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Anticipatory Association for Indoor Visible Light
Communications: Light, Follow Me !

Rong Zhang , Senior Member, IEEE, Ying Cui , Holger Claussen, Senior Member, IEEE,

Harald Haas, Fellow, IEEE, and Lajos Hanzo

Abstract— In this paper, a radically new anticipatory perspec-1

tive is taken into account when designing the user-to-access2

point (AP) associations for indoor visible light communica-3

tions (VLC) networks, in the presence of users’ mobility and4

wireless-traffic dynamics. In its simplest guise, by considering5

the users’ future locations and their predicted traffic dynamics,6

the novel anticipatory association prepares the APs for users7

in advance, resulting in an enhanced location- and delay-8

awareness. This is technically realized by our contrived design9

of an efficient approximate dynamic programming algorithm.10

More importantly, this paper is in contrast to most of the11

current research in the area of indoor VLC networks, where12

a static network environment was mainly considered. Hence,13

this paper is able to draw insights on the performance trade-14

off between delay and throughput in dynamic indoor VLC15

networks. It is shown that the novel anticipatory design is capable16

of significantly outperforming the conventional benchmarking17

designs, striking an attractive performance trade-off between18

delay and throughput. Quantitatively, the average system queue19

backlog is reduced from 15 to 8 [ms], when comparing the20

design advocated to the conventional benchmark at the per-21

user throughput of 100 [Mbps], in a 15 × 15 × 5 [m3] indoor22

environment associated with 8 × 8 APs and 20 users walking23

at 1 [m/s].24

Index Terms— VLC, user-association, dynamic programming,25

machine learning, hand-over, user-centric networking.26

I. INTRODUCTION27

V ISIBLE Light Communications (VLC) constitutes a com-28

pelling technique of meeting the escalating wireless-29

traffic demands, as a new member in the beyond30
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Fifth-Generation (5G) Heterogeneous Networks (HetNet) 31

landscape [1]. There have been tremendous link-level 32

achievements of VLC using state-of-the-art Light Emitting 33

Diodes (LEDs) and Photo-Detectors (PDs) [2], sophisticated 34

signal processing techniques [3] and advanced LED compo- 35

nents [4]. The system-level studies1 of VLC have also been 36

rapidly developed for broadening its scope beyond point- 37

to-point applications [5]. Recent advances have been par- 38

tially inspired by numerous advanced Radio Frequency (RF) 39

techniques. It is paramount however that these designs are 40

suitably tailored for the specifics of VLC transceivers, 41

propagation characteristics, illumination requirements, etc. 42

Explicitly, straightforward adoption is completely unsuitable. 43

Particularly, in indoor VLC, each Access Point (AP) constructs 44

an ‘atto-cell’ with a few meters of radius confined by the 45

coverage of light propagation [6]. Different from the RF 46

regime, the number of APs may be higher than the number 47

of users, resulting into ultra-dense networks [7], [8]. However, 48

existing studies on indoor VLC were mainly focused on static 49

network settings, while in this paper we study the challenging 50

scenario of dynamic network settings, capturing both the users’ 51

mobility and wireless traffic dynamics. 52

When designing indoor VLC systems for supporting the 53

users’ mobility, the specific technique of associating the 54

users with APs plays a crucial role, which requires location- 55

awareness. Indeed, taking into account the users’ geo-location 56

information is both desirable and feasible, since there are 57

important scenarios where the users’ geo-locations are pre- 58

defined or highly predictable, such as those of the robots 59

and machines in warehouses, airports, museums, libraries, 60

hospitals etc. In fact, there has been active research on indoor 61

VLC positioning and tracking techniques [9], where the recent 62

advances have achieved sub-centimetre accuracy [10], [11]. 63

Furthermore, it is also desirable for the user-to-AP associations 64

to have delay-awareness, so that to maintain queue stability 65

for moving users with dynamic wireless traffic. Indeed, delay- 66

aware system design has been a challenging and important 67

subject [12]. Hence, significant research efforts have been 68

dedicated to finding solutions for maintaining queue stability 69

with the aid of e.g. Lyapunov optimisation [13] and machine 70

1Link-level studies of VLC refer to research aspects including but not lim-
ited to optical electronics and components; transceiver architectures; coding,
modulation and dimming control; synchronisation, equalisation and estima-
tion etc. By contrast, system-level studies of VLC include random and multiple
access; interference management; resource allocation; user association and
scheduling; mobility control etc.
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See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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learning [14] techniques. In fact, considering delay-awareness71

allows us to investigate the inherent trade-off between the aver-72

age system queue backlog and the average per-user throughput73

of indoor VLC dynamic network settings.74

In order to fully exploit the location- and delay-awareness,75

we conceive a novel anticipatory design principle by taking76

into account the anticipated users’ mobility and wireless traffic77

dynamics when designing indoor VLC solutions [15]. Hence,78

anticipatory design constitutes an enhancement of the conven-79

tional location- and delay-aware designs with no foresight.80

To elaborate, prior research efforts have demonstrated the81

significant potential benefits of anticipatory design, through82

profiling the users’ mobility pattern [16], link quality [17],83

traffic distribution [18] and social connection [19], etc. Sophis-84

ticated technical modelling methods, such as time-series85

analysis [20], classification [21], regression [22] as well86

as Bayesian inference solutions [23] have also been87

investigated, along with various mathematical optimisation88

methods [24]–[26]. These encouraging studies further con-89

solidated our motivation to pursue anticipatory design for90

indoor VLC. In our anticipatory design, we assume the priori91

knowledge of the users’ wireless-traffic distribution (not the92

exact packet arrivals) and perfect geo-locations. Instead of93

dealing with how to predict these quantities, our focus is on94

how to exploit this information in designing stable indoor VLC95

system.96

In this paper, we investigate indoor VLC in the context97

of dynamic network settings by adopting anticipatory design98

principles for formulating the association decisions in order99

to fully exploit both location- and delay-awareness.100

• We consider the Responsive Association (RA) bench-101

marking concept, where the associations are estab-102

lished by taking into account both the users’ current103

geo-locations and their current queue backlog states.104

Furthermore, we consider the radical concept of Antic-105

ipatory Association (AA), where the associations are106

established by taking into account both the users’ time-107

variant geo-locations and their evolving queue backlog108

states.109

• We provide efficient solutions for both designs, relying110

on the approximate dynamic programming technique for111

solving the AA design problem. Beneficially, the AA112

design is capable of preparing the APs for handling the113

users’ mobility by establishing anticipated connections114

around the users’ movements. Hence, the AA design115

strikes an attractive performance trade-off between the116

average system queue backlog and the average per-user117

throughput.118

To the best of our knowledge, this study is the first one119

characterising the delay versus throughput trade-offs for indoor120

VLC in the context of dynamic network settings. This is both121

timely and important, since future mobile networks aim at122

achieving both a short delay and a high throughput [27].123

The rest of the paper is organised as follows. In Section II,124

we describe the channel model, the transmission model and125

the service model, which are then used for formulating126

our association design problems. In Section III, we provide127

efficient solutions to both the RA design problem and the128

AA design problem, where the approximate dynamic pro- 129

gramming method is formally introduced. Finally, we present 130

numerical results for both the association designs in Section IV 131

and we conclude our discourse in Section V. 132

II. SYSTEM DESCRIPTION 133

Let us consider an indoor VLC environment relying on 134

N APs uniformly installed on the ceiling at a height of Ht , 135

where each AP is constituted by an array of L LEDs pointing 136

vertically downwards and emitting the same optical power. 137

These APs are used for communicating with K randomly 138

distributed mobile users at a height of Hr , while at the same 139

time providing illumination. The specific mobility model is 140

introduced in Section IV. Each of these K mobile users 141

generates wireless-traffic obeying a certain distribution. The 142

specific wireless-traffic model is introduced in Section IV. 143

A. Model Description 144

1) Channel Model: Since the users are on the move, their 145

optical channels are also time-variant. At the tth timeslot, 146

the optical channel between the kth user and the nth AP is 147

constituted by both the direct Line-of-Sight (LoS) component 148

and its reflections. Specifically, the LoS component ht,0
k,n is 149

given by [28] 150

ht,0
k,n = (mL + 1)A0

2πdt dt
cosmL (θ t ) cos(ψ t ) fo f (ψ

t ) foc(ψ
t ), (1) 151

where the Lambert index mL = −1/ log2[cos(φ1/2)] depends 152

on the semi-angle φ1/2 of the source at half-illumination. 153

Furthermore, A0 is the physical area of the PD receiver, dt is 154

the distance between the kth user and the nth AP, θ t is the 155

angle of irradiance from the nth AP and ψ t is the angle of 156

incidence at the kth user. Still referring to (1), fo f (ψ
t ) and 157

foc(ψ
t ) denote the gains of the optical filter and of the optical 158

concentrator employed, respectively. Furthermore, foc(ψ
t ) can 159

be written as 160

foc(ψ
t ) =

{
n2

r / sin2(ψ t ) ψ t ≤ ψF

0 ψ t > ψF ,
(2) 161

where ψF represents half of the receiver’s Field-of-View (FoV) 162

and nr is the refractive index of a lens at the PD receiver. 163

With regards to the channel, we only consider the first 164

reflection, since higher-order reflections are typically negli- 165

gible. Explicitly, the first reflected component ht,1
k,n is given 166

by [28] 167

ht,1
k,n =

∑
{v,u}

ρr Ar dt dt

d2
v,u,1dt

v,u,2dt
v,u,2

cos(αv,u) cos(β t
v,u)h

t,0
k,n, (3) 168

where dv,u,1 is the distance between the nth AP and the 169

(v, u)th reflection point, and dt
v,u,2 is the distance between 170

the (v, u)th reflection point and the kth user. Furthermore, 171

αv,u and β t
v,u denote the angle of incidence for the incoming 172

light and the angle of irradiance for the outgoing light at 173

the (v, u)th reflection point, having a tiny area of Ar and a 174

reflectance factor of ρr . Furthermore, the pair of summations 175

in (3) include all the reflections from the walls. Finally, 176

the aggregated optical channel between the kth user and the 177
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nth AP is given by ht
k,n = ht,0

k,n + ht,1
k,n , where we assume a178

single-tap channel response in this paper.179

The optical channels’ evolution due to the users’ mobility180

also triggers the changes in the user-to-AP associations. More181

explicitly, at the t th timeslot, we let N t
k host the subset of APs182

associated with the kth user, where these subsets are mutually183

exclusive, i.e. we have N t
j ∩N t

k = ∅,∀ j �= k. Similarly, we let184

N t−k = ∪ j �=kN t
j host the subset of APs associated with all but185

the kth user. We further let N t
k,0 host the subset of APs having186

LoS connections with the kth user. Similarly, we let N t
0 =187

∪kN t
k,0 host the subset of APs having LoS connections with188

all users. In this paper, only those associations are established,189

where the LoS connections are present between the users190

and APs. Hence we have the relationship N t
k ⊆ N t

k,0.191

2) Transmission Model: Naturally, the changes in user-to-192

AP associations consequently affect the service rates provided193

by the network for moving users. To this end, we consider the194

classic DC-biased OOFDM (DCO-OFDM) as our link-level195

transmission technique. Let σ 2
s denote the electronic power of196

the undistorted and unclipped DCO-OFDM signal. Owing to197

the LED’s limited dynamic range, clipping may be imposed198

on the transmitted DCO-OFDM signal. Hence, we further let199

σ 2
c and γc denote the corresponding clipping noise power and200

clipping distortion factor, respectively. To elaborate, the clip-201

ping noise power σ 2
c is given by [29]202

σ 2
c = σ 2

A − σ 2
B − γ 2

c σ
2
s , (4)203

where according to [29], σ 2
A is given in (5), as shown at the204

bottom of this page, and σB can be written as205

σB = σs

[
1√
2π

exp

(
ε̆2

ε̂2

)
+ ε̆ − fQ(ε̆)ε̆ + fQ(ε̂)ε̂

]
. (6)206

Here, we define ε̆ = (Pmin − PDC)/σs and ε̂ = (Pmax −207

PDC)/σs as the normalised bottom and top clipping level, with208

an appropriate DC level of PDC and the per-LED dynamic209

range of [Pmin , Pmax ]. Furthermore, according to [29],210

the clipping distortion factor γc is given by γc = fQ(ε̆) −211

fQ(ε̂), where fQ represents the standard Q-function.212

Hence, at the tth timeslot and a particular user-to-AP213

association, the downlink service rate r t
k of the kth user can214

be written as215

r t
k = B

2
log2

[
1 +

γ 2
c σ

2
s (

∑
n∈N t

k
ht

k,n)
2

σ 2
c (

∑
n∈N t

k
ht

k,n)
2 + I t

k + σ 2

]
, (7)216

where the interference term in (7) can be formulated as217

I t
k = (σ 2

A − σ 2
B)(

∑
n∈N t−k

ht
k,n)

2. (8)218

Furthermore, the noise term in (7) includes both the shot noise219

and the thermal noise, which can be modelled as zero-mean220

complex-valued Additive White Gaussian Noise (AWGN) with221

an equivalent variance of σ 2 = B N0/L2, where B is the222

modulation bandwidth and N0 ≈ 10−22 A2/Hz [2] is the noise223

power spectral density. Finally, since the DCO-OFDM signal 224

is real-valued, the information rate r t
k of (7) is also halved. 225

3) Service Model: In addition to the users’ mobility dynam- 226

ics, we also consider wireless traffic dynamics, where these 227

two types of dynamics together result into time-variant queues. 228

Explicitly, at the t th timeslot, the kth user has a queue backlog 229

of qt
k with a service rate of r t

k . There is also a random packet 230

arrival of at
k following a certain wireless-traffic distribution, 231

with η = E[at
k],∀k representing the user’s average throughput. 232

Hence, the kth user’s queue backlog at the t th timeslot is the 233

remaining queue backlog at the (t − 1)th timeslot after being 234

served, whilst also taking into account the new packet arrivals 235

at the (t − 1)th timeslot. Mathematically, the kth user’s queue 236

backlog expressed in terms of delay evolves according to 237

qt
k = (qt−1

k − r t−1
k δ/η)+ + at−1

k δ/η, (9) 238

where (·)+ represent the operator returning the maximum 239

between its argument and zero, while δ is the timeslot duration. 240

It is plausible that the dynamic evolution of the queues is 241

depended on the random packet arrivals and the time-variant 242

service rates, which are directly related to the user-to-AP 243

associations, that in turn are subject to the users’ mobility 244

dynamics. Hence, the appropriate design of user-to-AP asso- 245

ciations is of utmost importance. 246

Let us now introduce xt
k,n ∈ {0, 1} to indicate the association 247

between the kth user and the nth AP at the t th timeslot, which 248

is one if there is an association and zero otherwise. Hence, 249

the service rate r t
k of (7) can be represented alternatively in 250

terms of xt
k,n as 251

r t
k = B

2

∑
n

x t
k,n

‖xxxt
k‖2

log2

[
1 + γ 2

c σ
2
s (xxx

t
khhht

k)
2

σ 2
c (xxx

t
khhht

k)
2 + I t

k + σ 2

]
, (10) 252

where the interference term in (10) is given by 253

I t
k = (σ 2

A − σ 2
B)(

∑
j �=k xxxt

jhhh
t
k)

2. (11) 254

Here, xxxt
k = [xt

k,1, · · · , xt
k,N ] denotes the kth user’s association 255

vector and hhht
k = [ht

k,1, · · · , ht
k,N ]T denotes the kth user’s 256

channel vector, with (·)T being the vector transpose. Now, 257

we are fully prepared to formulate our design problems. 258

B. Problem Formulation 259

When experiencing both user mobility and dynamic 260

wireless-traffic, a salient design problem in indoor VLC is to 261

determine the specific user-to-AP associations that are capable 262

of maintaining queue stability, where the multi-user queues 263

are deemed to be stable if they have a finite average queue 264

backlog for the entire system. Hence, a particular association 265

design is deemed superior to another, if it strikes a better 266

trade-off between the average system queue backlog and the 267

average per-user throughput. In this light, we consider both 268

the RA design and the AA design, with both location- and 269

delay-awareness. 270

σ 2
A = σ 2

s

[
fQ(ε̆)− fQ (ε̂)+ ε̆√

2π
exp

(−ε̆2

2

)
− ε̂√

2π
exp

(−ε̂2

2

)
+ ε̆2 − fQ(ε̆)ε̆

2 + fQ(ε̂)ε̂
2
]
, (5)
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1) Responsive Association: One of the throughput-optimal271

and delay-aware design principles that guarantees queue sta-272

bility in single-hop networks is known as the Largest Weighted273

Delay First (LWDF) [30] technique. Hence, in this paper,274

we adopt it as our benchmarking RA design, while referring275

the motivated readers to [30] for further details on the underly-276

ing theory. More explicitly, the objective of the RA design is to277

obtain the optimal association decisions between the K users278

and N APs in order to maximise the weighted sum rate at the279

current timeslot, where the weight is the current queue backlog280

of each user. Mathematically, the RA design problem can be281

formulated as282

PR A = max
{xt

k,n ,∀k,n}
∑

k

qt
kr t

k, (12)283

s.t.
∑

k

x t
k,n ≤ 1 ∀n, (13)284

∑
n

x t
k,n ≤ Nk ∀k, (14)285

xt
k,n ∈ {0, 1} ∀k, n ∈ N t

k,0, (15)286

xt
k,n = 0 ∀k, n �∈ N t

k,0. (16)287

Observe that in (12), the objective function is designed288

for ensuring that users having higher queue backlog would289

have higher priorities, reflecting the LWDF design principle.290

Furthermore, constraint (13) requires that an AP can only291

serve at most one user, in the spirit of Time Division Mul-292

tiple Access (TDMA), while constraint (14) ensures that the293

kth user can only be served by at most Nk APs, where 1 ≤294

Nk ≤ |N t
k,0| is a pre-defined integer. Finally, constraint (16)295

reflects the fact that only the LoS component is used for296

determining the association.297

2) Anticipatory Association: In contrast to the RA design,298

the objective of the AA design is to obtain the optimal299

association decisions between the K users and N APs in300

order to maximise the weighted sum rate for the duration301

of several future timeslots, where the weight is represented302

by the evolving queue backlog of each user over several303

future timeslots. Conceptually, the proposed AA design may304

be viewed as an enhanced version of the LWDF design305

principle, which is endowed with a look-ahead capability.306

Mathematically, the AA design problem can be formulated307

as308

PAA = max
{xtw

k,n ,∀w,k,n}
E

[∑
w

∑
k

qtw
k r tw

k

]
, (17)309

s.t.
∑

k

x tw
k,n ≤ 1 ∀w, n, (18)310

∑
n

x tw
k,n ≤ Nk ∀w, k, (19)311

xtw
k,n ∈ {0, 1} ∀w, k, n ∈ N tw

k,0, (20)312

xtw
k,n = 0 ∀w, k, n �∈ N tw

k,0, (21)313

where tw = t + w − 1 and w ∈ [1,W ] with W being314

the total number of timeslots considered in the AA design.315

Furthermore, the expectation in (17) reflects the stochastic316

nature of the packet arrival process, which is assumed to 317

be an independent and identically distributed (i.i.d.) process 318

having a known distribution. Finally, the constraints of the 319

AA design problem follow similar interpretations to those of 320

the RA design problem discussed previously. 321

Remark 1: It is plausible that the AA design problem 322

defined in (17) provides a higher degree of system optimisation 323

flexibility, than the RA design problem defined in (12). This 324

is because the knowledge of the users’ future geo-locations, 325

which also determine their potential service rates, together 326

with the users’ wireless-traffic distribution may be taken into 327

account in the AA design. Intuitively, the users who are about 328

to experience high-quality links may be delayed, while serving 329

those users promptly, who are experiencing or about to expe- 330

rience weak links. Hence, the anticipatory design principle is 331

capable of exploiting the beneficial foresight of location- and 332

delay-awareness. 333

Remark 2: Conventional predictive handover used in mobile 334

telephony normally deals with the problem of early or late 335

handover trigger, which is achieved by adjusting the handover 336

trigger according to the a priori knowledge of the target 337

AP/router [31], [32]. It is a pure handover decision between a 338

link about to be relinquished and another to be established 339

from the user’s point of view. By contrast, in this paper, 340

we consider the user association problem, where a particular 341

user may be associated with multiple APs at the same time. 342

Hence, the updated associations would be established amongst 343

multiple APs, which means that there are multiple links to 344

be relinquished and to be set-up from the user’s point of 345

view. Even more intriguing is that the (updated) association 346

decisions are coupled with those of other users, where these 347

couplings are strong in the ultra-dense network environment 348

considered in this paper. These particulars make our problem 349

much more challenging, yet interesting both conceptually and 350

technically. Our methodology may also be applied in RF small- 351

cell networks, including within the context of phantom cell 352

arrangements. 353

III. METHODOLOGY 354

Let us now elaborate on the methodology used for solving 355

both the RA design problem and the AA design problem. 356

A. Responsive Association 357

1) Transformation: The RA design problem defined in (12) 358

is strongly coupled, since the decision variables xt
k,n are all 359

coupled through both the objective function and the con- 360

straints. Substituting (10) into (12) reveals that the decision 361

variable xt
k,n is closely related to both the kth user’s association 362

vector xxxt
k and the other users’ association vectors xxxt

j ,∀ j �= k. 363

Hence, we pursue a conservative approach by considering the 364

worst-case maximum interference Ĩ t
k imposed on the kth user, 365

which is given by 366

Ĩ t
k = (σ 2

A − σ 2
B)(eee

thhht
k − xxxt

khhht
k)

2, (22) 367

where eeet = [et
1, · · · , et

N ] with et
n = 1,∀n ∈ N t

0 and et
n = 0 368

otherwise. Correspondingly, the original service rate r t
k of (10) 369

is replaced by the associated lower bound of the service rate, 370
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which is given by371

r̃ t
k = B

2

∑
n

x t
k,n

‖xxxt
k‖2 log2

[
1 + γ 2

c σ
2
s (xxx

t
khhht

k)
2

σ 2
c (xxx

t
khhht

k)
2 + Ĩ t

k + σ 2

]
. (23)372

It is clear that xt
k,n and xxxt

j ,∀ j �= k has now been decoupled373

in (23). Hence, the RA design problem can be redefined as374

P̃R A = max
{xt

k,n ,∀k,n}
∑

k

qt
kr̃ t

k, (24)375

s.t. (13), (14), (15), (16),376

where we next discuss its solution for both the special case of377

Nk = 1,∀k and the general case of Nk ≥ 1,∀k.378

2) Optimisation: Setting Nk = 1,∀k in constraint (14)379

results into the scenario of single-AP association, where (24)380

can be explicitly expanded as381

P̃s
R A = max

{xt
k,n ,∀k,n}

∑
k

qt
kr̃ t,s

k , (25)382

s.t. (13), (14), (15), (16).383

Here, r̃ t,s
k is the conservative service rate when single-AP384

association is employed for all users, which is given by385

r̃ t,s
k = B

2
xt

k,n log2

[
1 + γ 2

c σ
2
s (h

t
k,n)

2

σ 2
c (h

t
k,n)

2 + Ĩ t,s
k + σ 2

]
, (26)386

where the interference term in (26) when single-AP association387

is employed for all users is given by388

Ĩ t,s
k = (σ 2

A − σ 2
B)(eee

thhht
k − ht

k,n)
2. (27)389

It is plausible that the problem defined in (25) is a classic390

binary linear programming problem. Since an efficient solution391

exists, we do not elaborate on it further in this contribution.392

On the other hand, setting Nk ≥ 1,∀k in constraint (14)393

results into the general scenario of multi-AP association, which394

may also be referred to as channel bonding. However, its395

solution is not as straightforward as that of the single-AP396

association scenario. To solve this problem, we let Kt
v host the397

subset of users having the capability of multi-AP association398

at the t th timeslot. For a particular user j ∈ Kt
v , we let399

Ct
j,m host all the combinations of m-AP association with400

m ∈ {2, 3, . . . , N j }. For each of these combinations, we create401

a corresponding virtual user, where we introduce yt
cm

j ,n
∈ {0, 1}402

to indicate the association between the cm
j th virtual user and403

the nth AP at the t th timeslot. Similarly, we use yyyt
cm

j
to denote404

the cm
j th virtual user’s association vector at the tth timeslot.405

Hence, (24) can be transformed into406

P̃b
R A = max

{xxxt
k ,yyy

t
cm

j
,zt

cm
j
}

∑
k

qt
kr̃ t,s

k +
∑

j

∑
m

∑
cm

j

qt
j r̃

t,b
cm

j
, (28)407

s.t. (15), (16),408 ∑
k

x t
k,n +

∑
j

∑
m

∑
cm

j

yt
cm

j ,n
≤ 1 ∀n, (29)409

∑
n

x t
k,n ≤ 1 ∀k, (30)410

∑
n

x t
j,n +

∑
cm

j

∑
n

yt
cm

j ,n
≤ m ∀ j,m, (31)411

∑
n

yt
cm

j ,n
+ zt

cm
j
m = m ∀ j,m, cm

j , (32) 412

zt
cm

j
∈ {0, 1} ∀ j,m, cm

j , (33) 413

yt
cm

j ,n
∈ {0, 1} ∀ j,m, cm

j , n, (34) 414

where r̃ t,b
cm

j
= r̃ t

j (xxx
t
j = yyyt

cm
j
) is the conservative service rate 415

for the cm
j th virtual user when multi-AP association is used. 416

To elaborate, constraint (29) requires that an AP can only 417

serve at most one user, while constraints (30) and (31) jointly 418

require that the users supporting single-AP association can 419

only be served by at most one AP and users having m-AP 420

association can only be served by at most m APs. Finally, 421

constraint (32) requires that the cm
j th virtual user can either 422

be served by m APs or not be served at all. By introducing 423

the concept of virtual users, it is plausible that the problem 424

defined in (28) becomes a classic binary linear programming 425

problem, for which efficient solutions exists. Following the 426

optimisation, we assign xxxt
j = yyyt

cm
j
, if the j th user’s cm

j th multi- 427

AP association was finally determined. 428

B. Anticipatory Association 429

1) Transformation: It is clear that the AA design prob- 430

lem defined in (17) is also strongly coupled. Similar to the 431

transformation carried out for the RA design, we use the 432

conservative service rate r̃ t
k of (23), rather than the original 433

service rate r t
k of (10), when dealing with the AA design 434

problem. Furthermore, we define the action of the kth user 435

at the twth timeslot as r̃ tw
k , which is independent of the other 436

users’ actions. According to (23), the conservative service rate 437

r̃ tw
k is a function of the kth user’s association vector xxxtw

k . Hence, 438

by enumerating all possible combinations of the kth user’s 439

association vector, the corresponding action set Atw
k can be 440

created. 441

As a benefit of using the conservative service rate r̃ tw
k , when 442

w ≥ 2, the kth user’s queue backlog evolves according to 443

q̃ tw
k = (q̃ tw−1

k − r̃ tw−1
k δ/η)+ + atw−1

k δ/η, (35) 444

where q̃ t1
k = qt

k is the kth user’s initial queue backlog at the 445

t th timeslot. However, the continuous-valued queue backlog 446

of q̃ tw
k cannot be directly used for the dynamic programming 447

aided methods to be employed next. Hence, we introduce a 448

discrete-valued queue backlog of stw
k ∈ S, where S hosts 449

the quantised queue backlog lengths capped at q� having the 450

discretisation granularity of �. Hereafter, S is referred to as 451

the state set, and each level in S is referred to as a state. Hence, 452

when w ≥ 2, the kth user’s discrete-valued queue backlog 453

evolves according to 454

stw
k = �min[(stw−1

k − r̃ tw−1
k δ/η)+ + atw−1

k δ/η, q�]�, (36) 455

where st1
k = �min[qt

k, q�]� is the kth user’s starting queue 456

backlog at the t th timeslot and �·� is the quantisation operation. 457

After introducing the above-mentioned concept of action 458

and state, the AA design problem can be redefined as 459

P̃AA = max
{r̃ tw

k ,∀w,k}
E

[∑
w

∑
k

Rtw
k

]
, (37) 460

s.t. (18), (20), (21), 461
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where Rtw
k = stw

k r̃ tw
k represents the kth user’s reward at462

the twth timeslot. Note that constraint (19) is dropped here,463

since the enumeration of the kth user’s actions ensures that464

constraint (19) will always be satisfied. To elaborate a little465

further, (37) resorts to finding the best actions r̃ tw
k of all users466

throughout all timeslots so as to maximise the sum of each467

user’s reward Rtw
k over all timeslots in a stochastic sense,468

where each user’s state stw
k evolves according to (36).469

However, directly solving (37) may be excessive at the470

current computing power. Let ssstw = {stw
k ,∀k} and r̃̃r̃r tw =471

{r̃ tw
k ,∀k} denote the system states and system actions at the472

twth timeslot, respectively. Assuming that each user has the473

same number of actions throughout the timeslots, i.e. we474

have |Atw
k | = |A|,∀w, k, then there is an unmanageable total475

number of |S|K system states and |A|K system actions at each476

timeslot. Unfortunately, these system states and system actions477

also expand exponentially in time, hence we resort to dynamic478

programming in order to circumvent the excessive growth in479

complexity [33], [34].480

2) Approximation: In dynamic programming, we let J (ssst1)481

denote the value of (37), which can be obtained by recursively482

solving the so-called Bellman equation, commencing from the483

tW th timeslot. More explicitly, the Bellman equation [33] at484

the twth timeslot can be written as485

J (ssstw) = max
r̃̃r̃r tw

∑
k

Rtw
k + J̄ (ssstw+1)ssstw ,r̃̃r̃r tw , (38)486

s.t. (18), (20), (21),487

where J̄ (ssstw+1)ssstw ,r̃̃r̃r tw is the expected value at the tw+1th488

timeslot of the immediate future, conditioned on the system489

states and system actions at the current twth timeslot and490

its value is zero at the dummy tW+1 timeslot. The typical491

approach invoked for recursively solving (38) requires either492

policy iteration or value iteration, both of which suffer from493

the curse of dimensionality. This is because both the number494

of system states and the number of system actions at each495

timeslot is exponential in the number of users K , owing to496

the coupling imposed by constraint (18). Fortunately, a closer497

look at (38) reveals that this is a weakly coupled dynamic498

programming problem [35], hence we exploit its structural499

property for developing an approximate dynamic programming500

method [36].501

Formally, we aim to relax the constraint (18) by attaching502

Lagrange multipliers to (38). Let us define the Lagrange503

multipliers at the twth timeslot as λλλtw = {λtw
n ,∀n}. Hence,504

the relaxed Bellman equation at the final tW th timeslot can be505

written as506

L(ssstW ,λλλtW ) = max
r̃̃r̃r tW

∑
k

(RtW
k −

∑
n

λtW
n x tW

k,n)+
∑

n

λtW
n507

=
∑

k

(max
r̃

tW
k

RtW
k −

∑
n

λtW
n x tW

k,n)+
∑

n

λtW
n508

=
∑

k

Lk(s
tW
k ,λλλtW )+

∑
n

λtW
n . (39)509

Let us also define the Lagrange multipliers ranging from the510

twth timeslot to the tW th timeslot as λλλtw,W = {λλλtw′ , w′ ∈511

[w,W ]}. Then reasoning by induction from (39), the relaxed512

Bellman equation at the twth timeslot can be written as 513

L(ssstw,λλλtw,W ) =
∑

k

Lk(s
tw
k ,λλλ

tw,W )+
∑
w′

∑
n

λ
tw′
n , (40) 514

where explicitly we have 515

Lk(s
tw
k ,λλλ

tw,W ) 516

= max
r̃ tw

k

Rtw
k −

∑
n

λtw
n x tw

k,n + L̄k(s
tw+1
k ,λλλtw+1,W )stw

k ,r̃ tw
k
. (41) 517

Here L̄k(s
tw+1
k ,λλλtw+1,W )stw

k ,r̃ tw
k

is the expected value after relax- 518

ation at the tw+1th timeslot of the immediate future, condi- 519

tioned on the system states and system actions at the current 520

twth timeslot and its value is zero at the dummy tW+1th 521

timeslot. It is now plausible that the above relaxation results 522

in K small sub-problems of (41) at each timeslot and for each 523

system state. 524

As a benefit of relaxation, the dual problem of the Bellman 525

equation J (ssstw) at the twth timeslot can be written as 526

L(ssstw) = min
λλλtw,W

L(ssstw,λλλtw,W ), (42) 527

where according to standard Lagrangian theory, (42) is convex 528

and we have the relationship of L(ssstw) ≥ J (ssstw). Recall that 529

our goal was to solve the Bellman equation J (ssst1) at the 530

t1th timeslot, but now we resort to solving its dual problem 531

of 532

L(ssst1) = min
λλλt1,W

L(ssst1,λλλt1,W ). (43) 533

This approach follows the design principle of the so-called 534

approximate dynamic programming, which has been found in 535

diverse applications [37]–[40]. 536

3) Solution: At first glance, the linear programming repre- 537

sentation of (43) can be written as 538

L(ssst1) = min
{λλλt1,W ,μμμ}

∑
k

μk(s
t1
k )+

∑
w

∑
n

λtw
n , (44) 539

s.t. μk(s
tw
k ) ≥ Rtw

k −
∑

n

λtw
n x tw

k,n + μ̄k(s
tw+1
k )stw

k ,r̃ tw
k

540

∀w, k, stw
k , r̃

tw
k , (45) 541

λtw
n ≥ 0 ∀w, n, (46) 542

where μμμ = {μk(s
tw
k ),∀w, k, stw

k } hosts all of the auxiliary 543

decision variables and μ̄k(s
tw+1
k )stw

k ,r̃ tw
k

is the expected value 544

of the auxiliary decision variable at the tw+1th timeslot of the 545

immediate future, conditioned on the system states and system 546

actions at the current twth timeslot and its value is zero at 547

the dummy tW+1th timeslot. Although (44) is in an elegant 548

formulation, the underlying problem only remains tractable 549

for small system settings. In a reasonable-sized system setting 550

of N = 8 × 8 APs, K = 20 users, W = 5 timeslots, |S| = 551

10 states and |Atw
k | = |A| = 4,∀w, k actions, there is a total 552

of W (K |S|+ N) = 1320 decision variables and W K |S||A| = 553

4000 constraints involved in the problem formulated in (44), 554

where a practical solution is indeed necessary. 555

Hence, we employ the classic sub-gradient based algorithm 556

in order to obtain L(ssst1). Explicitly, the sub-gradient based 557

algorithm iteratively updates λλλt1,W according to 558

λλλt1,W (τ + 1) = [λλλt1,W (τ )+ εggg(τ )]+, (47) 559
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where τ is the iteration index and ggg(τ ) is the sub-gradient,560

which is given by561

ggg(τ ) = ∇L[ssst1,λλλt1,W (τ )]. (48)562

In this study, we estimate the sub-gradient ggg(τ ) empirically.563

For a given λλλt1,W (τ ), we can readily obtain the corresponding564

chosen actions of r̃ tw
k for all users and on all timeslots. This can565

be achieved by backwards recursion on the relaxed Bellman566

equation of (40), with its component equation (41) being567

efficiently evaluated at each recursion. These actions are then568

used for determining the estimated sub-gradient. Still referring569

to (47), the positive step size of ε is given by570

ε = minτ ′<τ L[ssst1,λλλt1,W (τ ′)] − L[ssst1,λλλt1,W (τ )]
‖ggg(τ )‖2 . (49)571

Finally, the sub-gradient based algorithm terminates, when572

ggg(τ ) is deemed to be sufficiently small. The exact complexity573

of the sub-gradient based algorithm is difficult to quantify574

owing to its iterative nature. However, at each iteration,575

the backwards recursion on (40) requires W K |S| evaluations576

of (41), which can be solved efficiently, namely at a linear577

complexity of O(|Atw
k |). Hence, the sub-gradient based algo-578

rithm is indeed appropriate for practical sized problems. For579

better clarification, a pseudo-code is included in Algorithm 1.580

Algorithm 1 ADP

1: input
{Atw

k ,∀k, tw
}
, initialise λλλt1,W (τ = 1) and ς

2: for τ = 1, 2, · · · do
3: backwards recursion (40) → L[ssst1,λλλt1,W (τ )]
4: evaluate (48) → ggg(τ )
5: if ggg(τ ) � ς then
6: λλλt1,W = λλλt1,W (τ )
7: break
8: else
9: evaluate (49) → ε

10: evaluate (47) → λλλt1,W (τ + 1)
11: end if
12: end for
13: evaluate J (ssst1) ≈ L(ssst1) = L(ssst1,λλλt1,W )

IV. NUMERICAL RESULTS581

We now characterise the performance of the average system582

queue backlog versus the average per-user throughput, for both583

of our association designs, under different parameter settings.584

A. Settings585

We considered a 15 × 15 × 5 [m3] indoor environment586

associated with N = 8 × 8 APs uniformly located on the587

ceiling. We set the optical power to Po = 24.5 [mW] for sat-588

isfying the illumination requirements of [Imin ,Imax ,Iavg] =589

[200, 800, 600] [lm], where we define the minimum illu-590

mination requirement as Imin , the maximum illumination591

requirement as Imax and the average illumination require-592

ment as Iavg . Hence, we have the electronic power of593

σ 2
s ≈ 0.75 [mW] corresponding to the DC level of PDC =594

22.5 [mW], where the optical to electronic power conversion595

is discussed in Appendix.596

TABLE I

LIST OF COMMON PARAMETER SETTINGS

The classic random waypoint mobility model was adopted 597

for users randomly distributed in the room, with a con- 598

stant speed at v [m/s], walking duration from 2 to 5 [s], 599

pausing duration from 0 to 2 [s] and walking direction 600

spanning 360°. Each timeslot was set to δ = 1 [ms] and 601

10 independent snapshots of 30 [s] moving segments were 602

recorded, where each snapshot was averaged over 50 Bernoulli 603

distributed random packet arrivals with a mean of p and we 604

set q� = 5 [ms]. 605

The standard parameter settings used in our simulations 606

were as follows: number of users K = 20, Bernoulli mean 607

p = 0.5, maximum number of APs per-user Nk = 1,∀k, 608

modulation bandwidth B = 25 MHz, half of the FoV 609

ψF = 45°, moving speed v = 1 [m/s], prediction window size 610

W = 10 and discretisation granularity � = 0.5 [ms]. In the 611

following, we investigate each of these parameters separately, 612

whilst keeping all the other parameters unchanged. Finally, 613

the remaining common parameter settings are listed in Table I. 614

B. Observations 615

1) Effect of Number of Users: The left subplot of Fig. 1 616

shows the effect of the number of users on the average 617

system queue backlog versus the average per-user throughput, 618

for both the RA design and the AA design. It is clear that 619

for both user number settings of K = 20 and K = 30, 620

the AA design achieves a consistently shorter average system 621

queue backlog than that of the RA design across all values 622

of the per-user average throughput. Importantly, for both user 623

number settings, the difference between the RA design and the 624

AA design in the average system queue backlog substantially 625

increases upon increasing the average per-user throughput. 626

Quantitatively, for both user number settings and when sup- 627

porting an average per-user throughput of 100 Mbps, the 628

AA design results in about half of the average system queue 629

backlog of that of the RA design, although their difference is 630

only marginal when supporting the reduced average per-user 631

throughput of 50 Mbps. Indeed, when increasing the average 632

per-user throughput, the corresponding average system queue 633

backlog increases much faster in the RA design than in the 634

AA design, for both user number settings. Finally, for both 635

the RA design and the AA design, the higher the number of 636

users, the more system resources are required and the higher 637

the average system queue backlog becomes. 638

2) Effect of Field of View: The right subplot of Fig. 1 639

shows the effect of the FoV on the average system queue 640
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Fig. 1. The effect of number of users (left) and the effect of field of
view (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

Fig. 2. The effect of bonding (left) and the effect of modulation band-
width (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

backlog versus the average per-user throughput, for both the641

RA design and the AA design. Again, it is clear that for both642

FoV settings of FoV = 90° and FoV = 100°, the AA design643

achieves a consistently shorter average system queue backlog644

than that of the RA design across all values of the average645

per-user throughput. Furthermore, for both the RA design and646

the AA design, increasing the FoV dramatically increases the647

average system queue backlog. This is indeed as expected,648

since the wider the FoV, the higher the interference level and649

the worse the average system queue backlog becomes, for both650

the RA design and the AA design.651

3) Effect of Channel Bonding: The left subplot of Fig. 2652

shows the effect of channel bonding on the performance of653

the average system queue backlog versus the average per-user654

throughput, for both the RA design and the AA design. Again,655

channel bonding refers to the scenario of supporting multi-AP656

Fig. 3. The effect of Bernoulli mean (left) and the effect of walking
speed (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

association. In our simulations, we used Nk = |N tw
k,1|,∀w, k 657

for both the RA design and the AA design. It is clear 658

that allowing multi-AP association noticeably decreases the 659

average system queue backlog in the RA design. By contrast, 660

only marginal improvements of the average system queue 661

backlog can be observed, when channel bonding is employed 662

in the AA design. This implies that the AA design is capable of 663

exploiting the single-AP association, hence rendering channel 664

bonding less attractive in the AA design. 665

4) Effect of Modulation Bandwidth: The right subplot of 666

Fig. 2 shows the effect of the modulation bandwidth on the 667

average system queue backlog versus the average per-user 668

throughput, for both the RA design and the AA design. Again, 669

it is clear that for both the modulation bandwidth settings of 670

B = 25 MHz and B = 50 MHz, the AA design improves a 671

consistently shorter average system queue backlog than that 672

of the RA design across all values of the average per-user 673

throughput. Furthermore, for both the RA design and the 674

AA design, we observe a substantial impact of the modulation 675

bandwidth on the performance of the average system queue 676

backlog. More explicitly, as expected, at the same level of 677

the average system queue backlog, doubling the modulation 678

bandwidth from B = 25 MHz to B = 50 MHz roughly 679

doubles the average per-user throughput, for both the RA 680

design and the AA design. 681

5) Effect of Bernoulli Mean: The left subplot of Fig. 3 682

shows the effect of the Bernoulli mean on the average system 683

queue backlog versus the average per-user throughput, for both 684

the RA design and the AA design. Again, it is clear that for 685

both the Bernoulli mean settings of p = 0.5 and p = 0.6, 686

the AA design improves a consistently shorter average system 687

queue backlog than that of the RA design across all values of 688

the average per-user throughput. Also as expected, for both the 689

RA design and the AA design, the higher the Bernoulli mean, 690

the higher the packet arrival rate and the higher the average 691

system queue backlog. 692
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Fig. 4. The effect of association delay (left) and the effect of imperfect
localization (right) on the performance of the average system queue backlog
versus the average per-user throughput, for both the RA design and the
AA design.

6) Effect of Walking Speed: The right subplot of Fig. 3693

shows the effect of the walking speed on the average system694

queue backlog versus the average per-user throughput, for both695

the RA design and for the AA design. It is clear that for both696

velocities of v = 1 [m/s] and v = 1.5 [m/s], the AA design697

exhibits a consistently shorter average system queue backlog698

than that of the RA design across all values of the average699

per-user throughput. Interestingly, for both the RA design700

and the AA design, the higher the velocity, the shorter the701

average system queue backlog. Indeed, this is because the702

faster the users are moving, the more frequently the user will703

be served by strong LoS connections, hence leading to an704

ergodic experience. Should the users remain static all the time,705

the unlucky ones would always suffer from poor service and706

hence their average queue backlog would be increased.707

7) Effect of Association Delay: The left subplot of Fig 4708

shows the effect of the association delay at APs on the709

average system queue backlog versus the average per-user710

throughput, for both the RA design and the AA design.711

The association delay results into the outdated association712

decision. Fig 4 shows that as expected, this imperfection713

does impose a performance trade-off. Quantitatively, when the714

AA design is considered, at about 8 [ms] average system queue715

backlog, a loss of 10 [Mbps] average per-user throughput is716

observed owing to the association delay of 50 [ms] investi-717

gated. We believe that an association delay of 50 [ms] is quite718

a high value, which in turn implies that the design advocated719

is quite robust to this imperfection. However, different type of720

traffic distributions and user velocities would lead to different721

conclusions. Hence, appropriate counter-measures should be722

developed in the future.723

8) Effect of Imperfect Localization: Fig 4 shows the effect724

of imperfect localization on the average system queue backlog725

versus the average per-user throughput, for both the RA design726

and the AA design. We model the imperfect localization by727

introducing uniformly distributed random positioning errors728

Fig. 5. The effect of reduced number of APs (left) and the effect of smaller
rooms (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

around the true value. The imperfect localization results into 729

imperfect association decisions. Fig 4 shows that as expected, 730

this imperfection does impose a performance degradation for 731

both designs. We believe that limiting the positioning error to 732

±0.5m would be sufficient, noting that most of the positioning 733

methods found in the literature are capable of achieving an 734

accuracy at centi-meter level. This implies that the design 735

advocated is quite robust to localization imperfections. 736

9) Effect of Reduced Number of APs: The left subplot of 737

Fig 5 shows the effect of the reduced number of APs on 738

the average system queue backlog versus the average per- 739

user throughput, for both the RA design and the AA design. 740

As expected, the performance degrades upon reducing the 741

number of APs for both designs. This is because with 742

fewer APs, fewer spatial resources will be available to share. 743

Furthermore, with fewer APs, the chance of a particular user 744

getting a LoS connection is reduced, hence typically only non- 745

LoS links will be used. A further issue is that with fewer APs, 746

the illumination density would not be uniform. Nevertheless, 747

since VLC reuses the existing lighting infrastructure, a dense 748

deployment would allow the best exploitation of spatial reuse. 749

To this end, an interesting future direction would be to select 750

the best subset of APs for lower complexity with minimal 751

performance degradation. 752

10) Effect of Smaller Room: Fig 5 shows the effect of a 753

smaller room on the average system queue backlog versus the 754

average per-user throughput, for both the RA design and the 755

AA design. To provide a fair comparison to the (8 × 8) AP 756

setting in the 15 × 15 [m2] room with 20 users, we studied a 757

(5×5) AP setting in a 10×10 [m2] room with 9 users. These 758

two settings have similar AP density (number of APs per m2) 759

and user density (number of users per m2). As expected, both 760

settings exhibit similar performance trends. For smaller rooms, 761

a slight performance degradation is observed for both designs, 762

since stronger reflections are experienced and hence we have 763

an increased crosstalk between users. 764
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Fig. 6. The effect of prediction window size (left) and the effect of
discretisation granularity (right) on the performance of the average system
queue backlog versus the average per-user throughput, for the AA design.

11) Effect of Prediction Window Size: The left subplot of765

Fig. 6 shows the effect of the prediction window size on the766

average system queue backlog versus the average per-user767

throughput, for the AA design. It is clear that the average768

system queue backlog improves upon increasing the prediction769

window size from W = 5 to W = 10 and to W = 15 at770

the cost of increasing the complexity, across all values of the771

average per-user throughput. Furthermore, the most noticeable772

improvement in the average system queue backlog appears773

upon increasing the prediction window size from W = 5774

to W = 10. Hence, it is important to strike a compromise775

between the performance and the complexity, although this776

aspect is beyond our current scope.777

12) Effect of Discretisation Granularity: The right subplot778

of Fig. 6 shows the effect of the discretisation granularity779

on the average system queue backlog versus the average per-780

user throughput, for the AA design. As expected, the higher781

the discretisation granularity, the finer the continuous-valued782

queue backlog representation and the better the average system783

queue backlog becomes. Nevertheless, the differences in the784

average system queue backlog for � = 0.25, � = 0.5 and785

� = 1 remain quite small.786

V. CONCLUSIONS787

In this paper, we provided a beneficial indoor VLC design788

for moving users and for dynamic wireless-traffic arrivals.789

A pair of location- and delay-aware association designs were790

investigated, namely the benchmarking RA design and the791

radical AA design. Efficient solutions were provided for792

both association designs and detailed optimisation algorithms793

were introduced. Our simulation results suggested that the794

AA design is capable of outperforming the RA design, result-795

ing in a significantly better trade-off between the average796

system queue backlog and the average per-user throughput, for797

diverse parameter settings. Our study indicated that in indoor798

VLC, the system-wide average delay can be substantially799

reduced by taking advantage of the anticipatory approach800

advocated. Finally, in our future work, it would be interesting 801

to consider realistic positioning and tracking methods, hybrid 802

user distributions, diverse mobility models, mixed wireless 803

traffic profiles, joint uplink and downlink design, etc. 804

It is worth highlighting that our scheme would be challenged 805

at high speeds. In this case, involving accurate positioning 806

and tracking would become difficult, which in turn jeopardises 807

the action of anticipation. In addition, the dwell time of the 808

user would be too short to physically establish association, 809

hence potentially leading to unnecessary association attempts. 810

A potential solution in this case is to rely on a single anchor 811

point for mobility control, namely to avoid frequent change 812

of associations. For example, all APs could jointly serve as 813

a single anchor, or the over-sailing radio connection could 814

be in charge of the control plane in the context of HetNet. 815

Nevertheless, this is certainly an interesting future research 816

direction, especially in the case of having diverse velocities. 817

We consider downlink association in this paper, but naturally 818

the location-awareness would rely on the existence of the 819

uplink. In VLC, one could use the popular WiFi for the uplink. 820

There has also been some prominent research [41], [42], 821

including standardisation efforts dedicated to combining WiFi 822

and VLC under the same 802 framework (IEEE 802.15 823

TG 7r1). Alternatively, one could rely on an Infra-red uplink 824

dongle as implemented by PureLiFi (https://purelifi.com/). 825

Indeed, bi-directional VLC systems have decoupled downlink 826

and uplink. It will be thus interesting to study the ambitious 827

closed-loop design in the future. 828

APPENDIX 829

OPTICAL-ELECTRONIC POWER CONVERSION 830

Since the primary purpose of LEDs is to provide illumi- 831

nation, the minimum required (maximum allowed) optical 832

power Pillu
min (Pillu

max ) should satisfy the pre-defined illumination 833

requirements constituted by the minimum illumination require- 834

ment Imin , the maximum illumination requirement Imax and 835

the average illumination requirement Iavg . Mathematically, 836

we have to solve the problem of 837

Pillu
min = min P or Pillu

max = max P, (50) 838

s.t. min
κ∈[1,K p]

∑
n

hillu
κ,n L P ≥ Imin , (51) 839

max
κ∈[1,K p]

∑
n

hillu
κ,n L P ≤ Imax , (52) 840

1

K p

∑
κ

∑
n

hillu
κ,n L P ∈ [I−

avg,I+
avg], (53) 841

where I+
avg and I−

avg denote the ±5% of Iavg . Furthermore, 842

hillu
κ,n denotes the luminous flux of the unit optical power 843

provided by the nth AP at the κ th point of the K p equally 844

partitioned receiver plane-tiles owing to the LoS propagation, 845

which is given by 846

hillu
κ,n = (mL + 1)

2πd2ξ
cosmL (θ) cos(ψ), (54) 847

where ξ denotes the optical power to luminous flux conversion 848

factor [2], while mL , d , θ and ψ are defined similarly as in (1). 849

In addition to satisfying the above illumination requirements, 850
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the optical power Po should also satisfy the per-LED dynamic851

range of [Pmin , Pmax ]. As a result, by taking into account both852

the illumination requirements and the LED’s physical limits,853

we have the constraint of854

max{Pillu
min , Pmin } ≤ Po ≤ min{Pillu

max , Pmax }. (55)855

Furthermore, according to [29], the relationship between the856

electronic power σ 2
s and the optical power Po is given by857

Po = σs

[
1√
2π

exp

(
ε̆2

ε̂2

)
− ε̆ fQ(ε̆)+ ε̂ fQ (ε̂)

]
+ Pmin . (56)858

Hence, by opting for a desired optical power satisfying (55),859

we can find the electronic power σ 2
s used for communications.860
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Anticipatory Association for Indoor Visible Light
Communications: Light, Follow Me !
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Harald Haas, Fellow, IEEE, and Lajos Hanzo

Abstract— In this paper, a radically new anticipatory perspec-1

tive is taken into account when designing the user-to-access2

point (AP) associations for indoor visible light communica-3

tions (VLC) networks, in the presence of users’ mobility and4

wireless-traffic dynamics. In its simplest guise, by considering5

the users’ future locations and their predicted traffic dynamics,6

the novel anticipatory association prepares the APs for users7

in advance, resulting in an enhanced location- and delay-8

awareness. This is technically realized by our contrived design9

of an efficient approximate dynamic programming algorithm.10

More importantly, this paper is in contrast to most of the11

current research in the area of indoor VLC networks, where12

a static network environment was mainly considered. Hence,13

this paper is able to draw insights on the performance trade-14

off between delay and throughput in dynamic indoor VLC15

networks. It is shown that the novel anticipatory design is capable16

of significantly outperforming the conventional benchmarking17

designs, striking an attractive performance trade-off between18

delay and throughput. Quantitatively, the average system queue19

backlog is reduced from 15 to 8 [ms], when comparing the20

design advocated to the conventional benchmark at the per-21

user throughput of 100 [Mbps], in a 15 × 15 × 5 [m3] indoor22

environment associated with 8 × 8 APs and 20 users walking23

at 1 [m/s].24

Index Terms— VLC, user-association, dynamic programming,25

machine learning, hand-over, user-centric networking.26

I. INTRODUCTION27

V ISIBLE Light Communications (VLC) constitutes a com-28

pelling technique of meeting the escalating wireless-29

traffic demands, as a new member in the beyond30
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Fifth-Generation (5G) Heterogeneous Networks (HetNet) 31

landscape [1]. There have been tremendous link-level 32

achievements of VLC using state-of-the-art Light Emitting 33

Diodes (LEDs) and Photo-Detectors (PDs) [2], sophisticated 34

signal processing techniques [3] and advanced LED compo- 35

nents [4]. The system-level studies1 of VLC have also been 36

rapidly developed for broadening its scope beyond point- 37

to-point applications [5]. Recent advances have been par- 38

tially inspired by numerous advanced Radio Frequency (RF) 39

techniques. It is paramount however that these designs are 40

suitably tailored for the specifics of VLC transceivers, 41

propagation characteristics, illumination requirements, etc. 42

Explicitly, straightforward adoption is completely unsuitable. 43

Particularly, in indoor VLC, each Access Point (AP) constructs 44

an ‘atto-cell’ with a few meters of radius confined by the 45

coverage of light propagation [6]. Different from the RF 46

regime, the number of APs may be higher than the number 47

of users, resulting into ultra-dense networks [7], [8]. However, 48

existing studies on indoor VLC were mainly focused on static 49

network settings, while in this paper we study the challenging 50

scenario of dynamic network settings, capturing both the users’ 51

mobility and wireless traffic dynamics. 52

When designing indoor VLC systems for supporting the 53

users’ mobility, the specific technique of associating the 54

users with APs plays a crucial role, which requires location- 55

awareness. Indeed, taking into account the users’ geo-location 56

information is both desirable and feasible, since there are 57

important scenarios where the users’ geo-locations are pre- 58

defined or highly predictable, such as those of the robots 59

and machines in warehouses, airports, museums, libraries, 60

hospitals etc. In fact, there has been active research on indoor 61

VLC positioning and tracking techniques [9], where the recent 62

advances have achieved sub-centimetre accuracy [10], [11]. 63

Furthermore, it is also desirable for the user-to-AP associations 64

to have delay-awareness, so that to maintain queue stability 65

for moving users with dynamic wireless traffic. Indeed, delay- 66

aware system design has been a challenging and important 67

subject [12]. Hence, significant research efforts have been 68

dedicated to finding solutions for maintaining queue stability 69

with the aid of e.g. Lyapunov optimisation [13] and machine 70

1Link-level studies of VLC refer to research aspects including but not lim-
ited to optical electronics and components; transceiver architectures; coding,
modulation and dimming control; synchronisation, equalisation and estima-
tion etc. By contrast, system-level studies of VLC include random and multiple
access; interference management; resource allocation; user association and
scheduling; mobility control etc.

1536-1276 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEE
E P

ro
of

2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

learning [14] techniques. In fact, considering delay-awareness71

allows us to investigate the inherent trade-off between the aver-72

age system queue backlog and the average per-user throughput73

of indoor VLC dynamic network settings.74

In order to fully exploit the location- and delay-awareness,75

we conceive a novel anticipatory design principle by taking76

into account the anticipated users’ mobility and wireless traffic77

dynamics when designing indoor VLC solutions [15]. Hence,78

anticipatory design constitutes an enhancement of the conven-79

tional location- and delay-aware designs with no foresight.80

To elaborate, prior research efforts have demonstrated the81

significant potential benefits of anticipatory design, through82

profiling the users’ mobility pattern [16], link quality [17],83

traffic distribution [18] and social connection [19], etc. Sophis-84

ticated technical modelling methods, such as time-series85

analysis [20], classification [21], regression [22] as well86

as Bayesian inference solutions [23] have also been87

investigated, along with various mathematical optimisation88

methods [24]–[26]. These encouraging studies further con-89

solidated our motivation to pursue anticipatory design for90

indoor VLC. In our anticipatory design, we assume the priori91

knowledge of the users’ wireless-traffic distribution (not the92

exact packet arrivals) and perfect geo-locations. Instead of93

dealing with how to predict these quantities, our focus is on94

how to exploit this information in designing stable indoor VLC95

system.96

In this paper, we investigate indoor VLC in the context97

of dynamic network settings by adopting anticipatory design98

principles for formulating the association decisions in order99

to fully exploit both location- and delay-awareness.100

• We consider the Responsive Association (RA) bench-101

marking concept, where the associations are estab-102

lished by taking into account both the users’ current103

geo-locations and their current queue backlog states.104

Furthermore, we consider the radical concept of Antic-105

ipatory Association (AA), where the associations are106

established by taking into account both the users’ time-107

variant geo-locations and their evolving queue backlog108

states.109

• We provide efficient solutions for both designs, relying110

on the approximate dynamic programming technique for111

solving the AA design problem. Beneficially, the AA112

design is capable of preparing the APs for handling the113

users’ mobility by establishing anticipated connections114

around the users’ movements. Hence, the AA design115

strikes an attractive performance trade-off between the116

average system queue backlog and the average per-user117

throughput.118

To the best of our knowledge, this study is the first one119

characterising the delay versus throughput trade-offs for indoor120

VLC in the context of dynamic network settings. This is both121

timely and important, since future mobile networks aim at122

achieving both a short delay and a high throughput [27].123

The rest of the paper is organised as follows. In Section II,124

we describe the channel model, the transmission model and125

the service model, which are then used for formulating126

our association design problems. In Section III, we provide127

efficient solutions to both the RA design problem and the128

AA design problem, where the approximate dynamic pro- 129

gramming method is formally introduced. Finally, we present 130

numerical results for both the association designs in Section IV 131

and we conclude our discourse in Section V. 132

II. SYSTEM DESCRIPTION 133

Let us consider an indoor VLC environment relying on 134

N APs uniformly installed on the ceiling at a height of Ht , 135

where each AP is constituted by an array of L LEDs pointing 136

vertically downwards and emitting the same optical power. 137

These APs are used for communicating with K randomly 138

distributed mobile users at a height of Hr , while at the same 139

time providing illumination. The specific mobility model is 140

introduced in Section IV. Each of these K mobile users 141

generates wireless-traffic obeying a certain distribution. The 142

specific wireless-traffic model is introduced in Section IV. 143

A. Model Description 144

1) Channel Model: Since the users are on the move, their 145

optical channels are also time-variant. At the tth timeslot, 146

the optical channel between the kth user and the nth AP is 147

constituted by both the direct Line-of-Sight (LoS) component 148

and its reflections. Specifically, the LoS component ht,0
k,n is 149

given by [28] 150

ht,0
k,n = (mL + 1)A0

2πdt dt
cosmL (θ t ) cos(ψ t ) fo f (ψ

t ) foc(ψ
t ), (1) 151

where the Lambert index m L = −1/ log2[cos(φ1/2)] depends 152

on the semi-angle φ1/2 of the source at half-illumination. 153

Furthermore, A0 is the physical area of the PD receiver, dt is 154

the distance between the kth user and the nth AP, θ t is the 155

angle of irradiance from the nth AP and ψ t is the angle of 156

incidence at the kth user. Still referring to (1), fo f (ψ
t ) and 157

foc(ψ
t ) denote the gains of the optical filter and of the optical 158

concentrator employed, respectively. Furthermore, foc(ψ
t ) can 159

be written as 160

foc(ψ
t ) =

{
n2

r / sin2(ψ t ) ψ t ≤ ψF

0 ψ t > ψF ,
(2) 161

where ψF represents half of the receiver’s Field-of-View (FoV) 162

and nr is the refractive index of a lens at the PD receiver. 163

With regards to the channel, we only consider the first 164

reflection, since higher-order reflections are typically negli- 165

gible. Explicitly, the first reflected component ht,1
k,n is given 166

by [28] 167

ht,1
k,n =

∑
{v,u}

ρr Ar dt dt

d2
v,u,1dt

v,u,2dt
v,u,2

cos(αv,u) cos(β t
v,u)h

t,0
k,n, (3) 168

where dv,u,1 is the distance between the nth AP and the 169

(v, u)th reflection point, and dt
v,u,2 is the distance between 170

the (v, u)th reflection point and the kth user. Furthermore, 171

αv,u and β t
v,u denote the angle of incidence for the incoming 172

light and the angle of irradiance for the outgoing light at 173

the (v, u)th reflection point, having a tiny area of Ar and a 174

reflectance factor of ρr . Furthermore, the pair of summations 175

in (3) include all the reflections from the walls. Finally, 176

the aggregated optical channel between the kth user and the 177
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nth AP is given by ht
k,n = ht,0

k,n + ht,1
k,n , where we assume a178

single-tap channel response in this paper.179

The optical channels’ evolution due to the users’ mobility180

also triggers the changes in the user-to-AP associations. More181

explicitly, at the tth timeslot, we let N t
k host the subset of APs182

associated with the kth user, where these subsets are mutually183

exclusive, i.e. we have N t
j ∩N t

k = ∅,∀ j �= k. Similarly, we let184

N t−k = ∪ j �=kN t
j host the subset of APs associated with all but185

the kth user. We further let N t
k,0 host the subset of APs having186

LoS connections with the kth user. Similarly, we let N t
0 =187

∪kN t
k,0 host the subset of APs having LoS connections with188

all users. In this paper, only those associations are established,189

where the LoS connections are present between the users190

and APs. Hence we have the relationship N t
k ⊆ N t

k,0.191

2) Transmission Model: Naturally, the changes in user-to-192

AP associations consequently affect the service rates provided193

by the network for moving users. To this end, we consider the194

classic DC-biased OOFDM (DCO-OFDM) as our link-level195

transmission technique. Let σ 2
s denote the electronic power of196

the undistorted and unclipped DCO-OFDM signal. Owing to197

the LED’s limited dynamic range, clipping may be imposed198

on the transmitted DCO-OFDM signal. Hence, we further let199

σ 2
c and γc denote the corresponding clipping noise power and200

clipping distortion factor, respectively. To elaborate, the clip-201

ping noise power σ 2
c is given by [29]202

σ 2
c = σ 2

A − σ 2
B − γ 2

c σ
2
s , (4)203

where according to [29], σ 2
A is given in (5), as shown at the204

bottom of this page, and σB can be written as205

σB = σs

[
1√
2π

exp

(
ε̆2

ε̂2

)
+ ε̆ − fQ(ε̆)ε̆ + fQ(ε̂)ε̂

]
. (6)206

Here, we define ε̆ = (Pmin − PDC)/σs and ε̂ = (Pmax −207

PDC)/σs as the normalised bottom and top clipping level, with208

an appropriate DC level of PDC and the per-LED dynamic209

range of [Pmin , Pmax ]. Furthermore, according to [29],210

the clipping distortion factor γc is given by γc = fQ(ε̆) −211

fQ(ε̂), where fQ represents the standard Q-function.212

Hence, at the tth timeslot and a particular user-to-AP213

association, the downlink service rate r t
k of the kth user can214

be written as215

r t
k = B

2
log2

[
1 +

γ 2
c σ

2
s (

∑
n∈N t

k
ht

k,n)
2

σ 2
c (

∑
n∈N t

k
ht

k,n)
2 + I t

k + σ 2

]
, (7)216

where the interference term in (7) can be formulated as217

I t
k = (σ 2

A − σ 2
B)(

∑
n∈N t−k

ht
k,n)

2. (8)218

Furthermore, the noise term in (7) includes both the shot noise219

and the thermal noise, which can be modelled as zero-mean220

complex-valued Additive White Gaussian Noise (AWGN) with221

an equivalent variance of σ 2 = B N0/L2, where B is the222

modulation bandwidth and N0 ≈ 10−22 A2/Hz [2] is the noise223

power spectral density. Finally, since the DCO-OFDM signal 224

is real-valued, the information rate r t
k of (7) is also halved. 225

3) Service Model: In addition to the users’ mobility dynam- 226

ics, we also consider wireless traffic dynamics, where these 227

two types of dynamics together result into time-variant queues. 228

Explicitly, at the tth timeslot, the kth user has a queue backlog 229

of qt
k with a service rate of r t

k . There is also a random packet 230

arrival of at
k following a certain wireless-traffic distribution, 231

with η = E[at
k],∀k representing the user’s average throughput. 232

Hence, the kth user’s queue backlog at the tth timeslot is the 233

remaining queue backlog at the (t − 1)th timeslot after being 234

served, whilst also taking into account the new packet arrivals 235

at the (t − 1)th timeslot. Mathematically, the kth user’s queue 236

backlog expressed in terms of delay evolves according to 237

qt
k = (qt−1

k − r t−1
k δ/η)+ + at−1

k δ/η, (9) 238

where (·)+ represent the operator returning the maximum 239

between its argument and zero, while δ is the timeslot duration. 240

It is plausible that the dynamic evolution of the queues is 241

depended on the random packet arrivals and the time-variant 242

service rates, which are directly related to the user-to-AP 243

associations, that in turn are subject to the users’ mobility 244

dynamics. Hence, the appropriate design of user-to-AP asso- 245

ciations is of utmost importance. 246

Let us now introduce x t
k,n ∈ {0, 1} to indicate the association 247

between the kth user and the nth AP at the tth timeslot, which 248

is one if there is an association and zero otherwise. Hence, 249

the service rate r t
k of (7) can be represented alternatively in 250

terms of x t
k,n as 251

r t
k = B

2

∑
n

x t
k,n

‖xxxt
k‖2

log2

[
1 + γ 2

c σ
2
s (xxx

t
khhht

k)
2

σ 2
c (xxx

t
khhht

k)
2 + I t

k + σ 2

]
, (10) 252

where the interference term in (10) is given by 253

I t
k = (σ 2

A − σ 2
B)(

∑
j �=k xxxt

jhhh
t
k)

2. (11) 254

Here, xxxt
k = [xt

k,1, · · · , xt
k,N ] denotes the kth user’s association 255

vector and hhht
k = [ht

k,1, · · · , ht
k,N ]T denotes the kth user’s 256

channel vector, with (·)T being the vector transpose. Now, 257

we are fully prepared to formulate our design problems. 258

B. Problem Formulation 259

When experiencing both user mobility and dynamic 260

wireless-traffic, a salient design problem in indoor VLC is to 261

determine the specific user-to-AP associations that are capable 262

of maintaining queue stability, where the multi-user queues 263

are deemed to be stable if they have a finite average queue 264

backlog for the entire system. Hence, a particular association 265

design is deemed superior to another, if it strikes a better 266

trade-off between the average system queue backlog and the 267

average per-user throughput. In this light, we consider both 268

the RA design and the AA design, with both location- and 269

delay-awareness. 270

σ 2
A = σ 2

s

[
fQ(ε̆)− fQ (ε̂)+ ε̆√

2π
exp

(−ε̆2

2

)
− ε̂√

2π
exp

(−ε̂2

2

)
+ ε̆2 − fQ(ε̆)ε̆

2 + fQ(ε̂)ε̂
2
]
, (5)
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1) Responsive Association: One of the throughput-optimal271

and delay-aware design principles that guarantees queue sta-272

bility in single-hop networks is known as the Largest Weighted273

Delay First (LWDF) [30] technique. Hence, in this paper,274

we adopt it as our benchmarking RA design, while referring275

the motivated readers to [30] for further details on the underly-276

ing theory. More explicitly, the objective of the RA design is to277

obtain the optimal association decisions between the K users278

and N APs in order to maximise the weighted sum rate at the279

current timeslot, where the weight is the current queue backlog280

of each user. Mathematically, the RA design problem can be281

formulated as282

PR A = max
{xt

k,n ,∀k,n}
∑

k

qt
kr t

k, (12)283

s.t.
∑

k

x t
k,n ≤ 1 ∀n, (13)284

∑
n

x t
k,n ≤ Nk ∀k, (14)285

xt
k,n ∈ {0, 1} ∀k, n ∈ N t

k,0, (15)286

xt
k,n = 0 ∀k, n �∈ N t

k,0. (16)287

Observe that in (12), the objective function is designed288

for ensuring that users having higher queue backlog would289

have higher priorities, reflecting the LWDF design principle.290

Furthermore, constraint (13) requires that an AP can only291

serve at most one user, in the spirit of Time Division Mul-292

tiple Access (TDMA), while constraint (14) ensures that the293

kth user can only be served by at most Nk APs, where 1 ≤294

Nk ≤ |N t
k,0| is a pre-defined integer. Finally, constraint (16)295

reflects the fact that only the LoS component is used for296

determining the association.297

2) Anticipatory Association: In contrast to the RA design,298

the objective of the AA design is to obtain the optimal299

association decisions between the K users and N APs in300

order to maximise the weighted sum rate for the duration301

of several future timeslots, where the weight is represented302

by the evolving queue backlog of each user over several303

future timeslots. Conceptually, the proposed AA design may304

be viewed as an enhanced version of the LWDF design305

principle, which is endowed with a look-ahead capability.306

Mathematically, the AA design problem can be formulated307

as308

PAA = max
{xtw

k,n ,∀w,k,n}
E

[∑
w

∑
k

qtw
k r tw

k

]
, (17)309

s.t.
∑

k

x tw
k,n ≤ 1 ∀w, n, (18)310

∑
n

x tw
k,n ≤ Nk ∀w, k, (19)311

xtw
k,n ∈ {0, 1} ∀w, k, n ∈ N tw

k,0, (20)312

xtw
k,n = 0 ∀w, k, n �∈ N tw

k,0, (21)313

where tw = t + w − 1 and w ∈ [1,W ] with W being314

the total number of timeslots considered in the AA design.315

Furthermore, the expectation in (17) reflects the stochastic316

nature of the packet arrival process, which is assumed to 317

be an independent and identically distributed (i.i.d.) process 318

having a known distribution. Finally, the constraints of the 319

AA design problem follow similar interpretations to those of 320

the RA design problem discussed previously. 321

Remark 1: It is plausible that the AA design problem 322

defined in (17) provides a higher degree of system optimisation 323

flexibility, than the RA design problem defined in (12). This 324

is because the knowledge of the users’ future geo-locations, 325

which also determine their potential service rates, together 326

with the users’ wireless-traffic distribution may be taken into 327

account in the AA design. Intuitively, the users who are about 328

to experience high-quality links may be delayed, while serving 329

those users promptly, who are experiencing or about to expe- 330

rience weak links. Hence, the anticipatory design principle is 331

capable of exploiting the beneficial foresight of location- and 332

delay-awareness. 333

Remark 2: Conventional predictive handover used in mobile 334

telephony normally deals with the problem of early or late 335

handover trigger, which is achieved by adjusting the handover 336

trigger according to the a priori knowledge of the target 337

AP/router [31], [32]. It is a pure handover decision between a 338

link about to be relinquished and another to be established 339

from the user’s point of view. By contrast, in this paper, 340

we consider the user association problem, where a particular 341

user may be associated with multiple APs at the same time. 342

Hence, the updated associations would be established amongst 343

multiple APs, which means that there are multiple links to 344

be relinquished and to be set-up from the user’s point of 345

view. Even more intriguing is that the (updated) association 346

decisions are coupled with those of other users, where these 347

couplings are strong in the ultra-dense network environment 348

considered in this paper. These particulars make our problem 349

much more challenging, yet interesting both conceptually and 350

technically. Our methodology may also be applied in RF small- 351

cell networks, including within the context of phantom cell 352

arrangements. 353

III. METHODOLOGY 354

Let us now elaborate on the methodology used for solving 355

both the RA design problem and the AA design problem. 356

A. Responsive Association 357

1) Transformation: The RA design problem defined in (12) 358

is strongly coupled, since the decision variables x t
k,n are all 359

coupled through both the objective function and the con- 360

straints. Substituting (10) into (12) reveals that the decision 361

variable x t
k,n is closely related to both the kth user’s association 362

vector xxxt
k and the other users’ association vectors xxxt

j ,∀ j �= k. 363

Hence, we pursue a conservative approach by considering the 364

worst-case maximum interference Ĩ t
k imposed on the kth user, 365

which is given by 366

Ĩ t
k = (σ 2

A − σ 2
B)(eee

thhht
k − xxxt

khhht
k)

2, (22) 367

where eeet = [et
1, · · · , et

N ] with et
n = 1,∀n ∈ N t

0 and et
n = 0 368

otherwise. Correspondingly, the original service rate r t
k of (10) 369

is replaced by the associated lower bound of the service rate, 370
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which is given by371

r̃ t
k = B

2

∑
n

x t
k,n

‖xxxt
k‖2 log2

[
1 + γ 2

c σ
2
s (xxx

t
khhht

k)
2

σ 2
c (xxx

t
khhht

k)
2 + Ĩ t

k + σ 2

]
. (23)372

It is clear that x t
k,n and xxxt

j ,∀ j �= k has now been decoupled373

in (23). Hence, the RA design problem can be redefined as374

P̃R A = max
{xt

k,n ,∀k,n}
∑

k

qt
kr̃ t

k, (24)375

s.t. (13), (14), (15), (16),376

where we next discuss its solution for both the special case of377

Nk = 1,∀k and the general case of Nk ≥ 1,∀k.378

2) Optimisation: Setting Nk = 1,∀k in constraint (14)379

results into the scenario of single-AP association, where (24)380

can be explicitly expanded as381

P̃s
R A = max

{xt
k,n ,∀k,n}

∑
k

qt
kr̃ t,s

k , (25)382

s.t. (13), (14), (15), (16).383

Here, r̃ t,s
k is the conservative service rate when single-AP384

association is employed for all users, which is given by385

r̃ t,s
k = B

2
xt

k,n log2

[
1 + γ 2

c σ
2
s (h

t
k,n)

2

σ 2
c (h

t
k,n)

2 + Ĩ t,s
k + σ 2

]
, (26)386

where the interference term in (26) when single-AP association387

is employed for all users is given by388

Ĩ t,s
k = (σ 2

A − σ 2
B)(eee

thhht
k − ht

k,n)
2. (27)389

It is plausible that the problem defined in (25) is a classic390

binary linear programming problem. Since an efficient solution391

exists, we do not elaborate on it further in this contribution.392

On the other hand, setting Nk ≥ 1,∀k in constraint (14)393

results into the general scenario of multi-AP association, which394

may also be referred to as channel bonding. However, its395

solution is not as straightforward as that of the single-AP396

association scenario. To solve this problem, we let Kt
v host the397

subset of users having the capability of multi-AP association398

at the tth timeslot. For a particular user j ∈ Kt
v , we let399

Ct
j,m host all the combinations of m-AP association with400

m ∈ {2, 3, . . . , N j }. For each of these combinations, we create401

a corresponding virtual user, where we introduce yt
cm

j ,n
∈ {0, 1}402

to indicate the association between the cm
j th virtual user and403

the nth AP at the tth timeslot. Similarly, we use yyyt
cm

j
to denote404

the cm
j th virtual user’s association vector at the tth timeslot.405

Hence, (24) can be transformed into406

P̃b
R A = max

{xxxt
k ,yyy

t
cm

j
,zt

cm
j
}

∑
k

qt
kr̃ t,s

k +
∑

j

∑
m

∑
cm

j

qt
j r̃

t,b
cm

j
, (28)407

s.t. (15), (16),408 ∑
k

x t
k,n +

∑
j

∑
m

∑
cm

j

yt
cm

j ,n
≤ 1 ∀n, (29)409

∑
n

x t
k,n ≤ 1 ∀k, (30)410

∑
n

x t
j,n +

∑
cm

j

∑
n

yt
cm

j ,n
≤ m ∀ j,m, (31)411

∑
n

yt
cm

j ,n
+ zt

cm
j
m = m ∀ j,m, cm

j , (32) 412

zt
cm

j
∈ {0, 1} ∀ j,m, cm

j , (33) 413

yt
cm

j ,n
∈ {0, 1} ∀ j,m, cm

j , n, (34) 414

where r̃ t,b
cm

j
= r̃ t

j (xxx
t
j = yyyt

cm
j
) is the conservative service rate 415

for the cm
j th virtual user when multi-AP association is used. 416

To elaborate, constraint (29) requires that an AP can only 417

serve at most one user, while constraints (30) and (31) jointly 418

require that the users supporting single-AP association can 419

only be served by at most one AP and users having m-AP 420

association can only be served by at most m APs. Finally, 421

constraint (32) requires that the cm
j th virtual user can either 422

be served by m APs or not be served at all. By introducing 423

the concept of virtual users, it is plausible that the problem 424

defined in (28) becomes a classic binary linear programming 425

problem, for which efficient solutions exists. Following the 426

optimisation, we assign xxxt
j = yyyt

cm
j
, if the j th user’s cm

j th multi- 427

AP association was finally determined. 428

B. Anticipatory Association 429

1) Transformation: It is clear that the AA design prob- 430

lem defined in (17) is also strongly coupled. Similar to the 431

transformation carried out for the RA design, we use the 432

conservative service rate r̃ t
k of (23), rather than the original 433

service rate r t
k of (10), when dealing with the AA design 434

problem. Furthermore, we define the action of the kth user 435

at the twth timeslot as r̃ tw
k , which is independent of the other 436

users’ actions. According to (23), the conservative service rate 437

r̃ tw
k is a function of the kth user’s association vector xxxtw

k . Hence, 438

by enumerating all possible combinations of the kth user’s 439

association vector, the corresponding action set Atw
k can be 440

created. 441

As a benefit of using the conservative service rate r̃ tw
k , when 442

w ≥ 2, the kth user’s queue backlog evolves according to 443

q̃ tw
k = (q̃ tw−1

k − r̃ tw−1
k δ/η)+ + atw−1

k δ/η, (35) 444

where q̃ t1
k = qt

k is the kth user’s initial queue backlog at the 445

tth timeslot. However, the continuous-valued queue backlog 446

of q̃ tw
k cannot be directly used for the dynamic programming 447

aided methods to be employed next. Hence, we introduce a 448

discrete-valued queue backlog of stw
k ∈ S, where S hosts 449

the quantised queue backlog lengths capped at q� having the 450

discretisation granularity of �. Hereafter, S is referred to as 451

the state set, and each level in S is referred to as a state. Hence, 452

when w ≥ 2, the kth user’s discrete-valued queue backlog 453

evolves according to 454

stw
k = �min[(stw−1

k − r̃ tw−1
k δ/η)+ + atw−1

k δ/η, q�]�, (36) 455

where st1
k = �min[qt

k, q�]� is the kth user’s starting queue 456

backlog at the tth timeslot and �·� is the quantisation operation. 457

After introducing the above-mentioned concept of action 458

and state, the AA design problem can be redefined as 459

P̃AA = max
{r̃ tw

k ,∀w,k}
E

[∑
w

∑
k

Rtw
k

]
, (37) 460

s.t. (18), (20), (21), 461
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where Rtw
k = stw

k r̃ tw
k represents the kth user’s reward at462

the twth timeslot. Note that constraint (19) is dropped here,463

since the enumeration of the kth user’s actions ensures that464

constraint (19) will always be satisfied. To elaborate a little465

further, (37) resorts to finding the best actions r̃ tw
k of all users466

throughout all timeslots so as to maximise the sum of each467

user’s reward Rtw
k over all timeslots in a stochastic sense,468

where each user’s state stw
k evolves according to (36).469

However, directly solving (37) may be excessive at the470

current computing power. Let ssstw = {stw
k ,∀k} and r̃̃r̃r tw =471

{r̃ tw
k ,∀k} denote the system states and system actions at the472

twth timeslot, respectively. Assuming that each user has the473

same number of actions throughout the timeslots, i.e. we474

have |Atw
k | = |A|,∀w, k, then there is an unmanageable total475

number of |S|K system states and |A|K system actions at each476

timeslot. Unfortunately, these system states and system actions477

also expand exponentially in time, hence we resort to dynamic478

programming in order to circumvent the excessive growth in479

complexity [33], [34].480

2) Approximation: In dynamic programming, we let J (ssst1)481

denote the value of (37), which can be obtained by recursively482

solving the so-called Bellman equation, commencing from the483

tW th timeslot. More explicitly, the Bellman equation [33] at484

the twth timeslot can be written as485

J (ssstw) = max
r̃̃r̃r tw

∑
k

Rtw
k + J̄ (ssstw+1)ssstw ,r̃̃r̃r tw , (38)486

s.t. (18), (20), (21),487

where J̄ (ssstw+1)ssstw ,r̃̃r̃r tw is the expected value at the tw+1th488

timeslot of the immediate future, conditioned on the system489

states and system actions at the current twth timeslot and490

its value is zero at the dummy tW+1 timeslot. The typical491

approach invoked for recursively solving (38) requires either492

policy iteration or value iteration, both of which suffer from493

the curse of dimensionality. This is because both the number494

of system states and the number of system actions at each495

timeslot is exponential in the number of users K , owing to496

the coupling imposed by constraint (18). Fortunately, a closer497

look at (38) reveals that this is a weakly coupled dynamic498

programming problem [35], hence we exploit its structural499

property for developing an approximate dynamic programming500

method [36].501

Formally, we aim to relax the constraint (18) by attaching502

Lagrange multipliers to (38). Let us define the Lagrange503

multipliers at the twth timeslot as λλλtw = {λtw
n ,∀n}. Hence,504

the relaxed Bellman equation at the final tW th timeslot can be505

written as506

L(ssstW ,λλλtW ) = max
r̃̃r̃r tW

∑
k

(RtW
k −

∑
n

λtW
n x tW

k,n)+
∑

n

λtW
n507

=
∑

k

(max
r̃

tW
k

RtW
k −

∑
n

λtW
n x tW

k,n)+
∑

n

λtW
n508

=
∑

k

Lk(s
tW
k ,λλλtW )+

∑
n

λtW
n . (39)509

Let us also define the Lagrange multipliers ranging from the510

twth timeslot to the tW th timeslot as λλλtw,W = {λλλtw′ , w′ ∈511

[w,W ]}. Then reasoning by induction from (39), the relaxed512

Bellman equation at the twth timeslot can be written as 513

L(ssstw,λλλtw,W ) =
∑

k

Lk(s
tw
k ,λλλ

tw,W )+
∑
w′

∑
n

λ
tw′
n , (40) 514

where explicitly we have 515

Lk(s
tw
k ,λλλ

tw,W ) 516

= max
r̃ tw

k

Rtw
k −

∑
n

λtw
n x tw

k,n + L̄k(s
tw+1
k ,λλλtw+1,W )stw

k ,r̃ tw
k
. (41) 517

Here L̄k(s
tw+1
k ,λλλtw+1,W )stw

k ,r̃ tw
k

is the expected value after relax- 518

ation at the tw+1th timeslot of the immediate future, condi- 519

tioned on the system states and system actions at the current 520

twth timeslot and its value is zero at the dummy tW+1th 521

timeslot. It is now plausible that the above relaxation results 522

in K small sub-problems of (41) at each timeslot and for each 523

system state. 524

As a benefit of relaxation, the dual problem of the Bellman 525

equation J (ssstw) at the twth timeslot can be written as 526

L(ssstw) = min
λλλtw,W

L(ssstw,λλλtw,W ), (42) 527

where according to standard Lagrangian theory, (42) is convex 528

and we have the relationship of L(ssstw) ≥ J (ssstw). Recall that 529

our goal was to solve the Bellman equation J (ssst1) at the 530

t1th timeslot, but now we resort to solving its dual problem 531

of 532

L(ssst1) = min
λλλt1,W

L(ssst1,λλλt1,W ). (43) 533

This approach follows the design principle of the so-called 534

approximate dynamic programming, which has been found in 535

diverse applications [37]–[40]. 536

3) Solution: At first glance, the linear programming repre- 537

sentation of (43) can be written as 538

L(ssst1) = min
{λλλt1,W ,μμμ}

∑
k

μk(s
t1
k )+

∑
w

∑
n

λtw
n , (44) 539

s.t. μk(s
tw
k ) ≥ Rtw

k −
∑

n

λtw
n x tw

k,n + μ̄k(s
tw+1
k )stw

k ,r̃ tw
k

540

∀w, k, stw
k , r̃

tw
k , (45) 541

λtw
n ≥ 0 ∀w, n, (46) 542

where μμμ = {μk(s
tw
k ),∀w, k, stw

k } hosts all of the auxiliary 543

decision variables and μ̄k(s
tw+1
k )stw

k ,r̃ tw
k

is the expected value 544

of the auxiliary decision variable at the tw+1th timeslot of the 545

immediate future, conditioned on the system states and system 546

actions at the current twth timeslot and its value is zero at 547

the dummy tW+1th timeslot. Although (44) is in an elegant 548

formulation, the underlying problem only remains tractable 549

for small system settings. In a reasonable-sized system setting 550

of N = 8 × 8 APs, K = 20 users, W = 5 timeslots, |S| = 551

10 states and |Atw
k | = |A| = 4,∀w, k actions, there is a total 552

of W (K |S|+ N) = 1320 decision variables and W K |S||A| = 553

4000 constraints involved in the problem formulated in (44), 554

where a practical solution is indeed necessary. 555

Hence, we employ the classic sub-gradient based algorithm 556

in order to obtain L(ssst1). Explicitly, the sub-gradient based 557

algorithm iteratively updates λλλt1,W according to 558

λλλt1,W (τ + 1) = [λλλt1,W (τ )+ εggg(τ )]+, (47) 559
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where τ is the iteration index and ggg(τ ) is the sub-gradient,560

which is given by561

ggg(τ ) = ∇L[ssst1,λλλt1,W (τ )]. (48)562

In this study, we estimate the sub-gradient ggg(τ ) empirically.563

For a given λλλt1,W (τ ), we can readily obtain the corresponding564

chosen actions of r̃ tw
k for all users and on all timeslots. This can565

be achieved by backwards recursion on the relaxed Bellman566

equation of (40), with its component equation (41) being567

efficiently evaluated at each recursion. These actions are then568

used for determining the estimated sub-gradient. Still referring569

to (47), the positive step size of ε is given by570

ε = minτ ′<τ L[ssst1,λλλt1,W (τ ′)] − L[ssst1,λλλt1,W (τ )]
‖ggg(τ )‖2 . (49)571

Finally, the sub-gradient based algorithm terminates, when572

ggg(τ ) is deemed to be sufficiently small. The exact complexity573

of the sub-gradient based algorithm is difficult to quantify574

owing to its iterative nature. However, at each iteration,575

the backwards recursion on (40) requires W K |S| evaluations576

of (41), which can be solved efficiently, namely at a linear577

complexity of O(|Atw
k |). Hence, the sub-gradient based algo-578

rithm is indeed appropriate for practical sized problems. For579

better clarification, a pseudo-code is included in Algorithm 1.580

Algorithm 1 ADP

1: input
{Atw

k ,∀k, tw
}
, initialise λλλt1,W (τ = 1) and ς

2: for τ = 1, 2, · · · do
3: backwards recursion (40) → L[ssst1,λλλt1,W (τ )]
4: evaluate (48) → ggg(τ )
5: if ggg(τ ) � ς then
6: λλλt1,W = λλλt1,W (τ )
7: break
8: else
9: evaluate (49) → ε

10: evaluate (47) → λλλt1,W (τ + 1)
11: end if
12: end for
13: evaluate J (ssst1) ≈ L(ssst1) = L(ssst1,λλλt1,W )

IV. NUMERICAL RESULTS581

We now characterise the performance of the average system582

queue backlog versus the average per-user throughput, for both583

of our association designs, under different parameter settings.584

A. Settings585

We considered a 15 × 15 × 5 [m3] indoor environment586

associated with N = 8 × 8 APs uniformly located on the587

ceiling. We set the optical power to Po = 24.5 [mW] for sat-588

isfying the illumination requirements of [Imin ,Imax ,Iavg] =589

[200, 800, 600] [lm], where we define the minimum illu-590

mination requirement as Imin , the maximum illumination591

requirement as Imax and the average illumination require-592

ment as Iavg . Hence, we have the electronic power of593

σ 2
s ≈ 0.75 [mW] corresponding to the DC level of PDC =594

22.5 [mW], where the optical to electronic power conversion595

is discussed in Appendix.596

TABLE I

LIST OF COMMON PARAMETER SETTINGS

The classic random waypoint mobility model was adopted 597

for users randomly distributed in the room, with a con- 598

stant speed at v [m/s], walking duration from 2 to 5 [s], 599

pausing duration from 0 to 2 [s] and walking direction 600

spanning 360°. Each timeslot was set to δ = 1 [ms] and 601

10 independent snapshots of 30 [s] moving segments were 602

recorded, where each snapshot was averaged over 50 Bernoulli 603

distributed random packet arrivals with a mean of p and we 604

set q� = 5 [ms]. 605

The standard parameter settings used in our simulations 606

were as follows: number of users K = 20, Bernoulli mean 607

p = 0.5, maximum number of APs per-user Nk = 1,∀k, 608

modulation bandwidth B = 25 MHz, half of the FoV 609

ψF = 45°, moving speed v = 1 [m/s], prediction window size 610

W = 10 and discretisation granularity � = 0.5 [ms]. In the 611

following, we investigate each of these parameters separately, 612

whilst keeping all the other parameters unchanged. Finally, 613

the remaining common parameter settings are listed in Table I. 614

B. Observations 615

1) Effect of Number of Users: The left subplot of Fig. 1 616

shows the effect of the number of users on the average 617

system queue backlog versus the average per-user throughput, 618

for both the RA design and the AA design. It is clear that 619

for both user number settings of K = 20 and K = 30, 620

the AA design achieves a consistently shorter average system 621

queue backlog than that of the RA design across all values 622

of the per-user average throughput. Importantly, for both user 623

number settings, the difference between the RA design and the 624

AA design in the average system queue backlog substantially 625

increases upon increasing the average per-user throughput. 626

Quantitatively, for both user number settings and when sup- 627

porting an average per-user throughput of 100 Mbps, the 628

AA design results in about half of the average system queue 629

backlog of that of the RA design, although their difference is 630

only marginal when supporting the reduced average per-user 631

throughput of 50 Mbps. Indeed, when increasing the average 632

per-user throughput, the corresponding average system queue 633

backlog increases much faster in the RA design than in the 634

AA design, for both user number settings. Finally, for both 635

the RA design and the AA design, the higher the number of 636

users, the more system resources are required and the higher 637

the average system queue backlog becomes. 638

2) Effect of Field of View: The right subplot of Fig. 1 639

shows the effect of the FoV on the average system queue 640
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Fig. 1. The effect of number of users (left) and the effect of field of
view (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

Fig. 2. The effect of bonding (left) and the effect of modulation band-
width (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

backlog versus the average per-user throughput, for both the641

RA design and the AA design. Again, it is clear that for both642

FoV settings of FoV = 90° and FoV = 100°, the AA design643

achieves a consistently shorter average system queue backlog644

than that of the RA design across all values of the average645

per-user throughput. Furthermore, for both the RA design and646

the AA design, increasing the FoV dramatically increases the647

average system queue backlog. This is indeed as expected,648

since the wider the FoV, the higher the interference level and649

the worse the average system queue backlog becomes, for both650

the RA design and the AA design.651

3) Effect of Channel Bonding: The left subplot of Fig. 2652

shows the effect of channel bonding on the performance of653

the average system queue backlog versus the average per-user654

throughput, for both the RA design and the AA design. Again,655

channel bonding refers to the scenario of supporting multi-AP656

Fig. 3. The effect of Bernoulli mean (left) and the effect of walking
speed (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

association. In our simulations, we used Nk = |N tw
k,1|,∀w, k 657

for both the RA design and the AA design. It is clear 658

that allowing multi-AP association noticeably decreases the 659

average system queue backlog in the RA design. By contrast, 660

only marginal improvements of the average system queue 661

backlog can be observed, when channel bonding is employed 662

in the AA design. This implies that the AA design is capable of 663

exploiting the single-AP association, hence rendering channel 664

bonding less attractive in the AA design. 665

4) Effect of Modulation Bandwidth: The right subplot of 666

Fig. 2 shows the effect of the modulation bandwidth on the 667

average system queue backlog versus the average per-user 668

throughput, for both the RA design and the AA design. Again, 669

it is clear that for both the modulation bandwidth settings of 670

B = 25 MHz and B = 50 MHz, the AA design improves a 671

consistently shorter average system queue backlog than that 672

of the RA design across all values of the average per-user 673

throughput. Furthermore, for both the RA design and the 674

AA design, we observe a substantial impact of the modulation 675

bandwidth on the performance of the average system queue 676

backlog. More explicitly, as expected, at the same level of 677

the average system queue backlog, doubling the modulation 678

bandwidth from B = 25 MHz to B = 50 MHz roughly 679

doubles the average per-user throughput, for both the RA 680

design and the AA design. 681

5) Effect of Bernoulli Mean: The left subplot of Fig. 3 682

shows the effect of the Bernoulli mean on the average system 683

queue backlog versus the average per-user throughput, for both 684

the RA design and the AA design. Again, it is clear that for 685

both the Bernoulli mean settings of p = 0.5 and p = 0.6, 686

the AA design improves a consistently shorter average system 687

queue backlog than that of the RA design across all values of 688

the average per-user throughput. Also as expected, for both the 689

RA design and the AA design, the higher the Bernoulli mean, 690

the higher the packet arrival rate and the higher the average 691

system queue backlog. 692
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Fig. 4. The effect of association delay (left) and the effect of imperfect
localization (right) on the performance of the average system queue backlog
versus the average per-user throughput, for both the RA design and the
AA design.

6) Effect of Walking Speed: The right subplot of Fig. 3693

shows the effect of the walking speed on the average system694

queue backlog versus the average per-user throughput, for both695

the RA design and for the AA design. It is clear that for both696

velocities of v = 1 [m/s] and v = 1.5 [m/s], the AA design697

exhibits a consistently shorter average system queue backlog698

than that of the RA design across all values of the average699

per-user throughput. Interestingly, for both the RA design700

and the AA design, the higher the velocity, the shorter the701

average system queue backlog. Indeed, this is because the702

faster the users are moving, the more frequently the user will703

be served by strong LoS connections, hence leading to an704

ergodic experience. Should the users remain static all the time,705

the unlucky ones would always suffer from poor service and706

hence their average queue backlog would be increased.707

7) Effect of Association Delay: The left subplot of Fig 4708

shows the effect of the association delay at APs on the709

average system queue backlog versus the average per-user710

throughput, for both the RA design and the AA design.711

The association delay results into the outdated association712

decision. Fig 4 shows that as expected, this imperfection713

does impose a performance trade-off. Quantitatively, when the714

AA design is considered, at about 8 [ms] average system queue715

backlog, a loss of 10 [Mbps] average per-user throughput is716

observed owing to the association delay of 50 [ms] investi-717

gated. We believe that an association delay of 50 [ms] is quite718

a high value, which in turn implies that the design advocated719

is quite robust to this imperfection. However, different type of720

traffic distributions and user velocities would lead to different721

conclusions. Hence, appropriate counter-measures should be722

developed in the future.723

8) Effect of Imperfect Localization: Fig 4 shows the effect724

of imperfect localization on the average system queue backlog725

versus the average per-user throughput, for both the RA design726

and the AA design. We model the imperfect localization by727

introducing uniformly distributed random positioning errors728

Fig. 5. The effect of reduced number of APs (left) and the effect of smaller
rooms (right) on the performance of the average system queue backlog versus
the average per-user throughput, for both the RA design and the AA design.

around the true value. The imperfect localization results into 729

imperfect association decisions. Fig 4 shows that as expected, 730

this imperfection does impose a performance degradation for 731

both designs. We believe that limiting the positioning error to 732

±0.5m would be sufficient, noting that most of the positioning 733

methods found in the literature are capable of achieving an 734

accuracy at centi-meter level. This implies that the design 735

advocated is quite robust to localization imperfections. 736

9) Effect of Reduced Number of APs: The left subplot of 737

Fig 5 shows the effect of the reduced number of APs on 738

the average system queue backlog versus the average per- 739

user throughput, for both the RA design and the AA design. 740

As expected, the performance degrades upon reducing the 741

number of APs for both designs. This is because with 742

fewer APs, fewer spatial resources will be available to share. 743

Furthermore, with fewer APs, the chance of a particular user 744

getting a LoS connection is reduced, hence typically only non- 745

LoS links will be used. A further issue is that with fewer APs, 746

the illumination density would not be uniform. Nevertheless, 747

since VLC reuses the existing lighting infrastructure, a dense 748

deployment would allow the best exploitation of spatial reuse. 749

To this end, an interesting future direction would be to select 750

the best subset of APs for lower complexity with minimal 751

performance degradation. 752

10) Effect of Smaller Room: Fig 5 shows the effect of a 753

smaller room on the average system queue backlog versus the 754

average per-user throughput, for both the RA design and the 755

AA design. To provide a fair comparison to the (8 × 8) AP 756

setting in the 15 × 15 [m2] room with 20 users, we studied a 757

(5×5) AP setting in a 10×10 [m2] room with 9 users. These 758

two settings have similar AP density (number of APs per m2) 759

and user density (number of users per m2). As expected, both 760

settings exhibit similar performance trends. For smaller rooms, 761

a slight performance degradation is observed for both designs, 762

since stronger reflections are experienced and hence we have 763

an increased crosstalk between users. 764
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Fig. 6. The effect of prediction window size (left) and the effect of
discretisation granularity (right) on the performance of the average system
queue backlog versus the average per-user throughput, for the AA design.

11) Effect of Prediction Window Size: The left subplot of765

Fig. 6 shows the effect of the prediction window size on the766

average system queue backlog versus the average per-user767

throughput, for the AA design. It is clear that the average768

system queue backlog improves upon increasing the prediction769

window size from W = 5 to W = 10 and to W = 15 at770

the cost of increasing the complexity, across all values of the771

average per-user throughput. Furthermore, the most noticeable772

improvement in the average system queue backlog appears773

upon increasing the prediction window size from W = 5774

to W = 10. Hence, it is important to strike a compromise775

between the performance and the complexity, although this776

aspect is beyond our current scope.777

12) Effect of Discretisation Granularity: The right subplot778

of Fig. 6 shows the effect of the discretisation granularity779

on the average system queue backlog versus the average per-780

user throughput, for the AA design. As expected, the higher781

the discretisation granularity, the finer the continuous-valued782

queue backlog representation and the better the average system783

queue backlog becomes. Nevertheless, the differences in the784

average system queue backlog for � = 0.25, � = 0.5 and785

� = 1 remain quite small.786

V. CONCLUSIONS787

In this paper, we provided a beneficial indoor VLC design788

for moving users and for dynamic wireless-traffic arrivals.789

A pair of location- and delay-aware association designs were790

investigated, namely the benchmarking RA design and the791

radical AA design. Efficient solutions were provided for792

both association designs and detailed optimisation algorithms793

were introduced. Our simulation results suggested that the794

AA design is capable of outperforming the RA design, result-795

ing in a significantly better trade-off between the average796

system queue backlog and the average per-user throughput, for797

diverse parameter settings. Our study indicated that in indoor798

VLC, the system-wide average delay can be substantially799

reduced by taking advantage of the anticipatory approach800

advocated. Finally, in our future work, it would be interesting 801

to consider realistic positioning and tracking methods, hybrid 802

user distributions, diverse mobility models, mixed wireless 803

traffic profiles, joint uplink and downlink design, etc. 804

It is worth highlighting that our scheme would be challenged 805

at high speeds. In this case, involving accurate positioning 806

and tracking would become difficult, which in turn jeopardises 807

the action of anticipation. In addition, the dwell time of the 808

user would be too short to physically establish association, 809

hence potentially leading to unnecessary association attempts. 810

A potential solution in this case is to rely on a single anchor 811

point for mobility control, namely to avoid frequent change 812

of associations. For example, all APs could jointly serve as 813

a single anchor, or the over-sailing radio connection could 814

be in charge of the control plane in the context of HetNet. 815

Nevertheless, this is certainly an interesting future research 816

direction, especially in the case of having diverse velocities. 817

We consider downlink association in this paper, but naturally 818

the location-awareness would rely on the existence of the 819

uplink. In VLC, one could use the popular WiFi for the uplink. 820

There has also been some prominent research [41], [42], 821

including standardisation efforts dedicated to combining WiFi 822

and VLC under the same 802 framework (IEEE 802.15 823

TG 7r1). Alternatively, one could rely on an Infra-red uplink 824

dongle as implemented by PureLiFi (https://purelifi.com/). 825

Indeed, bi-directional VLC systems have decoupled downlink 826

and uplink. It will be thus interesting to study the ambitious 827

closed-loop design in the future. 828

APPENDIX 829

OPTICAL-ELECTRONIC POWER CONVERSION 830

Since the primary purpose of LEDs is to provide illumi- 831

nation, the minimum required (maximum allowed) optical 832

power Pillu
min (Pillu

max ) should satisfy the pre-defined illumination 833

requirements constituted by the minimum illumination require- 834

ment Imin , the maximum illumination requirement Imax and 835

the average illumination requirement Iavg . Mathematically, 836

we have to solve the problem of 837

Pillu
min = min P or Pillu

max = max P, (50) 838

s.t. min
κ∈[1,K p]

∑
n

hillu
κ,n L P ≥ Imin , (51) 839

max
κ∈[1,K p]

∑
n

hillu
κ,n L P ≤ Imax , (52) 840

1

K p

∑
κ

∑
n

hillu
κ,n L P ∈ [I−

avg,I+
avg], (53) 841

where I+
avg and I−

avg denote the ±5% of Iavg . Furthermore, 842

hillu
κ,n denotes the luminous flux of the unit optical power 843

provided by the nth AP at the κ th point of the K p equally 844

partitioned receiver plane-tiles owing to the LoS propagation, 845

which is given by 846

hillu
κ,n = (mL + 1)

2πd2ξ
cosmL (θ) cos(ψ), (54) 847

where ξ denotes the optical power to luminous flux conversion 848

factor [2], while m L , d , θ and ψ are defined similarly as in (1). 849

In addition to satisfying the above illumination requirements, 850
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the optical power Po should also satisfy the per-LED dynamic851

range of [Pmin , Pmax ]. As a result, by taking into account both852

the illumination requirements and the LED’s physical limits,853

we have the constraint of854

max{Pillu
min , Pmin } ≤ Po ≤ min{Pillu

max , Pmax }. (55)855

Furthermore, according to [29], the relationship between the856

electronic power σ 2
s and the optical power Po is given by857

Po = σs

[
1√
2π

exp

(
ε̆2

ε̂2

)
− ε̆ fQ(ε̆)+ ε̂ fQ (ε̂)

]
+ Pmin . (56)858

Hence, by opting for a desired optical power satisfying (55),859

we can find the electronic power σ 2
s used for communications.860
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