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Abstract  

Preterm birth affects 5-18% of all babies and is associated with neurodevelopmental 

impairment and increased neuropsychiatric disease risk. Although preterm birth associates 

with differential DNA methylation at neurodevelopmental genes in buccal DNA, including 

Leucine-rich alpha-2-glycoprotein 1 (LRG1), it is not known whether these differences also 

occur in the brain, or if they persist. Thus, there is a need for animal models or in vitro 

systems in which to undertake longitudinal and mechanistic studies. We used a combination 

of in vivo rat studies and ex vivo experiments in rat cortical slices to explore their utility in 

modelling the human preterm brain. We identified temporal changes in DNA methylation at 

LRG1 in human buccal DNA over the first year of life and found persistent differences in 

LRG1 methylation between preterm and term infants at 1year. These developmental changes 

also occurred in rat brains in vivo, alongside changes in global DNA hydroxymethylation and 

expression of the Ten-eleven-translocation enzyme Tet1, and were reproducible in ex vivo rat 

cortical slices. Based on the observation that neonatal glucose homeostasis can modify 

neurodevelopmatal outcome we studied whether glucose concentration affects Lrg1 

methylation using cortical slices. Culture of slices in lower glucose concentration was 

associated with lower Lrg1 methylation, lower global 5hmC and Tet1 expression. Our results 

suggest that ex vivo organotypic cultures may be useful in the study of biological and 

environmental influences on the epigenome and that perturbations during early life including 

glucose concentration can affect methylation at specific genes implicated in 

neurodevelopment.  
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Introduction 

Preterm birth affects 5-18% of all babies and is associated with alterations in the connectivity 

of neural systems, with long-term neurodevelopmental impairment and with an increased risk 

of neuropsychiatric disease (Johnson & Marlow, 2011; Blencowe et al., 2013; Johnson et al., 

2015). Modifications of the epigenome, for example changes in DNA methylation, have been 

proposed as one mechanism linking the early life environment with later disease risk, 

including psychiatric disease (Ozanne & Constancia, 2007; Mehta et al., 2013; Khulan et al., 

2014). Epigenetic modifications are highly dynamic during brain development and the 

establishment of normal DNA methylation patterns is critical for optimal neurodevelopment 

(Spiers et al., 2015). Studies suggest that DNA methylation can be affected by environmental 

factors which are common following preterm birth such as stress, immune or metabolic 

dysregulation, and hypoxia (Volpe, 2009; Hagberg et al., 2015), and we have recently shown 

that preterm birth is associated with differential methylation at key neurodevelopmental 

genes in buccal cell DNA (Sparrow et al., 2016). Whether these differences are persistent, if 

they are present in the tissue of interest, and which potentially modifiable early life events 

mediate these differences are not known. 

 

The limitations with the accessibility of tissue in human studies mean that in vivo animal 

models or in vitro studies may be necessary to demonstrate the relevance of changes in 

peripheral tissue to specific diseases and to undertake mechanistic studies. Although rodents 

are extremely useful for disease modelling, early delivery results in death because of lung 

immaturity, so that studying longitudinal neurodevelopmental effects is problematic. 

However, in rodents, brain development at birth resembles that of a 24-week gestation fetus, 

whilst at postnatal day (P)10 it is equivalent to babies at term and at P21 resembles that in the 

infant/young child (De Simoni et al., 2003; Vannucci & Vannucci, 2005; Tucker et al., 2009; 
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Favrais et al., 2011; Semple et al., 2013). Thus, the early postnatal rodent brain provides a 

‘window’ in which to study factors influencing brain development in the human preterm 

infant.  

 

In this study, we analysed longitudinal changes in DNA methylation in preterm infants over 

the first year of life. We then proceeded to use a combination of in vivo and ex vivo 

experiments to study the utility of ex vivo rat cortical brain slices to model longitudinal 

changes in, and the effects of a relevant insult (altered glucose concentrations) on DNA 

methylation. We focussed on effects at one of the genes we have previously identified as 

differentially methylated in preterm babies: Leucine-rich alpha-2-glycoprotein 1 (Lrg1) 

(Sparrow et al., 2016), one of the leucine-rich repeat (LRR) family of proteins which are 

involved in protein-protein interactions, signal transduction, cell adhesion and which are 

known to be important during development.   
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Methods 

Human studies 

Samples were analysed from a cohort of infants recruited within the first week of life from 

the Simpson Centre for Reproductive Health, Edinburgh, UK, with informed written parental 

consent. Details of sample collection and the demographic details of these infants and their 

mothers have been reported elsewhere (Piyasena et al., 2016). From an original cohort of 50 

preterm (<32 weeks gestation) and 40 term infants (37-42 weeks gestation) recruited at birth 

and followed up for one year, buccal cell DNA was available from 32 preterm infants at term 

corrected age and 30 term infants at birth; and from 37 preterm infants at 1 year corrected age 

and 34 of the term infants at 1 year. DNA from 21 of the term babies, but none of the preterm 

babies, was used in an epigenome-wide association study which we have previously reported 

(Sparrow et al., 2016). Ethical approval was obtained from the South East Scotland Research 

Ethics Committee (Reference 11/AL/0329 and 13/SS/0143). Infant samples were collected 

under the framework of the Edinburgh Reproductive Tissue BioBank (ERTBB) (West of 

Scotland Research Ethics Service Reference 09/S0704/3). DNA was extracted using Oragene 

OG-250 kits (DNAGenotek, Ottawa, Canada) and DNeasy blood and tissue kits (Qiagen, 

Manchester, UK) and the concentration determined using Qubit® 2.0 Fluorometer (Thermo 

Fisher Scientific, Paisley, UK).  

 

Animal studies 

Wistar rats (Charles-River, Tranent, UK) were maintained under conditions of controlled 

lighting (lights on 7:00 am to 7:00 pm) and temperature (22°C) and allowed free access to 

food (standard rat chow, Special Diets Services, Witham, Essex, UK) and water. All studies 

were conducted under licensed approval by the UK Home Office, under the Animals 

(Scientific Procedures) Act, 1986, and with University of Edinburgh ethical committee 
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approval. Animals were mated and pups killed at postnatal day (P)2 or P10 as specified by 

overdose of Euthatal (Merial) (250mg/kg) injected intraperitoneally. Pups were then 

decapitated and the brain removed for further study. 

 

Organotypic cortical slices 

For organotypic cortical slices, rat litters were killed at P2 by an overdose of anaesthetic 

injected intraperitoneally. The forebrain was dissected rapidly and placed in L15 media 

before being sliced into 300µM sections using a tissue chopper (McIlwain, TedPella, 

Redding, CA, USA) and placed into organotypic cell culture inserts (Millipore, Nottingham, 

UK). The day before, the inserts had been coated with poly D-lysine 4ug/mL (Sigma-Aldrich, 

Dorset, UK) in a 6 well plate for 1 hour, then washed with sterile water and coated overnight 

with 200uL of laminin from human placenta (10ug/mL) (Sigma-Aldrich, Dorset, UK). 2-3 

slices from different animals were positioned on an insert in each well and cultured in Slice 

Culture Media (SCM): 25% EBSS (Thermo Fisher Scientific, Paisley, UK), 69% BME 

(Thermo Fisher Scientific, Paisley, UK), 5% heat inactivated horse serum (Gibco, Thermo 

Fisher Scientific, Paisley, UK), 1% D (+)-glucose (Sigma-Aldrich, Dorset, UK), 1% 

GlutaMAX-I supplement (Sigma-Aldrich, Dorset, UK), 1% penicillin/streptomycin (Sigma-

Aldrich, Dorset, UK), at 37C with humidity and 5% CO2. Slices were cultured for 10 or 21 

days in ‘normal’ SCM (11mM glucose) or SCM with no added D(+)-Glucose (3.7mM 

glucose). 

 

DNA and RNA extraction and RT-qPCR from rat cortices and cortical slices 

DNA and RNA from freshly harvested rat cortices and organotypic slices were 

simultaneously extracted using an RNA/DNA All Prep Mini Kit (Qiagen, Manchester, UK) 

and quantified using the Qubit 2.0 Fluorimeter system using the DNA BR or HS Qubit kit 
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and RNA BR or HS Qubit kit (Thermo Fisher Scientific, Paisley, UK). RNA was DNAse 

treated using RQ1 DNAse (Promega, Southampton, UK) and reverse transcribed using the 

High-capacity cDNA Reverse Transcription Kit (Applied Biosystems, Thermo Fisher 

Scientific, Paisley, UK). Primers for Tet3, Dnmt3a, Dnmt1 and the housekeeping gene TBP 

were designed using the UPL assay design system from Roche (Table 1), and Taqman assays 

for Tet1  (Rn01428192_m1) and Lrg1 (Rn02376998_s1) were purchased from Thermo Fisher 

Scientific. TBP was selected as the most stable housekeeping gene across experiments. qPCR 

was performed using the Roche LightCycler® 480. Data were assessed for normality using 

the Shapiro-Wilk test in GraphPad prism (La Jolla, CA, USA). When the data were normally 

distributed, unpaired Student’s t-tests were performed, otherwise a Mann-Whitney U test was 

performed using Graphpad prism. When 2 variables (condition/treatment with time) were 

analysed, a 2-way ANOVA with Bonferroni post hoc test was performed using Graphpad 

prism. 

 

5methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels  

The Quest 5-hmC DNA ELISA Kit (Zymo research) and MethylFlash Methylated DNA 5mC 

Quantification Kit (Epigentek, Farmingdale, NY, USA) were used to measure the level of 

5mC and 5hmC respectively in genomic DNA extracted from cortical slices. A total of 6 

(5mC) or 8 (5hmC) slices treated independently from 3 different littermates were used for 

each group. 5mC and 5hmC levels from the in vivo study were measured by Ultra High 

Pressure Liquid Chromatography UPLC following the protocol: 

https://assets.thermofisher.com/TFS-Assets/LSG/Application-Notes/technote-Global-And-

Locus-Specific-5-Methylcytosine-Detection.pdf. 

 

Pyrosequencing  
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Pyrosequencing was used to quantify DNA methylation at individual cytosines (CpGs) in 

DNA from buccal swabs from babies and from DNA extracted from rat brains and cortical 

slices. Bisulphite conversion was performed on 500 ng of genomic DNA using the EZ DNA 

Methylation Kit (Zymo Research, Irvine, CA, USA). Converted DNA was amplified using 

the AmpliTaq Gold 360 Kit (Applied Biosystems, Thermo Fisher Scientific, Paisley, UK) 

with primers mapping to target regions containing CpGs assayed within the array from our 

previous study (Sparrow et al., 2016). For analysis of DNA methylation in rat cortices, 

bisulfite converted DNA was amplified by PCR with primers mapping to the homologous 

promoter regions of Lrg1 in human and rat (Table 1). PCR primers were designed using 

PyroMark Assay Design Software 2.0 (Qiagen, Manchester, UK) (Table 1). Pyrosequencing 

was performed using PyroMark Q24Gold reagents on a PyroMark Q24 Pyrosequencer 

(Qiagen, Manchester, UK) according to the manufacturer's instructions. Data were extracted 

and analysed using PyroMark Q24 1.0.10 software (Qiagen, Manchester, UK). Background 

non-conversion levels were ~1–3%. Shapiro-Wilk normality test and unpaired t-testing was 

performed using SPSS (IBM, Hampshire, UK). 
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Results 

Differences in LRG1 DNA methylation observed in preterm babies at term age persist at 1 

year. 

We previously identified differences in DNA methylation at LRG1 of ~20% between term 

infants at birth and preterm infants at term age using the Illumina Methylation 450k beadchip 

array (Illumina, San Diego, CA, USA) and these differences were confirmed by 

Pyrosequencing (Sparrow et al., 2016). Differences in DNA methylation at LRG1 were 

persistent at one year of age despite an overall decrease in methylation over time (Figure 1A). 

Persistent differences in DNA methylation at one year of age were identified at some, but not 

all of the genes which we validated as differentially methylated in preterm infants at term age 

in our previous study (Sparrow et al., 2016) (Figure 1B). 

 

Developmental changes in 5mC, 5hmC and the expression of epigenome-modifying enzymes 

occur in vivo in rat brain. 

In rat cortices, there were no changes in global 5mC in vivo between days P2 and P10, 

however 5hmC levels increased with time (Figure 2A). The expression levels of Tet1, Tet3, 

Dnmt3a and Dnmt3b increased between P2 and P10 (Figure 2B). The expression of Lrg1 also 

increased with postnatal age in vivo (Figure 2C), whilst DNA methylation at Lrg1 declined 

between P2 and P10 (Figure 2D). 

 

Glucose concentration affects locus-specific DNA methylation and global DNA 

hydroxymethylation in ex vivo rat organotypic cortical slices. 

In ex vivo rat organotypic cortical slice cultures, exposure to lower glucose concentrations 

was associated with a trend towards higher global 5mC and significantly lower 5hmC (Figure 

3A). Consistent with this decrease in 5hmC, the expression of Tet1 was reduced with long-
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term exposure to lower glucose concentrations (Figure 3B). DNA methylation at Lrg1 in ex 

vivo cortical slices was maintained at the same levels as in the rat in vivo, and also resembled 

DNA methylation levels present at CpG2 human infants (Figure 3C). Consistent with the 

results in the human study and in rats in vivo, Lrg1 methylation decreased over time in ex 

vivo cortical slices (Figure 3C). Lower glucose concentrations were associated with lower 

DNA methylation at CpG2 in cortical slices at both 10 and 21 days (Figure 3C). However, 

Lrg1 expression in the ex vivo cortical slices was low and there were no changes in gene 

expression with exposure to lower glucose concentrations (Figure 3D).  
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Discussion 

We had previously identified differential DNA methylation at LRG1 in buccal DNA from 

preterm infants at term corrected age (Sparrow et al., 2016), and here we show that these 

differences are persistent, at least at one year of age, suggesting that, at least at some loci, 

DNA methylation differences are stable during early infancy. Although there were no 

persistent differences at a number of other sites at which we identified differential DNA 

methylation earlier in life (Sparrow et al., 2016), these may still be relevant, for example 

there could be dynamic injury/repair responses in the perinatal period that are important. 

Longitudinal studies of DNA methylation patterns in association with developmental and 

health data may help establish a DNA methylation ‘signature’ that could be useful in the 

early diagnosis and management of preterm infants. 

 

We chose to focus on Lrg1, which encodes a protein involved in neovascularisation and 

angiogenesis and is distributed throughout the brain, particularly in the deep cerebral cortex, 

in astrocytes and their processes associated with blood vessels (Nakajima et al., 2012; 

Miyajima et al., 2013). Recent studies have demonstrated a potential role for Lrg1 in 

neuronal diseases: Lrg1 expression increases with age in both humans and mice (Miyajima et 

al., 2013), and is increased further in cerebrospinal fluid and brain tissue of patients with 

Alzheimer’s or Parkinson’s disease with dementia (Miyajima et al., 2013). Indeed, in 

humans, cognitive function declines with greater cerebrospinal fluid LRG1 concentrations 

(Miyajima et al., 2013). In mice, Lrg1 overexpression in glia and neurons results in early 

neuronal decline and neurodegeneration, supporting a role for Lrg1 in neuronal loss 

(Miyajima et al., 2013). Lrg1 may regulate signalling through the TGFβ pathway which is 

thought to be an important regulator of CNS development (Wang et al., 2013). TGFβ is 

released in response to brain injury and may play a role in post-ischemic neural stem cell 
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proliferation and differentiation (Sun et al., 2010) and the development of post haemorrhagic 

hydrocephalus in preterm infants (Whitelaw, 2001).  

 

Although there were no changes in global 5mC in the rat brain in vivo over time, we 

identified locus-specific developmental changes in DNA methylation at Lrg1, with a decrease 

over the first year of life in humans and over the equivalent course of brain development in 

the rat in vivo (21 days). The lack of change in global 5mC is perhaps not surprising since 

there are both increases and decreases in specific loci with early life ‘insults’ and over time 

(Sparrow et al., 2016). The temporal changes in Lrg1 methylation were reproduced in the ex 

vivo slices, which showed maintenance of the absolute levels of DNA methylation seen in 

vivo and a decrease over time.  

 

Factors acting during intrauterine development which may be important in mediating 

‘programming’ effects in small for gestational age (SGA) infants include undernutrition and 

glucocorticoid overexposure (Bayman et al., 2014). In addition, preterm infants are 

vulnerable to these and other factors acting in early postnatal life (Bayman et al., 2014). 

Importantly, Lrg1 expression is responsive to changes in the environment in vivo and in vitro: 

exposure to chronic social stress increases the expression of Lrg1 in mouse brain 

(Stankiewicz et al., 2015) and Lrg1 expression is affected by changes in glucose 

concentrations in culture, at least in the pancreas (Anderson et al., 2009). Seeking to explore 

the potential use of ex vivo cortical slices to model insults which may impact on the preterm 

brain, we show that changes in glucose concentrations can affect site-specific DNA 

methylation such that lower glucose concentrations are associated with a reduction in DNA 

methylation at Lrg1. Neonatal hypoglycaemia can, if severe and prolonged, cause brain tissue 

injury and long term neurodevelopmental impairment (Boluyt et al., 2006; Rozance & Hay, 
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2006; Burns et al., 2008); and it accounts for a substantial proportion of costs settled by the 

NHS litigation authority (Hawdon et al., 2017). The 3.7mM and 11mM glucose 

concentrations in the culture medium are higher than those normally considered 

hypoglycaemic or normoglycaemic for human neonates, so it is not possible to translate 

directly the impact of these concentrations to humans, but the data provide proof of concept 

that glucose homeostasis can lead to differences in DNA methylation. It is possible that the 

observed effect size may be greater with even lower glucose concentrations, but this is 

difficult to model in ex vivo slices, which require additional glucose to be viable since they do 

not obtain nutrients from the circulation. 

 

The extent to which DNA methylation regulates the expression of Lrg1 is not known. The 

temporal increase in Lrg1 expression in vivo occurs in association with a decrease in DNA 

methylation, suggesting that the developmental changes in expression could be regulated by 

DNA methylation. However, although in the ex vivo slices DNA methylation levels were the 

same as those in vivo, Lrg1 expression levels were very low. Further, although exposure to 

low glucose concentrations was associated with a reduction in DNA methylation in ex vivo 

cortical slices, there were no effects on Lrg1 expression. Since the Lrg1 promoter is not CG 

rich, changes in DNA methylation may simply reflect its previous transcriptional status. It is 

not clear why the expression of Lrg1 in ex vivo slice culture is so low, however it may be that 

additional factors that are not present in slice culture are required for the normal expression 

of Lrg1. Alternative explanations might include the loss of specific cell types in vitro which 

highly express Lrg1 or which are required for the expression of Lrg1 in other cells. For 

example, it is known that the in vivo expression of some genes in astrocytes and neurons are 

not maintained when their normal niche is disrupted (Hasel et al., 2017).  
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5-hydroxymethylation is a recently discovered epigenetic modification which associates with 

active gene transcription but which also plays a key role in the process of DNA 

demethylation, catalysed by the α-ketoglutarate dependent Ten-Eleven-Translocation (Tet) 

enzymes (Tahiliani et al., 2009). Recent evidence suggests that ‘environmental’ insults can 

produce dynamic, reciprocal changes in 5hmC/5mC and suggest that 5hmC profiles may be a 

useful signature of gene transcription and a marker of cell state (Thomson et al., 2012; 

Thomson et al., 2013). Whether events experienced in early life might result in changes in 

5hmC is unclear, although we have recently shown in human studies that 5hmC at imprinted 

loci in the placenta associates with fetal growth in term infants (Piyasena et al., 2015). Here 

we show that there are dynamic changes in global DNA hydroxymethylation and in the 

expression of Tet1 in vivo between P2 and P10 in the rat brain. After 21 days in ex vivo 

culture, global 5hmC was decreased in low glucose conditions and consistent with this, Tet1 

expression was also decreased, suggesting that glucose levels could profoundly affect 5hmC 

in the brain. Although we have not tested specific mechanisms, the effects of glucose 

availability on the abundance of key metabolic intermediates, for example in the TCA cycle, 

could impact on the activity of epigenetic enzymes, including the α-ketoglutarate dependent 

Tet enzymes. The Pyrosequencing technique we used to analyse DNA methylation uses 

bisulphite conversion and therefore does not distinguish between 5mC and 5hmC, so that the 

changes in DNA methylation we saw could reflect changes in 5mC, 5hmC or both, and 

further studies using more specific techniques are required to further dissect specific in 

individual modifications. 

 

Preterm birth is associated with a number of environmental ‘insults’ which could alter brain 

development, perhaps through changes in the epigenome. Our data support the hypothesis 

that perturbations during early life including differences in glucose homeostasis can affect 
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DNA methylation at specific genes implicated in neurodevelopment and that some of these 

changes may be persistent. Our results suggest that ex vivo organotypic cultures may be 

useful in the study of environmental influences on the brain epigenome, particularly with 

respect to the analysis of DNA methylation.  
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Figure legends 

Figure 1: (A) Pyrosequencing analysis of DNA methylation at 2 CpGs located in the 

promoter region of LRG1 in term babies at birth and preterm babies at term-corrected age 

and in term babies at 1 year of age and preterm babies at 1 year corrected age. DNA 

methylation at LRG1 was lower in preterm infants at term corrected age and 1 year of age 

and also decreased in both preterm and term infants over time. (B) DNA methylation in term 

babies at 1 year of age and preterm babies at 1 year corrected age at 5 genes previously 

reported as differentially methylated in preterm infants at term corrected age (SLC7A5, 

NPBWR, APOL1, QPRT and SLC1A2) (Sparrow et al., 2016). Graphs are mean +/-SEM, p 

values from 2 way-ANOVA with Bonferroni post-hoc test (A) and unpaired Student’s t-test 

or Mann Whitney as indicated (B). 

 

Figure 2: (A) Percentage of 5mC and 5hmC nucleotides in cortices from P2 and P10 animals 

(n=8 per group) showing temporal changes in 5hmC, p values from unpaired Student’s t test. 

(B) Temporal changes in expression of epigenome-modifying enzymes in cortices from P2 

and P10 animals (n=10 per group), p values from Mann Whitney test. (C) Lrg1 expression 

changes in rat cortices between P2 and P10 in vivo (n=10 per group), p values from Mann 

Whitney test.  (D) DNA methylation at Lrg1 declines between P2 and P10 in vivo (n=10 per 

group), p values from unpaired Student’s t test. Graphs are mean +/-SEM 

 

Figure 3: (A) Exposure to low glucose concentrations resulted in a non-significant increase in 

global 5mC and a significant decrease in 5hmC in ex vivo cortical slices at 21 days (n=6 

(5mC) or 8 (5hmC) independent slices from 3 animals per group. (B) mRNA expression of 

Tet1 was decreased with exposure to low glucose in ex vivo cortical slices at 21 days (n=9 

independent slices from 3 animals per group). (C) There was a temporal decrease in Lrg1 
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methylation in cortical slices between 10 and 21 days and lower glucose concentrations 

resulted in a decrease in DNA methylation at CpG2 at both 10 and 21 days (n=8 (day 10) and 

9 (day 21) slices from 3 animals for all groups). (D) Lrg1 expression in ex vivo cortical slices 

was low and was not affected by glucose concentration (n=9 slices for 11mM and 7 slices for 

3.7mM from 3 animals per group). *p<0.05. Graphs are mean +/-SEM, p values from 

unpaired Student’s t test (A) and from 2-way ANOVA with Bonferroni post-hoc test (B-C). 

 

 

 



Table 1: Primer sequences 

	

qPCR 

Target Forward Reverse UPL probe#
TBP caattctgggtttgatcattctg cccaccagcagttcagtagc 129

Tet3 ggaaataaatgctcgtgaagga gctgagctctgagcctgtct 81

Dnmt3a aacggaagcgggatgagt actgcaatcaccttggcttt 75

Dnmt1 aactcgtcttggtttgagacct gcgactgcaatacacactgaa 55

Pyrosequencing

Target Forward Reverse sequencing
rat‐Lrg1 AGAGGTGGGGATTTAGTTTAGG bio-TAACTTACTTCCTACCCACCCTTTCC GGGGATTTAGTTTAGGAG

human LRG1 ‐CpG1 GTGGGGATTTTTTTAGGGTTGG bio-CTCCAAAAAAACATAATAACTCTACTCTT GTTTAGGTAGGTATAAGGTTAT

human LRG1 ‐CpG2 GATTTTTGGGGGGTATTTAAGAG bio-CCCTATCTCCAAAAATAATACCTTACA ACCTTACAAACCTTAACC

human SLC1A2 GTTATTTAGTTAGAAGGTGGTGAAGAA bio-ACCAAAAAAACCCAAATCCCAACAAA GTGGTGAAGAATTTAAGTTT

human SLC7A5 TGTGTGTTTTTTATAGGGTATGAGG bio-AAAACACTCCTATATCCCCCTCT TTTTTATAGGGTATGAGGT

human QPRT TTGGGAGTTTTGGTTTTGAGT bio-ACAAAAAAAATATCCCTTTACCTTCA AGATAGTTGTAAGTTATTATGG

human NPBWR ‐CpG1 ATAGAGATAGGGGAGTTTAAGATTGTTT bio-TCTCTACTTATCCACACACTTACC TTTTGTTAGTTTTTTTTTGGTTAT

human NPBWR ‐CpG2‐4 AGAGTTTTTTATTATTTTAGATGGAGTGAG bio-CCCCCAAATTTAAAAAATTCCTTTC GATGGAGTGAGGTTG

human APOL1 TTTGGTTATGAGTTGTTGGGAAGTT bio-ACAAATCCTCCAATCCCCAAAATATAC GGGAAGTTGTGATTTTTA
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