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Introduction 1 

Articular cartilage is a highly-specialised tissue that, with synovial fluid, provides almost 2 

frictionless interface between opposing bones
1
. Movement between these surfaces and 3 

throughout the tissue creates mechanical stimulation that maintains cartilage integrity through 4 

the process of ‘mechanotransduction’
2, 3

. Compressive force on cartilage explants stimulates 5 

the biosynthesis of collagen, proteoglycan and fibronectin if applied in the physiological 6 

range (0.01-5 MPa) and frequency (0.01-1.0) Hz
4
. Animal studies have also demonstrated 7 

that daily physiological exercise increased proteoglycan content and the cartilage thickness, 8 

and might minimise the development of osteoarthritis
5
.  9 

A wide variety of in vitro (e.g. isolated chondrocytes, cartilage explants) and in vivo (e.g. 10 

rodent) experimental models have been utilised to understand mechanotransduction and the 11 

response of cartilage to mechanical load, however each has limitations. For example, isolated 12 

chondrocytes may change their phenotype in 2-D culture
6
. Cartilage explants might suffer 13 

from ‘explantation injury’, resulting from increased IL-1β levels during harvesting from the 14 

joint
7
. For in vivo studies, the time-consuming approval process and the significant expense 15 

and compliance with animal welfare regulations are unavoidable hurdles before live animal 16 

experiments can be performed
8
. Therefore, we considered that it may be beneficial to develop 17 

an organ culture model (ex vivo model) of a large synovial joint in an attempt to bridge the 18 

gap between the in vitro cartilage explant model and the in vivo animal model. 19 

Few organ level long-term culture system of the mammalian synovial joint have, to our 20 

knowledge, been created. Nugent-Derfus et al.
9
 described a system where a bovine stifle joint 21 

was cultured in a plastic bag for only 24hrs. However, the complicated settings of their 22 

culture system and the difficulties of maintaining aseptic conditions of the circulated culture 23 

media limited its wide reproducibility. Other connective tissue-related organ culture models 24 

have been developed but for intervertebral disc cartilage
10

. However, the differences in tissue 25 

structure, function and loading patterns suggest that these methods might not be applicable 26 

for the study of the hyaline cartilage of the articular joint. In the present study we describe an 27 

organ culture model using the bovine metatarsophalangeal joint, a relatively inexpensive, 28 

common and reliable source of articular cartilage. The static and dynamic effect of joint 29 

movement were evaluated on chondrocyte viability and matrix glycosaminoglycan content.   30 
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Materials and methods 31 

Materials 32 

Chemicals were purchased from Sigma-Aldrich (Dorset, UK) unless otherwise stated. The 33 

cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide 34 

(PI) were prepared as described
11

, and Dulbecco’s Modified Eagle’s Medium (DMEM; 35 

glucose 4.5g/L) were obtained from Invitrogen (Paisley, UK). The 1,9-dimethylmethylene 36 

blue (DMMB) solution was formulated as described
12

 and the standard shark chondroitin 37 

sulphate (Sigma-Aldrich, UK) solution prepared at 0.1mg/ml. 38 

Harvest of the bovine metatarsophalangeal joint 39 

Twelve feet from separate healthy 3-year-old beef cattle were obtained from a local abattoir 40 

(Scotbeef, Bridge of Allan, UK), and processed under sterile conditions within 6hrs of 41 

slaughter. After thoroughly rinsing the feet with running water, they were securely fixed and 42 

suspended on a custom-made stand that avoided possible contamination from the working 43 

bench throughout the procedures (Fig.1A). The skin and hoof were removed completely, and 44 

the exposed soft tissue layer rinsed thoroughly with at least 1L of sterile phosphate buffered 45 

saline (PBS). Then, the suspended foot was moved to a laminar-flow ventilated hood for 46 

further processing. 47 

A sterile operation field was established by wrapping sheets of sterile paper around the foot 48 

(Fig.1B). The metatarsophalangeal joint was opened, and all surrounding soft tissues (e.g. 49 

tendons, ligaments, joint capsules, synovia) removed. The bilateral collateral ligaments were 50 

left to reinforce joint congruency if it was to be prepared for the dynamic model. The 51 

metatarsal and the phalangeal bone were then transected using an oscillating saw to isolate 52 

the metatarsophalangeal joint from the foot. The sawing lines were approximately 1cm above 53 

and below the articular cartilage margin (Fig.1C). During the entire procedures, the joint was 54 

kept hydrated by frequent rinsing with PBS.  55 

Additional steps were performed if the joint was prepared for the dynamic model. On the 56 

transected surface of the metatarsal bone, a central hole was drilled by a sterile drill bit (Ø 57 

3.0mm). A custom-made peg, refashioned from an external fixation pin (Ø 3.5mm), was 58 

screwed into the drill hole (Fig.1D), and linked to a connecting bar, which was modified from 59 

the ‘adjustable telescopic strut’ of an Ilizarov external fixator apparatus. The connecting bar 60 
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was then linked to a driving motor for joint motion (Fig.2). The joint was then placed in a 61 

sterilised 1L glass beaker for subsequent culture.  62 

Culture environment 63 

The culture media was DMEM including penicillin (100U/ml), streptomycin (100µg/ml) and 64 

fetal bovine serum (10%v/v) (Sigma-Aldrich, UK). Typically, 300ml was sufficient for 65 

immersing a joint. The opening of the beaker was sealed with double sheets of paraffin 66 

membrane (Parafilm M
®

, US) and a ventilation outlet prepared for gas exchange. The joint 67 

culture system was then moved into a humidified incubator (37°C;5% CO2) and media 68 

changed bi-weekly.  69 

Dynamic setting 70 

The driving motor was set at 20rpm (0.33Hz) to mimic slow human walking speed. The 71 

movement duration was controlled by an electronic timer and set to an intermittent pattern to 72 

approximate animal/human activity levels
13

, i.e. 30mins continuous movement followed by 73 

30mins of static load for 12hrs/day. Joint movement was constrained to a single plane to 74 

replicate the hinge type motion on the synovial joint. The arc of movement was from full 75 

extension to around 45
o
 of flexion. The load applied was approximately 2.5 Newtons, which 76 

was from the weight of the upper part of the joint (metatarsus) and was sufficient to maintain 77 

firm apposition of the articulating surfaces.  78 

Cartilage sampling 79 

Full depth osteochondral samples were taken using fresh sterile scalpel blades (No.22)
14, 15

 80 

(Fig.3A). Normally, one bovine metatarsophalangeal joint could provide up to 46 sampling 81 

sites across its 8 joint facets (Fig.1D). Cartilage was sampled at Day 0, 7, 14, 21 and Day 28. 82 

At each time point, six cartilage explants from each joint were taken, i.e. three for assessment 83 

of chondrocyte viability and the remainder for the GAG assay. 84 

Chondrocyte viability assessment  85 

A custom-made double-bladed cutting tool was used to trim the cartilage explants to create 86 

two parallel straight edges so that the chondrocytes in different depths could be evaluated in 87 

coronal sections
11

 (Fig.3B). The trimmed explant was then incubated in DMEM with 88 

CMFDA and PI (21
o
C; 45mins) to label living chondrocytes green and dead chondrocytes 89 
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red, respectively
14

. Explants were subsequently fixed with 10% (v/v) formalin (Fisher 90 

Scientific, Loughborough, UK) and secured to the base of a Petri dish with Blu-Tack (Bostik, 91 

Leicester, UK) (Fig.3C). Images were acquired using an upright confocal laser scanning 92 

microscope (Zeiss LSM510 Axioskop, Carl Zeiss, Welwyn Garden City, UK; ×10 objective) 93 

and reconstructed and analysed by ImageJ (Ver1.47, NIH, USA). Articular cartilage was 94 

divided into three regions on the basis of depth from the articular surface to subchondral 95 

bone: the first quartile was defined as the superficial quarter, followed by the central half as 96 

the middle 50%, and the deep quarter as the last quartile
11

 (Fig.3D). Chondrocyte viability 97 

within each region was quantified as: % viable cells = (number of CMFDA-labeled live 98 

cells/number of CMFDA and PI labeled cells)×100%. 99 

Matrix glycosaminoglycan assessment 100 

The spectrophotometric microassay
12

 was used to measure the sulphated glycosaminoglycan 101 

(GAG) content of cartilage. The central full-thickness area of the specimen was obtained 102 

using a skin biopsy punch (Ø2.5mm; Kai Industries, Japan) and the ‘before-digested’ wet 103 

weight determined, which included the weight of cartilage and subchondral bone. After 104 

cartilage digestion by papain solution (300µg in 1ml of 1mM EDTA, 2mM dithiothreitol, and 105 

20mM sodium phosphate; pH 6.8; 60°C for ~4hrs), the undigested material (i.e. subchondral 106 

bone) was weighed again to obtain the ‘after-digested’ wet weight. The difference was the 107 

cartilage wet weight, which was used to normalise the result to allow for any variation in the 108 

size of the cartilage specimen. The absorbance of the digested solution was measured 109 

immediately after the DMMB solution was added, and the result compared with the standard 110 

solution to obtain the equivalent GAG weight of the cartilage sample. GAG content was 111 

determined as the GAG mass (in µg) per cartilage mass (in mg), and shown in the Figures as 112 

‘GAG (µg/mg cartilage)’. 113 

Statistical analysis 114 

Statistical analyses were performed using Minitab 16 (Minitab Inc., USA). All data were 115 

tested for normality (Kolmogorov-Smirnov test). Thereafter, parametric data were analysed 116 

using paired or unpaired t-tests if two sets of data were compared, or one-way ANOVA with 117 

post hoc Tukey’s tests for more than two data sets. For non-parametric data, the Mann-118 

Whitney U test was used for comparison between two independent data sets, while the 119 
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Kruskal-Wallis test was used for ≥3 data sets. Data are presented as means ± standard 120 

deviation (SD) with the significance level set at p<0.05.  121 
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Results 122 

Chondrocyte viability 123 

Six static models and 6 dynamic models were evaluated over 28 days. The samples from the 124 

fresh joint (Day 0) were taken as the control (Fig.4A, Fig.5). In the static model, the 125 

chondrocyte viability at Day 0 was 89.9±2.5%, 94.7±1.1% and 80.1±3.0% in the superficial 126 

quarter, central half and deep quarter, respectively, which was not significantly different to 127 

the dynamic model (p=0.381, 0.111 and 0.059, respectively; unpaired t test). After culturing, 128 

the number of dead cells increased progressively and the chondrocyte viability decreased 129 

significantly to 66.5±13.1%, 80. 9±5.8% and 46.9±8.5% in the superficial quarter, central 130 

half and deep quarter, respectively, at the end of the 4
th

 week (p<0.001 in each zone; one-way 131 

ANOVA) (Fig.4B&4C, Fig.5). However, in the dynamic model, chondrocyte viability was 132 

maintained without significant change after 4wks of culture, i.e. the change of chondrocyte 133 

viability of the superficial quarter was from 92.0±4.0% (Day 0) to 89.9±0.2% (Day 28), the 134 

middle half 93.1±1.5% (Day 0) to 93.8±0.9% (Day 28) and the deep quarter 85.6±0.8% (Day 135 

0) to 84.0±2.9% (Day28) (p=0.449, 0.312, 0.170, respectively; one-way ANOVA) 136 

(Fig.4D&4E, Fig.6). Further comparison between the chondrocyte viability of the static and 137 

the dynamic model revealed that there were significant differences between each region 138 

during the 4wks culture (p=0.007 in the superficial quarter, p<0.001 in both the central half 139 

and deep quarter; two-way ANOVA). Therefore, in the dynamic model, chondrocyte viability 140 

was maintained at the initial level throughout the 4wk culture period, but in contrast it 141 

decreased progressively in the static model. 142 

GAG analysis   143 

Evaluation of the cartilage matrix of the day 0 control samples revealed that the GAG content 144 

was 6.01±0.06µg/mg and 6.18±0.15µg/mg in the static and dynamic models, respectively, 145 

which were not significantly different (p=0.640; unpaired t test). The GAG content in the 146 

dynamic model was maintained at a consistent level without change throughout the culture 147 

period (p=0.887; one-way ANOVA). However, for the static model, it decreased to 148 

4.87±0.15µg/mg at the 1
st
 week and dropped further to 3.93±0.07µg/mg at the 3

rd
 week. Even 149 

though at the end of the culture the GAG content recovered slightly to 4.71±0.06µg/mg, it 150 

was still significantly less compared to the dynamic model (p<0.001; two-way ANOVA). 151 

Further point-to-point comparison revealed that the difference became significant after Day 152 
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14 (Fig.7). Therefore, over this time period, the GAG content of cartilage matrix was also 153 

maintained in the dynamic model but not in the static model.  154 
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Discussion 155 

This report describes a novel large ex vivo joint culture model assessed by chondrocyte 156 

viability and matrix GAG content in the presence or absence of joint movement. Although 157 

cell viability in the static model decreased gradually during culture, there were still >80% 158 

alive in the central half region at the end of week 4 (Fig.5). The zonal heterogeneity of 159 

chondrocyte viability was marked, i.e. the chondrocytes in the central half region exhibited 160 

the highest, followed by the superficial quarter, whereas the viability of the deep quarter was 161 

the lowest at all time points. This zonal heterogeneity, to our knowledge, has not been 162 

described in detail but is apparent in images in previous studies
14-17

. It is possible that the 163 

scalpel cut damaged the chondrocytes in a depth-dependent manner, however this is 164 

unavoidable in order to assess zonal viability
14

. In addition, the limitation of the chondrocytes 165 

to obtain nutrients in the deep quarter, which probably diffuse mainly from the culture 166 

media
18

, may play a role in the greater decrease in the chondrocyte viability of the deep 167 

quarter.  168 

However, with joint movement, chondrocyte viability was greatly improved over the whole 169 

culture period as viability was maintained at the initial level without significant decrease 170 

during the 4wks of culture (Fig.6). It is possible that mechanical stimulation directly from 171 

joint movement was important as both in vitro and in vivo studies demonstrate that loading in 172 

the physiological range maintain cartilage integrity. This is achieved through the down 173 

regulation of matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS)
2, 19

, and the 174 

preservation of chondrocyte viability by reduced levels of nitric oxide (NO) and reactive 175 

oxygen species (ROS)
5, 19

. Alternatively the fluid flow created by joint movement could 176 

increase the exchange of nutrients and waste products between cartilage and culture 177 

medium
20

, supporting chondrocyte viability.  178 

Matrix GAG content decreased after the first week (Fig.7) and similar observations have 179 

been reported in in vitro studies using bovine cartilage explants
21-23

. Previous work 180 

demonstrated that early matrix GAG loss occurred within the first 4hrs of culture, and most 181 

of the released GAG was not newly synthesised but previously produced and already stored 182 

in the matrix
23

. There are some in vivo studies with similar results. The cartilage GAG 183 

concentration decreased significantly by 20-23% if canine knee joints were fixed rigidly 184 

using an external fixator for 11wks
22

. The lack of joint movement was thought to be the main 185 

reason because it reduced the rate of chondrocyte proteoglycan synthesis
24-26

 but elevated 186 
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metalloproteinase (MMP-2) production leading to accelerated loss of matrix components
27

. 187 

These results indicated that in unloaded cartilage catabolic events predominated over 188 

anabolic processes and the extracellular matrix would contain less GAG potentially reducing 189 

its resilience. In addition, the matrix porosity of the cartilage surface may affect the release of 190 

the matrix proteoglycan
28

. Only molecules smaller than the matrix pore size would pass the 191 

cartilage surface because the hydrodynamic size of the proteoglycans released in the culture 192 

media was smaller than matrix proteoglycans
29

. Thus, the observed loss of the matrix GAG in 193 

the static model (Fig.7) might be the outcome resulting from the reduction of the chondrocyte 194 

GAG synthesis and the acceleration of matrix proteolysis. 195 

Applying joint movement in the dynamic model significantly prevented the decrease of the 196 

matrix GAG content (Fig.7). However, the force between cartilages during joint movement is 197 

complex and difficult to reproduce experimentally. It is known that articular cartilage in vivo 198 

is subjected to both compressive and shearing force under normal physiological movement
30

. 199 

Nevertheless, most of the in vitro studies used mechanical compression force as a test load
4, 

200 

31
. Pure shear stress also had effects but does not appear to have been studied in detail. For 201 

example, Jin et al. demonstrated that using a rotational plate to produce sinusoidal shear 202 

strain increased matrix protein synthesis by ~50% and proteoglycans production by up to 203 

25%
32

. They indicated that even though the tissue shear force caused less volumetric 204 

deformation than the compression force, its stimulatory effect was still potent. The increase 205 

in matrix protein synthesis from the stimulation of shear stress was also shown in a series of 206 

studies by Grad et al.
33, 34

. Their results suggested that the signal transduction pathways of the 207 

compression force and the shear stress might be different inside the cartilage tissue. Waldman 208 

et al. further indicated that these two forces might have a synergistic effect, which enhanced 209 

the synthesis of matrix proteins
35

. Therefore, compression with sliding movement was 210 

suggested in some studies to be a more appropriate method for loading articular cartilage
36, 37

. 211 

However, only a few in vitro experimental models have applied both compression and shear 212 

to cartilage. An interesting bioreactor system developed by Grad et al. and Wimmer et al. 213 

using a ceramic ball produced variable types of forces on cartilage explants
33, 34, 38

. 214 

Nevertheless, the system was relatively expensive, potentially limiting its wider utilisation. 215 

Thus, the ex vivo bovine joint model described in the present study had particular advantages 216 

as it tested a more natural ‘cartilage-on-cartilage’ joint movement, and so could be another 217 

model that produced both compression and shear force on cartilage. It should be noted that 218 

the joint model was not designed to replicate full body weight as current cartilage 219 
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regenerative medicine strategies only allow patients to bear weight minimally in the early 220 

post-operative period. However, as the results of the study revealed, only a few Newtons of 221 

load (with motion) were sufficient to maintain cartilage health. 222 

To our knowledge, this is the first description of a long-term cultured large joint model, the 223 

validity of which was assessed by chondrocyte viability and matrix GAG content. This model 224 

may provide new directions for articular cartilage research in addition to the more commonly 225 

used in vivo and in vitro models. The relatively intact nature of the articular structure was a 226 

significant benefit of this model which has the benefit of comparing responses to static or 227 

dynamic mechanical stimulation. The relatively large volume of cartilage tissue available for 228 

sampling was another advantage as sufficient sampling areas for multiple assessments in the 229 

same joint, especially for long-term culture experiments were possible. However, a 230 

significant learning curve for the aseptic preparation of the joint and the techniques to 231 

maintain the culture sterile had to be mastered for the successful use of this model. 232 
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Figure 1. Preparation of the bovine metatarsophalangeal joint and the cartilage 

sampling sites 

A. The bovine foot was suspended in the frame by insertion of 2 metal pins at the proximal 

metatarsus. The incision was started from the midline of the metatarsus down to the proximal 

interphalangeal joint with a transverse circumferential cut so that the hide and hoof could be 

removed. B. The skinned foot was wrapped with sterilized paper to establish a sterile safety 

zone. C. After removal of the surrounding soft tissues, the metatarsophalangeal joint was then 

exposed and cut off at a distance of approximately one centimeter above and below the 

cartilage margin. D. A specially-made peg was inserted onto the top of the transected 

metatarsal bone of the joint if the joint was prepared for dynamic model. Cartilage samples 

were taken from 8 articular facets in the metatarsal part of the joint. The facets numbered 1, 

4, 5, 8 were flatter and larger than facets numbered 2, 3, 6, 7 which were located beside the 

articular ridges. In a typical experiment, facet-1 and 8 each provided 5 sampling sites, and the 

other 6 facets offered 6 sampling sites in each facet. 
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Figure 2. Construction of the motion machine for the dynamic model 

The motion machine was constructed using readily-accessible components. The driving 

motor was converted from a tube rotator by replacing the original rotator plate with a custom-

made plastic plate, in which a series of holes at different distances from the plate center were 

drilled in order to adjust the different height of the joint. The adjustable telescopic strut of an 

Ilizarov external fixator was used as the connecting bar to link the tube rotator with the joint. 

The external fixation pin was cut short to be the peg to fix into the top of the transected 

metatarsal bone of the joint. As soon as the motor rotated, the connecting bar moved upward 

and downward and the joint model was passively moved by this oscillating motion. The 

equipment was designed as small as possible so that it would fit in a standard temperature and 

CO2 –controlled incubator for joint culture. (The culture media and the sealing Parafilm were 

removed for clear demonstration). 

Connecting 
bar 

Driving motor 

Peg  
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Figure 3. Cartilage explant preparation and visualization of fluorescently-labeled in situ 

chondrocytes by confocal laser scanning microscopy (CLSM)  

A. Explants which included a small amount of subchondral bone attached in the center were 

taken to confirm that full thickness osteochondral samples were taken. B. The sample was cut 

into 3 pieces in which the two cut lines were parallel. C. The middle part was chosen and 

secured on a Petri dish with 2 small pieces of Blu-Tack (Bostik, Leicester, UK). D. A coronal 

image illustrated the zonal distribution and viability of chondrocytes throughout the full 

cartilage thickness. Living chondrocytes were stained green by CMFDA and dead 

chondrocytes red by PI. The region of interest (ROI) in the image was set according to the 

cartilage thickness. The first 25% thickness of cartilage from the top was considered the 

superficial quarter, the subsequent 50% the central half and the final 25% the deep quarter. At 

the bottom of the image, the subchondral bone, contained multinucleated osteoblasts and 

osteoclasts. 
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Figure 4. Images of chondrocyte viability with time in the static and dynamic model      

Under the confocal laser scanning microscope (CLSM), images of the cartilage coronal 

section showed that the total cell population that labeled with PI (in red) increased gradually 

from Day 0 to Day 28 in the static model (A to C), and most of the red cells located in the 

superficial and deep quarter of the cartilage. In the dynamic model (D and E), only a few 

A. Day 0 Control B. Day 14 Static C. Day 28 Static 

D. Day 14 Dynamic E. Day 28 Dynamic 
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sporadically-distributed PI-labeled chondrocytes were observed in Day 28, and there were 

still live cells (in green) adjacent to the subchondral bone. 
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Figure 5. Chondrocyte viability in cartilage in the static joint model  

Chondrocyte viability decreased gradually in all 3 regions during culture. The viability of the 

central half was maintained the highest amongst these 3 regions in all time points, which only 

decreased 13.8% (from 94.7% to 80.9%) in the 28 days of culture. The superficial quarter 

decreased 23.4% (from 89.9% to 66.5%) and the deep quarter decreased 33.2% (from 80.1% 

to 46.9%). The decreases of the 3 regions were statistically significant (p<0.001 in each 

region; one-way ANOVA). Data are presented as means ± standard deviation. 
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Figure 6. Chondrocyte viability in cartilage in the dynamic joint model 

Chondrocyte viability was maintained similarly at the initial level throughout the culture 

period. The central half was also the highest region in all time points, following by the 

superficial quarter and the deep quarter in sequence. Although there was a little 

increase/decrease of the chondrocyte viability during the 4 week culture, it was no 

statistically significant difference in all 3 regions (p=0.449, 0.312 and 0.170 in the superficial 

quarter, central half and deep quarter, respectively; one-way ANOVA). 
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Figure 7. Cartilage GAG content in the dynamic and the static model 

Quantification of the matrix GAG content showed that, in both models, the Day 0 values 

started at a similar level without significant difference (p=0.640, unpaired t test). However, 

after Day 14, the difference became significant (p=0.003, 0.004 and 0.001 at Day 14, 21 and 

28, respectively; unpaired t test; indicated with an asterisk). In the dynamic model, the GAG 

content was maintained as similar to the initial level during the whole culture period, but in 

the static model, it dropped to the lowest value at Day 21 with a slight increase at Day 28. 
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