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Abstract: Quanta Imager Sensors provide photon detections at high frame rates, with negligible 
read-out noise, making them ideal for high-speed optical tracking. At the basic level of bit-planes or 
binary maps of photon detections, objects may present limited detail. However, through motion 
estimation and spatial reassignment of photon detections, the objects can be reconstructed with 
minimal motion artefacts. We here present the first demonstration of high-speed two-dimensional 
(2D) tracking and reconstruction of rigid, planar objects with a Quanta Image Sensor, including a 
demonstration of depth-resolved tracking. 

Keywords: single-photon counting; single-photon avalanche diode; quanta image sensor; machine 
vision; optical tracking 

 

1. Introduction 

Quanta Image Sensors (QIS), and photon counting sensors in general, are enjoying considerable 
research interest, thanks to ongoing developments in enabling solid-state technologies [1]. A recent 
breakthrough has been the demonstration of Complementary Metal-Oxide Semiconductor (CMOS) 
image sensors attaining deep-sub-electron read noise [2] at room temperature and without the 
avalanche multiplication of Single-Photon Avalanche Diode (SPAD) sensors. On the application side, 
algorithms have been proposed for low-light object classification and tracking based on streams of 
photon counts [3], as well as image reconstruction from low photon count QIS data [4].  

The basic output of a (single-bit) QIS is a binary bit-plane, with each constituent photodetector 
giving a value of 0 (for no photon detected) or 1 (at least one photon detected), with negligible read 
noise. These binary states (“jots” in QIS terminology) are then summed in space and/or time to form 
a spatiotemporally oversampled greyscale image frame. The flexibility in aggregating jots represents 
a distinct advantage in QIS imagers, enabling image composition to be tailored to specific 
applications. For instance, the “cubicle” for summing jots can be adapted according to the spatial-or-
temporal variability of light intensity in a scene, so as to reduce data rates while preserving detail [5]. 
For faint blinking objects in a scene, it is possible to carry out signal-only summation (in time) to 
suppress the background. Using this approach, the effective sensitivity of a QIS was increased 
significantly in single molecule localization microscopy [6]. QIS processing schemes have also been 
suggested for high-dynamic-range (HDR) imaging [7,8]. 

SPAD implementations of QIS offer high frames rates of >100 kfps, making them ideal for 
tracking high-speed objects in low light. However, in a photon-starved environment there is very 
little detail in individual bit-planes, and summing in time to increase the bit-depth leads to motion 
artefacts (just as when the exposure of a conventional camera is increased). This is illustrated in  
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Figure 1 using a set of synthetic images of a car. A single bit-plane (Figure 1a) offers limited detail, 
whilst summing even a modest number of bit-planes leads to significant motion blur (Figure 1b). 
Schemes for removing motion blur in conventional cameras typically estimate the point spread 
function of the distortion, either using a sequence of (blurred) images [9] or using an additional sensor 
(an inertial sensor or a secondary image sensor [10]). Deconvolution is then applied to the blurred 
images in post-processing. However, in the case of our example, even with knowledge of the exact 
motion of the car, deconvolution (Figure 1c) gives little visible improvement in the sharpness of the 
image, failing to reproduce some of the finer details seen on the image of the still car (Figure 1d). This 
is due to the low photon counts (and as such, the considerable shot noise) in the image to be 
processed. Similarly, standard motion tracking schemes based around optical flow [11,12] that 
perform computations on the spatiotemporal gradient of image intensity are difficult to apply in low-
photon, fast-changing image sequences. 

Rather than correcting composed image frames, QIS enables photon streams, as represented by 
the sequence of bit-planes, to be transformed (in effect, photons are re-assigned between jots) prior 
to summation, so as to compensate for motion and obtain increased image detail [13]. This is 
somewhat analogous to digital image stabilization in conventional cameras, whereby a sequence of 
sub-exposures is taken, of which the sharpest are selected, re-aligned, and combined (a technique 
which is complemented by the use of gyroscope-based optical image stabilization in many cameras [14]). 
However, the key difference here is that the sub-exposures (bit-planes), individually taken, do not 
contain sufficient information for motion tracking or frame-realignment, but may be manipulated 
and summed extensively without any additional noise penalty.  

This paper gives the first demonstration of high-speed object tracking and reconstruction using 
a QIS, based around the transformation of bit-planes. It is an expanded version of Reference [15], with 
additional experimental results, and a more detailed exposition of the approach. The technique 
requires no secondary sensors (the scheme is wholly image processing-based), and is demonstrated 
using a SPAD camera with back-to-back exposures, all of which are used to form the final image 
sequence (a high temporal aperture being important for low-light conditions). We consider the 
removal of motion artefacts from the whole field of view as well as tracking individual moving objects.  

 
(a) (b)

 
(c) (d)

Figure 1. Synthetic Quanta Image Sensor (QIS) images of a car, with a maximum photon rate of 0.2 
photons/pixels/bit-plane, typical of low light conditions: (a) Single bit-plane exposure (10 µs); (b) Sum 
of 50 bit-plane exposures of a car moving at 300 km/h; (c) Image b after motion deblurring using the 
Wiener Filter (deconvwnr function in Matlab, with the assumption of a noise-power-to-signal-power 
ratio of 0.05); (d) Sum of 50 bit-planes for static car. 
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2. Materials and Methods  

2.1. Motion Detection 

A raw-bit plane sequence Li (i = 1, 2, …, n) will generally feature considerable photon noise, 
making it difficult to detect motion (or other intensity changes in the image) at the level of individual 
jots. We therefore use a kernel (or “cubicle”) of size {Nx, Ny, Nt}, designed to be small enough to 
capture spatial and temporal variations in the image scene, to compose aggregated “test” frames Ik  
(k = 1, 2, …, n/Nt). The kernel is applied in an overlapping manner in space, and a non-overlapping 
in time. For the analysis that follows, we shall presume that jots have a uniform photon detection 
efficiency η, and furthermore dark counts are negligible compared with true photon detections. 
Assuming uniform illumination across a cubicle, and following the analysis of Reference [13], the 
value of each resulting pixel will be a binomial count from M = Nx × Ny × Nt trials and a success 
probability Px,y,k = 1 − e−ηH, where H is the quanta exposure (or mean photon arrivals/jot during the 
bit-plane exposure time τ) corresponding to the cubicle. Thus, confidence bounds can be attached to 
each pixel Ix,y,k, as to the “true” underlying photon arrival rate. More precisely, we calculate an 
(approximate) confidence interval on the estimated, underlying success probability, based on the 
pixel value m of Ix,y,k, using the Agresti-Cull method [16]: 
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M is the number of jots aggregated to form the pixel and z = 2.58 for a 99% confidence level. We can 
then generate a sequence of “difference” frames Dk, mapping statistically significant changes in pixel 
values between “test” frames Ik: 
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where d is an integer constant ≥1. An alternative is to generate Dk by comparing Ik against a fixed 
reference frame, say I0, representing the background of the scene, if such a frame is available. 

2.2. Clustering and Object Tracking 

The resulting Dk frames will thus show clouds of points (pixels of value 1 or −1) corresponding 
to moving objects in the scene. We can separate individual objects by applying Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) clustering [17] to these points (using prior 
knowledge of the likely size of moving objects), which also identifies and filters out “outlier” points 
in Dk resulting from photon noise. This enables regions of interest (bounding boxes, with a level of 
padding) to be determined around detected object motions in Dk. We then take each region of interest 
in turn (index j), and, under the assumption that the detected objects may be modeled as planar 
objects in three-dimensional (3D) space (which can be a reasonable approximation even for non-
planar objects if they are at a sufficient distance from the camera and any rotation is restricted to 
around the depth axis), we estimate the transformation Tj,k between successive Dk frames to quantify 
the motion (Figure 2). The transformation matrices Tj,k may be computed iteratively, by optimizing a 
similarity metric (e.g., via a gradient descent approach, as in Matlab’s imregtform function [18]). 
Transformations of varying degrees of freedom may be assumed, such as rigid transformation 
(accounting for linear motion and rotation), similarity transformation (also including scaling, i.e., the 
object moving closer to/further away from the camera) or a projective transformation (if there is a 
change in perspective). For similarity transformation, Tj,k is of the form: 
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where λ is the scaling factor, θ is the clockwise rotation, and {Δx, Δy} is the translation. 
In the case of rigid and similarity transformations, an alternative, direct (and less 

computationally intensive) approach for estimating Tj,k is possible (when Dk is computed with respect 
to a fixed reference frame). We ignore the polarity of the pixel values in Dk, and for each object j, 
compute the centroid {Xj, Yj} of points within the corresponding bounding box. We then estimate the 
translation of the object by calculating the change in {Xj, Yj} between successive Dk frames. Scaling is 
obtained by calculating the mean Euclidian distance of points from {Xj, Yj} (again tracking how this 
changes from frame to frame). For estimating rotation, we consider the spatial variance of the points 
in x and y (Vx, Vy) as, using basic trigonometry, it can be shown (for a general point cloud) that  
Vx − Vy = Ccos(2θ + φ), where C and φ are constants and θ is the orientation with respect to the 
Cartesian axes. We note that tracking (and in particular centroiding) based on maps of changed pixel 
values is a very common approach in machine vision [19]. The difference here is the acquisition of 
photon count data (giving rise to the pixel thresholding criteria in Equation (2)), and the requirement 
for the full two-dimensional (2D) motion (including, for example, the orientation) of the object to be 
tracked for reconstruction purposes. 

The object bounding boxes may be re-calculated, using DBSCAN clustering, after every N frames 
of Dk (or in when a newly emerging motion is identified), between which the boxes are adapted 
according to the estimated motion of the enclosed object.  

 
Figure 2. Illustration of the clustering/tracking approach: computing difference frames from the test 
frames give clouds of points indicating moving objects. These clouds are then clustered and bounding 
boxes are established. The estimated transformations between corresponding point clouds on 
successive difference frames give the trajectory of the relevant object. 

2.3. Reconstruction of Objects and Background 

For each detected object, we consider the associated sequence of transformations (interpolated 
in time down to the level of bit-planes), and then apply the inverse of these transformations to the 
original sequence of bit-planes. We then carry out aggregation in time (essentially summing  
bit-planes in the frame of reference of the object) so as to reconstruct the object. The result is an image 
frame with the reconstructed object set against a blurred background. Extracting the contour of an 
object from an image is a widely studied image processing problem, with [20] giving a comparison 
of modern techniques. Here we used the Active Contour algorithm [21], which is a popular approach 
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for discriminating an object from its background. The algorithm does need a level of supervision to 
make sure results are sensible, so further work would be required to ensure the present tracking-
reconstruction technique can be run in a fully automatic way. 

With the motion and now the outline of the objects known, we carry out an additional sum of 
the bit-planes, this time untransformed but with the objects masked out, so as to recover the 
background (pixel values in the resulting image being scaled according to the number of frames 
where the pixel is object-free). Finally, we combine the enhanced images of the objects and that of the 
background to compose a high bit-depth image sequence, Gi, at the native resolution of the camera, 
with minimal motion artefacts. 

The overall objection detection-tracking-reconstruction scheme is summarized in the block 
diagram of Figure 3. 

 
Figure 3. Block diagram indicating the steps in the tracking-reconstruction technique. The input is a 
sequence of bit-planes Li capturing a high-speed object. The scheme tracks the motion of this object 
(as defined by Ti) and outputs a higher bit-depth image sequence, Gi. 

2.4. Practical Implications 

In addition to the inherent requirement of a rigid, non-articulated, planar object, a number of 
other implicit assumptions can be identified in the above approach. There must be a sufficient 
contrast in light intensity between the object and the background (or some identifiable contrast within 
the object itself). Due to the use of difference clustering, objects should be unoccluded. Furthermore, 
the quality of the final reconstruction will depend on the effectiveness in extracting the contour of the 
object. Again, difficulties may arise if the contrast between the (motion-compensated) object and the 
blurred background is poor (an approximate contour may be obtainable from the difference frames 
in such cases). It is likely that some of these assumptions could be relaxed with more complex tracking 
schemes, involving dynamic probabilistic modeling, combined with some prior information on object 
shape and dynamics. Reference [3] gives a demonstration, using synthesized data, of tracking an 
inverted pendulum via a Kalman filter-based approach, adapted for sparse photon counting data. 

The choice of an optimal cubicle size {Nx, Ny, Nt} for generating the test frames is influenced by 
several factors. Spatially, the size of the cubicle should not exceed the size of salient features on the 
object, otherwise these will be averaged out, making it harder to ascertain the motion of the object. 
Similarly, the level of aggregation in time (Nt) should be set so as to capture the motion with adequate 
temporal detail. At the same time, the total number of jots aggregated (Nx × Ny × Nt) must be 
sufficiently large, given the level of contrast between the object and the background (or within the 
object), to allow pixel changes arising from the motion to be detected with high statistical certainty. 
This can be assessed numerically, by determining the aggregation so that a given change in the 
underlying photon rate H (or normalized exposure) of test frame pixels is flagged (as per  
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Equation (2)) with a certain sensitivity (for simplicity, we assume here a photon detection efficiency 
of η = 100%). Figure 4 shows the results for a change from H1 to H2, with a range of photon rates, from 
0.03 to 3 mean detected photons per jot per exposure being considered in each case. As expected, the 
closer H1 and H2 are, the larger the aggregation required to discriminate between them. In the case 
where there is prior information on the object, the results can serve as a guide for selecting Nt (once 
the spatial aggregation Nx × Ny has been fixed). One can also envisage an iterative means of choosing 
Nt, whereby a low level of temporal aggregation is first carried out, which is then progressively 
increased until motion is detected in the scene.  

 
Figure 4. Heat map of the temporal aggregation Nt required (in terms of powers of two) to detect a 
change of photon rate from H1 to H2 with >90% sensitivity. The photon rates are specified in terms of 
the mean detected photons per jot over a sub-exposure (bit-plane) and are presented on logarithmic 
scales. A spatial aggregation of 8 × 8 is assumed, with each data point on the heat map being obtained 
using Monte Carlo simulations (under the assumption of Poisson statistics) by generating 10000 pairs 
of aggregated pixel realizations (from H1 and H2) at different levels of Nt, and applying Equation (2). 

3. Results 

We present results from a synthetic data set designed to test the robustness of the approach, 
followed by experimental results obtained with a 320 × 240, 10 kfps SPAD camera [22], which is one 
of the highest resolution SPAD imagers available, and which also has one of the highest fill-factors  
at 26.8%.  

3.1. Simulated Data 

The simulated image sequences, each consisting of 72, 400 × 240 resolution bit-planes, feature a 
car-shaped object accelerating along a circular trajectory (Figure 5a). The speed of the car rises by 70% 
over the sequence, whilst the size of the car increases by 40% (growing at a rate of 0.5% per bit-plane). 
Assuming a bit-plane frame rate of 10 kfps, and a life-scale vehicle, the final speed of the object is 
several hundreds of km/h (its acceleration being unrealistically high to provide a challenging test 
case). The car and its background were initially assumed to have spatially uniform (and time-
invariant) photon rates of Hcar and Hback, respectively. An extensive set of image sequences were then 
generated to cover a range of Hcar and Hback. Next, the tracking-reconstruction algorithm of Section 2 
was applied to each sequence, and the quality of the results assessed (object transformations were 
estimated using the monomodal option of Matlab’s imregtform function, with the assumption of a 
similarity transformation, and the settings MaximumIterations = 300, MinimumStepLength = 5 × 10−6, 
MaximumStepLength = 5 × 10−3, RelaxationFactor = 0.9). Figure 5b plots the 2D correlation coefficient 
R between the reconstructed and the still car, as a function of Hcar and Hback. Good correspondence is 
seen with the results of Figure 3, in that for combinations of Hcar and Hback that are distinguishable 
according to said figure (given the cubicle size {Nx, Ny, Nt} = {8, 8, 8} used here), good tracking is 
indeed obtained, leading to a reconstruction with R > 0.9. Example images are given in Figure 6 for 
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the case of Hcar = 0.35 and Hback = 0.15. Figure 6a shows a single bit-plane; summing the sequence of 
bit-planes leads to the image in Figure 6b, where the car is unrecognizable due to motion blur. 
Running the algorithm leads to the reconstructed image of Figure 6c, which compares well to the 
image of the still car (Figure 6d), with R = 0.943. 

In a subsequent data set, the uniform light intensity from the background and the body of the 
car were replaced by identical dotted patterns, producing a “camouflaged” car. The algorithm was 
run again (with the same setting as before), and was still able to reconstruct the car (Figure 7). Further 
testing revealed difficulties in tracking if the dots are reduced to a size approaching that of the spatial 
aggregation. 

 

(a) (b)

Figure 5. Summarized results from synthetic data set: (a) Two-dimensional (2D) car model (mask) 
used to generate data set. The car moves along a circular arc, with an angle to the vertical of  
0.002 i2 + 0.2 i and a radius of r = 250 jots (where i is the index of the bit-plane), and grows in size at a 
rate of 0.5% per bit-plane. Shown are the initial (i = 1) and final (i = 72) positions of the car; (b) Heat 
map of the 2D correlation coefficient R between the reconstructed and still car. The coefficient R is 
calculated by taking the noise-free image sequence (as in panel a), and calculating the correlation 
between the image of the car (at i = 1), and the sum of the re-aligned images (i = 1, ..., 72), based on the 
trajectory extracted from the synthesized (i.e., randomized with photon noise) bit-plane sequence. 
Test cases where tracking was not obtained are indicated by R = 0. The tracking-reconstruction scheme 
was run with the following parameters: {Nx, Ny, Nt} = {8, 8, 8} to create the test frames, d = 1 for 
producing the difference frames. 

 
(a) (b)

 
(c) (d)

Figure 6. Results for synthetic data with Hcar = 0.35 and Hback = 0.15: (a) Single bit-plane (i = 1); (b) Sum 
of bit-planes (i = 1, …, 72) of moving car; (c) Reconstructed image of moving car (R = 0.926); (d) Sum 
of bit-planes for still car. All images show a region of interest of 230 × 90 from the full 400 × 240 array size. 
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(a) (b) (c) 

Figure 7. Results for synthetic data with both car and background featuring identical dotted patterns 
with photon rates H1 = 0.35 (in dot) and H2 = 0.05 (elsewhere). (a) Bit-plane at time i = 1; (b) Bit-plane 
at time i = 36; (c) Reconstructed vehicle (shown over a region of interest of 230 × 90). The quality of 
the reconstruction is R = 0.960. 

3.2. Fan and Car Sequence 

To illustrate the approach in practice, we imaged a scene with a high-speed, 1:43 scale toy car, 
moving on a rail at 2 m/s (346 km/h full scale equivalent), together with a fan rotating at 1700 rpm. A 
poster was used as a backdrop. The illumination of the scene was adjusted to 10 lux to simulate 
reasonably dark conditions, with the camera set to take back-to-back 100 µs rolling shutter exposures 
to obtain a suitable signal level. An example raw bit-plane is shown in Figure 8a, showing a limited 
amount of detail. Although the fan can be readily identified (due to the high contrast), the car is less 
obvious, and no recognizable features can be seen on the poster. Aggregating bit-planes in time so as 
to obtain a video-rate image sequence leads to substantial motion blur (Figure 8b), such that the 
individual fan blades can no longer be seen, and outline of the car is also severely blurred. Standard 
aggregation is therefore unsuitable for obtaining detailed images of the objects and their trajectories. 
We instead follow the steps in the above tracking-reconstruction scheme and generate a sequence of 
test frames (Figure 8c), using a low level of bit-plane aggregation (we used a cubicle of size of 8 × 8 × 16 
here). Another sequence of frames (difference frames) is then computed, showing significant changes 
in pixel values in the test frames (Figure 8d). We then apply clustering, through which the two 
separate motions are identified (Figure 8e). This defines appropriate bounding boxes for the 
difference frames, and estimating the transformations in these bounding boxes between successive 
frames quantifies the two motions: the linear motion of the car, and the rotation of the fan blades. We 
then recover a sharp image of each object in turn by applying the inverse of the associated motion to 
the bit-planes prior to summation. The results are given in Figure 8f, with the contours of the car and 
fan and the text on the car becoming visible for the first time. We extract the outlines of the objects 
and, based on the estimated trajectories, carry out an additional sum of the original bit-planes 
sequence across object-free regions only to reconstruct the background. We note that details behind 
the fan have become visible in the resulting image (Figure 8g). Finally, the objects are combined with 
the re-constructed background for an effectively blur-free image sequence (Figure 8h).  

Appendix A shows results from a similar experiment, featuring a swinging toy plane. 

 
(a) (b)
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(c) (d)

 

e) (f)

 
(g) (h)

Figure 8. Results of fan and car test: (a) Single bit-plane exposure (100 µs); (b) Sum of N = 250 bit-
planes (still frame from video rate image sequence, hot pixel compensation has been applied); (c) Test 
frame created by aggregating bit-planes using a kernel of size {Nx, Ny, Nt} = {8, 8, 16}; (d) Difference 
frame computed from two test frames (d = 2); (e) Result of DBSCAN clustering using [23]; (f) 
Reconstructed images of car and fan (from N = 250 bit-planes); (g) Reconstructed background with 
object trajectories, over one rotation of the fan, overlaid (each division representing 16 bit-planes = 1.6 
ms); (h) Frame from final output sequence. We note the much-improved sharpness compared with 
image (b). 

3.3. Table Tennis Ball 

As noted above, the tracking-reconstruction scheme relies on a level of contrast in intensity 
between the moving objects and the background. However, in certain applications this contrast may 
be marginal. In such situations, we can exploit the time-resolved (or time-of-flight) capabilities of 
SPAD cameras, apply active illumination, and use depth (or z-position of the moving object) as a 
contrast agent. The SPAD camera here is ideal for fast, depth-resolved tracking, as it has dual 
programmable time gates which can be used in a spatially or temporally interleaved fashion. To 
demonstrate the approach, we imaged falling table-tennis balls, set against a white board positioned 
approximately 30 cm behind. The scene was illuminated with a pulsed laser source (PicoQuant 670 
nm laser set to 15 MHz repetition rate) via an optical fiber, the sync signal from the laser being used 
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to trigger the SPAD camera. Two time gates were defined, and set to alternate between odd and even 
bit-planes in time. The time gates (approximately 12 ns and 10 ns in width) were configured so that 
the longer gate would capture both the ball and the background, whilst the shorter gate would collect 
returning photons from the ball only. Figure 9a,b show consecutive bit-planes capturing the fast-
moving tennis ball. The second bit-plane (exposed using the shorter time gate) much improved 
contrast, thanks to the background being suppressed through the time gating. If we consider even 
bit-planes only, just a short sequence is sufficient to compose (as per the approach of Section 2) a 
high-contrast reconstruction of the tennis ball (Figure 9c). 

 
(a) (b) (c) 

Figure 9. Results of time-gated imaging of fast-falling (≈10 m/s) table tennis ball, in terms of 
consecutive bit-plane exposures (global shutter, 100 µs), obtained using (a) a long time gate; (b) a 
short time gate; and (c) an image of the tennis ball as reconstructed from 32 short gate bit-planes 
through the application of the tracking scheme. A Nikon f/1.4 50 mm objective was used. 

3.4. Camera Shake Compensation 

Whilst the focus here is on imaging high-speed objects, a similar approach can be applied to 
compensate for global motion in the captured scene, for instance due to camera shake. More 
specifically, the procedure is as follows. As before, a sequence of test frames is created by aggregating 
bit-planes in time. The next step is to estimate the transformations that align these frames (we here 
used Matlab’s imregtform function, with the monomodal optimizer, and assumed rigid 
transformations). We then interpolate between the transformations (rotation and translation) 
associated with consecutive test frames, using cubic spline interpolation, to estimate the required 
alignment at the bit-plane level. Transforming the bit-planes accordingly, and aggregating for a 
second time, gives a motion-compensated image sequence. 

Figure 10 shows two examples of this approach, applied to the footage of a truck, and the 
Edinburgh skyline. In both cases, a low exposure time of 2 µs per bit-plane was used (in account of 
the daylight conditions), with the SPAD camera, initially placed on a tripod, and then being 
intentionally shaken by hand. The test frames where created by aggregating with a cubicle of  
{Nx, Ny, Nt} = {1, 1, 250}, ensuring a suitably high level of bit-depth for the purposes of re-alignment 
(despite the long sum in time invariably leading to motion blur, realignment is still possible). The 
compensated images frames shown in the Figure 10 (panels (c) and (f)) are seen to be noticeably 
sharper than the uncompensated (test) frames (panels (b) and (e)). This is backed up by a clear 
increase in the indicated 2D correlation coefficients R, calculated with respect to the reference images 
(panels (a) and (d)), obtained with the camera still (R is normalized using the correlation of image 
frames in still conditions to account for the inherent frame-to-frame variability due to photon shot noise). 

Further testing is planned to study the performance of the approach under different types of 
camera shake as well as under low light conditions. 
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Figure 10. Results of camera shake test, in terms of video-rate image frames (each composed from  
N = 250 bit-planes): (a) truck, still camera; (b) truck, shaken camera (R = 0.79); (c) compensated version 
of image b (R = 0.99); (d) skyline, still camera; (e) skyline, shaken camera (R = 0.75); (f) compensated 
version of image of d (R = 0.96). R is the 2D correlation coefficient with respect to the image from the 
still camera (obtained with a tripod). 

4. Discussion 

QIS cameras have the key benefit of providing a detailed record of individual photon detections 
at a high time resolution. We can exploit this information to track high-speed motion, and then re-
assign photon detections spatially to compose sharp images even in potentially low light conditions. 
While frame re-alignment is used extensively in conventional imaging, the key difference here is that 
we are operating at the single-photon level. 

We have here given the first demonstration of methods for extracting and compensating for 
motion in a QIS camera. The methods lack the sophistication of tracking schemes with dynamic 
probabilistic modeling (e.g., via a Kalman filter) [3], but nevertheless give an indication of the image 
quality improvement that can be achieved through the appropriate processing of QIS bit-planes.  

While the approach is currently implemented in software and has iterative elements, with the 
predicted increase in on-chip processing [24,25] in image sensors (facilitated by stacking and 
advanced readout schemes [26,27]), as well as the advent of advanced applications processors [28] 
(with computational photography and machine learning features), an integrated circuit realization is 
within the realm of possibility. There is thus the potential of real-time low-light vision applications, 
aided perhaps by active illumination and time-gated imaging for enhanced contrast, as also explored 
here. 
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Appendix A 

Figure A1 present results from an additional test, where we imaged a toy plane swinging from 
a cord under a light level of approximately 10 lux. Through the application of the tracking scheme, a 
marked improvement is seen in the sharpness of the plane (Figure A1d) as compared with simple 
bit-plane aggregation (Figure A1b). 

(a) (b)

(c) (d)

Figure A1. Results of plane test: (a) single raw bit-plane (100 µs); (b) sum of N = 250 bit-planes (still 
frame from video rate image sequence) (c) reconstructed image of plane (from N = 250 bit-planes); (d) 
image frame from final output sequence obtained using tracking scheme. A cubicle of {Nx, Ny, Nt} = 
{8, 8, 32} was applied to create the test frames (not shown here), and difference frames were computed 
with d = 2. 
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