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Wound-specific notochord sheath cell subpopulations associate with notochord repair and 25 

adult vertebrae formation. 26 
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Abstract  29 

Regenerative therapy for degenerative spine disorders requires the identification of cells that 30 

can slow down and possibly reverse degenerative processes. Here, we identify a novel and 31 

unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms 32 

Tumor (WT) 1b following injury. Using live imaging in zebrafish, we show that localized 33 

damage leads to Wt1b expression in the sheath, and that wt1b+ cells migrate into the wound 34 

to form a stopper-like structure, likely to maintain structural integrity. At the wound wt1b+ and 35 

entpd5+ cells constitute distinct subpopulations, and mark the site of an extra vertebra that 36 

forms in an untypical manner via a cartilage intermediate. Surprisingly, wt1b+ cells become 37 

closely associated with the chordacentra and sustain wt1b expression for over 35 days during 38 

vertebra formation. Given that remnants of notochord cells remain in the adult intervertebral 39 

disc, the identification of novel subpopulations may have important implications for 40 

regenerative treatments for spine disorders. 41 

 42 

Highlights 43 

• Notochord injury triggers wound-specific expression of wt1b in novel sheath subpopulation 44 

• WT1b notochord sheath cells fill injury site and form stopper-like structure 45 

• WT1b subpopulation marks site of a new vertebra that forms via a cartilage intermediate 46 

• WT1b wound-specific subpopulation perdures throughout and after vertebra repair 47 

  48 
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Introduction  49 

Wilms' tumour 1 (WT1) is a zinc finger transcription factor that regulates key developmental 50 

stages of several mesodermal tissues including the kidneys, gonads and coronary 51 

vasculature (Hastie 2017). In the developing kidney, WT1 is required for the maintenance of 52 

mesenchymal nephron progenitors (Kriedberg et al, 1993, Motamedi et al, 2014) as well as 53 

differentiation of these progenitors into the epithelial components of the nephron (Essafi et al, 54 

2011). In contrast, in the developing heart, WT1 is expressed in the epicardium (mesothelial 55 

lining) and required for the production, via an epithelial to mesenchymal transition (EMT), of 56 

coronary vascular progenitors (EPDCs) that migrate into the myocardium (Martinez-Estrada 57 

et al., 2010). Similarly, WT1-expressing mesothelium is the source of mesenchymal 58 

progenitors for specialised cell types within several other developing organs. These include 59 

stellate cells within the liver (Asahina et al, 2008), interstitial cells of Cajal in the intestine 60 

(Carmona et al, 2013) and adipocytes within visceral fat depots (Chau et al, 2014). WT1 61 

expression is down-regulated in the epicardium postnatally but reactivated in response to 62 

tissue damage in both mice (Smart et al., 2011) and zebrafish (Schnabel et al., 2011). In both 63 

organisms, this activation of WT1 in response to damage is associated with new rounds of 64 

epicardial EMT, leading to the production of coronary vascular progenitors (Smart et al., 65 

2011; Schnabel et al., 2011).  66 

Given the reactivation of Wt1/wt1b in the damaged epicardium we set out to investigate 67 

whether WT1 programmes are initiated in response to other sources of tissue damage in 68 

zebrafish, and uncovered a novel Wt1 response to wounding of the notochord. The notochord 69 

is a transient embryonic structure that provides axial support, signalling information, and is 70 

required for vertebrae development and formation (Stemple et al., 2005). The notochord is 71 

comprised of two cell populations, the inner vacuolated cells that provide rigid support to the 72 

embryo, and the outer sheath cells, a single cell epithelial layer that surrounds the vacuolated 73 

cells and secretes components of the extracellular matrix to provide turgor pressure to the 74 

vacuolated cells (Ellis et al., 2013; Apschner et al., 2011). This rigid axial structure eventually 75 

is replaced by vertebrae bone. In zebrafish, a row of metameric mineralized rings, known as 76 

chordacentra, forms around the notochord in an anterior to posterior fashion and constitute 77 

the first signs of the definitive vertebrae. The chordacentra delineate the future sites where 78 
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mature vertebra will form and ossify as the larva grows, while the notochord cells develop into 79 

the nucleus pulposus of the adult intervertebral disk, a soft gel-like tissue that provides 80 

cushioning and flexibility for the spine.  81 

Degeneration of the intervertebral disk leads to extensive back pain, one of the top global 82 

causes of years lived with disability (Lawson & Harfe, 2015). Treatment primarily consists of 83 

managing the pain symptoms, or in more progressed disease includes extensive surgery. 84 

One of the major goals of the tissue-engineering field is to identify cells and tissues that will 85 

enable novel regenerative therapies to slow down and possibly reverse the degenerative 86 

process. Here, we uncover a novel cellular subpopulation in the notochord sheath that 87 

emerges at the site of damage and is maintained until formation of a repaired adult vertebra 88 

structure. Surprisingly, this subpopulation expresses wt1b despite no evidence of wt1b 89 

expression in physiological notochord development or ossification.  Our findings suggest that 90 

the zebrafish notochord is protected by a novel wound-specific programme that seals the 91 

notochord wound in the embryo and establishes the site of a new adult vertebra. 92 

 93 
Results 94 

Wound specific expression of wt1b in the notochord  95 

Given the expression of wt1b in the regenerating heart, we wanted to explore the expression 96 

of wt1 in other regenerating tissues, and began with the tail fin regenerative processes. There 97 

are two wt1 paralogues in zebrafish, wt1a and wt1b, and so we performed tail fin amputations 98 

on zebrafish larvae 3 days post fertilization (dpf) using Tg(wt1a:GFP) and Tg(wt1b:GFP) 99 

transgenic lines (Bollig et al., 2006; Perner et al., 2007; Supplementary Figure 1a). 100 

Surprisingly, we discovered that tail fin amputations that included partial removal of the 101 

notochord triggered a change of cellularity in the notochord, coupled with the specific, de 102 

novo upregulation of GFP in a Tg(wt1b:GFP) transgenic line. This response was specific to 103 

wt1b because we did not observe expression of GFP in Tg(wt1a:GFP) tail fin amputated 104 

larvae (Supplementary 1b-e).  105 

Next, we developed a needle-based assay to specifically induce localized damage in the 106 

developing zebrafish notochord independent of tail fin amputation. Needle injury was induced 107 

in 3 dpf Tg(wt1b:GFP) that had been crossed with casper fish to remove pigmentation and 108 
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imaged at 72 hours post injury (hpi) (Figure 1a). Needle induced wounds triggered a similar, 109 

albeit stronger wt1b:GFP response to the tail fin amputations, that was specifically localised 110 

to the site of the wound (Figure 1b). Time course imaging showed a progressive expansion 111 

of the damaged area over 72 hours, with an increasing expression of GFP signal, 112 

concomitant with a change of cellularity in the notochord (Figure 1c). Importantly, this was 113 

not observed in uninjured zebrafish controls (Figure 1c) or in notochord injured 114 

Tg(wt1a:GFP) transgenic larvae (data not shown). Histological staining of the damaged area 115 

revealed the presence of a subpopulation of cells at the site of injury, which contrasted 116 

morphologically with the uniform, vacuolated inner cells of the notochord (Figure 1d). These 117 

cells stained positively for GFP and for endogenous Wt1 protein by immunohistochemistry, 118 

validating the faithful expression of the transgene with endogenous wt1b expression in this 119 

response (Figure 1e). Thus, following notochord injury, an unanticipated expression of wt1b 120 

marks a subpopulation of cells that emerges in the notochord and is associated with the 121 

wound.  122 

wt1b expressing cells emerge from the notochord sheath 123 

To determine the origin of the wound-specific wt1b+ cells, we examined wt1b expression in 124 

the notochord and vacuolated cells, using a Tg(SAGFF218:GFP) transgenic line that labels 125 

the membrane of the inner vacuolated cells and Tg(col2a1a:RFP) that is specifically 126 

expressed in the surrounding notochord sheath cells (Figure 2a; Yamamoto et al., 2010 and 127 

Dale and Topczewski, 2011).  128 

A needle-induced notochord wound in the Tg(SAGFF214:GFP) transgenic line showed that 129 

GFP-expressing cells were lost rapidly upon injury, creating a gap in the row of vacuolated 130 

cells. Eventually, this gap was filled with new cells by 144 hpi (Supplementary Figure 2a,b). 131 

The SAGFF214:GFP response was distinct from the wt1b+ response in time (emerging at 72 132 

hpi compared with 24 hpi), size and number (few and large compared with numerous and 133 

small), and in coverage of the wound (visible gaps remaining at the site compared with filling 134 

the damage site). These data suggest that wt1b expressing cells are distinct from the 135 

vacuolated cells at the site of injury.  136 
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Next, we explored the role of the notochord sheath cells in this process. We crossed the 137 

Tg(wt1b:GFP) transgenic line to a Tg(col2a1a:RFP) transgenic line, generated with a 1 KB 138 

fragment of the col2a1a promoter that is transiently expressed in the sheath cells until 139 

approximately 6 dpf (Dale & Topczewski, 2011). Live confocal and multiphoton imaging 140 

revealed wt1b:GFP expression in the col2a1a:RFP notochord sheath cells following needle 141 

induced notochord damage (Figure 2 b-d; Video 1; Supplementary Figure 2c,d). 142 

Wt1b:GFP co-expression with col2a1a:RFP was visible by 24 hpi in a ring surrounding the 143 

notochord vacuolated cells, and by 72 hpi the wt1b:GFP subpopulation of sheath cells had 144 

migrated into the inner lumen of the notochord to fill the wound and produce a visible stopper-145 

like seal in the notochord. 146 

To validate the co-expression of wt1b:GFP and col2a1a:RFP in the wounded fish, we FACS 147 

sorted cell populations in the injured versus uninjured larvae isolated from the trunk region 148 

(Figure 2e; n = 35 larvae per set). While GFP+ only and RFP+ only expressing cells were 149 

found in both injured and non-injured larvae, only the wounded fish had cells that co-150 

expressed wt1b:GFP and col2a1a:RFP (GFP+RFP+; 289 cells vs. 3 cells respectively).  151 

Our evidence indicates that the notochord wound triggers a unique wt1b+ subpopulation to 152 

emerge in the notochord sheath cells. This wt1b+ sheath cell subpopulation migrates into the 153 

wound and generates a stopper-like structure, possibly to prevent further loss of notochord 154 

turgor pressure and maintain notochord integrity.  155 

Notochord wounds express cartilage and mesenchyme genes  156 

To address the molecular process at the site of the wound, we compared the transcriptome of 157 

the trunk region in the injured and uninjured 72 hpi larvae (Figure 3a, b; n = 50 larvae per 158 

subset). Microarray analysis revealed a highly significant 131-fold increase in expression of 159 

matrix gla protein (mgp), a gene that is known to express in chondrocytic zebrafish tissues 160 

(Gavaia et al., 2006) and to be involved in the inhibition of hydroxyapatite production during 161 

ectopic bone formation (Zebboudj et al., 2002; Sweatt et al., 2003; Schurgers et al., 2013) 162 

(Figure 3c, d). Other genes included mesenchymal and cell adhesion markers, such as fn1b, 163 

coagulation factors, such as f13a1b, and immune response genes, such as zgc:92041 and 164 

complement c6 (Figure 3d).  165 
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The increased expression of mgp and f13a1b genes implicated the de novo acquisition of 166 

chondrogenic features in the injured tissues. Chondrogenic cells in the endochondral tissues 167 

of the craniofacial, fin bud and axial skeletons express mgp (Gavaia et al., 2006) and FXIIIA 168 

expression is localized to the developing chondrogenic mesenchyme of the pectoral fin bud 169 

(Deasey et al., 2012). The expression of cartilage genes was unexpected because 170 

ossification of the zebrafish notochord occurs via the formation the chordacentra, and does 171 

not require the establishment of cartilage anlagen (Flemming 2004; Bensimon-Briti et al., 172 

2012; Lefebve & Bhattaram, 2010). To examine the expression of other chondrogenic genes, 173 

we analyzed the top 100 significant genes and found an increase in expression in Sox9, the 174 

master regulator of chondrogenesis, five collagen genes associated with chondrogenic 175 

tissues (col2a1a, col2a1b, col11a2, col9a1 and col9a2), the cartilage specific extracellular 176 

structural protein Aggrecan, a microRNA regulator of chondrogenesis microRNA140 and the 177 

matrix-cell anchor protein chondroadherin (chad)  (Figure 3e). Our results reveal that 178 

notochord wounding leads to an unexpected increase in expression of genes associated with 179 

cartilage. 180 

Extra vertebra forms at the repair site via an unusual cartilage intermediate 181 

The expression of cartilage genes suggests that the notochord wound may induce a 182 

previously unknown and alternative bone development process. We stained injured and 183 

control animals with alcian blue and alizarin red stains, which highlight the cartilage and bone 184 

respectively. Cartilage was clearly visible at the site of injury as soon as 3 dpi. This staining 185 

was significantly stronger and distinct from the highly coordinated segmental cartilage 186 

staining that normally occurs during zebrafish vertebra development, which is clearly visible in 187 

both injured and non-injured controls by 14 dpi (Figure 4a). Similarly, the alizarin red dye 188 

identified the anterior to posterior forming chordacentra rings during larval development. 189 

However, in injured zebrafish larvae, the normally uniform mineralization pattern was 190 

interrupted around the site of damage, leading to delayed formation of the chordacentra at 191 

later stages (Figure 4a).  192 

By 18 dpi, the injured site began to express bone matrix, and was visibly flanked by cartilage 193 

expressing segments (Figure 4b). This was unusual because in development of the 194 

vertebrae, cartilage and bone stains mark distinct regions of the notochord. To evaluate the 195 
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outcome of the injury in the bone process, wild-type larvae were injured and stained in calcein 196 

dye at 21 and 38 dpi (Du et al., 2001). Interestingly, the needle injury led to a delayed 197 

vertebral formation at the site of damage. These vertebrae that eventually formed were 198 

smaller and supernumerary, such that injured fish had one more vertebrae than their 199 

uninjured age-matched controls (Figure 4 c-e).  200 

The notochord provides signals for the patterning of vertebral and spine formation via the 201 

patterned activation of various signals, and has been proposed to be an essential component 202 

of chordacentra formation (Flemming et al., 2004; Bensimon-Brito et al., 2012). The 203 

Tg(entdp5:RFP) transgenic line marks osteoblastic cells responsible for the patterned 204 

formation of chordacentra rings, and serves as a readout for mineralizing activity (Huitema et 205 

al., 2012). Entpd5 (ectonucleoside triphosphate diphosphohydrolase 5) is an E-type NTPase 206 

that is found in bone mineralizing environments and is essential for skeletal morphogenesis 207 

(Huitema et al., 2012). We crossed the Tg(wt1b:GFP) transgenic line to Tg(entdp5:RFP) and 208 

followed the wound response. wt1b and entpd5 expressing cells populations were closely 209 

associated at the wound site indicating that mineralizing entpd5 cells may directly contribute 210 

to wt1b+ associated chordacentra (Figure 5 a,b).  211 

Embryonic wt1b+ subpopulations perdure into the adult vertebrae 212 

We noticed that the Tg(wt1b:GFP) transgene expression was always associated with the site 213 

of new vertebrae formation in the injured zebrafish that were raised to adulthood. To 214 

determine if wt1b expression was transient at the wound, or sustained throughout the repair 215 

process, we raised needle injured Tg(wt1b:GFP; casper) zebrafish larvae for up to 38 days 216 

(Figure 6a).  217 

GFP expression was sustained at the wound site, remaining in a small, cellular population at 218 

the site of damage, even as chordacentra developed and mineralized around the notochord 219 

over time (Figure 6a, b, c). Small GFP expressing cells were further confirmed by -GFP 220 

staining at the site of damage (Figure 6b) Strikingly, the Tg(wt1b:GFP) transgene maintained 221 

expression at this site up to 38 dpi (Figure 6d) before eventually reducing expression.  222 

To gain a better understanding of how wt1b:GFP expressing cells engage with the newly 223 

forming vertebrae, we carried out confocal imaging of the area of damage. The analysis 224 
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revealed the presence of both fused and unfused vertebrae at the damaged site, and the 225 

sustained and strong expression of wt1b:GFP expressing cells associated with the 226 

developing ectopic vertebra at the repair site area (Figure 6e,f).  227 

Taken together these results indicate that wt1b:GFP expressing cells both mark a 228 

subpopulation of cells that are rapidly activated at the site of the wound and also that these 229 

cells persist until adulthood, possibly orchestrating local vertebrae formation.  230 

 231 
Discussion 232 

Our analysis has uncovered wound-specific cellular heterogeneity in the zebrafish notochord 233 

that perdures during adult vertebra formation at the injury site (Figure 7).  234 

Despite wt1b having no reported role in notochord development, and despite not being 235 

expressed in the notochord, we identified a specific de novo expression of wt1b following 236 

notochord wounding.  The activation of wt1b in sheath cells that migrate into the notochord is 237 

reminiscent of the situation where wt1b expression is reactivated in epicardial cells that 238 

undergo EMT to produce vascular progenitors and migrate into the heart (Martinez-Estrada et 239 

al., 2010). This raises the question whether notochord sheath cells may also be mesothelial in 240 

nature and if the invading wt1b expressing cells are produced via an EMT or, perhaps more 241 

accurately, a mesothelial to mesenchyme transition.  242 

Wounding leads to localized wt1b expression in the notochord sheath cells that invade the 243 

site of the injury to form a stopper-like structure, likely to maintain notochord integrity. Very 244 

recently, Bagnet and colleagues reported the identification of notochord sheath cells involved 245 

in the replacement of vacuolated cells lost due to motion-dependent mechanical damage to 246 

the notochord (Garcia et al., 2017). In this context, sheath cells invade the vacuolated cell 247 

layer and differentiate into vacuolated cells to maintain turgor pressure. In light of this report, 248 

we have reanalysed our image analysis, but find no evidence to support that wt1b cells 249 

become vacuolated cells following acute wounding. In contrast, we find wt1b-expressing cells 250 

tightly associated with a stopper-like (scar-like) structure and continued wt1b expression at 251 

the wound site even during formation of an ectopic vertebra. We also detected entpd5 252 

expressing cell subpopulations at the wound that are distinct from wt1b expressing cells. 253 

These studies highlight a previously unknown complex and heterogeneous nature of the 254 
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sheath, and suggest that the notochord sheath can sense and respond to different types of 255 

damage. Motion-dependent shear stress causes loss of vacuolated cells that are replaced by 256 

new vacuolated cells that arise from the sheath (Garcia et al., 2017), while acute damage (i.e. 257 

needle injury) that encompasses sheath and vacuolated cell damage, leads to sheath cells 258 

forming a seal that marks the site of new cartilage and vertebra (Figure 7).   259 

By leveraging gene expression profiling of the wounded tissue, we discovered an alternative 260 

mechanism for vertebra formation via a cartilage intermediate at the injury site. This was 261 

unexpected because in zebrafish, ossification of chordacentra does not require the 262 

establishment of cartilage anlagen, but rather arises from the osteoblastic maturation of 263 

mescenchymal cells at the site of bone formation (Lefebvre & Bhattaram, 2010). Our 264 

observations indicate a wound-specific response to vertebra development. Vertebrae at the 265 

wound are supernumerary and smaller, with some showing defective neural and hemal 266 

arches (data not shown), and continue to be closely associated with wt1b+ cells until fully 267 

formed. We noted that the kinetics of vertebra formation at the damage site was delayed 268 

compared with other vertebrae. This delay could be explained by the very high expression of 269 

the cartilage gene mgp that inhibits calcification and BMP2 in mineralizing tissues (Schurgers 270 

et al., 2013; Zebboudj et al., 2002; Sweatt et al., 2003). This alternative mode for vertebra 271 

formation at the wound site may be a salvage structure to effectively maintain structural 272 

integrity of the developing axial skeleton. 273 

 274 

Materials and Methods 275 

All experimental procedures were approved by the University of Edinburgh Ethics Committee 276 

and were in accordance with the UK Animals (Scientific Procedures) Act 1986. 277 

Zebrafish lines 278 

Transgenic lines for this study include: Tg(entpd5:RFP) (Huitema et al., 2012), Tg(ubi:switch) 279 

(Mosimann et al., 2011), Tg(SAGFF214:GFP) (Yamamoto et al., 2010), Tg(wt1a:GFP) (Bollig 280 

et al., 2009), Tg(wt1b:GFP) (Perner et al., 2007; Bollig et al., 2009). Many of the studies were 281 

performed in a transparent background created by crossing homozygous Tg(wt1b:GFP) fish 282 

to homozygous pigment-free transparent casper fish (White et al., 2008). The 283 
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Tg(wt1b:GFP;col2a1a:RFP) line was created by injecting the R2-col2a1a:mCherry construct 284 

(Dale and Topczewski, 2011) with a Tol2 transposase (Kawakami, 2007) into 285 

Tg(wt1b:GFP;casper) zebrafish embryos.  286 

Notochord needle injury and tail amputation assays 287 

Larvae were anaesthetised in tricaine, placed sagittally on a petri dish and either inserted 288 

gently with an electrolysis-sharpened tungsten wire or tail amputated at different levels. 289 

Injured larvae were transferred to fresh water to recover and observe. Non-injured age-290 

matched larvae were grown as non-injured controls.  291 

Whole-mount microscopy  292 

Live and fixed whole-mount time-course and time-lapse experiments were performed using 293 

an AZ100 upright macroscope (Nikon) using a x2 and x5 lens with a Retiga Exi camera 294 

(Qimaging) or Coolsnap HQ2 camera (Photometrics). Images were analyzed and processed 295 

using the IPLab Spectrum and Micro-Manager softwares. Live and fixed whole-mount 296 

confocal imaging was performed using an A1R confocal system (Nikon) using a x20 lens over 297 

a Z-plane range of 80-100 μm (approximate width of the notochord) using a 480nm laser 298 

(GFP) and/or a 520nm laser (RFP) lasers. Images were captured and analysed using Nis-299 

Elements C software (Nikon). Multiphoton confocal time-lapse imaging was performed using 300 

an SP5 confocal microscope (Leica) equipped with a Ti:Sapphire multiphoton laser (Spectra 301 

Physics) and a 3 axis motorised stage. For confocal imaging and time-lapse experiments, 302 

anaesthetised injured and non-injured larvae were embedded sagittally in a drop of 1% low-303 

melting point agarose prior to imaging, in a specially designed glass insert, which was 304 

covered in a mixture of E3 medium and anaesthetic. All time-lapse imaging was done at 30 or 305 

60 mins intervals over 48 hours using an incubation chamber (Solent Scientific) under a 306 

constant temperature of 28
o
C and larvae were terminated in an overdose of tricaine at the 307 

end of each the experiment. 308 

Histology 309 

Zebrafish larvae younger than 20 dpf were culled and fixed overnight in 4% PFA/PBS at 4
o
C. 310 

The fixed larvae were washed in PBS, dehydrated in rising methanol/PBS concentrations and 311 

cleared in xylene before being paraffin embedded for sectioning. Older zebrafish were culled 312 

and fixed in 4% PFA/PBS at 4
o
C for 3 days with an abdominal incision to ensure tissue 313 
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penetrance of the fixative (Wojciechowska et al., 2016). Fish were decalcified using 0.5M 314 

EDTA (pH 7.5) for 5 days in a rocker at 4
o
C and dehydrated in 70% ethanol at 4

o
C. Fish were 315 

embedded in paraffin using a Miles Scientific Tissue TEK VIP automated processor. 316 

Embedded larvae and older zebrafish were sectioned using a Leica RM2235 rotary 317 

microtome to a width of 5 μm. Sections were haematoxylin and eosin (H&E) stained and 318 

mounted using DPX mounting media (Sigma-Aldrich). For cryosections, zebrafish larvae were 319 

embedded in OCT (Tissue Tek) and cut to 8 μm following protocols available at www.zfin.org.  320 

Immunohistochemistry 321 

Slides were de-waxed in xylene and rehydrated through decreasing ethanol washes, before 322 

being incubated in a bleach solution to remove pigment. Antigen-unmasking was performed 323 

as previously described (Patton et al., 2005). The slides were DAB stained following 324 

manufacturer’s instructions (Dako). Slides were incubated overnight at 4
o
C with the following 325 

antibodies: -GFP (1:1,500; Cell Signaling Technology) and -WT1 (1:25,000). The -WT1 326 

was designed using the TARGET antibody production protocol from Cambridge Research 327 

Biochemicals using a conserved protein sequence from the C-terminal of the zebrafish Wt1a 328 

and Wt1b proteins. An Axioplan II fluorescence microscope (Zeiss) with a Plan Apochromat 329 

objective was used for brightfield imaging of tissue sections. Images were captured using a 330 

Qimaging Micropublisher 3.3mp cooled CCD camera and analysed using the IPLab Spectrum 331 

software. 332 

Immunofluorescence 333 

Slides were processed as described above and blocked in 10% heat inactivated donkey 334 

serum for 2 hours. Slides were incubated overnight at 4
o
C with -WT1 (1:33,000) antibody 335 

diluted in 1% heat inactivated donkey serum in TBSTw. Slides were incubated for 1 hour in a 336 

secondary anti-rabbit AlexaFluor 488 antibody (1:800) in 1% heat inactivated donkey serum 337 

and mounted in ProLong Gold mounting media containing DAPI overnight before being 338 

imaged in a fluorescent stereomicroscope.  339 

Tissue staining 340 

Live bone staining was performed using 0.2% (w/v) calcein or using 50 μg/ml alizarin red as 341 

previously described (Du et al., 2001; Kimmel et al., 2010).  342 
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For cartilage and bone staining, alcian blue and alizarin red following the protocol outlined in 343 

(Walker and Kimmel, 2007) with modifications from protocols on www.zfin.org.  344 

RNA Extraction and microarray analysis 345 

Fifty Tg(wt1b:GFP) zebrafish larvae were needle injured and grown to 72 hpi with age-346 

matched non-injured controls. The area around the site of injury was dissected (Figure 4B) 347 

and transferred into 1 ml of chilled RNA-later. The samples were centrifuged into a pellet at 348 

4
o
C and mascerated in 500 μl of Trizol® (Sigma-Aldrich) using a 25G 

5/8
 1 ml syringe. RNA 349 

was extracted following Trizol® manufacturer’s instructions and eluted into 15 μl of distilled 350 

H2O. Extracted RNA was sent to Myltenyi Biotec (Germany) who conducted the microarray 351 

analysis. Injured and non-injured samples were sent in triplicates and the RNA was amplified 352 

and Cy3-labelled using a Low Input Quick Amp Labelling Kit (Agilent Technologies) following 353 

manufacturer’s instructions. The labelled cRNA was hybridised against a 4x44K Whole 354 

Zebrafish (V3) Genome Oligo Microarray (Agilent Technologies). The microarray images 355 

were read out and processed using the Feature Extraction Software (FES – Agilent 356 

Technologies) and differential gene expression was determined using the Rosetta Resolver® 357 

gene expression data analysis system (Rosetta Biosoftware).  358 

Fluorescence-Activated Cell Sorting  359 

The trunk region of fifty Tg(wt1b:GFP; R2-col2a1a:RFP) injured larvae and non-injured 72 hpi 360 

larvae were dissected and collected separately in cold PBS+2% fetal calf serum (FCS). 361 

Tissue disassociation was adapted from a previously described protocol (Manoli and Driever, 362 

2012) and centrifuged cells were collected in FACSmax cell disassociation solution 363 

(Genlantis) . The samples were passed twice through a 40 μm cell strainer, collected in an 364 

agar-coated petri dish on ice and transferred into an eppendorf tube to be sorted by a 365 

FACSAria2 SORP instrument (BD) equipped with a 405nm, a 488nm and a 561nm laser. 366 

Green fluorescence was detected using GFP filters 525/50BP and 488nm laser, red 367 

fluorescence was detected using 585/15BP filter and 561nm laser. Data was analyzed using 368 

FACSDiva software (BD) Version 6.1.3. 369 

Vertebrae size measurements and statistical analysis 370 

The vertebrae size difference in injured zebrafish larvae (age range 30 dpi to 38 dpi) were 371 

compared between vertebrae at the site of injury (injured) and vertebrae outside of the site of 372 
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injury (uninjured). Injured vertebrae and uninjured vertebrae were measured and the average 373 

length was recorded for each group. The average lengths were then compared and the 374 

relative size difference was calculated. The relative size difference between each group 375 

(injured:uninjured vs. uninjured:uninjured) was compared using an unpaired t-test. 376 
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Video 1 Legend 511 

Time-lapse imaging of two-photon microscopy of Tg (wt1b:GFP; col2a1a:RFP) zebrafish 512 

larvae following needle injury over 48 hours. wt1b:GFP expression is upregulated 513 

in col2a1a:RFP expressing notochord sheath cells upon needle injury, leading to the 514 

formation of a stopper like structure across the wound 515 

 516 
 517 
 518 
 519 
 520 
 521 
 522 
  523 
 524 
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Figure 1. Notochord injury triggers a local and sustained expression Wt1. 
(a) Schematic of notochord needle-injury protocol. 3 dpf Tg(wt1b:GFP; casper) larvae are injured above the yolk sac (YS) and followed for 
72 hours. 

(b, c) Images of Tg(wt1b:GFP; casper) zebrafish trunk over time following notochord needle injury, and uninjured matched controls. GFP 
signal is associated with a change of cellularity in the injured notochord (inset). n>10; experimental replicates>10. Scale bar: 100μm.

(d) H&E staining of the injured area at 6 hpi and 24 hpi highlighted the progressive change in cellularity at the site of the injury (arrow). 
n=5; experimental replicates=1 .  Scale bar: 20μm.

(e) Immunohistochemistry of the injured area with α-GFP and α-Wt1 antibodies. n>10; experimental replicates=5. Scale bar: 20μm.

dpf = days post fertilization; hpi = hours post injury; H&E= haematoxylin and eosin.

YS

n>10; experimental replicates>10 

n>10; experimental replicates>10 

n=5; experimental replicates=1

n>10; experimental replicates=5
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Figure 2. wt1b:GFP expressing notochord sheath cells populate the site of injury in the damaged notochords. 
(a) Schematic diagram of the notochord and transgenic lines used in this study. The notochord is composed of an inner population of 
highly vacuolated cells (green arrow), surrounded by a layer of epithelial-like sheath cells (red arrow), encapsulated by a thick layer of 
extracellular basement membrane (grey arrow). 

(b) Schematic of experimental design: 3dpf  Tg(wt1b:GFP; col2a1a:RFP; casper) larvae were needle-injured and imaged at 0, 24 and 72 hpi. 

(c) Needle damage led to the formation of a cell-less gap in the layer of notochord sheath cells (0 hpi – injured; dashed line). GFP expression 
can be observed in the notochord sheath cells surrounding the area of damage by 24 hpi (inset) and these appear to engulf the injured 
area by 72 hpi (inset). n >10; experimental replicates > 10. Scale bar: 100μm. 

(d) Multiphoton time-lapse imaging of wound site. Initial upregulation of GFP occurs at 8 hpi in the col2a1a:RFP positive cells (arrow) and 
propagates across the injured area over the next 40 hours. n = 8; experimental replicates = 1. Scale bar: 100μm.

(e) FACS analysis of cell populations in injured and non-injured zebrafish trunk tissue. GFP+RFP+ double positive cells are present in 
injured Tg(wt1b:GFP; col2a1a:RFP) at 72 hpi (n=35 larvae per group).

dpf = days post fertilization; hpi = hours post injury.
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GENE NAME FUNCTION Q-VALUE LOG2 
FOLD 

CHANGE 

mgp Matrix gla protein Calcification inhibitor 5.01 x 10-3 7.04 131.56 

fn1b Fibronectin 1b Cell adhesion and 
mesenchymal cell marker 1.37 x 10-2 4.50 22.63 

si:ch211-196f5.2 UNKNOWN N/A 1.37 x 10-2 4.68 25.60 

zgc:92041 Similar to vertebrate 
elastase 2 

Neutrophil serine 
protease  1.91 x 10-2 4.14 17.61 

fn1b Fibronectin 1b Cell adhesion and 
mesenchymal cell marker 2.41 x 10-2 4.10 17.09 

f13a1b Coagulation factor XIIIa 1b Catalytic subunit of factor 
XIII 2.65 x 10-2 3.23 9.39 

ENSDART00000
135295 UNKNOWN N/A 2.65 x 10-2 3.00 8.02 

c6 Complement C6 
Membrane attack 

complex innate immune 
response 

2.85 x 10-2 2.95 7.75 

zgc:172067 UNKNOWN N/A 3.95 x 10-2 2.64 6.25 

Figure 3. Cartilage genes are expressed in the notochord-injured zebrafish. 
(a) Experimental plan: 3 dpf Tg(wt1b:GFP) larvae were needle injured and grown for 72 hours with uninjured age-matched controls 
(n = 50 larvae per group). 

(b) Schematic of the area around the wt1b:GFP expression was excised at 72 hpi (dotted area) and RNA was extracted and amplified. 
A similar area was taken from age-matched uninjured controls. 

(c) Volcano plot displaying the differentially expressed genes between injured and non-injured larvae. The y-axis measures the mean 
expression value of log 10 (p-value) and separates upregulated from downregulated genes. The x-axis represents the log2 fold 
change of expression. Significantly upregulated genes are shown as green circles or dots and downregulated genes are shown as 
red circles or dots. Green dotted line represents the p-value threshold  (p < 0.05) and blue dotted line represents the false discovery 
rate (FDR) or q-value threshold (q < 0.05). Genes with highest expression change in magnified view.

(d) Table showing the most significantly differentially expressed genes in injured larvae (q < 0.05). Upregulated genes are shown 
in green and downregulated genes are shown in red.

(e) Table showing cartilage-associated genes that were significantly upregulated in the injured larvae (p < 0.05).
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GENE NAME FUNCTION P-VALUE LOG2 

FOLD 
CHANGE 

col2a1a Collagen type 2 alpha 1a  Main extracellular 
component of cartilage 1.14 x 10-2 2.31 4.97 

col2a1b Collagen type 2 alpha 1b Main extracellular 
component  of cartilage 3.16 x 10-2 0.60 1.52 

col11a2 Collagen type 11 alpha 2 Main component of cartilage 1.88 x 10-2 1.39 2.63 

col9a1 Collagen type 9 alpha 1 Main component of cartilage 1.9 x 10-2 1.63 3.10 

col9a2 Collagen type 9 alpha 2 Main component of cartilage 1.54 x 10-2 1.18 2.26 

LOC559593 Aggrecan-core like protein Main component of cartilage 9.41 x 10-5 1.98 3.95 

sox9b SRY-box 9b Key mediator of 
chondrogenesis 2.65 x 10-2 3.23 9.39 

chad Chondroadherin Chondrocyte adhesion 
protein 7.12 x 10-4 1.32 2.49 

mir-140 microRNA 140 Sox9 regulated cartilage 
gene 4.34 x 10-3 1.26 2.40 
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Figure 4. Ectopic vertebra formation occurs via a cartilage intermediate at the site of injury. 
(a) Alcian blue staining (cartilage staining) at the site of injury in 3 and 14 dpi larvae. Ectopic cartilage deposit is indicated by arrow. n >10; experimen-
tal replicates = 8. Scale bar left panels: 400μm; scale bar right panels (zoomed images): 200μm.

(b) Alcian blue and alizarin red (bone) staining at the site of injury 18 dpi indicates the presence of bone and cartilage at the repair site (blue arrow = 
cartilage; red arrow = bone). n = 2; experimental replicates = 8. Scale bar: 200μm.

(c) Alcian blue and alizarin red staining of 30 dpi larvae reveals the formation of a smaller vertebra/vertebrae around the area of damage in injured 
larvae. n >10; experimental replicates = 3. Scale bar left panels: 400μm; scale bar right panels (zoomed images): 200μm.

(d) Live imaging of calcein stained zebrafish at 21 and 38 dpi in injured and uninjured fish. Extra vertebrae are indicated by (yellow asterisk). Black 
asterisk denotes intestinal fluorescence. n =5; experimental replicates = 1. Scale bar 21 hpf: 200μm; scale bar 21 hpf zoomed: 100μm; scale bar 38 hpf: 
200μm; scale bar 38 hpf zoomed: 100μm.

(e) The relative vertebra size difference (Δ size) between vertebrae at the site of injury (injured) and vertebrae in non-injured areas (uninjured). 
Vertebrae at the site of injury were significantly smaller than uninjured vertebrae (Unpaired t-test; *** p < 0.0001 two-tailed; mean +/- SEM uninjured 
larvae =0.9506 +/- 0.02102 n = 7; mean +/- SEM injured larvae =0.7432 +/- 0.0284 n = 7; measurements taken at 30 and 38 dpi). 
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Figure 5. Distinct and closely associated wt1 and entpd5 subpopulations emerge at the damage site.
(a) Live-imaging at the site of notochord injury in Tg(wt1b:GFP; entpd5:RFP) larvae. Expression of wt1b:GFP and entpd5:RFP at site of 
damage (green arrows and red arrows respectively) in injured and uninjured fish. n >10; experimental replicates = 5 . Scale bar: 50μm.

(b) Cryo-section of the injured area confirms distinct wt1b:GFP and entpd5:RFP subpopulations at site of damage. n >10; experimental 
replicates = 2. Scale bar: 20μm.
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Figure 6. wt1b expressing cells are closely associated with vertebral development after injury. 
(a) Images of wt1b:GFP zebrafish following needle injury at 3dpf and raised to 28 dpi. n >10; experimental replicates = 4. Scale bar left 
panels: 100μm; scale bar right panels: 200μm. 

(b) α-GFP staining of 28 dpi larvae at the site of the healing notochord wound and in the kidney. n = 5; experimental replicates = 1. Scale 
bar left panels: 50μm.

(c) Image of fish from Figure 5A, stained with alizarin red and imaged for wt1b:GFP expressing cells. GFP positive cells are found within 
the ectopic vertebra (white arrow and inset). n = 4; experimental replicates = 1. Scale bar left panels: 100μm.

(d) Long term follow up of alizarin red stained Tg(wt1b:GFP; casper) larvae shows that chordacentra formation is delayed around the site 
of injury. GFP cells mark the site of the future ectopic vertebra. n = 6; experimental replicates = 2. Scale bar: 100μm; scale bar zoomed 
images: 50μm

(e) Confocal imaging of 15, 21 and 28 dpi larvae reveals an overlapping expression between the wt1b:GFP expressing cells and the 
forming chordacentra (alizarin red stained) in the injured Tg(wt1b:GFP; casper) larvae. n >10; experimental replicates = 3.  Scale bar: 
100μm.

(f) Confocal imaging highlights the overlapping presence of bone (alizarin red stained) and wt1b:GFP cells at the wound in 18 dpi larvae 
(arrow). n >10; experimental replicates = 3. Scale bar: 100μm.
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Figure 7. Schematic of the notochord wound response.
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