three axial slices of
MRI data from three different subjects with dif-
ferent WMH volumes are presented. Raw segmen-
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Figure 7: Comparison of WMH segmentation accuracy (i.e., in DSC and AUC-PR) where all MRI data is grouped together
based on its WMH burden for seven different schemes: LST-LGA (Scheme No. 1), SVM (Scheme No. 3), RF (Scheme No.
5), DBM (Scheme No. 6), CNN (Scheme No. 22), CNN-GSI-xyz (Scheme No. 23) and CNN-GSI-xyz-rad (Scheme No. 24).
Criteria of each group are listed in Table 7, and the mean values for each scheme in each group are listed in Table 8. Central
mask, top edge and bottom edge of each box plot indicate median, the 25th percentile and the 75th percentile respectively.
Whereas, whiskers extend to the most extreme non-outliers data points and symbol ’o’ indicates outliers.

Table 8: Average values of Dice Similarity Coefficient (DSC), area under the curve of precision-recall (AUC-PR) and Value
Difference (VD) for grouped MRI data based on its WMH burden listed in Table 7. VS, S, M, L and VL stand for ’Very
Small’, ’Small’, ’Medium’, ’Large’ and ’Very Large’ which are names of the groups. Average values listed below are directly
corresponded to Figure 7. Bigger values of DSC and AUC-PR are better while VD value closer to zero is better. Values in
bold are the best score whereas values in italic are the second-best score.

No. Scheme

DSC (avg.) AUC-PR (avg.) VD (avg.)
VS S M L VL VS S M L VL VS S M L VL

1 LST-LGA 0.0699 0.2867 0.3106 0.2992 0.6038 0.0140 0.1214 0.1153 0.1488 0.2076 4.1536 0.5921 0.2343 0.5448 -0.3404
2 SVM 0.0250 0.1091 0.1111 0.1753 0.2714 0.0186 0.1020 0.1311 0.1625 0.3017 124.2099 33.6717 11.9839 5.6529 2.8556
3 RF 0.0200 0.1452 0.1599 0.2735 0.3645 0.1703 0.3204 0.3961 0.4890 0.6448 121.31 32.9548 12.3818 4.3804 2.6595
4 DBM 0.0481 0.2423 0.2617 0.3892 0.4474 0.2061 0.3363 0.3616 0.4454 0.3251 47.3302 12.9548 4.8097 1.6414 0.3066
5 CNN 0.1599 0.4461 0.5262 0.5590 0.7187 0.3187 0.5014 0.6150 0.6358 0.7998 22.8059 6.0561 1.5364 0.9259 -0.0155
6 CNN-GSI-xyz 0.1826 0.4596 0.5409 0.5837 0.7292 0.2959 0.4922 0.6239 0.6479 0.8154 15.7424 4.0804 1.4157 0.7298 0.0369
7 CNN-GSI-xyz-rad 0.1775 0.4623 0.5483 0.5849 0.7230 0.2687 0.5011 0.6302 0.6517 0.8161 14.7669 3.9256 1.3713 0.7697 -0.0423

tation results from Scheme No. 1 (LST-LGA), 3
(SVM), 5 (RF), 6 (DBM), 22 (CNN) and 23 (CNN-
GSI-xyz) are presented to visually appreciate differ-
ences in performance. We choose Scheme No. 22
and 23 as representatives for CNN as they use all
MRI sequences available and 2D version of origi-
nal CNN architecture provided by deepmedic frame-
work and tested in Kamnitsas et al. (2017)’s work.
From the figure, we can see that the use of deep
learning (i.e., DBM and CNN) made automatic seg-
mentation results cleaner than SVM and RF, which
have many false positives. We can also appreciate
how WMH volume affected the performance of each
automatic WMH segmentation scheme. In general,
CNN was more sensitive and precise than the other
algorithms tested in this study.

To better appreciate the difference in perfor-
mance between CNN and CNN-GSI (i.e., Scheme

No. 22 and 23), we zoomed-in the correspondent
panels from Figure 8 in Figure 9. GSI improved
CNN’s performance eliminating small false posi-
tives, which are pointed by yellow arrows, and cor-
rectly segmenting WMH in some cases, pointed by
green arrows (see also Table 5). Observe in the
same Figure 9 that the DSC of Subjects 1 and 3
improved considerably (i.e., 7.58% and 7.99% im-
provements). However, in the presence of exten-
sive ”dirty white matter”, the introduction of GSI
slightly decreased CNN’s performance as shown in
Subject 2, as many non-WMH regions (i.e., labelled
as non-WMH) appear very similar to WMH. This
particular case can be observed more closely in Fig-
ure 8 by comparing CNN results with the ground
truth.
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Figure 8: Visualisation of automatic WMH segmentation results from selected schemes of each algorithm (i.e., LST, SVM,
RF, DBM, CNN and CNN-GSI) and public toolbox LST. Red regions are WMH labelled by experts (GT) or machine/deep
learning algorithms. We visualise three different subjects with very different WMH burden to see how the WMH volume affects
the performance of machine/deep learning algorithms. Volume of WMH and value of the DSC metric for each algorithm are
at the bottom left on each respective image. Also, please note that this is visualisation before post-processing (DSC).

Table 9: Mean (avg.), variance (var.) and standard deviation (std.) of DSC scores for longitudinal test, mean of Volume
Difference (VD) for cross validation (CV) and longitudinal (Long.) experiments, and percentage of volumetric difference9(D)
between automated scheme and multiple human observers (i.e., intra-/inter-observation) for LST-LGA, SVM, RF, DBM, CNN,
CNN-GSI-xyz and CNN-GSI-xyz-rad (i.e., Scheme No. 1, 3, 5, 6, 22, 23 and 24 respectively in Table 5). Caption ’[Intra]’ and
’[Inter]’ refer to intra- and inter-observer evaluation. Higher DSC value is better, lower VD value is better and value of D close
to zero is better. Values in bold are the best score whereas values in italic are the second-best score.

No Scheme
DSC Long. VD (avg.) D of Observer #1 [Intra] (%) D of both observers [Inter] (%)

avg. std. CV Long. Label #1 std. Label #2 std. Obs. #1 std. Obs. #2 std.

1 LST-LGA - - 0.6647 - 67.64 32.30 77.48 45.15 60.59 41.58 49.89 42.37
2 SVM 0.1478 0.1117 9.1551 4.0259 131.38 48.41 136.77 52.50 61.01 52.42 66.60 41.46
3 RF 0.1816 0.1517 15.857 11.260 140.13 43.28 147.76 41.62 123.72 49.07 112.70 50.12
4 DBM 0.3054 0.1513 1.5460 0.1029 78.05 50.26 94.58 60.08 75.63 38.19 65.11 48.66
5 CNN 0.5982 0.1410 0.2541 -0.1883 38.92 32.79 63.87 60.57 33.18 38.48 35.01 36.62
6 CNN-GSI-xyz 0.6063 0.1411 0.2275 -0.1997 36.92 31.98 61.55 60.97 31.80 36.38 34.41 36.28
7 CNN-GSI-xyz-rad 0.6046 0.1512 0.3304 -0.1652 41.62 34.47 64.55 60.88 36.03 36.50 42.56 40.38

7.7. Volumetric Disagreement and Intra-/Inter-
Observer reliability analyses

Volumetric disagreement (VD) evaluates WMH
volume differences between manually segmented
WMH ground truth and automatically segmented
WMH. This analysis is clinically important if the
WMH burden of one patient is to be expressed by
the WMH volume. However, labels from observers,
are not very reliable as different observers can give
different opinion on the same data and one observer
might give different opinion in the reassessment
of the same data. Intra-/inter-observer reliability
analyses can be done to evaluate the confidence
level of the labels. Intra-observer analysis evalu-
ates agreement and reliability of multiple measure-

ments generated by one human observer whereas
inter-observer analysis evaluates agreement and re-
liability of WMH segmentation masks from multi-
ple human observers. The intra-observer volumet-
ric disagreement (i.e. given by the percentage of
the difference between measurements with respect
to the average value between both, calculated as per
Equation 8) for Observer #1 was 36.06% (standard
deviation (SD) 52.21%) whilst for Observer #2 it
was 4.22% (SD 24.02%). The inter-observer vol-
umetric disagreement (i.e. between Observers #1
and #2) was 28.03% (SD 57.25%).

Volumetric disagreement (VD) and intra-/inter-
observer analyses of seven learning algorithms (i.e.,
Scheme No. 1, 3, 5, 6, 22, 23 and 24 of Table 5)
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Figure 9: Close-up image of sections from selected cases
showing WMH segmentation results from the CNN and
CNN-GSI schemes. From left to right are ground truth, CNN
(Scheme No. 22) and CNN-GSI (Scheme No. 23). Yellow
arrows indicate false positives that disappear in CNN-GSI,
whereas green arrows indicate true positives that appear in
CNN-GSI. Please note that these are visualisations before
post-processing (DSC)

are shown in Table 9. VD rate of CNN with GSI
(i.e., CNN-GSI-xyz) in the cross validation experi-
ment is better than CNN without GSI (i.e., 0.2275
and 0.2541 respectively) and results the best per-
former in terms of VD. For the same metric, in the
longitudinal test, the CNN with GSI (i.e., CNN-
GSI-xyz-rad) gives better results than in absence
of GSI. With regards to volumetric disagreement
(D) against intra-/inter-observer reliability mea-
surements, CNN with GSI (i.e., CNN-GSI-xyz) al-
ways performed better than SVM, RF, DBM and
CNN without GSI. This means that spatial XYZ in-
formation boosts the CNN performance according
to volumetric differences and DSC metrics (Table
5).

9For clarity in the presentation of the agreement with the
human observers, standard deviation (std.) values are given
instead of 95% confidence intervals. Label 1 and Label 2
correspond to the two sets of measurements from Observer
1.

Table 10: Processing time of each algorithm in training phase
and testing phases. Times are given in minutes and seconds
respectively.

Algorithm
Training Testing one MRI
(minutes) data (seconds)

SVM 25.4589 82.4877
RF 36.4649 40.6431

DBM 1340.3209 16.9841
CNN 317.8757 9.1879

7.8. Longitudinal Evaluation

This evaluation aims to determine the schemes’
performance in estimating the WMH regions in the
two years following the baseline scan, providing
that the baseline measurements are known. Hence,
i.e., 1st year samples are used for training and the
rests of years are used for testing. Table 9 lists the
spatial agreement (DSC) rate and the Volume Dif-
ferences (VD) ratio in longitudinal test for schemes
No. 1, 3, 5, 6, 22, 23 and 24 (i.e., LST-LGA, SVM,
RF, DBM, CNN, CNN-GSI-xyz and CNN-GSI-xyz-
rad respectively) listed in Table 5. From the ta-
ble, CNN’s performance is improved when the four
types of GSI are incorporated (i.e., 0.6046 com-
pared to 0.5982 of CNN without spatial informa-
tion). CNN’s performance is also improved when
XYZ spatial information is incorporated, with DSC
of 0.6063. In summary, these results (i.e., listed in
Table 5, Table 8 and Table 9) show that CNN’s
performance is improved in all evaluations by in-
corporating GSI.

Figure 10 shows the WMH volumes and DSC
rates obtained for 10 random subjects from sev-
eral schemes, for schemes trained with data from
the previous year. We can see that conventional
machine learning algorithms (i.e., SVM and RF)
produced low agreement of WMH volume and lo-
cation while GSI improved CNN’s performance in
both WMH volume and location agreements.

7.9. Processing time

We also evaluated the processing time needed by
each algorithm in training and testing processes.
The results of this evaluation are shown in Ta-
ble 10. Note that SVM, RF and DBM used a
CPU, and were run from a workstation in a Linux
server with 32 Intel(R) Xeon(R) CPU E5-2665 @
2.40GHz processors. Whereas, CNN used a GPU
and were run in a Linux Ubuntu desktop with
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and
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Figure 10: Results of the longitudinal evaluation for 10 random subjects where first year data is used as training data and
second year data is used as testing data (shown in the charts). The upper chart presents the WMH volume (mm3) of the
ground truth and produced by the automatic WMH segmentation schemes, and the lower one presents the DSC values for the
machine learning algorithms. See Figure 8 for reference of the schemes represented.

EVGA NVIDIA GeForce GTX 1080 8GB GAM-
ING ACX 3.0. Based on the evaluation, SVM was
the fastest algorithm in the training process, but it
was the slowest one in testing. On the other hand,
CNN was faster than DBM in training but it was
the fastest in testing.

7.10. Clinical plausibility of the results

Despite WMH have been found to be associated
with hypertension, hypercholesterolaemia and sev-
eral vascular risk factors (Longstreth et al., 1996),
their dynamic progression in short term has only
been reported associated with their extent at cer-
tain time point considered the baseline measure-
ment (Ramirez et al., 2016). In the ANCOVA mod-
els mentioned in Section 6.3 that used the ground
truth WMH volume, in agreement with clinical re-
ports, the only predictor of the WMH volume a year
or two later was the WMH volume considered base-
line on each model (p < 0.0001 in all cases). When
these models were repeated but using the WMH
volume obtained from all schemes evaluated, the
results were not different.

Visual inspection of the results revealed that con-
ventional machine learning methods do not dis-
tinguish FLAIR hyperintense cortical sections well
from subtle WMH as Figure 8 shows. Deep learn-
ing algorithms, on the other hand, correctly classify
most of intense or obvious WMH, while misclassi-
fying subtle white matter changes (i.e. pale WMH)

in some cases. The fact that all schemes produced
results clinically plausible (i.e. in agreement with
published recent clinical reports) perhaps may be
indicative that all FLAIR hyperintensities, regard-
less of their location and relative intensity, may be
part of a more generalised phenomena worth to be
explored in details on a bigger sample.

7.11. Neuroradiological evaluation

The neuroradiologist evaluated the results from
the six automated schemes that produced the best
results, which were 5-layer dual-modality CNN with
and without GSI incorporated (Schemes No. 18-21)
and 8-layer dual-modality CNN with and without
GSI incorporated (Schemes No. 22-24) on one scan
(out of the three annual scans) per patient. This
evaluation was done to help regularising the loca-
tion and cause of the misclassified/missed WMH
partially or totally as well as to find out the effect
of GSI on CNN from the point of view of a neuro-
radiologist. This evaluation is also useful to devise
future improvement strategies. The neuroradiolo-
gist considered ”missing” an average of 2 WMH
clusters in the anterior white matter (i.e. white
matter in the frontal and parieto-frontal lobes) on
only 7/20 datasets. Of the WMH clusters correctly
identified, the neuroradiologist did not consider rel-
evant the differences in the extent of the clusters
marked by any scheme. Therefore, no ”WMH par-
tially missed” were recorded. False positives were:
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artefacts in the pons, corpus striatum, in deep white
matter and in the anterior cortex, on an average of
5 WMH clusters in total per patient. All schemes
evaluated by the neuroradiologist were considered
with ”similar performance”. These results indicate
that GSI did not give negative impact to the CNN
as per the neuroradiologist’s visual observation, but
at the same time GSI also did not give noticeable
positive impact either. This is reasonable because,
as per Table 8, GSI gives positive impact to the
very small and small WMH which are easily missed
by human observers. This also indicates that hu-
man observers easily overlook very small and small
clusters of WMH in MRI.

8. Conclusion

Conventional machine learning algorithms eval-
uated in this study, SVM and RF, did not give
a reasonable and good performance on automatic
WMH segmentation across the sample that this
study uses. The addition of the T2-weighted im-
age to the FLAIR and/or T1-weighted (i.e. the
use of three structural MRI sequences instead of
one or two) could increase the certainty of WMH
delineation and reduce false positives. Our ex-
periments show that deep learning algorithms per-
formed much better than the conventional ones for
automatic WMH segmentation. Lastly, global spa-
tial information (GSI) set, which is incorporated
into CNN’s convolutional layer, successfully helps
the performance of CNN in every CNN’s schemes
and tests done in this study especially in spatial
agreement metric (DSC) evaluations.

9. Future Work

WMH’s texture, shape and prominence differ ac-
cording to their anatomical location and are related
to the overall ”damage” of a particular brain, re-
flected on the presence of other indicators of small
vessel disease (Wardlaw et al., 2013). Therefore,
the best performing approach in this study, which
is CNN-GSI, needs to be evaluated in brains with
moderate to abundant vascular pathology (i.e.,
small vessel disease, strokes). Other types of GSI
such as brain’s landmark or tissue priors probabil-
ity maps can be investigated. Different approaches
of incorporating GSI into the CNN like in (Ghafoo-
rian et al., 2017), where GSI is incorporated in the

segmentation layer, can also be evaluated. Differ-
ent deep neural network architectures, like auto en-
coder could be promising. Further study to increase
the performance of automatic WMH segmentation
schemes on brains with heterogeneous WMH load
and appearance, and with images acquired with dif-
ferent acquisition protocols is needed.
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