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SUMMARY

Spatial learning requires estimates of location that
may be obtained by path integration or from posi-
tional cues. Grid and other spatial firing patterns of
neurons in the superficial medial entorhinal cortex
(MEC) suggest roles in behavioral estimation of loca-
tion. However, distinguishing the contributions of
path integration and cue-based signals to spatial be-
haviors is challenging, and the roles of identified
MEC neurons are unclear. We use virtual reality to
dissociate linear path integration from other strate-
gies for behavioral estimation of location. We find
that mice learn to path integrate using motor-related
self-motion signals, with accuracy that decreases
steeply as a function of distance. We show that inac-
tivation of stellate cells in superficial MEC impairs
spatial learning in virtual reality and in a real world ob-
ject location recognition task. Our results quantify
contributions of path integration to behavior and
corroborate key predictions of models in which stel-
late cells contribute to location estimation.

INTRODUCTION

The ability to learn and update estimates of location during

movement is central to theories of animal and artificial navigation

(Durrant-Whyte and Bailey, 2006; McNaughton et al., 1996,

2006). In mammals, this core cognitive function may be achieved

either using spatial cues, for example, through triangulation or

beaconing strategies (Geva-Sagiv et al., 2015), or by path inte-

gration mechanisms, which generate representations of location

from information about direction and speed of movement (Eti-

enne and Jeffery, 2004). However, behavioral dissociation of

path integration from cue-based navigation is challenging, as

for many spatial behaviors investigated experimentally location

estimates generated by any of several possible strategies may

be sufficient for successful task performance. Indeed, while

elegant experimental manipulations have directly tested mecha-

nisms and roles of path integration in invertebrates (Collett et al.,

1998, 2013; Wittlinger et al., 2006), the extent to which mammals

use path integration strategies behaviorally is unclear, and

whether the underlying neural substrates differ from those for

cue-based location estimation is not known (Etienne and Jeffery,
Cell Rep
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2004; Jacob et al., 2017; Van Cauter et al., 2013; Winter et al.,

2013).

The medial entorhinal cortex (MEC) contains multiple func-

tional cell types that generate spatial representations that may

be well suited to support behavioral estimation of location (Diehl

et al., 2017; Hafting et al., 2005; Hardcastle et al., 2017; Solstad

et al., 2008). These functional cell types include grid cells, which

encode location through repeating hexagonally arranged firing

fields (Hafting et al., 2005). Within theMEC, layer 2 has the great-

est density of neurons with grid-firing fields (Sargolini et al.,

2006), and grid firing has been localized to excitatory neurons

with stellate and pyramidal morphology (Domnisoru et al.,

2013; Schmidt-Hieber and Häusser, 2013; Sun et al., 2015).

The stellate cells in layer 2 (L2SCs) have extensive local intra-

laminar connections (Beed et al., 2013; Couey et al., 2013; Fuchs

et al., 2016; Pastoll et al., 2013), discrete projections to principal

cells in layer 5b (S€urmeli et al., 2015), and long-range projections

to the hippocampus (Schwartz and Coleman, 1981; Varga et al.,

2010), making them well placed to coordinate and distribute grid

and other spatial signals. Inactivation of L2SCs suppresses

contextual fear conditioning (Kitamura et al., 2015). However,

while grid cells encode representations of an animal’s current

location and theoretical models predict they may be used to

plan trajectories to future locations (Burak and Fiete, 2009;

Bush et al., 2015; Stemmler et al., 2015), it is not clear whether

output from L2SCs is required for behaviors that require estima-

tion of specific locations.

Because of the metric properties of their firing fields, grid cells

have been proposed to encode the output of a path integration

computation (McNaughton et al., 2006), and many theoretical

models of grid firing perform path integration (Burgess and

O’Keefe, 2011; Giocomo et al., 2011; Zilli, 2012). For example,

continuous attractor network models (McNaughton et al.,

2006), which have been proposed to account for grid firing based

on connectivity between L2SCs and nearby interneurons (Couey

et al., 2013; Pastoll et al., 2013), generate location estimates by

integrating external spatial cues with velocity signals (Burak and

Fiete, 2009; Fuhs and Touretzky, 2006; Guanella et al., 2007).

Other models demonstrate that grid firing need not be the result

of a path integration computation (Cheung, 2016; Kropff and

Treves, 2008), and theoretical analyses suggest that the grid

code may simply serve as a high-capacity spatial representation

(Mathis et al., 2012; Sreenivasan and Fiete, 2011). In support of a

path integration role, lesioning the MEC impairs measures of

path integration in real world behavioral tasks (Jacob et al.,

2017; Van Cauter et al., 2013; Winter et al., 2013); but, with this
orts 22, 1313–1324, January 30, 2018 ª 2018 The Author(s). 1313
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Figure 1. Mice Learn to Estimate Location Using a Path Integration Strategy

(A) Schematic of the virtual track used on beaconed trials (upper) or non-beaconed and probe trials (lower). The reward location is indicated by visual cues from

stripes on the floor and walls of the track only on the beaconed trials.

(B) Configuration of trial types.

(C) Examples of raster plots of stopping locations as a function of track position, separated according to trial type, on day 1 (upper left) and on day 17 (upper right),

and corresponding mean number of stops/10-s bin (lower plots). Stopping locations on the raster plots are indicated by dots, which are red for locations that

triggered a reward, and otherwise are black. The mean numbers of stops are indicated by solid lines and shuffled means by dashed lines. The shaded bands

around the means indicate the SEM.

(D) Average probability of the first stop on each trial as a function of binned track location for all mice (n = 8 mice) across days 1–5 (blue lines) and days 18–22 of

training (red lines) separated according to trial type. Shaded regions indicate SEM. Bin width is 10 cm.

(E) Average first stop location as a function of training day for each trial type. The location of the first stop varied as a function of day for beaconed (p < 2.23 10�16,

c(1)2 = 119.4, likelihood ratio test) and non-beaconed trials (p = < 2.23 10�16, c(1)2 = 92.4). There was no significant difference between the three trial types on

days 18–22 (p = 0.23, F(2,87) = 1.48), 1-way repeated-measures ANOVA). Error bars are SEM (N = 8 mice for beaconed and non-beaconed trials and N = 6 mice

for probe trials).

(legend continued on next page)
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approach, it is not possible to distinguish roles of individual cell

populations, and the contributions of surrounding brain struc-

tures are difficult to rule out. Moreover, to avoid confounding vi-

sual cues that might support landmark or beaconing strategies,

path integration in real world conditions must be tested in the

dark, which may impair representation by grid cells (Chen

et al., 2016; Pérez-Escobar et al., 2016).

The hypothesized importance of L2SCs within circuitry that

generates grid firing leads to the prediction that L2SCs are crit-

ical for spatial behaviors. The nature of the predicted contribu-

tion of L2SCs to spatial behaviors depends on themodel consid-

ered. While path integration has been a major focus when

investigating models of grid firing, in continuous attractor

network models the same circuitry, depending on the availability

of external inputs, generates grid patterns either through path

integration or as a consequence of external spatial drive to the

grid circuit (Guanella et al., 2007; Milford et al., 2010; Pastoll

et al., 2013; Solanka et al., 2015). In thesemodels, when external

spatial cues are available, they are sufficient to dictate which

neurons are active; but, when external spatial cues are not avail-

able, the models estimate location relative to the last spatial cue

using path integration (Pastoll et al., 2013; Solanka et al., 2015).

Analysis of robot systems suggests that this feature of contin-

uous attractor circuits may be important for resolving naviga-

tional uncertainty (Milford et al., 2010). Given these consider-

ations, if hypothesized continuous attractor networks within

the MEC are the sole source of location estimates for hippocam-

pal neurons important for spatial memory, then the inactivation

of L2SCs should impair learning of cued and path integration-

based estimates of location. On the other hand, if L2SCs are

the source of velocity inputs to a downstream path integrator cir-

cuit, or if cue-based information reaches the hippocampus by

routes that do not involve L2SCs, then inactivation of L2SCs

would impair only path integration-based estimates of location.

Finally, if the function of L2SCs is restricted to the identification

of context (Kitamura et al., 2015), then inactivation of L2SCs

should not affect estimation of location by either cued or path

integration strategies.

Here we introduce methods for behavioral dissociation, in

mice, of the linear component of path integration from cue-

based localization strategies. We demonstrate that virtual real-

ity-based behaviors can probe path integration strategies while

avoiding confounds from spatial cues present in real world ex-

periments. We find that mice successfully learn to use motor-

related information to locate rewards using a path integration

strategy, although with accuracy that decreases rapidly as a

function of distance, unlike that of cue-based strategies. To

investigate roles of L2SCs, we inactivated their outputs by the

expression of tetanus toxin light chain (TeLC) (Murray et al.,

2011). We found that this disrupts the adoption of both path inte-

gration and cue-based behavioral strategies. Consistent with

hypothesized spatial roles of L2SCs, we also found that, in
(F) Mean Z scored probability of stopping as a function of binned track location for

separated according to trial type. Shaded regions indicate SEM. Bin width is 10

(G) Spatial stopping behavior, quantified by the difference between the z score at t

of training day for each trial type. The difference varied as a function of day for be

groups (p = 7.4 3 10�10, c(1)2 = 37.9). Probe trials on days 18–22 did not differ f
real-world experiments, the inactivation of L2SCs impairs the

recognition of object locations, but not recognition of novel ob-

jects. Our results provide quantitative constraints for models

that aim to account for mammalian path integration, and they

implicate L2SCs as a critical component of the neural circuitry

for cue- and path integration-based spatial learning.

RESULTS

A Behavioral Task for Quantitative Investigation of Cue-
and Path Integration-Based Estimation of Location
To be able to selectively investigate neural mechanisms for bea-

coning and path integration, we developed a behavioral test that,

depending on the task configuration, can be effectively solved

either using local cues or by estimating location from self-motion

signals, but in which potentially confounding external spatial

cues are not available (Figure 1A; Movie S1). We trained mice

to stop at a defined location on a virtual linear track to receive re-

wards. The virtual track had clearly identifiable start and end

zones connected by a corridor that, apart from the clearly

marked reward zone, did not contain any location-specific

cues. In contrast to real world experiments, in which the distant

end of a track could be used as a cue to estimate location, the

end of the virtual track was not visible from the reward zone

and, therefore, could not be used as a cue. In the first phase of

training, the location of the reward zone was clearly indicated

to the mouse using local visual cues on 4 of every 5 trials (beac-

oned trials) (Figure 1B). On the fifth trial, the visual markers for the

reward zone were absent, but stopping within the zone was re-

warded (non-beaconed trials). After a pre-determined training

period, and if mice passed a performance criterion (see the

Supplemental Experimental Procedures), every second non-

beaconed trial was replaced with a probe trial. On probe trials,

the visual cue was absent and no reward was delivered. Perfor-

mance on non-beaconed and probe trials can be used to test

whether mice estimate their position on the track using a path

integration strategy, while probe trials also enable search strate-

gies to be investigated.

We asked if mice locate the reward zone using a path integra-

tion strategy. On the first day of training, mice often received re-

wards by stopping in the reward zone, but there was no apparent

spatial organization to their stopping behavior (Figure 1C). With

training, the behavior of the mice changed, such that on leaving

the start of the track mice ran, typically without stopping, to a re-

gion close to the reward zone, at which point they advanced at

short intervals until they obtained a reward (Figure 1C). This

change in behavior was readily observed in all mice as an in-

crease in the distance from the start zone to the location of the

first stop (Figures 1C–1E), from location-dependent changes in

the probability of stopping (Figure S1A), and by a reduction in

running speed as the animal approached the reward zone

(Figure S1B). To enable quantitative comparison of stopping
all mice (N = 8) across days 1–5 (blue lines) and days 18–22 of training (red lines)

cm.

he start of the track and at the entrance to the reward zone, plotted as a function

aconed (p < 2.23 10�16, c(1)2 = 142.5, likelihood ratio test) and non-beaconed

rom non-beaconed trials (p = 0.78, F(1,50) = 0.08).

Cell Reports 22, 1313–1324, January 30, 2018 1315



Figure 2. Path Integration Uses Motor-Related Movement Signals

(A and E) Schematic of track designs used to test a decrease (A) or an increase (E) in the gain between motor and visual reference frames. For standard trials, for

every 60 cmmice run on the treadmill, the visual track moves 60 virtual units (VU). On reduced gain trials, for every 60 cmmice run, the visual track moves 30 VU.

For increased gain trials the visual track moves 120 VU for every 60 cm mice run.

(B and F) Example plots of stop locations from single mice for trials in which the gain between treadmill movement and visual update of the track is reduced by 0.5

(B) or increased by 32 (F). The trial number refers to all trials, but for clarity only data from gain change trials are shown.

(C andG) Average of Z scored stop locations across all mice for control probe trials (31) and trials onwhich the gain is reduced (C) or increased (G). Averaged data

are plotted as ± SEM (N = 5 mice for 30.5 gain, N = 4 mice for 32 gain).

(D and H) To quantify the effects of the gain change we compared, for each trial type, the ratio of stops in the location of the reward zone in the visual reference

frame (orange) to the sum of the number of stops in the reward zone in the visual and motor reference frames (green). The ratio is modified by reducing (t(4) = 3.7,

p = 0.021, paired t test) (D) or increasing gain (t(3) = 6.5, p = 0.0073) (H). Error bars indicate SEM.

Thus, on trials with reduced gain (B–D), or increased gain (F–H), stops occur in anticipation of the reward zone location in the motor reference frame.
strategies between animals, we calculated Z scored stopping

probabilities by normalizing the mean probability of stopping at

a given location to the mean and SD predicted by shuffled data-

sets (see the Supplemental Experimental Procedures). The dis-

tribution of stops in naive animals was similar in the experimental

and shuffled datasets, whereas in trained animals the probability

of stopping on the first part of the track was reduced and imme-

diately before the reward zone was increased, relative to the

shuffled data (Figures 1C, 1F, and 1G). Strikingly, this spatially

selective stopping behavior was maintained on both non-beac-

oned and probe trials (Figures 1C–1G; Figures S1A and S1B).

Because on these trials visual cues that might indicate the cor-

rect stopping location were absent, and on probe trials cues

associated with the dispensing of rewards were also not avail-

able, these data indicate that mice solve the task using a path

integration strategy. On the probe trials, mice typically stopped

near the start of the hidden reward zone and continued to stop

at short intervals until they reached the end of the hidden reward

zone, at which point trainedmice typically ran continuously to the

end of the track to initiate a new trial (Figure 1C), suggesting that

mice may also use path integration strategies to estimate the

length of the reward zone.

Path Integration-Based Estimates of Location Update
Using Self-Motion Signals
In principle, path integration canbe achievedby updating location

estimates using either visual (e.g., optic flow) or self-motion (e.g.,

proprioceptive feedback and motor efference) signals (Etienne
1316 Cell Reports 22, 1313–1324, January 30, 2018
et al., 1996; Raudies et al., 2016). To distinguish between these

possibilities, we altered the relationship between treadmill move-

ment and update of the visual projection of the track during probe

trials. We found that, on these gain manipulation trials, mice

continue to stop at a location predicted by the treadmill move-

ment rather than by the visually perceived track movement

(Figures 2A–2H). Thus, when the rate of update of the visual

projection of the track was halved (Figures 2A–2D), or doubled

(Figures 2E–2H), the first stop location and peak average stop

location were just ahead of the reward zone predicted by the

treadmill position. It is possible that animals use estimates of

time instead of, or aswell as, distance to complete the task (Kraus

et al., 2015). To address this, we examined stopping location as a

function of average running speed. If mice were using elapsed

time to estimate location, then the distribution of stopping loca-

tions should depend on running speed, as mice running faster

would cover a greater distance. In contrast, we found little or no

dependence of the first stop location on running speed (Figures

S2A and S2B). Thus, mice appear able to solve the task using a

path integration strategy based on self-motion cues.

Accuracy of Path Integration Decreases with Distance
from Location Cues
Theoretical models predict that internal noise will result in errors

in path integration that increase with distance traveled (Cheung

and Vickerstaff, 2010). The extent to which such errors limit the

ability of mice to estimate location by path integration mecha-

nisms is unclear. We therefore trained mice, using tracks of



Figure 3. Path Integration Becomes Less Accurate with Increasing Distance

(A) For tracks of increasing length the distance from the start zone to the reward zone increases as indicated. The length of other parts of the track does not change.

(B) Z scored probability of stopping during probe trials as a function of location for three tracks of increasing length.

(C) Mean success rate at obtaining rewards as a function of distance from the start of the track to the reward zone separated according to trial type (N = 7 mice).

The success rate depended on distance to the reward zone (p = 8.743 10�7, F(1,60) = 30.1) and accuracy of probe trials differed from beaconed trials (p < 10�16,

F(1,60) = 139.3). Success rate depended on distance to the reward zone for probe trial data (c2(1) = 22.8, p = 1.8 3 10�6), but not for beaconed trial data

(c2(1) = 1.87, p = 0.17).

(D) Mean of the most frequent stop location plotted as a function of distance. The most frequent stop location depended on distance to the reward zone

(p < 10�16, F(1,60) = 276.5, 2-way repeated-measures ANOVA), but was independent of trial type (p = 0.2, F(1,60) = 1.5).

Error bars in (C) and (D) indicate SEM.
increasing length, to locate rewards at distances from 60 cm to

>4m from the start zone (Figure 3). After mice reached a criterion

performance (see the Supplemental Experimental Procedures)

on a track of a given length, we increased the distance to the

reward zone by a factor of 1.5 (Figure 3A). We found that, as

the length of the track was increased, mice continued to stop

in the reward zone on a high proportion of beaconed trials (Fig-

ures 3B and 3C). Adaptation to the new reward zone location

was usually apparent within the first 5 trials of the first session

with the new track, indicating that visual cues can rapidly recon-

figure the behavior. In contrast, the fraction of probe trials in

which mice stopped in the reward zone dropped substantially

as the track length increased (Figure 3C; Figure S3A). This steep

drop in performancewas also seenwhen successwas evaluated

as a function of time taken to reach the reward zone for tracks of

different lengths (Figure S3B). Examination of stopping patterns

indicated that, for intermediate-length tracks, the stopping loca-
tions were centered around the reward zone, even as the number

of correct trials decreased (Figures 3B and 3D; Figure S3A).

However, from trial to trial stop locations were variable and often

were outside the reward zone, explaining the high number of er-

rors (Figures 3B and 3D; Figure S3A). These observations argue

against errors resulting from a residual memory for the previous

stop location and are consistent with an accumulation of error in

a path integrator system. Thus, in the absence of landmark cues

to anchor path integration, the ability to accurately estimate loca-

tion drops rapidly with distance from a known starting point in a

manner that is consistent with performance of a noisy path

integrator.

Blocking the Output from L2SCs Prevents Spatial
Learning
Because superficial layers of the MEC are enriched with neurons

that have spatial firing properties (Diehl et al., 2017; Hafting et al.,
Cell Reports 22, 1313–1324, January 30, 2018 1317



Figure 4. Targeted Expression of TeLC to

L2SCs Abolishes Their Synaptic Output

(A) Example of a sagittal section from the brain of a

Sim1Cre mouse following injection of AAV-TeLC-

EGFP into the MEC. Scale bar, 1 mm.

(B) Schematic of experiment to test the effect of

TeLC expression on synaptic output from L2SCs.

AAV-FLEX-ChR2-mCherry and either AAV-FLEX-

TeLC-EGFP or AAV-FLEX-EGFP were injected

into the MEC of Sim1Cre mice. Synaptic output

from L2SCs was evaluated by recording light

evoked response of granule cells in the dentate

gyrus.

(C) Examples of membrane potential responses of

dentate gyrus granule cells to optogenetic acti-

vation of L2SCs expressing ChR2 and either GFP

(left) or TeLC-EGFP (middle). Responses are pre-

sent in all neurons from control animals (n = 10

neurons, N = 5 mice) and were absent in all neu-

rons from animals expressing TeLC-EGFP (n = 8

neurons, N = 4 mice). The peak response was

reduced by expression of TeLC-EGFP (right) (p =

0, percentile bootstrap comparison of control and

TeLC-EGFP groups, test statistic = 2.125, 95%

confidence interval [1.69, 4.29]). Circles are indi-

vidual neurons, diamonds are the population

average. Two neurons from two control mice were

excluded from the plot and statistical analysis as

they showed very large responses that reached

action potential threshold preventing their quanti-

fication. Error bars indicate SEM.
2005; Hardcastle et al., 2017; Solstad et al., 2008), and as grid-

firing patterns generated by neurons in the MEC are consistent

with the output of a neural path integrator (McNaughton et al.,

2006), we asked if neural circuitry in superficial MEC is required

for learning of the beaconed or path integration components of

the location estimation task. We focused on L2SCs, as the high-

est density of grid cells is in layer 2 (Sargolini et al., 2006), and

L2SCs have grid-firing fields (Domnisoru et al., 2013). To be

able to selectively manipulate L2SCs, we took advantage of

Sim1Cre mice, which we found previously give specific genetic

access to L2SCs (S€urmeli et al., 2015). To test the role of

L2SCs, we blocked their synaptic output by injecting an ad-

eno-associated virus (AAV) that expresses TeLC and EGFP

conditionally on the presence of Cre (AAV-FLEX-TeLC-EGFP)

(Murray et al., 2011) into the superficial MEC of Sim1Cre mice

(Figure 4A). As a control, we used an AAV that expresses only

EGFP (AAV-FLEX-EGFP). Expression of EGFP was restricted

to L2SCs and was absent from the surrounding neurons (Fig-

ure 4A; Figures S4 and S5). To test whether expression of

TeLC blocks SC output, we co-expressed channelrhodopsin

2 (ChR2) in L2SCs, to enable their optical activation, along with

either TeLC-EGFP or EGFP (Figure 4B). When we recorded

from downstream granule cells in the hippocampus, we

observed synaptic currents following light activation of ChR2 in

slices from mice expressing the control EGFP construct, but

not in slices from mice expressing TeLC (Figure 4C). Thus, tar-

geted expression of TeLC using Sim1Cre mice enables the block

of synaptic output from L2SCs.

Does blocking output from L2SCs affect the ability of mice to

learn a rewarded location? To address this, we injected the MEC
1318 Cell Reports 22, 1313–1324, January 30, 2018
of Sim1Cre mice with AAV-FLEX-TeLC-EGFP (n = 10) or AAV-

FLEX-EGFP (n = 6). We trained the mice for 3 weeks in the virtual

location estimation task, and then we sacrificed them in order

to analyze the extent of expression of the viral transgenes

(Figures S4 and S5). We found that the proportion of trials on

which mice stopped in the reward zone was reduced for the

TeLC-expressingmice compared to control mice. This wasman-

ifest as a delay to reach the criterion for the introduction of probe

trials into the experiment (control: 7.33 ± 0.33 days, TeLC: 14.3 ±

1.69 days; p = 0.00069, percentile bootstrap comparison of con-

trol and TeLC groups, test statistic = �6.5, 95% confidence in-

terval [�13,�2.5]). The delay depended on the extent of viral

transduction in the TeLC group, but not in the control group (Fig-

ure 5A). Because expression and task progression were variable

between animals, for further analysis we divided the mice, ac-

cording to the extent of labeling of neurons in the dorsal MEC,

into groups with high (hTeLC, n = 4) and low (lTeLC, n = 6)

expression of TeLC (Figure 5A; Figure S4). Whereas all control

mice reached the criterion for inclusion of probe trials within

9 days (7.33 ± 0.33 days), the lTeLC mice were delayed (10.5 ±

1.18 days; p = 0.019, test statistic =�3.5, 95% confidence inter-

val [�6.5,�0.5]), and the hTeLC mice did not meet the criteria

within the 19 days of the experiment. We note that, in 3 of

4 mice from the hTeLC group, we observed small numbers of

labeled cells in L5a. Because very few cells were labeled in

L5a in any animal and as the behavioral impairment was present

in the mouse that had no detectable expression in L5a, expres-

sion of TeLC in deep layers is unlikely to account for the

observed behavioral changes (Figure S6). Thus, these data indi-

cate that output from L2SCs plays a key role in learning the



Figure 5. Inactivation of L2SCs Impairs Estimation of Location

(A) Day of the experiment on which each mouse from TeLC (N = 10) and control groups (N = 6) met the performance criteria to graduate from stage 1 (beaconed

and non-beaconed trials) to stage 2 (beaconed, non-beaconed and probe trials) as a function of mean intensity of GFP fluorescence in layer 2 of the dorsal MEC

(left), and proportion of mice that had graduated to stage 2 as a function of training day (right). The graduation day correlated with fluorescence intensity for the

TeLC group (p = 0.00077, robust least-squares regression), but not the control group (p = 0.38; comparison of GFP and TeLC-GFP groups: p = 0.0012, for

statistical analysis see the Experimental Procedures).

(B) Examples of rasters of stopping locations on day 17 of training for a control mouse, and for mice with high and low expression levels of TeLC (lTeLC and

hTeLC). Black dots indicating stopping location are absent on some trials because the animal did not stop.

(C)Mean z-scored probability of stopping as a function of track location during beaconed trials for GFP only control (left), lTeLC (center), and hTeLCmice (right) on

days 1–5 and days 15–19.

(D) Comparison of mean z-scored probability of stopping for trained mice (days 15–19) for each group on beaconed trials (left) and probe trials (right).

(E) The difference, between the start of the track and the start of the reward zone, in the probability of stopping (StopsL2-L1) (locations L1 and L2 are indicated in

Figure 1A) increased with training for GFPmice (p = 1.43 10�10, c(1)2 = 41.2, likelihood ratio test) and lTeLCmice (p = 5.23 10�8, c(1)2 = 29.6), but not for hTeLC

mice (p = 0.89, c(1)2 = 0.017).

(F) Analysis of spatial strategy for beaconed trials during days 15-19. The mean location of the first stop (left) differed between control (GFP) and all TeLC

mice (lTeLC and hTeLC combined) (p = 0.021, percentile bootstrap, test statistic = 16.1, confidence interval [2.9, 26.1]), and hTeLC mice differed from control

mice (p = 0.01, percentile bootstrap corrected for multiple comparisons, test statistic = 22.2, 95% confidence interval [6.4, 28.6]), but there was no significant

difference between lTeLC and controlmice (p = 0.09, test statistic = 13.1, 95%confidence interval [�0.23, 26.8]). StopsL2-L1 (right) differed between control and all

TeLC mice (lTeLC and hTeLC combined) (p = 0.00052, test statistic = 11.75, 95% confidence interval [3.26, 16.1]), and hTeLC and lTeLC mice differed from

control mice (hTeLC: p = 0.0, test statistic = 12.1, 95% confidence interval [8.4, 18.1]; lTeLC: p = 0.034, test statistic = 5.42, 95% confidence interval [1.1, 14.1]).

(G) Running speed in the black box at the end of the track increased with training for all groups of mice (GFP: p = 3.5 3 10�11, c(1)2 = 43.7; lTeLC: p = 0.0013,

c(1)2 = 10.4; hTeLC: p = 6.5 3 10�6, c(1)2 = 20.3). During week 4 there was no difference between groups in their running speed within the black box (adjusted

p = > 0.7 for all comparisons, percentile bootstrap test).

(H) Analysis of spatial strategy for probe trials during days 15–19. The first stop location (left) differed between lTeLC and GFP groups (p = 0.045, test-statistic =

17.9, 95% confidence interval [0.64, 34.5]). StopsL2-L1 during probe trials (right) did not differ significantly between lTeLC and control mice (p = 0.097, test

statistic = 10.7, 95% confidence interval [�1.2, 12.2]).

Error bars in (A) and (E)–(H) indicate SEM.
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location of a reward zone, with the number of available L2SCs

determining the rate of learning.

Learning Deficits following the Block of L2SC Output
Include Cue- and Path Integration-Based Estimation of
Location
How do the deficits in performance of TeLC mice relate to the

acquisition of a spatial stopping strategy? We first compared

stopping strategies used by mice after >14 days training with

stopping strategies used over the first 5 days of training.We found

that, after training, control mice and lTeLC mice both demon-

strated spatial stopping strategies on beaconed trials (Figures

5B and 5C). The distribution of stop locations was distinct from

that of naivemice (Figure 5C), suggesting thatmice in both groups

learn to stop in the region of the reward zone. In contrast, hTeLC

mice did not develop a clear spatial stopping strategy (Figures

5B–5D), and the distribution of stop locations appeared similar

to the first week of training (Figures 5C and 5D).

To quantitatively compare these changes, we evaluated the

difference between stopping probability at the start of the

track and the start of the reward zone, which we refer to as

StopsL2-L1, as a function of the day of the experiment (Figure 5E).

We found that StopsL2-L1 measured during beaconed trials

increased with training for the control group and the lTeLC

group, consistent with these mice learning a spatial stopping

strategy, but did not change for the hTeLC group (Figure 5E).

Comparison of stopping patterns on days 15–19 indicated that

mice in the lTeLC group were, nevertheless, impaired relative

to the control group, with first stop location and StopsL2-L1 that

were intermediate to that of the hTeLC group (Figure 5F). We

noticed that training in the task was also associated with an in-

crease in running speed that was particularly apparent in the

part of the track between the end of the reward zone and the

end of the black box that separates tracks between trials (Fig-

ure S1B). To quantify this change, we evaluated the average

running speed in the black box as a function of day of the exper-

iment. In contrast to measures of the spatial stopping strategy,

running speed in the black box increased with training for con-

trol, lTeLC, and hTeLC mice (Figure 5G), suggesting that all

mice learn about the structure of the task such that they increase

their running speed to minimize the time between consecutive

rewards. Consistent with this interpretation, we found no detect-

able difference between groups in their running speed on days

15–19 (Figure 5G). Thus, inactivation of L2SCs impairs learning

of a location, but not task structure, with the size of the deficit

dependent on the extent of inactivation.

To evaluate the effects of inactivation of L2SCs on path inte-

gration, we compared probe trials between lTeLC and control

groups (Figures 5D and 5H). In contrast to control mice, the

average distribution of stop locations for lTeLC mice showed lit-

tle spatial organization on probe trials (Figure 5D). The lTeLC

group differed significantly from the EGFP group in the first

stop location (Figure 5H), but not the Z score difference between

the start of the track and the reward zone (Figure 5H). Analysis of

preferred stopping locations and running speed also indicated

deficits in the lTeLC group compared to the control mice (Figures

S6B and S6C). Thus, estimation of location by lTeLC mice on

probe trials appears to be impaired.
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Together, these results indicate that L2SCs are required to

learn a reward location in environments in which beaconing

and path integration are the only available strategies, while inac-

tivation of L2SCs does not appear to influence learning about

task structure.

L2SC Output Is Required for Object Location
Recognition
Finally, to establish whether the deficits we identified in virtual re-

ality-based testsof locationestimationextend to realworldbehav-

iors, we investigated the effects on location recognition of ex-

pressing TeLC in L2SCs. We used an object location memory

task that takes advantage of an animal’s spontaneous tendency

to explore relocated objects (Figure 6A). During a sample phase,

mice explored an arena containing two identical objects. During

a test phase, one of the objects was relocated to a novel location

and mice were allowed to re-explore the arena. To compare the

two groups, we calculated the relative time spent exploring each

objectduring the testphase.Whereascontrolmice that expressed

only EGFP in L2SCs showed preferential exploration of the

relocated object over the stationary object (discrimination ratio

significantly greater than 0, p = 0.0053, one-sample t test versus

0, df = 7, t = 3.99), mice that expressed TeLC in L2SCs did not

(p = 0.45, one-sample t test versus 0, df = 7, t = 0.79) (Figure 6B).

Consistent with this, discrimination between the objects was sub-

stantially lower formiceexpressing TeLC in L2SCscomparedwith

control mice (Figure 6B). There was no significant difference in to-

tal exploration times between control mice and mice expressing

TeLC in L2SCs (Figure 6C), indicating that the differences in

discrimination ratios did not reflect disparities in exploration.

To test whether impairments in object location discrimination

following the expression of TeLC in L2SCs extend to recognition

of objects, we tested the same mice in a version of the task in

which a familiar object was replaced with a novel object in the

test phase (Figure 6D). Total exploration during the sample and

test phases of the task were similar between control and

TeLC-expressing mice; both groups showed above-chance

discrimination of the novel object, and there was no significant

difference in discrimination indexes between control and

TeLC-expressing mice, indicating that object recognition was

unimpaired (Figures 6E and 6F). Together, these results indicate

that, while L2SCs are not required for the recognition of objects,

blocking their output impairs discrimination between novel and

familiar object locations.

DISCUSSION

Byusing a virtual reality-basedbehavioral task,wedissociate esti-

mation of location by beaconing and path integration in conditions

in which both visual and motor-related movement information is

available.Our results indicate that theaccuracyof locationestima-

tion by path integration drops steeply as a function of distance,

and they suggest that, when visual motion signals are available,

mice nevertheless use a motor-based reference frame for path

integration. By selectively inhibiting output from L2SCs, we find

that this population of medial entorhinal neurons is required for

mice to learn to estimate location in the virtual reality task and in

a real world object location recognition task. Our data constrain



Figure 6. Layer 2 Stellate Cells Are Required for Object Location Recognition

(A and D) Schematized organization of the object location (A) and object recognition (D) experiments. In the test phase of the object location experiment one

object is moved to a novel location (A), whereas in the object recognition experiment a novel object is introduced at a familiar location (D).

(B and E) The discrimination index for control mice (Control, N = 8) differed significantly from mice with output from L2SCs inactivated (TeLC, N = 8) in the object

location experiment (p = 0.022, unpaired t test, df = 14, t = 2.58) (B), but not the object recognition experiment (p = 0.19, unpaired t test, df = 14, t = 1.37) (E).

(C and F) Total exploration times in the sample and test phases did not differ between animals in the object location experiment (sample phase p = 0.78, df = 14,

t = 0.28; test phase p = 0.17, df = 14, t = 1.45) (C) or in the object recognition experiment (sample phase p = 0.27, df = 14, t = �1.14; test phase p = 0.66, df = 14,

t = �0.45) (F), indicating that different recognition scores do not result from differences in overall exploration.

Error bars in (B), (C), (E), and (F) indicate SEM.
possible models for behavioral estimation of location, and they

provide evidence for a critical involvement of grid cell circuitry.

Because spatial cognition involves parallel perceptual and

memory processes, with multiple strategies available to provide

the brain with estimates of location, investigation of specific

cognitive mechanisms in isolation is challenging. Our approach

using a virtual location estimation task is in contrast to real world

experiments that isolate path integration from other behavioral

strategies through the use of environmental manipulations (Eti-

enne and Jeffery, 2004; Jacob et al., 2017; Van Cauter et al.,

2013; Winter et al., 2013). In real world experiments, evaluation

of path integration requires the execution of behaviors in dark-

ness in order to prevent confounding influences of visual land-

mark cues, but this manipulation also removes visual input

required for normal function of grid cell circuits, and, therefore,

it could impair path integrationmechanisms that rely on grid cells

(Chen et al., 2016; Pérez-Escobar et al., 2016). Confounding

contributions from residual spatial cues, for example, from odors

or sounds, are also difficult to fully exclude in real world experi-

ments. In contrast, in the virtual reality-based tasks we introduce

here, both visual and motor information is available to the mice,

while odor, auditory, or visual cues in the experimental room are

not useful in solving the task. Thus, because we were able to

represent reward locations in an environment that is devoid of

triangulation and beaconing cues, we have been able to specif-

ically probe psychophysical properties of path integration,

including dependence on distance and the roles of visual and

motor reference frames.
What is the nature of the movement signals used to estimate

location by path integration? While place and grid cells can

encode elapsed time as well as location (Kraus et al., 2015; Pas-

talkova et al., 2008), the estimation of time rather than distance is

unlikely to explain our observations, as the time taken by an ani-

mal to reach the reward zone from the start of the trackwas a poor

predictor of stopping location (Figures S2A and S2B). Recordings

from hippocampal place cells suggest that either motor or visual

reference frames can be used to represent location (Chen et al.,

2013). Because we find that the locations at which mice stop fol-

lowed the physical distance moved on the treadmill, rather than

that predicted by visual signals from the projected track (Figures

2A–2D), our data suggest that behavioral estimation of location by

path integration uses a motor-based reference frame. The origin

of the motor signals driving the path integrator is unclear, but it

may include copies of centrally generated motor commands or

proprioceptive feedback. Because mice were head fixed and,

therefore, vestibular output is effectively clamped, a necessary

role of vestibular motion signals in our experimental conditions

can be ruled out. Nevertheless, it is possible that, in different

behavioral conditions, the signals used to generate location esti-

mates by path integration may differ.

A critical constraint on behavioral use of path integration to es-

timate location is the extent to which estimates drift in the

absence of spatial cues to anchor the path integrator (Cheung

and Vickerstaff, 2010). In models that account for grid cell firing

through a path integration mechanism, grid patterns are stable in

the absence of noise; but, when noise is introduced into the
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neural circuitry, the grid pattern drifts unless additional spatial

input is provided (Burak and Fiete, 2009; Guanella et al., 2007;

Solanka et al., 2015; Zilli and Hasselmo, 2010). While models

differ in their assumptions about the rate at which drift accumu-

lates, in all models additional information about location is

required to correct drift. Indeed, as we discuss below, when

this additional information is available, for example, from bea-

coning cues, it may dominate output from circuits capable of

path integration. We find that the estimation of location through

path integration, but not by beaconing, becomes unreliable for

distances >2 m. Since the estimation of longer distances might,

in principle, be improved if additional training reduces the sensi-

tivity of the path integrator to noise, our results place only a lower

bound on performance. Nevertheless, our observations impose

constraints on the behavioral scenarios under which outputs of

a neural path integrator may be useful. Our results are also

consistent with recent findings that grid fields appear to rapidly

drift when visual stimuli are removed (Chen et al., 2016; Pérez-

Escobar et al., 2016). While this loss of grid firing may result

from an absence of optic flow signals as movement inputs to

the grid circuit (Raudies and Hasselmo, 2015; Raudies et al.,

2016), our data suggest that distance estimation uses motor sig-

nals. Visible spatial cues may instead be critical to anchor grid

firing and path integration in the face of drift (Pastoll et al.,

2013). The relatively rapid accumulation of drift in grid cell firing

(Chen et al., 2016; Pérez-Escobar et al., 2016) and of path inte-

gration error that we describe here suggest that, in mice, path

integration mechanisms may be important for moment-to-

moment tracking of location rather than long-range navigation.

While cells with grid and other spatial firing properties are en-

riched in superficial layers of the MEC (Sargolini et al., 2006), and

previously L2SCs have been shown to be important for contex-

tual learning (Kitamura et al., 2015), it has been unclear whether

they contribute to spatial behaviors. Our results provide evi-

dence that L2SCs in the dorsal MEC are required for learning

that depends on location estimation within an environment (Fig-

ures 5 and 6). These data also speak to a hypothesized role for

grid cells as the output of a neural path integrator (McNaughton

et al., 2006). Continuous attractor network models that generate

grid fields perform path integration using speed and direction

signals, but, when external spatial signals are present, they

can dictate activity in these circuits. Our results with inactivation

of L2SCs corroborate the prediction that, if circuits of this kind

are the source of location estimates used to guide behavior,

inactivation of these circuits should impair estimation of location

by beaconing and by path integration. Nevertheless, additional

interpretations are conceivable. Inactivation of external spatial

inputs to an integrator circuit would lead to similar behavioral

outcomes, although this interpretation is inconsistent with the

finding that L2SCs have grid fields (Domnisoru et al., 2013). Alter-

natively, L2SCs may be downstream of the hypothesized path

integrator circuit. In this case, L2SCs must, nevertheless, be a

necessary output path by which combined path integration

and beaconing signals influence spatial behaviors. The possibil-

ity that beaconing and path integration systems operating in par-

allel, with L2SCs required only for beaconing, appears unlikely,

as in this scenario path integration behavior should be main-

tained after the inactivation of L2SCs.
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The effects of our targeted manipulation may be manifest via

interactions within L2 of the MEC (Beed et al., 2013; Couey

et al., 2013; Pastoll et al., 2013), by projections from L2SCs to

cell populations in deeper layers of the MEC (S€urmeli et al.,

2015), or through longer range projections to the dentate gyrus

and CA3 (Schwartz and Coleman, 1981). Indeed, brain regions

downstream of the MEC, including the hippocampus, contain

neurons with properties indicative of roles in encoding of path

integration and beaconing signals (Chen et al., 2013; Samsono-

vich andMcNaughton, 1997). While following lesions of the MEC

place firing in the hippocampus is reduced (Hales et al., 2014)

and learning in the water maze is impaired (Hales et al., 2014;

Morrissey and Takehara-Nishiuchi, 2014; Steffenach et al.,

2005), the loss of place firing is only partial, suggesting that addi-

tional spatial signals reach hippocampal structures. One possi-

bility is that L2SCs may be specialized to integrate visual cues

with spatial information (Pérez-Escobar et al., 2016; Yoo and

Lee, 2017), while spatial information from olfactory or other

non-visual cues reaches the hippocampus through the lateral

entorhinal cortex (Leitner et al., 2016; Van Cauter et al., 2013).

These signals are of no use to solve the virtual reality-based loca-

tion estimation task, and they may not be sufficient for the object

location recognition task under our experimental conditions.

Quantitative dissection of simple behaviors has been essential

in establishing underlying computational principles and circuit

mechanisms. In contrast, analysis of cognitive behaviors

involving multiple sensory modalities is more challenging

because of their additional behavioral complexity and because

brains may have multiple neural strategies available to solve a

task. By implementing a relatively simple spatial task in virtual re-

ality, we have been able to quantitatively dissect roles of beacon-

ing and linear path integration in estimation of location. Our ex-

periments provide evidence to support the long-standing idea

that computations by grid cells in the MEC support estimation

of location, and, while alternative models remain feasible, our re-

sults corroborate key predictions of grid cell models that perform

path integration in a manner that integrates external spatial input

with velocity signals. Finally, our results may help link deficits in

spatial cognition found in dementia to underlying circuit mecha-

nisms. Conceptually similar virtual tasksmay be useful as assays

of early deficits in dementia, while the key roles we identify for

L2SCs suggest that damage restricted to a single cell population

at very early stages of degeneration may be detectable by

appropriately designed behavioral tests.
EXPERIMENTAL PROCEDURES

Further details and an outline of methods and resources used in this work can

be found in the Supplemental Experimental Procedures.
Animals

All animal experiments were carried out under a project license granted by the

UK Home Office, were approved by the Animal Welfare and Ethical Review

Board (AWERB) of the University of Edinburgh School of Medicine and Veteri-

nary Medicine, and conformed with the UK Animals (Scientific Procedures)

Act 1986 and the European Directive 86/609/EEC on the protection of animals

used for experimental purposes. Male and female mice, aged 7–12 weeks,

were used for all experiments. Mice were randomly allocated to experimental

groups.



Data Analysis and Statistical Methods

To quantify virus expression, we measured mean GFP fluorescence using FIJI.

Confocal images were opened using the Bio-Formats package (Linkert et al.,

2010). Collection, analysis, and presentation of data from virtual reality-based

behavioral experiments were performed using custom scripts written in python

3.5 (https://www.python.org) using Numpy version (v.)1.8.1, Scipy v.0.11.0b1,

and Matplotlib v.1.5.1 packages. Scripts were written using Spyder 2.3 (www.

pythonhosted.org/spyder). Electrophysiology data were analyzed using

IGORpro (Wavemetrics). For object exploration tasks, behavior was quantified

using theMultitimerscoringsystem (Vogel-CierniaandWood,2014), andmanual

scores were confirmed by repeating the scoring using AnyMaze (http://www.

anymaze.co.uk/) on video recordings of the mouse’s exploration. Full details of

quantification are provided in the Supplemental Experimental Procedures.

Statistical analysis was performed in R v.3.30 (R Core Team, 2014). Scripts

were written and run using RStudio 0.99.902 (RStudio Team, 2015; https://

www.rstudio.com). Details of data distributions and tests are given in the

main text and figures. When a measure was obtained repeatedly from the

same animal, the mean for that animal was used for population level analyses

unless indicated otherwise. Linear mixed effect models (LMEs) were fit using

lme 4 1.1-12 (Bates et al., 2015). Animal identity was included in models as

a random effect and the variable of interest as a fixed effect. To evaluate sig-

nificance of effects using LMEs, the model without the variable of interest (a

reduced/null model) was compared to the model with the variable of interest

using a likelihood ratio test. Because for experiments comparing effects of

expression of GFP with TeLC-GFP (Figures 4 and 5) the distribution of the

data appeared clearly non-normal, for analysis of these experiments we

used robust statistical methods to compare groups (Wilcox, 2016). These

were implemented in R using the packages WRS (https://github.com/

nicebread/WRS) and WRS2 (v.0.9-2 from https://cran.r-project.org). Compar-

isons of groups used the percentile bootstrap method. For independent

groups, differences between medians were evaluated using the R function

medpb2 (in WRS2). For dependent groups, the bootdpci function (in WRS)

was used to compare 20% trimmed means. Results are reported using 105

bootstrap samples. Linear regression was performed using a least-squares

method that allows heteroscedasticity, implemented in the R function olshc4

(WRS package), with slopes compared using the R function ols2ci (WRS pack-

age). For multiple comparisons within an experiment, reported p values were

adjusted by the Benjamini andHochbergmethod using the R function p.adjust.

Data and code to reproduce the analyses reported in the paper will be made

available via the University of Edinburgh DataShare repository (http://dx.doi.

org/10.7488/ds/2290). Analysis code will be made available via the Nolan

Lab GitHub repository (https://github.com/MattNolanLab).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one movie and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.01.005.
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Schmidt-Hieber, C., and Häusser, M. (2013). Cellular mechanisms of spatial

navigation in the medial entorhinal cortex. Nat. Neurosci. 16, 325–331.

Schwartz, S.P., and Coleman, P.D. (1981). Neurons of origin of the perforant

path. Exp. Neurol. 74, 305–312.

Solanka, L., van Rossum, M.C., and Nolan, M.F. (2015). Noise promotes inde-

pendent control of gamma oscillations and grid firing within recurrent attractor

networks. eLife 4, e06444.

Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., and Moser, E.I. (2008).

Representation of geometric borders in the entorhinal cortex. Science 322,

1865–1868.

Sreenivasan, S., and Fiete, I. (2011). Grid cells generate an analog error-cor-

recting code for singularly precise neural computation. Nat. Neurosci. 14,

1330–1337.

Steffenach, H.A., Witter, M., Moser, M.B., andMoser, E.I. (2005). Spatial mem-

ory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45,

301–313.

Stemmler, M., Mathis, A., and Herz, A.V. (2015). Connecting multiple spatial

scales to decode the population activity of grid cells. Sci. Adv. 1, e1500816.

Sun, C., Kitamura, T., Yamamoto, J., Martin, J., Pignatelli, M., Kitch, L.J.,

Schnitzer, M.J., and Tonegawa, S. (2015). Distinct speed dependence of ento-

rhinal island and ocean cells, including respective grid cells. Proc. Natl. Acad.

Sci. USA 112, 9466–9471.

S€urmeli, G., Marcu, D.-C., McClure, C., Garden, D.L.F., Pastoll, H., and Nolan,

M.F. (2015). Molecularly defined circuitry reveals input-output segregation in

deep layers of the medial entorhinal cortex. Neuron 88, 1040–1053.

Van Cauter, T., Camon, J., Alvernhe, A., Elduayen, C., Sargolini, F., and Save,

E. (2013). Distinct roles of medial and lateral entorhinal cortex in spatial cogni-

tion. Cereb. Cortex 23, 451–459.

Varga, C., Lee, S.Y., and Soltesz, I. (2010). Target-selective GABAergic control

of entorhinal cortex output. Nat. Neurosci. 13, 822–824.

Vogel-Ciernia, A., and Wood, M.A. (2014). Examining object location and ob-

ject recognition memory in mice. Curr. Protoc. Neurosci. 69, 8.31.1–8.31.17.

Wilcox, R.R. (2016). Introduction to Robust Estimation and Hypothesis

Testing, Fourth Edition (Waltham, MA: Elsevier).
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