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Abstract

Research into object deformations using computer vision techniques has been

under intense study in recent years. A widely used technique is 3D non-rigid

registration to estimate the transformation between two instances of a deform-

ing structure. Despite many previous developments on this topic, it remains a

challenging problem. In this paper we propose a novel approach to non-rigid

registration combining two data spaces in order to robustly calculate the cor-

respondences and transformation between two data sets. In particular, we use

point color as well as 3D location as these are the common outputs of RGB-D

cameras. We have propose the Color Coherent Point Drift (CCPD) algorithm

(an extension of the CPD method [1]). Evaluation is performed using synthetic

and real data. The synthetic data includes easy shapes that allow evaluation

of the e↵ect of noise, outliers and missing data. Moreover, an evaluation of

realistic figures obtained using Blensor is carried out. Real data acquired using

a general purpose Primesense Carmine sensor is used to validate the CCPD for

real shapes. For all tests, the proposed method is compared to the original CPD

showing better results in registration accuracy in most cases.
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1. Introduction

The study of the evolution of shapes over time is under intense study in

many areas, such as biology, health, etc. During evolution, objects are a↵ected

by multiple changes, disturbing both shape and appearance. To measure all the

changes is a di�cult and tedious task, due to the complexity of some shapes5

and the large amount of data necessary to have a complete study. Computer

vision techniques can help provide methods which, given a set of data from a

sensor, estimate the changes. In this paper, we propose a method to robustly

estimate the deformation observed in an object. Concretely, non-rigid registra-

tion methods estimate the transformation between two shapes aligning the data10

using non-rigid transformations.

There are many applications that require non-rigid alignment. For instance,

face or body motion recovery where the di↵erent parts need to be tracked to

perceive the motion or identify the action. Applications where shape evolution is

studied require deformable alignment as well, and may also involve appearance15

changes, which commonly include color variations. Using machine intelligence to

evaluate those changes requires using methods than can perceive them regardless

the nature of the change. For example, intelligent farms can use these techniques

to improve the quality of their products since they can be constantly supervised

while growing. In health, automatic analysis of human body change will help20

specialists in treatment supervision (eg. for cancer therapy).

There exist various kind of deformations: isometric deformation, where both

topology and distances are preserved (e.g. articulated changes or flag move-

ments); elastic deformation, where the topology is kept but distances can vary

(e.g. balloon inflation); and free deformations where both topology and dis-25

tances can change (e.g. growing objects or breaking situations).

In this paper we focus on 3D point clouds without any previous filtering,

only downsampling if necessary. For the specific case of this paper, the data

comes from a low-cost RGB-D sensor, such as a Microsoft Kinect, which provides
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color and 3D information. The sensitivity of these sensors may be lower than30

the requirements of the problem, and usage may be di�cult for some tasks.

Nonetheless, they are widely used and a contribution suitable for working with

data from both low and high quality sensors will be useful in many research

tasks and industrial applications.

The deformations considered in this work are not constrained. That is, they35

do not assume any prior restrictions to the deformations such as topology/size

constraints, larger/smaller variations, etc. The objective is to develop a non-

rigid registration method for non-constrained free deformations.

Non-rigid registration methods for 3D point sets, such as the well-known

Coherent Point Drift (CPD) [1], only use spatial 3D information (or location40

information) to register the data. Ignoring other information, such as color, in-

creases the probability of misalignment. For instance, in cases where the object

grows the number of points may increase or decrease in an irregular distribu-

tion. If only 3D spatial data is taken into account, those irregularities are harder

to register. Those are situations where additional information can be used to45

robustly register. A practical example is the plant growth, where leaves change

shape di↵erently over their surface. Commonly, the central region remains sim-

ilar whilst the edges enlarge significantly, but in the spatial data this variation

in growth is not as obvious. It is necessary to use color information to perceive

this di↵erence. The leaf growth problem motivates our work, which extends50

the CPD algorithm to include color information in the process of registration

to improve the estimation of the deformations. Although originally motivated

by the leaf growth problem, the developed Color Coherent Point Drift (CCPD)

algorithm is a general algorithm usable for registering deforming colored point

clouds.55

The main contribution of this paper is a novel approach for colored point

cloud non-rigid registration combining various inputs in the correspondence es-

timation step. To handle real and adverse situations, the method has to deal

with noise, outliers and missing data, common issues in real applications. The

proposal makes use of the basis proposed in the CPD algorithm [1], because60
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of its generality and because it has shown good results in point set non-rigid

registration in presence of noise and outliers.

The rest of the paper is organized as follow: Section 2 presents a review of

the State-of-the-Art in 3D non-rigid registration methods for point sets. Section

3 details the proposed CCPD method. The evaluation is shown in Section 465

where synthetic and real data are used to validate the proposal. Finally, some

discussion and conclusions are presented in Section 5.

2. Previous research

Recently, the increasing interest in non-rigid registration has produced much

research that improves existing algorithms or introduces new methods, but this70

is still a challenging problem to be solved. This interest comes from the need

to improve reconstruction, mapping or other computer vision problems, where

dynamic objects are treated. Tam et al. [2] surveyed di↵erent methods for point

cloud and mesh registration, in both rigid and non-rigid situations.

Chui and Rangarajan [3, 4] proposed the TPS-RPM non-rigid registration75

method for 3D point clouds based on Thin Plate Splines to stabilize the dis-

placement of the points during the process of registration. This method uses

softassign matches between each point set [5]. Softassign refers to the use of

non-binary correspondences to handle noise and outliers because there is no im-

posing of a unique matching per point. Deterministic annealing [6] is also used80

in the kernel of TPS-RPM to gradually allow a less constrained movement of

the individual points. Their proposal outperforms ICP in 2D, and also achieves

better results in 3D than the main state-of-the-art methods. Yang revisited

TPS-RPM in [7] demonstrating limited performance when outliers are present

in both point sets simultaneously. He proposed a double-sided outlier handling85

approach obtaining better registration results.

Li et al. [8] presented a non-rigid registration method that simultaneously

estimated confidence weights, that measure the reliability of each correspon-

dence, and identified non-overlapping areas. A warping field brings the source

4



scan into alignment with the target geometry.90

Sang et al. [9] proposed the FDMM non-rigid registration method based on

GMM and the use of features, that they called Gaussian soft shape context,

based on radial distribution of the neighbourhood. This feature was initially

presented in [10, 11], and they modified it adding a Gaussian distribution for

avoiding the problem of non-real similarities. The algorithm takes into account95

the relative distribution of all points with respect to the analysed point, making

a histogram, which adds information to the registration process. Comparison to

CPD, RPM and BEM [12] is provided using 2D data, outperforming the previous

results. Yawen et al. [13] proposed also the use of this feature enhancement with

CPD to handle noise and outliers with better results.100

Wang and Fei [14] proposed B-spline-based point matching (BPM), an ex-

tension of RPM, using a deterministic annealing scheme to regularize the regis-

tration process. The method was evaluated in di↵erent situations with accurate

results in 2D and 3D data. Yang et al. proposed in [15] GLMD, a two step

non-rigid registration method for point sets. They proposed the use of local105

and global distances combined to estimate the binary correspondences, and the

transformation using the TPS kernel. The local distances are measured using a

certain neighbourhood, which is provided initially. Experiments were provided

using the proposed method against CPD, TPS-RPM and GMMreg for di↵erent

levels of noise, outliers and rotations.110

Recently Chen et al. [16] proposed the Coherent Spatial Mapping (CSM)

algorithm. They used the shape context [10] which describes the shape using a

histogram of each point relative position to the others, and calculated correspon-

dences with this information. The Hungarian method is also used to estimate

the initial correspondences. The transformation is iteratively estimated with115

the EM method using a spatial mapping function of the correct matches, and

TPS to provide smooth deformations. Hence, the improvement comes from the

matching estimation. They compare CSM to CS [11], CPD, COA-RPM [17]

and TPS-RPM with 2D data achieving better alignment with lowest RMS error

with di↵erent levels of noise and outliers. In 3D they compare against CPD120
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achieving lower registration error.

S. Lin et al. presented in [18] a proposal for incorporating color in the regis-

tration process, both in rigid and non-rigid registration. The non-rigid approach

is based on the paper of Li et al. [8], incorporating the color information in the

vertex selection by evaluating 3D location and color distance in Euclidean space,125

using a neighborhood to improve robustness, between the two views. Moreover,

after estimating the descriptors (Gabor and HOG) from the vertex, color is also

used for rejecting wrong correspondences. This paper considers small deforma-

tions mainly related to orientation of views which deform the shapes due to the

RGB-D sensor pattern projection.130

2.1. Coherent Point Drift variants

One of the most common algorithms used for non-rigid registration is the

Coherent Point Drift (CPD) proposed by Myronenko et al. in [1, 19]. This

method is based on a Gaussian Mixture Model (GMM) and Expectation Maxi-

mization (EM) to calculate the correspondences, and then the transformations,135

of the points to map one set of points into another. They used a GMM to

represent the moving point set to be registered, and EM to evaluate the new

parameters of the GMM and hence, the new position of the points. Moreover,

in order to constrain the movement, they made use of Coherent Motion Theory

that helps the translation of points to be regular. They compared their results140

to the TPS-RPM outperforming the registration for 2D and 3D cases. Wang

et al. [20] proposed an extended version of CPD to automatically evaluate the

outlier percentage parameter, which is manually provided in the original ver-

sion. They used a combination of Nelder-Mead simplex and genetic algorithms.

The genetic algorithm provides good initial values for this parameter, while the145

Nelder-Mead simplex optimizer attempts to find an optimal solution. The ex-

perimentation showed an improvement of the original version for di↵erent levels

of noise, where they initialized the outlier parameter to 0.7.

A di↵erent approach called GMMreg was presented by Jian et al. in [21, 22].

Instead of representing a point set with a GMM and registering it to a point150
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cloud using the EM technique, they align two GMMs each representing one

of the point sets to be registered. They calculate the displacement between

Mixtures of Gaussians and iteratively align them using the L2 distance. They

provided rigid and non-rigid results for 2D and 3D data compared to the original

CPD, LM-ICP [23], and TPS-RPM among others, resulting in more accurate155

results. Additionally, they apply the L2 distance to TPS and to Gaussian radial

basis functions, improving the results.

Gerogiannis et al. [24] proposed a di↵erent matching method using the Hun-

garian Algorithm instead of the posterior distribution used in CPD and RPM.

Moreover, they used Bayesian regression for the Maximization step (i.e. the160

registration or transformation part). The experiments compared the proposed

method with CPD, RPM and GMMreg for 2D and 3D cases.

Gao et al. studied in [25] the main drawbacks of CPD related to outliers,

which are a consequence of the way CPD keeps the distribution of outliers,

and the input parameter for the outlier ratio. They proposed an Expectation-165

Maximization solution to iteratively evaluate the outlier ratio. TPS-RPM and

the original CPD algorithms show less accurate results when the outlier ratio

grows. The main advantage of this method is to avoid the need to indicate the

outlier ratio initially.

Ge et al. [26] presented a similar approach to the previous one, called Global-170

Local Topology Preservation (GLTP). The main motivation of this work is to

handle non-rigid articulated deformations such as those of human movements.

They added the principle of Local Linear Embedding to the original CPD to

take into account local deformation coherence, apart from the global coherence

intrinsic in the CPD algorithm. With large articulated deformations GLTP175

works better than the original CPD, which is not able to find a good registration.

De Sousa and Kropatsch [27] proposed a variant of Coherent Point Drift

(CPD) by integrating centrality information, a concept initially applied in social

networks. It creates a graph (e.g. Delaunay triangulation), and applies di↵erent

centralities (node degree, betweenness, eigenvector ...) to evaluate which results180

in a better solution. The proposal shows good performance with noisy data,
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improving the original CPD.

Another variation of CPD was presented by Zhou et al. [28] using Student’s

mixture model, which they claim to be more robust in the presence of high

amounts of noise. The comparison they made against CPD and TPS-RPM185

shows better performance when the noise rate grows. Moreover, they auto-

matically estimated the probability of outliers whereas in CPD it is manually

indicated.

In conclusion, many studies have been done for non-rigid registration of point

sets. Most of them focused their attention on outliers and noise handling. In190

order to do this, they proposed techniques to estimate automatically the outlier

ratio or used descriptors which use point distributions to improve the matching.

However, there still exist problems when there are large deformations. Another

issue not studied is where the data does not have to move coherently in the whole

space. For example, situations in which one set is a full model and the other195

is just a region. Moreover, there are no general proposals facing the problem

from a generic perspective including several sources of data using individually

the di↵erent spaces, e.g. using color and 3D location without using them as a

6D data set but being independent in the process for a more robust and generic

combination.200

3. Color Coherent Point Drift

In this section, a framework for non-rigidly registering 3D colored points

based on CPD [1, 19] is presented. We use the optimization algorithm of the

original CPD algorithm, only replacing the original similarity matching formu-

lation with one that takes account of having colored 3D points.205

The proposed Color Coherent Point Drift (CCPD) algorithm registers 3D

points by using color and shape spaces to jointly estimate the best match. It

improves upon the CPD algorithm by using the two input spaces together to

handle situations where point position is not su�cient to adequately estimate

the matches, e.g. aligning shapes with missing parts, or non-linear growth of210
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the shape.

In any registration problem it is normal to have one point set used as the

anchor or reference point set which we will call Anchor, and the other as the

moving points called Moving. The Moving set will be deformed and moved un-

til it aligns with the Anchor. CCPD (following the basics of CPD) models the215

Moving set using a Gaussian Mixture Model (GMM) and estimates the transfor-

mation of the Moving set using the Expectation-Maximization (EM) technique.

The use of a GMM to represent the Moving set will give soft correspondences,

i.e. they are not binary, allowing a more robust estimation of the displacement

by not requiring one-to-one matching. Moreover, in order to smooth the dis-220

placement, the Coherent Motion Theory is used to regularize the motion of the

points in the process of the transformation.

Here, we introduce the combination of color and shape (3D positions) spaces

for non-rigid registration. Let AS , AC , MS and M

C (Eq. 1) be four data sets

representing two spaces (shape and color) of two data sets. A

S and A

C are225

the shape and color values of the Anchor set and M

S and M

C are the shape

and color values of the Moving set. To simplify the notation, we will refer to

A

S

, A

C as A, and M

S

,M

C as M when we refer to both spaces together.

A

S = {aS1 , · · · , aS
N

}

A

C = {aC1 , · · · , aC
N

}

M

S = {mS

1 , · · · ,mS

M

}

M

C = {mC

1 , · · · ,mC

M

}

(1)

where aS
i

,m

S

i

2 RD

S and a

C

i

,m

C

i

2 RD

C . N and M are the number of points in

the Anchor and Moving point sets. MS and M

C are the Moving to be aligned230

with the reference Anchor A

S and A

C . Each space has its own dimension e.g.

D

S

= 3 for shape (3D points), but D

C

= 1 for monochrome or D

C

= 3 if we

use 3 color components. The points M

S and M

C are appended to form the

centroids of the components of a Gaussian Mixture Model (GMM) (m = 1..M)

that encodes the probability of the Moving point set, as described in Eq. 2. x235
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and m

i

are vectors with the point’s position and color appended,

p(x) =
MX

i=1

w(m
i

)p(x|m
i

) (2)

w(m
i

) is the weight of each GMM component. Here, all points are treated

equally, so w(m
i

) = 1
M

.

Let D = D

S

+ D

C

and ⇤ be the D dimensional covariance matrix. Then,

each Gaussian is modelled using Eq. 3.240

p(x|m
i

) =
1

(2⇡)
D

2

1

det(⇤)D
e

� 1
2 (x�m

i

)0⇤�1(x�m

i

) (3)

Eq. 3 will be modified later as all components have equal isotropic variance

�

2
S

(for the shape components) and �

2
C

(for the color components). The shape

(S) and color (C) covariance matrices for the old and new (for z 2 {o, n} for

o:old and n:new which will be defined below) Gaussian distributions are: ⇤z

S

=

(�z

S

)2I
D

S

, ⇤z

C

= (�z

C

)2I
D

C

. From these, we get (⇤z

S

)�1 = (�z

S

)�2I
D

S

, (⇤z

C

)�1 =245

(�z

C

)�2I
D

C

, and det(⇤z

S

) = (�z

S

)2DS , det(⇤z

C

) = (�z

C

)2DC .

In order to handle noise and outliers, an additional probability distribution

1
N

, where N is the number of Anchor points, is included which is weighted with

a predefined parameter ↵. Thus, Eq. 4 is the complete probability of the fit of

the Anchor points to the Moving points.250

p(x) = ↵

1

N

+ (1� ↵)
MX

i=1

1

M

p(x|m
i

) =
M+1X

i=1

w(i)p(x|m
i

) (4)

where w(M + 1) = P (X|m
M+1) =

↵

N

and otherwise w(i) = 1�↵

M

.

The GMM is parametrized by a set of parameters (✓
S

,�

S

,�

C

) which specify

the transformation of the Moving point set (✓
S

), the standard deviation (�
S

) of

the points’ positions, and the standard deviation (�
C

) of the points’ colors.

Expectation-Maximization (EM) is used to register the Moving points to the255

Anchor points.

The function E finds the parameters (✓
S

,�

S

) that maximize the likelihood,

or equivalently, minimize the negative log-likelihood (Eq. 5). In this paper
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we are registering only the shape vectors, but not the color vectors. We are

using shape and color information in the similarity score to make the matching260

estimation more robust. Thus, the set of parameters is (✓
S

,�

S

,�

C

), where ✓

S

are the parameters that control the position of the Moving points.

E(✓
S

,�

S

) = �
NX

n=1

log(
M+1X

i=1

w(i)p(a
n

|m
i

)) (5)

Following the original formulation of CPD, the probability of correct corre-

spondence between model point m
i

and anchor point a
n

is the posterior proba-

bility of the GMM centroid given the anchor point: p(m
i

|a
n

), which by Bayes’265

Rule equals p(m
i

)p(a
n

|m
i

)/p(a
n

). Since the objective of the registration is

to find the parameters to make model M best fit anchor A, the Expectation-

Maximization (EM) algorithm is used. Given the value of the “old” (superscript

‘o’) position and tolerance parameters, we use Bayes’ theorem to estimate the

posterior probability p

o (Eq. 13), known as Expectation or E-step; then we find270

the new parameters that Maximize (M-step) the probability. Here, we minimize

the negative log-likelihood:

Q(✓
S

,�

S

) = �
NX

n=1

M+1X

i=1

w(i)po(m
i

|a
n

)log(pn(m
i

)pn(a
n

|m
i

)) (6)

Before we manipulate Q, we need some useful terms. Recalling that M + 1

refers to the background model: p(m
M+1) = 1 and otherwise p(m

i

) = 1 and

p(x|m
M+1) =

1
N

.275

The multivariate Gaussian distributions that we need for the shape term is

(z 2 {o, n} for o:old and n:new):

p

z

S

(x
S

|m
i,S

) =
1

(2⇡)
D

S

2

1

(�z

S

)DS

e

� 1
2(�z

S

)2
||x

S

�⌧(m
i,S

,✓

z

S

)||2
(7)

and for the color term is:

p

z

C

(x
C

|m
i,C

) =
1

(2⇡)
D

C

2

1

(�z

C

)DC

e

� 1
2(�z

C

)2
||x

C

�m

i,C

||2
(8)

where ⌧(m, ✓

S

) transforms the position of point m given the Moving point set

pose parameters ✓
S

. Here, the transformation is only a Euclidean rigid motion.
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Note the color matching probability p

z

C

(x
C

|m
i,C

) uses the distance between the

colors without any transformation. Combining Eq. 7 and 8 we get P z(x|m
i

) =

P

z

S

(x
S

|m
i,S

) · P z

C

(x
C

|m
i,C

).280

The first manipulation addresses the background term M + 1. We split out

the M + 1 term from the rest and analyze it:

Q(✓
S

,�

S

) = Q

0(✓
S

,�

S

)�
NX

n=1

w(M + 1)po(m
M+1|an)log(pn(mM+1)p

n(a
n

|m
M+1))

(9)

We have: w(M + 1) = ↵

N

, p

o(m
M+1) = p

n(m
M+1) = 1, p

o(a
n

|m
M+1) =

p

n(a
n

|m
M+1) =

1
N

,

p

o(m
M+1|an) = p

o(a
n

|m
M+1)p

o(m
M+1)

p

o(a
n

) = 1
N

1
p

o(a
n

) .

Substituting, this gives:

Q(✓
S

,�

S

) = Q

0(✓
S

,�

S

) +
↵log(N)

N

2

NX

n=1

1

p

o(a
n

)
(10)

The latter term becomes small as N grows. Further, there are none of the

‘new’ parameters to optimize in that term. So, we can ignore it and find the

parameters (✓n
S

,�

n

S

) that minimizes only Q

0:

Q

0(✓n
S

,�

n

S

) = �
NX

n=1

MX

i=1

w(i)po(m
i

|a
n

)log(pn(m
i

)pn(a
n

|m
i

)) (11)

Since log(pn(m
i

)pn(a
n

|m
i

))

= log(pn(m
i

)) + log(pn(a
n

|m
i

)) and log(pn(m
i

)) = log( 1
M

) has none of the

optimization parameters, even when multiplied by p

o(m
i

|a
n

), we can ignore

this term. Similarly, w(i) = 1�↵

M

so it is ignored. Thus, we need to optimize:

Q

00(✓n
S

,�

n

S

) = �
NX

n=1

MX

i=1

p

o(m
i

|a
n

)log(pn(a
n

|m
i

)) (12)

By Bayes’s rule:

p

o(m
i

|a
n

) =

p

o(a
n

|m
i

)po(m
i

)
P

M

j=1 w(j)p
o(a

n
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Simplifying, we get:
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This is evaluated using the ‘old’ parameters and does not change with the current

optimization iteration. The initial M

1�↵

can also be omitted as an inessential

scaling factor.

Finally, we need to consider po(a
n

|m
i

) and p

n(a
n

|m
i

). We will analyze both

of these together for z 2 {o, n} (for o:old and n:new).285

We assume that point shape and color are independent, and that the opti-

mization a↵ects only the position of the points, but not the color. Therefore,

p

z(a
n

|m
i

) = p

z

S
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)pz
C

(a
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), and these terms were defined above. For op-

erational reasons, we choose to weight the shape and color components with w

S

and w

C

. So our formula is: pz(a
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) = [pz
S

(a
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)]wC .290

Substituting these derivations into Eq. 12, we get (where the first term is

evaluated before optimization using Eq. 13):
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Applying the ‘log’ function and then simplifying:
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And then applying the substitutions from Eq. 7 and Eq. 8, and then sim-

plifying:

Q

00(✓n
S

,�

n

S

) = �
NX

n=1

MX

i=1

p

o(m
i

|a
n

)⇥

[w
S

[log(
1

(2⇡)
D

S

2

1

(�n

S

)DS

)� 1

2(�n

S

)2
||a

n,S

� ⌧(m
i,S

, ✓

n

S

)||2]

+ w

C

[log(
1

(2⇡)
D

C

2

1

(�n

C

)DC

)� 1

2(�n

C

)2
||a

n,C

�m

i,C

||2]]

13



Simplifying again and removing terms not involving the optimization param-

eters, we get Eq; 14 to be optimised in the EM ‘M’ step over the parameters:
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Since the parameters of the color GMM are not optimized in the EM process,

the second term in the addition in Eq. 14 becomes a constant and can be295

removed along with the weighting operators. Thus, we end up with a simpler

Q

00 as next:
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Therefore, the color information is involved only in the ‘old’ probability.

Recalling that p

z(a
n
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i

) = [pz
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)]wS [pz
C

(a
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)]wC for z 2 {o, n} (for

o:old and n:new) and those terms were defined in Eq. 7 and 8, we substitute300

Eq. 13 by Eq 16:
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Outlier biases o
C

are calculated with Eq. 17 and o

L

with the outlier proba-
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The general process of registration is summarized in the next pseudo-code

Algorithm 1. Since we focus on modifying the matching probability (P o), the305
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general procedure is similar to the original CPD, but with modifying step E:
Data: M and A pointsets, color M and color A information

Initialization: W = o,�

2 = 1
DNM

P
M,N

m,n=1 ||xn

� y

m

||2 ;

Construct G: g
ij
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� 1
2�2 ||y

i
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j

||2
;

Expectation-Maximization

while not converged do

E-step: Compute P

o, (contribution)
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(see Eq. 16);

M-step:

• Solve (G+ ��

2
d(P1)�1)W = d(P1)�1

PX � Y (see [1]);

end

The result of alignment: T = ⌧(Y,W ) = Y +GW ;

Algorithm 1: Pseudo-code of the proposed Color Coherent Point Drift

4. Experiments

A set of tests have been carried out to evaluate the performance of the

proposed CCPD 1 compared to the original version. First, the dataset of the310

original CPD (Subsection 4.1), the fish and the face, has been used (Figure 1).

The implementation of the code has been done in Matlab, using part of the

toolbox provided by Myronenko 2. Color information has been added to the

original data. The distribution of colors on the shape has been done in this way

to distinguish its di↵erent parts, i.e. a region with same color corresponds to315

a specific part of the shape (e.g. mouth in the face, or tail in the fish). It is

important for the non-rigid registration with color because it gives meaning to

the relationship between color and shape.

1The code is available at tech4d.dtic.ua.es
2www.bme.ogi.edu/⇠myron/matlab/cpd
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The second test (Subsection 4.2) presents two synthetic datasets with real-

istic color and shape (Figure 9). A face and a flower are used, which have been320

deformed using Blender and acquired using a plugin called Blensor [29]. This

plugin emulates di↵erent sensors, including the general purpose RGB-D sensor

Kinect.

Finally, a real data evaluation using data provided by a Primesense Carmine

RGB-D sensor is done in Subsection 4.3 to confirm that the algorithm is able325

to handle real data acquired from a general purpose RGB-D sensor (Figure 19).

In this section we will use X to refer to the Anchor set and Y to refer to

the Moving set.

The experiments evaluate di↵erent aspects:

• Outliers: points which are in Anchor X but do not have real matches in330

Moving Y .

• Missing data: the opposite of outliers. Points which are in Moving Y but

do not have real matches in Anchor X. This situation is not taken into

account in the original CPD algorithm.

• Large or non-linear deformation: deformations which involve a large dis-335

placement that may not be solved with traditional algorithms. Non-linear

deformation could be seen as an abrupt change in the relative direction of

the deformation.

The experiments used Windows 7, an Intel i5 processor and 8 GB of RAM.

The code was implemented in Matlab vR2013b.340

4.1. Synthetic data experimentation

The tests consider four issues: outliers, missing data, color distribution

changes and large deformations. First, points from Y are removed. With this

test the missing data handling is compared with the original CPD algorithm.

Next, we remove data from Anchor X representing extra points, a situation345

which is not possible to parametrize in the original CPD (points in Y do not
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have a real correspondence in X). In this case, CCPD uses the color informa-

tion to improve the probability evaluation to avoid wrong matches. Another

test evaluates a di↵erent displacement in the color with respect to the shape,

which evaluates situations where the color distribution in X and Y are di↵er-350

ent. An example of this could be moving the eyebrows up and down, where the

shape in 3D largely remains the same, but the color changes its position. Lastly,

large deformations are evaluated to show how the color facilitates the registra-

tion when the transformation is complex or semi-coherent. It is important to

highlight that the parameters have been adjusted individually to result in the355

best alignment for both the CPD and CCPD algorithms.

The main di↵erence between the original CPD and the proposed CCPD

method comes when the Moving has missing data, which cannot be modelled

as outliers in the CPD. As the color is a distinctive feature, the proposal is able

to evaluate the correspondences properly and then provide better results.360

4.1.1. 2D fish experimentation

The 2D tests use di↵erent Anchor X and Moving Y fishes based on two

initial shapes (dataset from the original work of CPD [1]). Nine colors using the

H component of HSV are used to distinguish the di↵erent parts of the fish (see

Figure 1).365

Table 1 presents the RMS error of the registration taking into account eu-

clidean distances of real correspondences in location space. Figure 2 shows the

visual result of the tests. In general, the registration achieves better alignment

(minimize the error distance) in the CCPD results. Test 1 evaluates the e↵ect

of outliers by removing from Y the top and bottom tip of the fish. In this370

case, the proposal returns a slightly better registration because the color fea-

ture provides a more robust matching estimation and hence registration. Test

2 and Test 3 correspond to missing data testing where points in Anchor X are

removed, while Y remains complete. The total amount of points is 91. For

Test 2, 20 points are removed (20/91 = 21.9% of outliers) and for Test 3, 53375

points are removed (53/91 = 58.2% of outliers). The results demonstrate the
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Figure 1: Anchor X (left) and Moving Y (right) fishes based on the original work of CPD [1]

including color information.

improved performance of CCPD in the alignment against CPD. Concretely, in

Test 2, CCPD achieves 0.747E-02 RMS error in registration being 4.82 times

lower RMS than CPD, while in Test 3, CCPD achieves 0.624E-02 RMS error

being 23.1 times lower than the original method. CCPD is more robust against380

outliers in the Moving Y (or missing data from the Data point of view).

A large deformation test has been considered by registering a square to the

Anchor fish in Test 4, where Matlab jet colormap is used. This color map

provides colors in RGB = [0,0,0.562] to [1,1,0], which in H component used

here are H = [0 0.0625 0.1250 0.1875 0.2500 0.3125 0.3750 0.4375 0.5000 0.5625385

0.6250 0.6875 0.7500 0.8125 0.8750 0.9375 1.0000]. The RMS error is 26.62E-

02 in the CCPD method and 51.559E-02 in the original CPD, a 93.69% of

improvement of CCPD against CPD. Furthermore, CPD on the low tip of the

back tail (Figure 2 fourth-row right-image) misaligns the colors as it does not

have this information, which also demonstrates the improvement in registration390

accuracy of the proposed color feature consideration in the registration process.
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X Y CCPD CPD

Figure 2: Tests 1 to 4 of fish shape from top to bottom respectively. The columns represent

from left to right the Anchor X, the Moving Y , the CCPD registration result and the CPD

result.
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Table 1: RMS registration error of fish shape tests.

CCPD CPD

Test 1 0.52064E-02 0.53293E-02

Test 2 0.7468E-02 3.5967E-02

Test 3 0.6239E-02 14.406E-02

Test 4 26.622E-02 51.559E-02

X Y CCPD CPD

Figure 3: Registration result for di↵erent color distribution in Anchor X and Moving Y sets

(see Fig. 2). The third and fourth columns are the results for the CCPD and the CPD

algorithms. The red circles highlight the parts where the color distribution changes.

The next test evaluates changes in the color distribution. In this situation

both shapes have the same points as the original, but the colors are slightly

di↵erent. The result is visually evaluated in Figure 3. The regions where the

colors do not coincide are marked with a red circle to simplify the visualization.395

At the lower part of the upper tip, X has a larger region of brown towards the

back while Y is green from the end of the tip. CCPD registers adequately this

part. Similarly, the lower tip has larger part of orange on the X than in Y , and

again the proposed method achieves better results.

4.1.2. 3D face experiments400

The 3D face experiments are presented here. Di↵erent Anchor X andMoving

Y points are used based on two initial positions (data obtained from the original

work of CPD [1]). The face coloring has been done using four tones in RGB,
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with main black part, red lips and eyebrows, blue ears and yellow forehead (see

Figure 4).405

Table 2 presents the RMS error for the 3D tests. In Test 1 outlier handling

is evaluated by removing all data points from the forehead (yellow part) of Y .

Tests 2, 3 and 4 correspond to the missing data evaluation. Test 2 is similar

to Test 1, but removing the data from X. As the unmatched data cannot be

parametrized as outliers, the original CPD is not able to register it properly.410

Test 3 removes all color parts except the black one obtaining better results

for the CCPD proposal. Finally, in Test 4 the algorithm registers the non-

black parts (i.e.: forehead, ears, lips and eyebrows), in the Anchor X with the

complete Moving Y . Similarly to the 2D experiments, the proposed method is

able to register more accurately.415

Figure 5 shows the result of the tests, where each row is a test from 1

to 4 respectively, to visually evaluate the performance of both methods. In the

second row it is possible to see how CPD moves wrongly yellow points downward

while the proposed method keeps the point in the top part as they do not have

correspondences. The third row has only color points in the Anchor X, without420

the black part. The proposal aligns properly these remaining parts while CPD

cannot align the parts properly. Similarly the fourth test is correctly aligned

by CCPD as the corresponding points in the Anchor and Moving are properly

aligned, while CPD returns an inaccurate result.

A large test evaluation is presented in Table 3 where a set of 50 di↵erent425

changes are registered (dataset available from Myronenko [1]). The average

Table 2: RMS registration error of face shape tests.

CCPD CPD

Test 1 0.37278E-02 1.62E-02

Test 2 0.28985E-02 4.078E-02

Test 3 0.21677E-02 12.051E-02

Test 4 0.5984E-02 10.407E-02
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Figure 4: Anchor X (first row) and Moving Y (second row) of face shape. There are 4 colors,

yellow forehead, red eyebrows and lips, blue ears and the rest black.

Table 3: RMS registation error of 50 face shapes.

CCPD CPD

Test 2 0.26E-02 3.93E-02

Test 3 0.32E-02 8.53E-02

Test 4 1.13E-02 11.54E-02
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X Y CCPD CPD

Figure 5: Rows 1 to 4 show Tests 1 to 4 of the face shape. The columns represent from left

to right the Anchor X, the Moving Y , the CCPD result and the CPD result.
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Figure 6: Eyebrow movement test. From the top to the bottom, the CCPD result, the CCPD

flow, the CPD result and the CPD flow. In the flow pictures the red arrows show the most

significant displacement, i.e. the eyebrows.

RMS errors for the Tests 2, 3 and 4 are 0.36834E-02 for CCPD and 8.8453E-02

for CPD. The proposal’s RMS is 24 times lower than original method.

A final test was carried out to evaluate a displacement of color and a large

deformation. In this test, the eyebrows of Y are lower than inX. The movement430

should displace the eyebrows upward. This is considered a large deformation

or a non-linear deformation as the movement is not coherent in the shape data

space, but coherent in the color data space. Figure 6 shows this registration.

In order to help in the visualization, a flow image is shown for both methods.

The proposed method achieves a proper result moving up the eyebrows while435

the original CPD algorithm, as it does not take into account color, is not able

to achieve the correct result.

4.1.3. Experiments with noise and outliers in color space

In this section we evaluate the e↵ect of noise and outliers in the color space

on the non-rigid registration with the proposed CCPD. The experimentation is440

carried out using the fish and face data used in the previous experiments.

The first experiment considers the noise in the color space adding random

gaussian noise to each R, G, and B component in 4 di↵erent levels of Sig-
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Figure 7: Noisy point-clouds of the fish and face corresponding to Y the moving data. From

left to right, the data without noise, 20, 15, 10 and 5 dB of SNR.

nal/Noise ratio (SNR): 20, 15, 10 and 5 dB (see Fig. 7). Initially, the experiment

analyses the e↵ect of choosing suitable parameters for CCPD to compensate for445

the color noise using the fish data. Later, using the face data, the parameters

are fixed to those giving the best CCPD performance in the experiments carried

out in Sect. 4.1.2 in order to analyse the color noise e↵ects and tolerance of the

proposal against that noise. Since the noise is assigned randomly, 5 iterations

per level of noise have been performed to calculate the averaged RMS as the450

registration error.

The results for the initial color noise experiment using the optimal set of

parameters by experimentation are shown in Table 4. As can be seen from the

results, even with high levels of noise, the performance of the CCPD method

remains high being hardly a↵ected by the color noise (the order of the RMS is455

the same regardless the SNR).

Table 4: RMS registration error of fish shape with color noise. The Signal-to-Noise ratios are

20, 15, 10 and 5 dB.

20 15 10 5

0.41080e-02 0.40603e-02 0.59438e-02 0.69721e-02

The results for the second color noise experiment (using the optimal set of
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parameters obtained for the CCPD without noise presented in Sect. 4.1.2) are

shown in Table 5. The data includes noise in the same four tests shown in Table

2 and Figure 5. For Tests 2 to 4 with 15 dB of SNR the error of CCPD is similar460

to CPD and decreases as SNR gets worse. In the case of Test 1, the performance

is lower than CPD but remains similar for every level of noise due to the outliers

are modelled with the original Eq. of outliers o
L

from the CPD. If we assign high

�

C

or low w

C

, we will have the results similar to CPD. Furthermore, Figure 8

shows the same results for the full set of 50 faces that is part of the original CPD465

synthetic dataset. This experiment shows similar results as the previous one,

confirming the results in a large set of deformations. On average, the CCPD

method outperforms the CPD results even for large color noise (about 15 dB).

Table 5: CCPD RMS registration error from the face shape tests with 20, 15, 10 and 5 dB

Signal-To-Noise ratio. Columns CCPD and COD are from Table 2.

CCPD CPD 20 15 10 5

no noise no noise

Test1 0.0037 0.0162 0.2176 0.2141 0.2150 0.2159

Test2 0.0029 0.0408 0.0308 0.0617 0.1823 0.4560

Test3 0.0022 0.1205 0.0332 0.0830 0.2606 0.4304

Test4 0.0060 0.1041 0.1365 0.1372 0.1483 0.2092

Finally, the e↵ect of outliers in the color data is evaluated. In this case, the

outliers are in the color space, hence to generate them we have chosen the color470

that is the furthest to the rest of colors, which in this case is white. We have

randomly generated, over the data set, four percentages of outliers: 5%, 25%,

50% and 75%. The results are presented in Table 6.

Table 6: RMS registration error of face shape for four levels of color outliers, 5%, 25%, 50%

and 75% compared to the CCPD without noise (BL: Baseline).

BL 5% 25% 50% 75%

0.0029 0.0222 0.0783 0.1311 0.2579
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Figure 8: Average CCPD RMS registration error for 50 face deformations with 20, 15, 10 and

5 dB of color Signal-To-Noise ratio.
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4.2. Synthetic realistic experiments

In this section, we present the experiments to evaluate the method for non-475

rigid registration using realistic shapes. The dataset includes two di↵erent ob-

jects: a flower3 and a face4. The synthetic models have been acquired using the

Blensor tool [29], a Blender plugin which simulates a Microsoft Kinect RGB-D

sensor. This tool uses raytracing to simulate 3D sensors, that in this particular

case is an RGB-D, providing a PCD file with all the spatial coordinates of the480

points and the color information. The virtual sensor is oriented in the direction

as it would be done with a real one. The only preprocessing is to deform the

models using the Blender tools, to have in this case three shapes, original, small

deformation and large deformation.

Figure 9 and 10 show the face and flower models used for the experiments.485

The images are from left to right: the target, a first deformation, and a second

larger deformation. The face deformations could be seen as elastic deformations,

because the face remains the same except for displacement of some parts. The

first deformation is a eyebrow rise and a mouth change. The second moves both

eyebrows and the mouth, changes the nose and the chin. For the flower, it could490

be seen as growth deformations due to the size of the object changes. The first

deformation enlarges a little the leaves and the second is a larger deformation.

In order to reduce and enhance the data for the registration purpose, we

have used di↵erent downsampling techniques to sample the data. Figure 11

shows two di↵erent kinds of sampling. The figure has in the middle the face495

example. At the left side a uniform sampling is presented, while at the right

side a representation of a color-based sampling, which provide higher density of

points at salient features, such as eyebrows, eyes or lips. In previous works, we

have studied the use of downsampling as a method to enhance the quality of

the data. These studies have been published in [30] [31]. In this paper we use500

3
https://www.turbosquid.com/3d-models/pink-primrose-flowering-3d-obj/516226

(last access: 11/08/2017)
4
http://eat3d.com/forum/art-gallery/models-face (last access: 11/08/2017)
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Figure 9: The face model used in the experiments. Two viewpoints (each per row) of the faces

used. From left to right, the original face shape as target for the small and larger deformations

in second and third columns.
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Figure 10: The flower model used in the experiments. Two viewpoints (each per row) of the

flower used. From left to right, the original flower shape as target for the small and larger

deformations in second and third columns.
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Figure 11: Two sampling examples. The image in the middle represents a point set of a face

shape. At the left is a uniform sampling. At the right side is a representation of a color-based

sampling, which provide higher density of points at salient features, such as eyebrows, eyes or

lips.

the same methods, including: bilinear interpolation, normal-based sampling,

color-based sampling, a combination of color and normal based technique, and

GNG sampling approach proposed in [32].

4.2.1. Non-rigid registration evaluation

Here we present a comparative evaluation of CCPD and CPD registration505

using synthetic realistic subjects. The color information, used by CCPD, allows

the registration method to achieve good accuracy when the surface is not very

detailed where the drift of points is not constrained by the irregularities of the

shape.

Using the data sampled, the non-rigid registration methods are qualitatively510

evaluated by visual inspection. Figure 13 shows the face shape for CCPD and

the original CPD with 1000 points sampled with the di↵erent methods. More

experiments have been performed with 250 and 500 data (which correspond to

the experimentation in [30] [31]), but are not included as the results are similar

to the presented experiment.515

Figure 16 shows the flower shape registration results for CCPD and the

original CPD with the same point sampling (similarly, more experiments have

been done with similar results). The figures show the registration for the second
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deformation (right of Fig. 9 and 10) of each shape as it is the larger one, and

hence, the most di�cult in terms of registration procedure. For each figure, the520

first row presents the CCPD method and the second the original CPD. From

left to right, the sampling techniques are: bilinear, normal-based, color-based,

NC-based, and GNG.

To analyse the registration, we will pay special attention to a specific Region-

of-Interest (ROI) for each model (i.e. those parts that are the aim of the study)525

depicted in Figure 12. In the face, the ROI will correspond to the mouth and

eyebrows as they are the parts which are mainly displaced. The ROI in the flower

will correspond to the central part, pink and yellow, as they do not deform in

color unlike the rest of the leaves (i.e. the deformation produces an enlargement

of the tip of leaves, but the center remains the same). This simulates the growth530

of a flower, where not all parts grow in the same way. Figure 13 and 16 show

the registration result for all di↵erent sampling techniques using CCPD (first

row) and CPD (second row). Figures 14 and 15 present a detailed view of this

analysis for the face shape, and Figure 17 and 18 for the flower shape. For both

shapes the first figure shows the registration using a GNG sampled dataset and535

the second the bilinear sampled dataset.

We can make several conclusions from the results of the experiments for the

face shape. From Figures 13, 14 and 15 we can see that the proposed CCPD

achieves better alignment. If we pay attention to the eyebrows area, it can be

seen that the alignment of CCPD results is better as it takes into account the540

color. In the detailed figures, it is easier to perceive this situation.

The flower shape has similar behavior to the face in the registration results.

When the data comes from either color-based or NC-based, both CCPD and

CPD achieves similar results. Moreover, when the data has been sampled using

GNG or bilinear, the proposed CCPD achieves higher registration accuracy than545

the original CPD. As the deformation in this shape is not isometric, the tips of

some leaves are the parts that get larger, CCPD moves the points di↵erently

at the tip of the leaves than the ROI, achieving accurate results. However,

as CPD moves coherently, the points shrink all together (the registration is
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Figure 12: Example of Region of Interest for both shapes. The ROI are highlighted with blue

circles.

Figure 13: Non-rigid registration result of face shape for a 1000 point sampling. The first

row shows CCPD, and the original CPD in the second. Columns show di↵erent sampling

algorithms that are from left to right, bilinear, normal-based, color-based, NC-based, GNG.

33



Figure 14: Enlarged example of the ROI for the face sampled with GNG. The first row shows

the CCPD and the second the original CPD. The data size is, from left to right, 250, 500, and

1000 points for the GNG.

Figure 15: Enlarged example of the ROI for the face sampled with bilinear sampling. The

first row shows the CCPD and the second the original CPD. The data size is, from left to

right, 250, 500, and 1000 points for the bilinear.

Figure 16: Non-rigid registration result of flower shape for a 1000 point sampling. The first

row shows CCPD, and the original CPD in the second. Columns shows di↵erent sampling

algorithms that are from left to right, bilinear, normal-based, color-based, NC-based, GNG.
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Figure 17: Enlarged example of the ROI for the flower sampled with GNG. The first row

shows the CCPD and the second the original algorithm. The data size is, from left to right,

250, 500, and 1000 points for the GNG.

Figure 18: Enlarged example of the ROI for the flower sampled with bilinear sampling. The

first row shows the CCPD and the second the original algorithm. The data size is, from left

to right, 250, 500, and 1000 points for the bilinear.

from the larger to the original position) such that ROI ends with a wrong color550

alignment. This situation is presented in Figure 17 and Figure 18.

Figures 17 and 18 show a detail of the registration to visually evaluate the

accuracy of both methods. It is easy to appreciate that CCPD achieves better

results than the original version in the alignment.

Finally, processing time of the registration process has been evaluated and555

shown in Table 7 for the face data, and Table 8 for the flower. The original

CPD always achieves lower times due to the number of operations. To calculate

the posterior probability in CCPD, it is necessary to estimate for each point

both color and location probability. Moreover, the convergence is not the same
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Table 7: Average processing time in seconds CCPD and CPD in face shape.

Face deformation 1 Face deformation 2

CCPD

250 500 1000 250 500 1000

bilinear 11.7988 58.4475 560.6209 30.2463 98.0815 654.7234

normals 17.0563 114.3599 555.5070 24.3791 62.2356 873.7409

color 11.7048 58.2177 703.9807 19.7996 69.2475 809.8889

NC 23.2824 141.5593 465.4034 25.8104 70.3541 700.6084

GNG 35.1574 121.0136 541.7851 31.5702 181.0353 698.8645

CPD

bilinear 3.4144 13.3339 58.8231 9.0456 44.0501 175.9423

normals 7.5732 31.0907 173.2305 12.1042 45.0169 181.4115

color 5.501 27.6411 174.1651 7.9162 29.5334 135.8508

NC 12.4572 36.2307 149.8286 7.1914 42.8539 193.599

GNG 11.3055 43.2056 171.6053 11.6725 44.3024 183.5948

in both methods, as CCPD commonly needs more iterations to achieve a more560

accurate result. The time of both tables is presented in seconds, and is shown

for each sampling method. The columns are: first, the sampling method; from

second to fourth, the sampling rates for the first deformation; and from fifth

to seventh, the three sampling rates for the second deformation. As a rule-of-

thumb, the CCPD computing times are about 3 times longer thatn the CPD565

times.

4.3. Real data experimentation

To evaluate the method in real conditions, experiments with data from a

general purpose RGB-D sensor has been carried out. In this case, a face with

di↵erent expressions is used to evaluate the non-rigid registration using CCPD,570

against CPD. Due to the absence of ground truth, the data will be visually

evaluated to analyse the performance of both methods. Figure 19 shows the

data used in this experimentation.
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Figure 19: Real data used for the non-rigid experiments. The first column shows the original

color images, the second and third show the 3D point cloud data from front and side of the

faces.
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Table 8: Average time processing CCPD and CPD in flower shape.

Flower deformation1 Flower deformation2

CCPD

250 500 1000 250 500 1000

bilinear 33.8404 100.1836 560.1712 13.4003 153.0062 562.0116

normals 18.9529 74.6561 369.0443 20.0593 121.5026 537.5028

color 13.0186 129.9349 458.0764 21.498 74.1095 361.1847

NC 52.0435 91.3152 388.7584 66.038 274.563 267.593

GNG 20.7716 112.4218 443.8667 18.5236 66.7437 615.4628

CPD

bilinear 9.8136 43.4829 175.2797 11.2072 43.2063 172.0116

normals 11.4153 45.7999 181.3168 11.8425 42.7337 172.5745

color 11.5049 42.8385 175.7153 9.9246 42.8615 175.9582

NC 11.79 43.2504 174.0308 11.2697 43.7694 174.9237

GNG 11.8023 45.2732 176.094 11.1835 43.7019 171.5101

Figure 20 shows an eyebrow rising deformation. The target is a neutral ex-

pression and the deformation is a surprise expression. The registration results575

of CCPD accurately aligns the shapes. The right column shows the data flow.

It clearly shows the movement of the eye region downward, from the surprise

expression to the neutral one. In this case, CPD only takes into account the

location, so it cannot align properly the eyebrows, resulting in a wrong homo-

geneous displacement.580

Figure 21 shows a cheek inflating deformation. The person inflates one cheek

so the mouth also moves to the side, the target is a neutral expression. The

CCPD outperforms the registration of CPD as it uses the beard color to properly

align and move the points into a correct location, where correct means the color

of both X and Y registered are the most similar over the data. CPD, despite585

the good result, produces an inaccurate registration because it can only use the

location information.

Figure 22 presents a large deformation. Here the face is highly deformed
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Figure 20: Real data registration, eyebrow rising. The top row is CCPD, and the second

CPD. From left to right, original deformation, target shape, registered shape, and data flow

to one side and closing an eye. CCPD aligns the points better because the

registered point set results in a correct location. CPD, however, cannot correctly590

move the points resulting in an inaccurate result (points registered have di↵erent

color).

5. Discussion and conclusions

In this paper, a novel non-rigid registration approach called Color Coherent

Point Drift (CCPD) is presented. This proposal, based on the well-know CPD,595

introduces color information in the correspondence estimation of non-rigid regis-

tration. The combination of color and location (3D position) information in the

estimated correspondence improves the result in the presence of noise, missing

data and outliers.

In general terms, the proposed CCPD algorithm outperforms the original600

CPD in most cases. The new input, color, provides information that disam-

biguates situations where the 3D space provides the wrong correspondences.
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Figure 21: Real data registration, left cheek inflation. The top row is CCPD, and the second

CPD. From left to right, original deformation, target shape, registered shape, and data flow

Figure 22: Real data registration, large deformation. The top row is CCPD, and the second

CPD. From left to right, original deformation, target shape, registered shape, and data flow
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For example, a flower that grows is used because some parts remain the same

but the tips of the leaves expand. Here, CPD returns a coherent movement

which moves the center points to a wrong position, while CCPD keeps the color605

in a good registration.

The experiments included three parts: synthetic simple subjects, synthetic

realistic subjects and real data. The simple subjects are those used in the

original CPD but with added color information (a fish and a face). The realistic

subjects have been obtained using Blensor, and the real data has been acquired610

using a Primesense Carmine RGB-D sensor. The first experiments with a fish

and a face shape show how the proposed method is able to overcome noise,

outliers, missing data and large deformations. To evaluate the outliers and

missing data, first the registered dataset Y is aligned to the target dataset

X, this second set with outliers (points in X without correspondences in the615

registered set Y ), providing similar result for both CCPD and CPD. Secondly,

missing data evaluation has been carried out by removing points in X, so that

there are points in Y without correspondences in X. In this evaluation, for the

fish shape, CCPD had 4.82 times lower RMS error than CPD in registration

accuracy for 21.9% missing data and 23.1 times lower for 58.2% missing data.620

For the face, CCPD had 24 times lower RMS error on average for all missing

data tests than the original method. For a large deformation evaluation, a

square shape was registered to the fish shape, obtaining better alignment by

CCPD than by CPD for the RMS error (23.1 times lower RMS). In the case

of the face, the large deformation moves the eyebrow up while the rest of face625

remains the same, which forces a non-coherent movement in a specific region.

It has been visually evaluated with CCPD outperforming CPD.

Experimental results show that a balanced adjustment of both color and

location parameters, using the proposed CCPD meets the requirements of these

registration problems, dealing with di�cult data conditions (very high levels of630

noise and outliers in color or location space), approaching to the optimal solu-

tion. Nevertheless, including color information (CCPD) improves the registra-

tion process even taking into account very di�cult color input data conditions.
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In the worst case, in presence of corrupt color data, the CCPD can become the

original CPD with either large �

C

or assigning 0 to w

C

.635

For realistic data experiments, two subjects have been evaluated, a flower

and a face. Both subjects have two deformations, one larger than the other.

The face changes shape with expression. Ten eyebrow, and mouth are the

regions that mainly deform, which can be treated as elastic deformations. The

flower, with the growth of some leaves, can be seen as a free deformation as the640

subject changes both size and topology as new points appear in the deformation.

CCPD has been evaluated and compared to CPD using the data provided by five

downsampling methods which were used in previous works. The results have

been visually evaluated, showing more accurate registration for the proposed

method in most cases. The subjects, for all data (each downsampling method),645

are aligned not only by the point distribution, but also with a coherence in the

color space (similar colors are aligned together).

The real data includes three face deformations, from smaller to larger, re-

turning more accurate registration results for the proposed method. The defor-

mations of the shapes are better aligned by CCPD because the flow of the points650

is more similar and coherent to the expected (expected by visual inspection),

by aligning the points using the shape and color information.

Generalization for multiple (e.g.: include topology along with color and lo-

cation) spaces combination is the next step to be done. Moreover, evaluating bi-

ological growth using CCPD is a short term future work that will provide a very655

useful tool for many applications. As long term future work, we are interested in

modifying the method to accelerate the process by comparing neighbor points

instead of the whole data set. Moreover, an implementation of the method in

a massive parallel processing GPU is proposed as future work to speed up the

process.660
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