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ABSTRACT 

Continuous Pharmaceutical Manufacturing (CPM) has the potential to revolutionise the 
pharmaceutical industry, with many expected benefits in terms of cost, efficiency and quality. Process 
modelling and optimisation are valuable methodologies for comparative technoeconomic evaluations: 
this paper pursues total upstream CPM cost minimisation via two nonlinear optimisation methods. An 
explicit NRTL solubility estimation method has been used in order to analyse the potential 
performance of three binary antisolvent mixtures for the crystallisation of artemisinin. This Active 
Pharmaceutical Ingredient (API) is a key antimalarial substance and has been the focus of several 
CPM studies, including continuous chemistry and separation. 

Ethanol, acetone and ethyl acetate are the three antisolvents studied. Used as a binary antisolvent with 
toluene as the solvent, the composition of the binary antisolvent, the quantity of the binary antisolvent 
with respect to the process solvent, and the temperature the overall mixture is cooled to in the 
crystallisation process are formulated as the three key variables in a nonlinear optimisation problem. 
Two solvers are used, NOMAD and NLOPT-BOBYQA. Results show that they have very similar 
precision (<1 % difference), but that the latter is up to 66 % faster; NLOPT-BOBYQA was used for 
the majority of optimisation cases. 

Results show that for the size of the temperature gradient of the crystallisation has a much stronger 
effect on the total cost than the quantity of antisolvent used. Nearly pure antisolvent use (ethyl acetate 
followed by ethanol) is favoured as yielding the lowest total cost (for a single crystalliser). 
Considering multiple units, results indicate that higher API recovery, E-factor, and OpEx benefits can 
be achieved when using two crystallisers, but  metrics are inferior with three or more. For sequential 
crystallisers of varying size, increasing the number of crystallisers also benefits OpEx, E-factor, and 
API recovery, but CapEx continues to increase, thereby promising technical but no economic benefits. 

 

KEYWORDS 

Continuous Pharmaceutical Manufacturing (CPM); Process modelling; Process optimisation; 
Nonlinear Programming (NLP); Crystallisation; Artemisinin  
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1 INTRODUCTION 

Given impetus by financial and market pressure, Continuous Pharmaceutical Manufacturing (CPM) is 
a recent, vibrant field of research aiming to bring the benefits of continuous processing to 
pharmaceutical production.1 Traditional batch methods, while allowing equipment flexibility and 
having extensive expertise in a mature technology, is hampered by disadvantages including low 
efficiency (material and energy), problematic process scale-up and poor heat and mass transfer. The 
methodologies of CPM offer methods to adhere to the concept of Quality by Design (QbD) – fully 
adopted by the pharmaceutical industry in the USA – and is closely related to the development of 
Process Analytical Technology (PAT), which are novel mechanisms and designs for process 
monitoring and control. The three fields of CPM, QbD and PAT have approval at the highest 
regulatory levels.2 

Artemisinin is one of the most important antimalarial substances available today. First identified 
and isolated from the plant Artemisia annua in the late 1970s,3 work for which the 2015 Nobel Prize 
in Physiology or Medicine was awarded, artemisinin is currently produced via batch extraction from 
the cultivated plant. However, long product lead times and fluctuating demand due to unpredictable 
burdens of malaria, lead to highly variable prices and production levels.4 Recent research has 
demonstrated the continuous synthesis of artemisinin,5 using a waste product from the current batch 
production process as a feedstock, producing artemisinin via two sequential plug flow reactors. 

In recent years, the continuous flow synthesis of a wide variety of APIs has been demonstrated.6 
However, while there have been significant advances in microscale flow reactor technology, 
integrated continuous separation technologies are still only gradually becoming available.7 In addition 
to experimental work, simulation and cost estimation via process models have also been widely used 
for evaluating CPM processes, and the field of mathematical optimisation has likewise been 
successfully used in many CPM studies.8 A typical example is the nonlinear optimisation of the 
continuous synthesis of Lorcaserin, which covers many key aspects of CPM and optimisation 
techniques. The nonlinear formulation includes over 50 reactions and optimizable parameters, and the 
problem was solved to global optimality with a far fewer number of initial approximations because of 
the efficient use of the Levenberg-Mardquadt algorithm.9 Another use of nonlinear optimisation for 
CPM is the evaluation of the potential benefit from adding a membrane separation operation to a 
continuous crystallisation process.10 By using multi-objective optimisation to systematically maximize 
or minimize critical process parameters within specified ranges, the design space was mapped. The 
boundaries of attainable product attributes were also found by their maximization/minimization, 
subject to the range of critical process parameters. Results indicated that the addition of a membrane 
separation can significantly enlarge the attainable crystal size as well as the design space.10 In another 
case, optimisation of stage conditions was used to improve both yields and purity of a continuous 
MSMPR crystallisation cascade.11 The solution of population and mass balance models and 
crystallisation kinetics allowed the estimation of product purity and yield, with results showing that 
while near-maximum yields can be achieved, it requires multiple crystallizers with quickly 
diminishing returns. 

Continuous downstream product separation and recovery as also attracted research interest in terms 
of optimisation and control.12,13 Kriging and Radial Basis-functions (RBF) have been used to for 
surrogate modelling toward solving black-box feasibility problems.14–16 Regions of high prediction 
uncertainty can be efficiently sampled with the proposed RBF method, via adaptive sampling, and the 
RBF method consistently out-performed a previous method.15 

Other groups have also focused on the detailed modelling and optimisation of downstream 
processes. By combining a moving horizon-based optimisation with a hybrid model predictive 
control, maximum profit for a continuous tableting process that adheres to QbD principles was 
ensured.17 Researching the use of nanofiltration membrane cascades for solvent recovery in 
continuous pharmaceutical processes in a typical nonlinear optimisation problem implemented with 
the GAMS software package, a group found that total costs could be significantly reduced by 
implementing solvent recovery.18,19 

Scheduling of continuous production campaigns has also been explored. After studying the 
suitability of existing optimisation methods for continuous production lines implemented in a 
campaign manner, a novel approach was proposed where the objective is on-spec product 
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maximization as opposed to the commonly used (in higher-volume sectors) start-up/shut-down time 
minimization.20 The new approach can be reliably solved with gradient-based methods due to the 
differentiability of the formulations used. 

Life-cycle assessments of CPM processes have also incorporated optimisation as a core 
component.21 While systematic optimisation and the consideration of a wide range of performance 
criteria can reduce Life Cycle Impact Assessment (LCIA) scores by up to 45%,22 with the emergence 
of novel technologies, the standardization of methods to address data gaps and sensitivity analyses are 
required.23 

Continuous product separation and crystallisation are key operations in the drive towards realizing 
the implementation of CPM. In previous work, we explored the potential performance of eight 
antisolvents for continuous crystallisation of artemisinin using both predicted and experimentally 
reported solubilities.4,24 We have also previously employed nonlinear optimisation toward finding 
ideal continuous separation scenarios for ibuprofen: the preferred temperatures, solvent and liquid-
liquid extraction configuration for the lowest total design cost for a CPM process were determined 
while comprehensively considering mass transfer, thermodynamics and economic modelling.25 

In the present work, we further investigate the continuous separation of artemisinin by formulating 
a nonlinear optimisation problem considering solubility prediction via an activity coefficient model 
(NRTL), and environmental impact and sustainability via the E-factor, for potential crystallisation 
binary antisolvent mixtures of ethanol, ethyl acetate and acetone. The CPM process studied here, 
based on the developed chemistry,5 has been shown to be compatible with a range of separation 
methods.26 

The paper is structured as follows: first, the continuous flow chemistry is presented. Second, the 
continuous separation of the API product is discussed, also summarizing previous work and how their 
results are used and inform the present work. This is followed by the elucidation and construction of 
the nonlinear optimisation problem; key equations regarding process modelling, product separation 
and economics. The results are then presented, with a discussion of the trends shown and their 
implications. 

2 API PRODUCTION AND SEPARATION 

The flowsheet and chemistry studied here is based on the work of Kopetzki and coworkers,5 
illustrated in Figure 1, which we have studied in previous publications.4,24 The key ingredient is 
dihydro artemisinic acid (DHAA), which enters a photooxidation reactor (AR-R201) where it is 
transformed into an intermediate, which in turn undergoes reactions in a second reactor (AR-R202) to 
ultimately produce the API, artemisinin;5 the process flowsheet is shown in Figure 1. 

Both crystallisation and chromatography have been used experimentally to separate artemisinin 
from solvent streams:26,27 simulated moving bed (SMB) chromatography can remove remaining key 
ingredient DHAA and DCA (which is poorly soluble and so is prone to precipitate in crystallisation 
operations) while crystallisation can separate a majority of the other impurities. Conceptually 
illustrated in Figure 1, the process considered here uses a SMB chromatography step with a reported 
performance,26 with subsequent solvent removal to achieve the required crystallisation feed 
concentration of 90% API solubility. For this study, it is assumed that negligible impurities reach the 
crystallisation step, and that none co-crystallize with the API. The focus here is on the attained 
quantity of API recoverable in the crystallisation step, estimated via explicit NRTL solubility 
predictions. 

3 PROCESS MODELLING AND NONLINEAR OPTIMISATION 

3.1 Reactor and Separation Process Design 

Key equations include those for reactor sizing, API solubility, and continuous oscillatory baffled 
crystallizer (COBC) design. Details for the equations and key variables of reactor volumes (VPFRm, 
equation 1), reaction rate (rmA, equation 2), energy requirement for crystallisation cooling (qCOBC, 
equation 3) and theoretically attainable API product recovery (RT

Crys) are as per our previous 
publications25,28 and specifics can be found therein. 
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(1)

 

Figure 1. Flowsheet highlighting key steps and processes. Top: API production.5 Bottom: API separation.26  
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3.2 NRTL Solubility Modelling 

In previous work, eight antisolvents were evaluated for crystallisation, with the cases optimized for 
minimal total cost. Surrogate equations for API solubility were used, based on predictions using the 
UNIFAC model;29 ethanol, acetone and ethyl acetate all showed promise. A temperature range of 35 
to 5 °C was studied for the crystallisation (the temperature to be cooled to from a feed temperature of 
40 °C), for an antisolvent feed rate from 50% to 80% w/w of mother liquor in the crystallizer. 

A variety of thermodynamic models exist for the estimation of thermodynamic phase equilibria, 
including solid-liquid equilibria for the prediction of drug solubilities.30 The Non-Random Two-
Liquid (NRTL)31,32 and the Non-Random Two-Liquid Segment Activity Coefficient (NRTL-SAC) 
models33 are powerful tools for drug solubility modelling,31 subject to API interaction parameter 
availability. The present work explicitly estimates solubilities using the original NRTL model,31,32 for 
which all required interaction parameters can be determined on the basis of published literature.34,35  

Here, the solubility of species i, xi, is computed from the ideal solubility, xi
id, and the activity 

coefficient γi (equation 8). The ideal solubility (at temperature T) is estimated from the enthalpy of 
fusion ΔHfus; the average difference in heat capacity (ΔCp) between the temperature and the API 
melting point, Tfus, assumed to be 77.2 J mol-1 K-1  in equation 9;34 and R, the universal gas constant. 
In the NRTL method, the activity coefficient of species i in a n-component mixture, γi, is given by 
equation 10. The parameter αij is a measure of the non-randomness of the interaction between two 
species (αij = αji and αii = αjj = 0). The dimensionless interaction parameter, τij, describing the 
temperature dependence of solute solubility, can take several forms; one of these forms uses the 
interaction parameter, bij, described in equation 12 (bii = bjj = 0). 

 (8)

 (9)

 (10)

Gij	=	 exp൫– αijτij൯  (11)

τij	=
bij

RT
 (12)

 
Published experimental solubility data for artemisinin in pure antisolvents34 have been used for 

NRTL model parameter estimation, bij, regarding API-antisolvent interactions; antisolvent-antisolvent 
interactions have been taken from the literature.35 Parameter regression for individual data sets (i.e. 
binary antisolvent mixture choices) from the experimental data ensured good agreement between 
predicted API solubilities in antisolvent mixtures from the NRTL model and the published values 
(Figure 2). In practice, a value of 0.3 is frequently used for αsolvent-solvent, and 0.4 is frequently used for 
αsolute-solvent. The required NRTL model parameters which have been determined for study of different 
systems (binary antisolvent mixtures) via the use of Eqs. (11) and (12) are provided in Table 1. 
 
Table 1. NRTL parameters computed for API solubility prediction in this work. 
System Pairwise Interaction α 12 = α21 b12 (J mol-1) b21 (J mol-1) Data Source 

API-EtOH-EtOAc 
API(1)-EtOH(2) 0.4 3,320.39 3,127.56 (34) 
API(1)-EtOAc(2) 0.3 9,602.49 210.35 (34) 
EtOH(1)-EtOAc(2) 0.3 1,112.11 1,543.52 (35) 

API-EtOH-Acetone 
API(1)-EtOH(2) 0.4  -229.96 8,062.90 (34) 
API(1)-Acetone(2) 0.3     84.76 6,430.00 (34) 
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EtOH(1)-Acetone(2) 0.3      3,905.35 -1,763.81 (35) 

API-Acetone-EtOAc 
API(1)-Acetone(2) 0.4    -2,391.11 10,248.99 (34) 
API(1)-EtOAc(2) 0.3    -2,068.88   6,014.031 (34) 
Acetone(1)-EtOAc(2) 0.3   -54.14 5,265.98 (35) 

 
 
 
 
 

 
Figure 2. Comparison of reported and NRTL-predicted artemisinin solubility in binary mixtures of ethanol, acetone and 
ethyl acetate. 
 

In this work, binary antisolvent mixtures of pure antisolvents (ethanol, ethyl acetate and acetone) 
are considered for API crystallisation; these pure antisolvents are relatively benign.36 NRTL 
predictions of API solubilities in different binary antisolvent mixtures under different temperatures 
and mixture compositions were compared to experimental results for validation. The NRTL code 
showed good agreement with experimental values34 (Figure 2). There is some variation with reported 
values; the small differences for all antisolvent pairs indicate slight under-predictions. Solubilities 
estimated via NRTL seem somewhat more influenced by temperature (marginally steeper gradients). 
A non-monotonic solubility trend (esp. in terms of its variation vs. variable mixture composition) 
would induce nonconvexity, thus significantly perplexing crystallisation optimisation and operability. 

 

3.3 Cost Estimation and Economic Modelling 

The cost estimation uses a combination of vendor data and established cost estimation methods to 
calculate CapEx and OpEx contributions.37 The Battery-Limits-Installed-Cost (BLIC) (equation 13) 
estimated via the Chilton Method (Couper, 2003), uses factors for the installed equipment (fins), 
process piping (fpip), instrumentation (fins2), and engineering and construction (fec) costs, as well as 
working capital (fwc). The factors used in Eqs. 13–19 are summarized in Table 2. As with previous 
work,25,28 factors are also used to estimate the working capital fwc (equation 15) and contingency 
(equation 16) costs.37 Where appropriate, vendor prices were used for process equipment, and 
capacity-cost correlations were used for the remainder.38 

Reference and design values for equipment are denoted by subscripts a and b, respectively, while 
equipment capacities (units for which depend on the equipment type) are denoted by S in equation 14, 
and reference costs by γa. Chemical engineering plant cost indices (CEPCIs) were used where 
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necessary to compute appropriate inflation adjustments. The number of units of equipment i are 
indicated by ni. The other parameters in equation 14 are the exponent pi (an empirical value 
commonly ranging from 0 to 1 depending on the equipment type) and f (a summary of factors used to 
account for the effect on cost of various design choices for the equipment such as construction 
material). 

 (13)

 

(14)

 

(15)

 

(16)

 (17)

 (18)

 (19)

 
The cost of material purchase γmat in equation 17 (chiefly composed of raw ingredients, process 

solvent and antisolvents) are computed from material prices πj (sourced from vendors and official 
shipping records from a range of countries) and the required quantities rj. Utilities (γutil) and waste 
disposal (γwas) costs are estimated using factors (Table 2) as per the costing methodology used here.37 
The former is estimated based on total material input, and the latter is based on the quantity of solvent 
and antisolvent waste (the majority of the waste). Maintenance and reliability costs are not included in 
this NLP formulation, but are straightforward to implement subject to data and cost factor availability. 
 
Table 2. Cost factors used in Eqs. (13-19). 

   

3.4 Nonlinear Optimisation Formulations 

The objective function is the sum of the Capital Expenditure (CapEx) and the time-discounted 
Operating Expenditure (OpEx). The problem is formulated as a total cost minimization. 
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The total cost, Eq. (20) covers the purchase, building and running of a given design for the 
specified period tlife (in this case 20 years). The year-to-year discount rate (y) is assumed to be 5%. 
The components of CapEx are the Battery-Limits Installed Cost (BLIC), contingency cost (γcont) and 
working capital (γwc). The OpEx components are the material purchase costs (γmat), energy costs 
(γenergy), utilities costs (γutil), and waste disposal costs (γwaste). A 335-day/8,040-hour working year was 
assumed. 

The constraints in this formulation are a target API production (Eq. 23), maximum and minimum 
crystallisation cooling temperatures (equation 24) and binary antisolvent mixture weight percentages 
of the total crystallisation mother liquor (Eq. 25). In addition, in this work there are also constraints on 
the binary composition of the antisolvent (Eqs. 26-27). Each antisolvent in the binary antisolvent 
mixture is limited to mole fraction of 0 to 1 (Eq. 28). In addition, the effect of using multiple 
crystallizers in series (nCOBC) was studied, ranging from one to five (Eq. 29). To avoid the need for a 
mixed integer formulation, each case (varying number of crystallizers) was solved separately. 

The key decision variables in this formulation are the temperature to which the crystallisation 
operation is cooled (Tcryst,LO), the antisolvent mixture weight percentage in the mother liquor (mCrys,AS), 
and the composition of the binary antisolvent mixture (xAS1). To allow a comparison to previous work, 
Tcryst,LO  and mCrys,AS were restricted to a range of 5 to 35 °C and 50% to 80% for crystallisation 
cooling temperature and antisolvent weight percent in the mother liquor, respectively. 

3.5 NLP code and structure 

The optimisation is coded in three portions; a section implementing reactions and reactor sizing, 
thermodynamics and product recovery equations (Eqs. 1-12); a section implementing cost estimation 
equations (Eqs. 13-19); and a section implementing the optimisation itself (Eqs. 20-29). Two solvers 
were tested: the NOMAD solver and the NLOPT solver with the BOBYQA algorithm (NLOPT-
BOBYQA), both implemented in MATLAB. 

 NLOPT-BOBYQA solver 3.5.1
The NLOPT solver is a collection of over 20 nonlinear program algorithms, and includes those for 
both local and global optimisation. It also includes several solvers for derivative-free optimisation, 
one of which – BOBYQA – is used here, derived from the BOBYQA subroutine and modified to 
work with NLOPT.39 BOBYQA performs derivative-free, bound-constrained optimisation using an 
iteratively constructed quadratic approximation for the objective function; as such, it may perform 
poorly for objective functions that are not twice-differentiable. 

 NOMAD solver 3.5.2
The NOMAD solver uses a Mesh Adaptive Direct Search (MADS) algorithm to solve non-
differentiable and global nonlinear programs and allows rapid convergence for derivative-free 
optimisation.40,41 The MADS algorithm generates a trial point on a mesh and iterates to improve the 
current best solution by initiating the following trial point on a finer mesh. Each iteration is composed 
of a search and poll step.40 The search step allows the creation of trial points anywhere on the mesh. 
The poll step explores the mesh site near the current iterate with different trial points. 

 Solver implementation 3.5.3
Solvers were initiated from a variety of starting locations to check the effect on the optimal solution 
(visualization of response surfaces indicated that there would not be multiple optima). The starting 
locations were a grid of initial guesses for binary antisolvent mixture-to-feed ratio (mCrys,AS,0, between 
55 and 75 % w/w of mother liquor in increments of 10), crystallisation cooling temperature (TCrys,LO,0, 
between 10 °C and 30 °C, in increments of 10) and balance of pure antisolvents in the binary 
antisolvent mixture (xAS1,0 = 25, 50 and 75 mol%). Solver and subroutine tolerances were set at 10–9. 
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Solution time is dependent on the solver selected. Studying multiple initial guesses (55, 65, or 75% 
w/w of binary antisolvent mixture in the mother liquor (mCrys,AS); 10, 20 or 30 °C for crystallisation 
cooling temperature (TCrys, LO); 25, 50 or 75 mol% of the first antisolvent in the binary antisolvent 
mixture (xAS1)) and using similar solver settings as much as possible, the NLOPT solver, using 
BOBYQA algorithm, is faster than the NOMAD solver for all antisolvent pairs, as shown in Table 3. 
Further details on the performance and optimisation paths of both implemented solvers are provided 
in Appendix A. As NLOPT-BOBYQA solves faster than NOMAD without significant differences in 
precision, it was chosen as the main solver. Except for the solution time, there was no difference from 
using different initial guesses, and so for most cases an initial guess of x0 = (55, 50, 10), was used. 
 
Table 3. Solver performance summary for initial guess x0 = (55, 50, 10) = (100mcrys,AS, xASr, Tcrys,LO) 
for one crystallizer. 
 Solution time (s) 
Antisolvent pair NLOPT-BOBYQA NOMAD 

Ethanol-Acetone 154 272 
Ethanol-Ethyl Acetate 167 160 
Acetone-Ethyl Acetate 145 235 

4 RESULTS AND DISCUSSION 

4.1 Effect of temperature and antisolvent quantity and composition 

Total cost response surfaces were produced to illustrate the design spaces of different process 
configurations and to ensure no local optima were present. Figure 3 shows total cost response surfaces 
for one implemented crystallizer for all binary antisolvent mixtures considered. Total cost response 
surfaces for further process configurations are provided separately in Appendix B. 

Surfaces in Figure 3 for ethanol-acetone and ethanol-ethyl acetate are nearly identical, as both cases 
are pushed to >99.8% ethanol in the binary antisolvent mixture used. When one crystallizer is 
implemented, the optimal binary antisolvent mixture composition for acetone-ethyl acetate usage is 
>98% ethyl acetate. These results show that nearly pure ethanol is the best candidate antisolvent, 
followed by ethyl acetate, followed by acetone. The surface plots also show that acetone-ethyl acetate 
usage for antisolvent crystallisation allows the lowest total costs for one crystallizer. 
 

 
Figure 3: Total cost response surface for one implemented crystallizer. 

In all process configurations, the optimal solution (process configuration) is pushed to nearly pure 
antisolvents (>99.8% ethanol for ethanol-ethyl acetate and ethanol-acetone antisolvent mixtures and 
>98% ethyl acetate for the acetone-ethyl acetate mixture). Differences in optimal antisolvent mixture 
compositions influence the minimum total cost attainable, the extent of which depends on the exact 
composition and the price of the carrier and antisolvent(s) present. Published experimental data shows 
that artemisinin solubilities increase in the order ethanol < acetone < ethyl acetate. Our NLP 
optimisation results show that nearly pure antisolvents (ethanol and ethyl acetate,  at >99.8% and 
>98%, respectively), rather than antisolvent mixtures, offer the best economic performance (total cost 
minimization). Beyond the possible effect of the process carrier solvent (toluene) on solid-liquid 
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equilibria, it is clear that total cost surfaces (Fig. 3) demonstrate very little sensitivity to the extent of 
antisolvent addition; while critical for technical operation, the latter has a much weaker effect on 
economic performance in comparison to cooling temperature, and may explain why pure antisolvents 
are favoured by the NLP optimisation formulation.  

Total costs obtained at maximum and minimum values of two of the key decision variables, binary 
antisolvent mixture content of the mother liquor (mCrys,AS) and cooling temperature (TCrys,LO), have 
been compared to the coordinates corresponding to total cost minima. These values (calculated from 
the total cost minimization illustrated in the response surfaces in Appendix B) are compared in Figure 
4. The histogram shows the total costs for different values of binary antisolvent mixture content of 
mother liquors for 1-3 fixed and variable crystallizer sizes. Plots corresponding to binary antisolvent 
mixtures containing ethanol are identical for both fixed and variable crystallizer sizes, as both 
mixtures are pushed to nearly pure (>99.8%) ethanol with respect to binary antisolvent mixture 
composition. 
 

 
Figure 4: Effect of temperature and binary antisolvent mixture content on total crystallisation system cost, for fixed and 
variable crystallizer sizes. Optimum crystallisation cooling temperatures (Topt) at antisolvent content, mAS,cryst = 50%. 

 
Generally, a decrease in crystallisation cooling temperature (i.e. lowering the temperature the 

mother liquor is cooled to) reduces the total cost via an increase in API recovery. Increasing recovery 
implies less material throughput, hence smaller equipment, lowering costs. For certain instances, the 
cooling temperature is not pushed to the lower bound of 5 °C as shown by optimal temperatures 
greater than 5 °C. Only small increases in API recovery are attainable beyond a certain crystallisation 
cooling temperature, which incurs unnecessary cost increases. If the problem were formulated as a 
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profit maximization (e.g. including revenue from artemisinin sales) then it is possible that the 
crystallisation cooling temperature would be pushed to bounds and greater API recovery achieved. 

For both binary antisolvent mixtures containing ethanol, the optimal quantity of binary antisolvent 
mixture was 50% w/w of the mother liquor. This result is different to our previously estimated 
performances,4 which is likely due to the greater suitability of the NRTL method over the UNIFAC 
method.42 When an acetone-ethyl acetate binary antisolvent mixture is used, the optimal quantity of 
binary antisolvent mixture varies between 65.3-79.0% w/w of the mother liquor for fixed- and 
variable-sized crystallizers. While the effect of binary antisolvent mixture quantity (with respect to 
mother liquor) on total cost is not as pronounced as with crystallisation temperature, i.e. there are 
steeper gradients in total costs along temperature axes compared to binary antisolvent mixture 
quantity axes (see Appendix B), the cause of the effect is the same; greater API recoveries allow for a 
reduction in cost for a given process output. 

Total costs improve with acetone-ethyl acetate usage (the optimal composition of which is >98% 
ethyl acetate for all cases) over ethanol-acetone and ethanol-ethyl acetate (both of which are pushed to 
bounds of >99.8% ethanol). Nearly pure antisolvent (of those considered) is preferred to binary 
antisolvent mixture usage. Certainly, with one crystallizer under the performance metrics considered, 
ethyl acetate usage clearly emerges as the best choice, followed by ethanol, followed by acetone. 

4.2 Effect of number and type of crystallizer 

Sequential crystallizers of fixed (identical) size and sequential crystallizers of variable (non-identical) 
size are considered. Commercially, it is very common to use multiple crystallizers in series to improve 
product recovery, as one single unit operation is often insufficient for the desired performance. The 
sizes of the crystallizers were determined by the optimisation formulation (Eq. 19). Specifically, it is 
determined by the required heat transfer area to cool the stream from 40 °C to the cooling temperature 
(ranging from 5 to 35 °C, Eq. 5). When one crystallizer is considered, solutions for fixed- and 
variable-size crystallizers are identical. 

Figure 5 shows the effect of multiple crystallizer usage on CapEx, OpEx, recovery and the E-factor 
on minimum total costs for each process option. The E-factor is a green chemistry metric, and its 
simplest definition is the mass of waste generated per unit mass of product.43 E-factor values can be as 
high as 200 for batch-dominated industries such as pharmaceuticals, and as low as 0.1 for continuous 
production-dominated industries such as oil and gas.44 In the optimisation cases studied here, the E-
factor is defined and calculated as the ratio of the mass of waste (consists of byproducts (bpd), 
unconverted reactants (ur), waste solvent (wS, 10% of total requirements assumed unrecovered), 
waste antisolvent (wAS, all assumed unrecovered) and unrecovered API (uAPI)) to the mass of pure 
crystallized API product. 

 (30)

 
As shown in Figure 5, there are notable differences between using crystallizers of fixed- and 

variable-size, and some similarities. For both types, CapEx forms the bulk of the total cost, and rises 
relatively linearly with the number of crystallizers. For all binary antisolvent mixture cases using 
fixed-size crystallizers, API recovery notably increases when implementing two crystallizers, but only 
incremental recovery increases are attainable when three or more crystallizers are used. CapEx 
reaches a minimum at two fixed-size crystallizers for binary antisolvent mixtures containing ethanol 
and for one fixed-size crystallizer for the acetone-ethyl acetate mixture; OpEx reaches a minimum 
when three fixed-size crystallizers are implemented for all binary antisolvent mixtures. These trends 
are a consequence of the plateaus reached in API recovery with increasing number of crystallizers. 

For crystallizers of variable size, CapEx continues to increase, as the costs of the increased number 
of crystallizers outweighs the cost reductions from smaller reactors (due to less material throughput 
being needed due to increased API recoveries). API recoveries increase steadily with increasing 
number of crystallizers; as a result, OpEx continually decreases due to less material throughput 
required, lower material, utilities and waste handling costs are realized. For all binary antisolvent 
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mixtures cases and both fixed- and variable sized crystallizer implementation, minimum total costs 
are attained when two crystallizers are implemented. The decreasing OpEx is of a smaller magnitude 
than the increase in CapEx, and so the total costs increase with the number of crystallizers. 

 

 
Figure 5. Effect of multiple crystallizer use on total cost, CapEx, OpEx, API recovery (R) and E-factor. 

 
Minimum cost is significantly dictated by how many crystallizers are implemented and whether 

they are of fixed- or variable-size. The effect of multiple crystallizer implementation for fixed- and 
variable-size crystallizer volumes is illustrated in Figure 6. For fixed-size crystallizers, total 
crystallizer volumes increase with the number of implemented crystallizers, whilst the total 
crystallizer volume for variable-size crystallizers remains relatively constant. Cases using acetone-
ethyl acetate antisolvent mixtures (>98% ethyl acetate) require larger total crystallizer volumes than 
ethanol-ethyl acetate and ethanol-acetone mixtures (both driven to >99% ethanol), however the 
former still achieves lower total costs than the latter. The effects of improving API recovery (Figure 
5) on both CapEx and OpEx upstream of the separation train, i.e. on allowing smaller reactor volumes 
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and material requirements caused by the improved separation efficiency, have a larger impact than the 
required total crystallizer volume. 

As this problem has been formulated as a total cost minimization, neither API recovery nor E-factor 
are prioritized during optimisation. For profit or API recovery maximization, recoveries would 
continue to improve with additional crystallizer use, at the expense of greater cost (more than the cost 
increase in Fig. 5). 
 

 
Figure 6: Effect of multiple crystallizer use on individual and total crystallizer volumes. 

4.3 Cost and API-recovery/E-factor trade-off 

Figure 5 illustrates a trade-off between cost, API recovery and E-factor. For fixed-size crystallizers, 
there is a modest improvement in E-factor from using two crystallizers instead of one. With more than 
two crystallizers, E-factors begin to steadily worsen (increase). For two crystallizers, API recovery 
plateaus, beyond which additional recovery gain is materially inefficient (i.e. worse E-factor values).  

For variable-size crystallizers, the E-factor continues to improve (decrease) with the number of 
crystallizers, as does API recovery, although the greatest improvements are from increasing the 
number of crystallizers to two or three, with additional units yielding only incremental improvements. 
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This benefit is not sufficient to outweigh the costs of additional crystallizers. The estimated capital 
costs are such that multiple crystallizers dominate cost reductions elsewhere. However, the cost 
penalty from using multiple crystallizers is not as steep with variable-size crystallizers as it is for 
those of fixed-size (Figure 5). Nevertheless, it is entirely likely that the improvement in API recovery 
and E-factor justifies a small increase in total cost. 

5 CONCLUSIONS 

This study conducts nonlinear optimisation for total cost minimization of the steady-state continuous 
pharmaceutical manufacturing of artemisinin. The problem formulation implements explicit NRTL 
solubility calculations for artemisinin crystallisation in candidate binary antisolvent mixtures of 
ethanol-ethyl acetate, ethanol-acetone and acetone-ethyl acetate. Results show that a binary 
antisolvent mixture of acetone-ethyl acetate (>98% ethyl acetate) attains the lowest total cost of 
0.967·106 GBP when using two sequential crystallizers of 284 mL and 133 mL, respectively, with an 
API recovery of 78.1% (crystalline artemisinin) and an E-factor of 29.6. Both ethanol-ethyl acetate 
and ethanol-acetone mixtures are pushed to bounds of >99.8% ethanol.  

Studying the use of multiple crystallizers showed that sequential crystallizers allow improved API 
recovery, E-factor, and OpEx benefits with the use of two crystallizers, but worsen with three or more. 
CapEx increases with the number of implemented crystallizers in all configurations. For sequential 
crystallizers of varying size, increasing the number of crystallizers monotonically benefits OpEx, E-
factor, and API recovery. Crystallizers of varying size are preferable over those of fixed size; (nearly) 
pure ethyl acetate usage attains the lowest total costs. These results illustrate the importance of 
nonlinear optimisation studies prior to further experimental investigation and scaleup, and informs the 
development of CPM processes for this societally important antimalarial. 
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8 NOMENCLATURE AND ACRONYMS  

α  Non-randomness parameter in the NRTL model 
API  Active Pharmaceutical Ingredient 
bij  Parameter of the NRTL model 
BLIC  Battery-Limits-Installed-Cost of all equipment in a process, part of CapEx, GBP 
Cai  Reference cost of item a, GBP 
CapEx  Capital expenditure, GBP 
cfi Product of factors that consider specifics (e.g. material of construction) of item i 
Cmi  Concentration of species i in reactor m, mol L-1 
Cmi0  Initial concentration of species i in PFR m, mol L-1 
CEPCI  Chemical engineering plant cost index  



15 

COBC  Continuous oscillatory baffled crystallizer 
CostTot  Total costs over a certain plant lifetime, adjusted to the present, GBP 
Cp,i  Standard heat capacity of component i (J mol-1 K-1) 
CPM  Continuous Pharmaceutical Manufacturing 
E-factor Environmental factor, a measure of material efficiency, kg (waste)/kg (product API) 
fγ,i  Factors accounting for different design choices between equipment of type i 
fcont  Factor relating the contingency to the Battery-Limits-Installed-Cost 
fcrys  Factor to account for non-attainment of equilibrium in COBC 
fec  Factor relating to engineering and construction costs 
fins  Factor relating to equipment installation 
FOBTot  (Total) Free-on-Board cost of equipment 
fins  Factor relating to installed equipment costs 
fins2  Factor relating to process instrumentation costs 
fpip  Factor relating to process piping 
futl  Factor relating the cost of utilities for the total annual material requirements (kg)  
fwas  Factor relating the cost of waste handling to the volume of waste 
fwc  Factor relating the working capital to the cost of materials 
Gij Parameter measuring interaction energy between components i and j in the NRTL 

model 
ΔHfus API enthalpy of fusion, J mol-1 
kmi  Rate constant of species i, reactor m, L mol-1 hr-1 
LCIA   Life cycle impact assessment 
LMTD  Log mean temperature difference 
ṁAPI,prod  Mass of API produced after separation, kg yr-1 
mbpd  Mass of by-product waste, kg yr-1 
mCrys,AS  Antisolvent weight percent of crystallisation mother liquor, % 
mCrys,API,0 Initial API mole fraction in COBC 
mCrys,API,f Final API mole fraction in COBC 
ṁi  Mass flowrate of component i, kg s-1 
muAPI  Mass of unrecovered API, kg yr-1 
mur  Mass of unreacted reagent waste, kg yr-1 
mwAS  Total mass of waste, kg yr-1 
mwS  Mass of solvent waste, kg yr-1 
MADS  Mesh Adaptive Direct Search 
nCOBC  Number of COBCs implemented 
ni  Number of units of equipment i 
ni,COBC  Molar flowrate of component i in the crystallizer (mol s-1) 
OpEx  Operating expenditure, GBP 
PAT  Process Analytical Technology 
pi  Empirical value in Eq. 14, varying for different equipment 
πi  Unit price of material j (GBP kg-1) 
QBD  Quality by Design 
Qm  Volumetric flowrate through reactor m (mL hr-1) 
qCOBC  Cooling duty of COBC (W) 
ri  Reaction rate of molecule i, mol L-1 hr-1 

R  Universal gas constant (= 8.314 J mol-1 K-1) 
Rj  Annual requirements of material j, kg y-1 
RT

cryst  Theoretical crystallisation recovery of API at equilibrium, % 
Rcryst  Actual crystallisation recovery of API (%) 
RBF  Radial Basis function 
Sai  Reference capacity of item i, units depend on item type 
Sbi Design capacity of item i, units depend on item type 
SMB Simulated Moving Bed 
T Temperature, °C or K 
tlife Plant lifetime, years 
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ΔTcrys Temperature change in COBC, K 
TCrys,LO Cooling temperature of crystallisation, °C 
Tfus  API melting temperature, °C or K 
UCOBC  Overall heat transfer coefficient in COBC, W m-2 K-1 
VPFRm  Volume of plug flor reactor m, Ml 
xASi  Mole fraction of pure antisolvent i in binary antisolvent mixture 
xi  Solubility mole fraction of component i 
xi

ID
  Ideal solubility mole fraction of component i 

xki  Mole fraction of species i in stream k 
Xmi  Conversion of species i in PFR m 
Xmif  Final conversion of species i in PFR m 
x0  Vector of initial guesses (100mcrys,AS, xASr, Tcrys,LO) 
y  Discount rate, the correction factor for adjusting costs to the present (%) 
γai  Reference cost of item i, GBP 
γcon  Cost of contingency, GBP 
γec  Factor to account for equipment engineering and construction 
γpip  Factor to account for equipment piping 
γcon  Cost of contingency, GBP 
γi  Activity coefficient of species i 
γins  Factor to account for equipment installation 
γins2  Factor to account for equipment instrumentation 
γmat  Cost of material raw material purchase (including solvents and catalysts), GBP 
γprice,j  Cost of purchase of material j, GBP kg-1 
γutil  Cost of utilities, GBP 
γwas  Cost of waste handling, GBP 
γwc  Cost of working capital, GBP 

wasv   Annual generation of waste (L y-1) 
τij  NRTL model dimensionless interaction parameter 
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APPENDIX A: SOLVER OPTIMISATION PATHS 

Figure A1 illustrates the optimisation paths followed for various starting points (x0) when 
implementing NLOPT-BOBYQA. Optimisation paths are shorter (fewer iterations are required) when 
initial points are closer to the solution; the paths are particularly long when initial mAS and TCrys,LO  
guesses are higher (>65% and >20 °C, respectively) . As the solver approaches the optimal solution, 
the difference between guesses become smaller. 

Figure A2 shows the optimisation paths followed by the NOMAD solver for various starting points 
(x0). While the NOMAD solver frequently changes direction and explores a majority of the design 
space, it nevertheless also reliably finds the same optimal point for all initial guess. An initial guess 
closer to the optimal point reduces the solution time and decreases the number of iterations required, 
and decreases the range of the design space that the algorithm explores before finding the optimal 
point. 

The NLOPT-BOBYQA solver explores a significantly reduced design space range (Figure A1) 
compared to NOMAD, doubling back on itself in far fewer instances. It also reaches a solution faster 
than NOMAD, while achieving the same level of precision. As NLOPT-BOBYQA solves much faster 
than NOMAD without significant differences in precision, it was chosen as the main solver. Except 
for the solution time, there was no difference from using different initial guesses, and so for most 
cases an initial guess of x0 = (55, 50, 10), was used. 
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Figure A1. Typical NLOPT-BOBYQA optimisation path followed; multiple initial guesses (x0) shown.  Acetone-ethyl 
acetate antisolvent stage for one crystallizer. 
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Figure A2. Typical NOMAD optimisation path followed; multiple initial guesses (x0) shown.  Acetone-ethyl acetate 
antisolvent stage for one crystallizer. 
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APPENDIX B: TOTAL COST RESPONSE SURFACES 

Figures B1 and B2 show total cost response surfaces of the design spaces for fixed and variable size 
crystallizers, implementing 1-3 crystallizers, for all binary antisolvent mixtures considered. Values 
plotted in Figure 3 correspond to corners of the response surfaces in Figures B1 and B2 and total cost 
minima found in these design spaces via the nonlinear optimisation procedure described in this work. 
 

 

Figure B1. Total cost response surfaces for fixed-size crystallizers. Optimal ethanol–acetone antisolvent mix (100:0); 
optimal ethanol–ethyl acetate antisolvent mix (99.9: 0.1). C) Optimal acetone – ethyl acetate antisolvent mix (2:98). 
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Figure B2. Total cost response surfaces for variable-size crystallizers. Optimal ethanol–acetone antisolvent mix (100:0); 
optimal ethanol–ethyl acetate antisolvent mix (99.9: 0.1). C) Optimal acetone – ethyl acetate antisolvent mix (2:98). 

 

 

 

 

 

 

 


