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Abstract

The effects of particle-size polydispersity on the magnetostatic properties of concentrated fer-

rofluids are studied using theory and computer simulation. The second-order modified mean-field

(MMF2) theory of Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] has been extended by

calculating additional terms of higher order in the dipolar coupling constant in the expansion of the

initial magnetic susceptibility and the magnetization curve. The theoretical predictions have been

tested rigorously against results from Monte Carlo simulations of model monodisperse, bidisperse,

and highly polydisperse ferrofluids. Comparisons have been made between systems with the same

Langevin susceptibility and the same saturation magnetization. In all cases, the new theoretical

magnetization curve shows better agreement with simulation data than does the MMF2 theory.

As for the initial susceptibility, MMF2 theory is most accurate for the monodisperse model, while

the new theory works best for polydisperse systems with a significant proportion of large par-

ticles. These results are important for the analysis and characterization of recently synthesized

polydisperse ferrofluids with record-breaking values of the initial magnetic susceptibility.

PACS numbers: 47.65.Cb, 75.50.Mm, 75.30.Cr, 05.20.Jj
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I. INTRODUCTION

Ferrofluids consist of ferromagnetic or ferrimagnetic nanoparticles suspended in magnet-

ically passive carrier liquids. These systems can be classified as highly functional materials

due to the unique combination of physical, electromagnetic, and optical properties which

can be controlled by applied magnetic fields or magnetic field gradients [1]. The diameters of

the magnetic cores are typically in the region of 10 nm, which for commonly used materials

such as magnetite (Fe3O4) means that each particle contains a single magnetic domain, and

hence the ferrofluid can be described as a superparamagnetic material. The granulometric

composition is rarely uniform within a given sample of ferrofluid, and therefore one needs

to consider particle-size polydispersity. An effective way to determine the particle-size dis-

tribution within a sample is to analyze theoretically the magnetic properties, such as the

magnetization curve and the initial susceptibility. Alternative methods such as counting

particles in microscopy images are tedious and subject to considerable sampling errors.

The constituent particles in a ferrofluid are usually modeled as dipolar hard spheres with

a magnetic core diameter x and a non-magnetic layer of thickness δ ' 2 nm representing the

‘dead’ layer at the surface of a particle and the thickness of an adsorbed layer of sterically

stabilizing surfactant molecules; the effective hard-sphere diameter is therefore σ = x + 2δ.

The magnetic moment on a particle is estimated from the bulk saturation magnetization

Ms to be µ = πx3Ms/6. Many theoretical methods have been developed to study the

magnetization curve and initial susceptibility of monodisperse and polydisperse ferrofluids.

The oldest and simplest theoretical approach is the Langevin single-particle model of an ideal

superparamagnetic gas of non-interacting particles [2] according to which the magnetization

curve and initial susceptibility are given, respectively, by [3]

ML(H) = ρ

〈
µ(x)L

(
µ0µ(x)H

kBT

)〉
(1)

χL =

(
∂ML

∂H

)
H=0

=
µ0ρ 〈µ2(x)〉

3kBT
(2)

where H is the external magnetic field, ρ = N/V is the number concentration of particles in a

volume V , kB is Boltzmann’s constant, T is the temperature, µ0 is the vacuum permeability,

L(z) = coth z − z−1 is the Langevin function, and the angled brackets denote an average

over the particle-size distribution p(x):

〈f(x)〉 =

∫ ∞
0

p(x)f(x) dx. (3)
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Apart from the number concentration ρ, there is the hard-sphere volume fraction

ϕ =
πρ〈σ3(x)〉

6
(4)

which is typically of order 0.1 in standard ferrofluids. One can also define a magnetic volume

fraction

ϕm =
πρ〈x3〉

6
=
M(∞)

Ms

. (5)

In practice, experimental measurements of χ show that it increases more rapidly with con-

centration than is predicted by the linear Langevin law (2) [4]. This is due primarily to the

dipole-dipole interactions between the particles. One physically intuitive method of includ-

ing such interactions is to use the Langevin expressions but with an effective magnetic field

Heff = H+ 1
3
M(H) including the magnetization of the fluid, leading to a transcendental equa-

tion for the magnetization curve [5, 6], and the prediction of spontaneous magnetization at

low temperature and/or high concentration, which has never been observed in experiments.

Other methods are based on quite general liquid-state approaches, such as integral equations

with the mean-spherical approximation closure [7–9], thermodynamic perturbation theory

[10–12], so-called modified mean-field (MMF) theories [13, 14], formal Mayer-type cluster ex-

pansions [15, 16], and density-functional theory [17–19]. All of these approaches work quite

well for ferrofluids with low-to-moderate content of magnetic material and where dipole-

dipole interactions are not very strong. In Refs. 20 and 21 all of the then-available theories

were tested critically by determining the polydispersity from experimental measurements of

the magnetization curves for the same ferrofluid taken at different levels of dilution. The

particle-size distribution was represented by the assumed form

p(x) =
xα exp (−x/x0)

xα+1
0 Γ(α + 1)

(6)

where α and x0 are fitted parameters, and Γ(z) is the gamma function. Of all the theories

tested, only one gave consistent results for the parameters determined by independent fitting

of the magnetization curves at different concentrations – the so-called second-order modified

mean-field (MMF2) theory of Ivanov and Kuznetsova [22, 23]. The MMF2 expressions are
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as follows.

M(H) = ρ

〈
µ(x)L

(
µ0µ(x)Heff

kBT

)〉
(7)

Heff = H +
1

3
ML(H) +

1

144
ML(H)

dML(H)

dH
(8)

χ = χL

(
1 +

1

3
χL +

1

144
χ2

L

)
. (9)

Note that the effective field contains the Langevin magnetization and not the magnetization

itself, and so the MMF2 equations are not transcendental. Essentially, the MMF2 theory

arises from using the Yvon-Born-Bogolyubov-Green-Kirkwood (YBBGK) hierarchy [24] to

relate the one-particle orientational distribution function (ODF) to the pair-correlation func-

tion (PCF) between particles, and then estimating the PCF with a perturbation expansion

in the concentration ρ and the strength of the dipole-dipole interactions. The one-particle

ODF then trivially gives the magnetization curve, and from that the initial susceptibility.

The strength of the dipole-dipole interactions as compared to the thermal energy is measured

by a dipolar coupling constant

λ =
µ0〈µ2(x)〉

4πkBT 〈σ3(x)〉
(10)

in terms of which the Langevin susceptibility can be written

χL = 8ϕλ. (11)

The MMF2 expression for χ includes the exact terms in an expansion in terms of χL up

to order χ3
L ∼ ρ3λ3, which of course does not refer specifically to a particular p(x). This

is a feature of several of the aforementioned theories [5–10, 13, 14, 22, 23]. The MMF2

expression is quite accurate for ferrofluids with χ <∼ 5 [20, 21] while density functional

theory has been shown to work for χ <∼ 4 [17–19]. Note that in recent work by Szalai et

al., a thermodynamic perturbation theory for monodisperse ferrofluids was proposed that

is accurate for dense ferrofluids with χ <∼ 80 [12]. This theory also yields good predictions

for the magnetization curve and the nonlinear susceptibility, and reasonable predictions for

the compressibility factor. Its accuracy relies on the pair distribution function of the hard-

sphere fluid obtained from MC simulations, and as such, the theory is not yet applicable to

real polydisperse ferrofluids.

Concentrated magnetite ferrofluids with very high magnetic susceptibilities χ ∼ 120–

150 at low temperatures down to T ∼ 200 K have recently been synthesized [25–29], and
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these pose a significant challenge to the theories currently available. The high susceptibility

is thought to arise from large particle-size polydispersity, and in particular, to the strong

dipole-dipole interactions between the largest particles. Therefore, an essential task is to

extend Eqs. (7)–(9) to include extra terms, particularly those of higher order in the dipolar

coupling constant. This has already been carried out to some extent [30, 31]. For instance,

the leading-order correction to Eq. (9) gives

χ = χL

[
1 +

1

3
χL

(
1 +

λ2Λ2
0

25

)
+

1

144
χ2

L

]
. (12)

where Λ0 is a dimensionless number given by a complicated average over the particle-size

distribution [31], which will be defined again in Section II B: Λ0 = 1 for a monodisperse fer-

rofluid, and Λ0 ≥ 1 for a polydisperse ferrofluid. Equations (9) and (12) were tested against

simulation results for model systems, and it was shown that the extra term proportional to

Λ2
0 was essential to capture an enhancement in χ with increasing polydispersity [30]. Very

recently, a further extension of Eq. (12) was tested against experimental measurements of

χ in a dense, high-susceptibility ferrofluid [32]. This extended theory gives for the initial

susceptibility an expression of the form

χ = χL

[
1 +

1

3
χL

(
1 +

λ2Λ2
0

25

)
+

1

144
χ2

L (1 + constant× λ)

]
. (13)

where ‘constant’ once again depends on complicated averages over p(x), and the theory is

correct up to terms of order ρ3λ4. The extended theory was shown to be capable of describing

the ferrofluid properties over the experimental temperature range, although the apparent

particle-size distribution was determined by matching theory to the saturation magnetization

M(∞) and χ at T = 295 K, and not through a full analysis of the magnetization curve

because the corresponding extensions of Eqs. (7) and (8) were not yet available.

The proposal that including more terms in the expansions of χ will improve results

needs some discussion. For systems with hard-core interactions, the virial expansions of

thermodynamic functions tend to converge with increasing orders of ρ; the virial coefficients

can change sign, but generally the magnitudes of successive corrections decrease, and high-

order virial expansions can be accurate even at very high densities [24]. The expansions in λ

are more problematic, especially when applied to real polydisperse ferrofluids. The dipolar

coupling constants for large particles are far beyond where such expansions are expected to

work, and so the addition of extra terms is not guaranteed to give better results. Nonetheless,
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as will be shown in this work, large-particle fractions make very significant contributions to

the magnetic properties of polydisperse ferrofluids, and so some attempt must be made to

include the effects of strong dipolar interactions. It should be noted, though, that with high

values of the dipolar coupling constant, including one extra term can lead to substantial

deviations and of either sign. This also applies to monodisperse ferrofluids characterized by

a single, large dipolar coupling constant.

The main aims of the current work are twofold. Firstly, the theory will be completed

by determining the full expression for the magnetization curve corresponding to the initial-

susceptibility expression given in Eq. (13). Secondly, the theory will be tested critically

against simulation results for monodisperse, bidisperse, and polydisperse model ferrofluids

with saturation magnetizations and Langevin susceptibilities up to those of recently syn-

thesized concentrated ferrofluids. The results of this work therefore characterize the most

advanced theoretical framework for analysis of highly concentrated, high-susceptibility fer-

rofluids. The rest of the article is organized as follows. The model, theory, and simulations

are detailed in Section II. Two sets of results are discussed in detail: first, theoretical and

simulation results for a polydisperse ferrofluid with a realistic particle-size distribution are

compared to those for a monodisperse ferrofluid with the same saturation magnetization

and Langevin susceptibility; and second, the corresponding results for a bidisperse ferrofluid

with fractions of ‘small’ and ‘large’ particles. Section IV concludes the article.

II. MODEL, THEORY, AND SIMULATIONS

A. Model

The ferrofluid is modeled as a fluid of N dipolar hard spheres (DHSs) with magnetic-core

diameter x, non-magnetic layer thickness δ, hard-sphere diameter σ = x+ 2δ, and magnetic

dipole moment µ = πx3Ms/6. In both theory and simulation, the demagnetization fields

are set equal to zero: in theory this is achieved by considering the fluid in a cylindrical

container with infinite aspect ratio and volume V oriented in the same direction as an

external magnetic field; in simulations this is achieved by using Ewald summations with

conducting boundary conditions. For particle i, the position vector is ri and the dipole

moment is µi = µi(sinωi cos ξi, sinωi sin ξi, cosωi). The interaction energy between two
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DHSs i and j is

u(i, j) = us(i, j) + ud(i, j) (14)

the components of which are the short-range, hard-sphere potential

us(i, j) =

∞ rij < σij

0 rij ≥ σij
(15)

and the dipole-dipole interaction potential

ud(i, j) =
µ0

4π

[
(µi · µj)
r3
ij

− 3(µi · rij)(µj · rij)
r5
ij

]
(16)

where rij = rj − ri is the center-center separation vector, rij = |rij|, and σij = (σi + σj)/2.

In the presence of an external uniform magnetic field H, the total interaction energy in units

of the thermal energy kBT = β−1 is

βU =
N−1∑
i=1

N∑
j>i

βu(i, j)−
N∑
i=1

αi cosωi (17)

where αi = βµ0µiH is the Langevin parameter for particle i.

B. Modified mean-field theory

In Refs. 22 and 23 it was shown that, in general, the effective field Heff is determined

by a single-particle potential of mean force (PMF) −kBTΨ(ω1), where ω1 is the polar angle

between the dipole vector on a particle 1 and the external magnetic field. Ψ(ω1) can be

represented as an expansion in Legendre polynomials:

Ψ(ω1) =
∞∑
k=0

akPk(cosω1). (18)

The first Legendre polynomial is P1 = cosω1, just like the Zeeman term in Eq. (17), and

the remaining terms can be omitted [22, 23]. Therefore

Ψ(ω1) = a1 cosω1 =

(
µ0µ1Heff

kBT

)
cosω1 (19)

where a1 is the effective Langevin parameter for the particle. Using the YBBGK hierarchy,

it is possible to express Ψ(ω1) through the pair distribution function (PDF) g(1, 2) between

particles 1 and 2. The result is [22, 23]

Ψ(ω1) = α1 cosω1 − ρ
〈∫

dω1

∫
dr12

∫
dΩ2

dβud(1, 2)

dω1

g(1, 2)

〉
2

. (20)
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Here
∫

dω1 means the indefinite integral with respect to ω1 [22], 〈. . .〉2 means an average

over the size of particle 2 according to Eq. (3), and
∫

dΩi . . . means a Boltzmann-weighted

integration over the orientation of particle i with

dΩi =
αi

4π sinhαi
exp (αi cosωi) sinωidωi dξi (21)

and
∫

dΩi = 1. Equation (20) involves integrals of the PDF g(1, 2) over all possible positions

and orientations of particle 2. The PDF is calculated using the so-called λ-expansion starting

from the properties of a reference system [24]; a scaling parameter ε is used here instead

to avoid confusion with the dipolar coupling constant λ. The reference system is the hard-

sphere fluid, and the perturbation is the dipole-dipole interaction energy Ud =
∑

i<j ud(i, j).

The total interaction energy is written Us + εUd, where ε = 1 corresponds to the system of

interest. In the canonical ensemble, the n-particle distribution function is defined as [24]

g(1, 2, . . . , n) =
1

ρn
N !

(N − n)!

∫
d(n+ 1) . . .

∫
dN exp (−βUs − εβUd)∫

d1 . . .
∫

dN exp (−βUs − εβUd)
(22)

where
∫

di =
∫

dri
∫

dΩi. In the present work, the PDF g(1, 2) is calculated up to second

order in ε, with ε = 1:

g(1, 2) = gs(1, 2) +

[
∂g(1, 2)

∂ε

]
ε=0

+
1

2

[
∂2g(1, 2)

∂ε2

]
ε=0

. (23)

The derivatives are determined up to order ρ through standard calculations [24]; the details

are summarized in Appendix A. The evaluation of the necessary terms up to order ρ that

contribute to the parameter a1 is outlined in Appendix B. The main point is that Eqs. (19)

and (20) allows the identification of an effective field felt by particle 1, and the magnetization

curve can be expressed in terms of this quantity as

M(H) = ρ

〈
µ1L

(
µ0µ1Heff

kBT

)〉
1

. (24)

The final expression for the effective field is

Heff = H +
1

3
ML(H) +

1

144
ML(H)

dML

dH

+
µ0ρ

75

(
µ1

kBT

)2〈
µ3

2L(α2)

σ6
12

〉
2

+
1

4π〈σ3〉

(
µ0ρ

kBT

)2〈
µ3

2L(α2)

[
71

72000
µ2

1A(σ1, σ2, σ3) +
(3 ln 2− 7)

360
µ2

3

L(α3)

α3

B(σ1, σ2, σ3)

]〉
2,3

(25)
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where 〈. . .〉2,3 means averages over the sizes of both particles 2 and 3 according to Eq. (3).

The coefficients A and B are complicated geometrical factors involving integrals over the

hard-sphere diameters.

A(σ1, σ2, σ3) =
120〈σ3〉

71

σ12+σ3∫
σ12

dr12

r8
12

(σ13 +σ23−r12)2[r12(r12 +2σ13 +2σ23−3(σ13−σ23)2] (26)

B(σ1, σ2, σ3) =
36〈σ3〉

3 ln 2− 7

 σ12+σ3∫
σ12

dr12

r12+σ13∫
σ23

dr23C(r12, r23)+

∞∫
σ12+σ3

dr12

r12+σ13∫
r12−σ13

dr23C(r12, r23)


(27)

C(r12, r23) =
(r2

12 + r2
23 − σ2

13)3

4r4
12r

7
23

− r2
12 + r2

23 − σ2
13

r2
12r

5
23

. (28)

Factors of 〈σ3〉 are included in Eqs. (25)–(27) so that, in the monodisperse case, A = B = 1.

Finally, the expression for the initial susceptibility is

χ = χL

{
1 +

1

3
χL

(
1 +

λ2Λ2
0

25

)
+

1

144
χ2

L + χ2
Lλ

[
71Λ1

24000
+

(3 ln 2− 7)Λ2

360

]}
. (29)

The coefficients Λ0, Λ1, and Λ2 are related to averages of the magnetic-core and hard-sphere

diameters over the particle-size distribution.

Λ0 =
〈σ〉3

〈x6〉2

√〈
x12

1 x
12
2

σ6
12

〉
1,2

(30)

Λ1 =
〈x12

1 x
12
2 A(σ1, σ2, σ3)〉1,2,3
〈x6〉4

(31)

Λ2 =
〈x6

1x
12
2 x

6
3B(σ1, σ2, σ3)〉1,2,3
〈x6〉4

(32)

Note that all of the coefficients A, B, Λ0, Λ1, and Λ2 are defined so that they are equal to 1

in the monodisperse case; the expressions for the effective field and initial susceptibility are

somewhat simpler than those in the polydisperse case. The initial susceptibility becomes

χ = χL

[
1 +

1

3
χL

(
1 +

λ2

25

)
+

1

144
χ2

L + χ2
Lλ

(
71

24000
+

3 ln 2− 7

360

)]
. (33)

This shows that the correction term ∝ χ2
Lλ

2 is positive, while the term ∝ χ3
Lλ is nega-

tive. Note that this combination of terms decreases the susceptibility of concentrated, high-

susceptibility, monodisperse ferrofluids (for which χL is large). In this work, it is shown that

the corresponding terms for polydisperse ferrofluids with a wide range of parameters lead

to a net increase in χ. Equations (24), (25), and (29) will be referred to as the MMF2+

predictions.
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These results are in no way optimized for a particular particle-size distribution. Although

the Γ-distribution (6) is mathematically convenient, and will be used in what follows, any

other physically reasonable distribution, such as the log-normal distribution, will give similar

results. What is important is the breadth of the particle-size distribution, and whether there

is a significant fraction of large particles with strong dipolar interactions. This is shown

explicitly by considering a polydisperse ferrofluid with a Γ-distribution of particle sizes,

bidisperse ferrofluids with small-particle and large-particle fractions, and a monodisperse

ferrofluid. These different systems are detailed in the next section.

C. Computer simulations

Four different simulation configurations were studied as detailed in Table I, all with a

total of N = 500 particles. A polydisperse ferrofluid was studied with a discretized version

of the particle-size distribution in Eq. (6) with α = 9 and x0 = 1 nm; these are typical

numbers for the concentrated, high-susceptibility, polydisperse ferrofluids that have been

synthesized recently. The procedure for discretizing p(x) was described in Ref. 20. The fluid

was represented by 10 fractions with magnetic-core diameters x = 3, 5, 7, . . . , 21 nm, and

the number of particles in each fraction is given in Table I. The discretization procedure is

designed to minimize the difference between the discretized and the exact averages

〈xn〉 = xn0

n∏
k=1

(α + k). (34)

The deviations of the first six discretized averages are +0.00% (n = 1), +0.28% (n = 2),

+0.63% (n = 3), +0.84% (n = 4), +0.64% (n = 5), and −0.26% (n = 6); these are insignif-

icant. The discretized and exact magnetic-core polydispersity indices s =
√
〈x2〉 − 〈x〉2/〈x〉

are 0.321 and 0.316, respectively. The hard-sphere diameter of each fraction is σ = x+4 nm.

For magnetite particles (Ms = 4.8×105 A m−1) at T = 295 K the dipolar coupling constants

for the separate fractions are in the range 0.00330 ≤ λ ≤ 8.51, and the average dipolar cou-

pling constant as given by Eq. (10) is λ = 1.74. The polydisperse ferrofluid was simulated

at four different concentrations corresponding to saturation magnetizations M(∞) = 25, 50,

75, and 100 kA m−1. The corresponding magnetic volume fractions (5), Langevin suscep-

tibilities (2, 11), number concentrations, and hard-sphere volume fractions (4) are given in

Table II.
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The results for the polydisperse ferrofluid were compared with those for a monodisperse

ferrofluid with the same saturation magnetizations and the same Langevin susceptibilities

at T = 295 K; the corresponding value of the dipolar coupling constant is λ = 1.97. The

magnetic-core diameter and concentrations are given in Tables I and II, respectively.

Finally, two different bidisperse ferrofluids were studied at a single concentration with a

saturation magnetization M(∞) = 75 kA m−1: bidisperse configuration 1, with s = 0.156

and containing 24% of large particles with λ = 3.26; bidisperse configuration 2, with s =

0.200, containing 6% of large particles with λ = 5.82. Both configurations contain small

particles with λ < 1. The details are given in Tables I and II.

It is emphasized that the monodisperse, bidisperse, and polydisperse systems are designed

so that, for a given saturation magnetization and temperature, they have the same Langevin

susceptibility. The aim is to concentrate on deviations from the MMF2 theory, which de-

pends only on χL. For each configuration and concentration, two sets of calculations were

performed: the full magnetization curve M(H) at T = 295 K; and the initial susceptibility

χ over the temperature range 0.75 ≤ T/295 K ≤ 1.10. In all cases, the comparison with

theoretical results for bidisperse and polydisperse ferrofluids is for the precise particle-size

distributions used in the simulations, as detailed in Table I.

MC simulations were carried out in the canonical (NV T ) ensemble in a cubic simulation

cell with periodic boundary conditions applied. The long-range dipole-dipole interactions

were computed using the Ewald summation with conducting boundary conditions. Trans-

lational and orientational moves were attempted separately with maximum displacements

set to achieve acceptance rates of 20% and 50%, respectively. The initial susceptibility was

computed using the fluctuation formula

χ =
µ0

〈
|M |2

〉
3V kBT

(35)

where M =
∑N

i=1µi is the instantaneous magnetization. After equilibration, some ex-

tremely long production runs were carried out, with up to 2.5 × 107 attempted MC moves

per particle. Estimates of statistical errors were calculated using the blocking procedure

described in Ref. 33.
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III. RESULTS

A. Polydisperse ferrofluid

Figure 1 shows the magnetization curves of monodisperse and polydisperse ferrofluids at

T = 295 K over a broad range of external magnetic fields 0 kA m−1 ≤ H ≤ 100 kA m−1,

as measured in MC simulations, and from the MMF2 and MMF2+ theories. In general, for

each concentration, the magnetization curve for the monodisperse ferrofluid has a sharper

change in slope at moderate field strengths than that for the polydisperse ferrofluid. This

is because in the monodisperse ferrofluid, all of the particles are responding equally the

field, while in the polydisperse ferrofluid, the larger particles should be aligned first, and the

smaller particles will only be aligned at very high field strengths. This explains the more

gradual approach to M(∞) in the results for the polydisperse ferrofluid. At the three lowest

concentrations – M(∞) = 25, 50, and 75 kA m−1 – the MMF2 and MMF2+ predictions for

each system are barely distinguishable. At the highest concentration – M(∞) = 100 kA m−1

– the MMF2+ theory for the polydisperse ferrofluid gives a slightly lower value of M for

moderate values of H than does the MMF2 theory, and this is in better agreement with

simulations. Nonetheless, the differences are small, and so the low-H behavior will be

examined in more detail next.

Figure 2 shows the same magnetization curves in the range 0.0 kA m−1 ≤ H ≤

2.5 kA m−1. These data show the linear behavior at low fields, and the onset of non-

linear behavior with increasing H. The key point here is that the MMF2 theory appears

to be slightly more accurate than the MMF2+ theory for the monodisperse ferrofluids with

M(∞) = 25, 50, and 75 kA m−1, while MMF2+ works better for the polydisperse fer-

rofluid at the same concentrations. For both the monodisperse and polydisperse ferrofluids

with M(∞) = 100 kA m−1, the MMF2 theory looks to be more accurate, but in fact the

agreement is not very good in either case, as is shown next.

Figure 3 shows the initial susceptibilities of monodisperse and polydisperse ferrofluids over

a broad temperature range 221.25 K ≤ T ≤ 324.50 K. Note that the MMF2 predictions

are the same for the monodisperse and polydisperse ferrofluids, as they only depend on the

value of χL, which is the same in both cases. At low concentration [M(∞) = 25 kA m−1]

the MMF2+ is a little closer to the simulation results than the MMF2 theory, but the
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differences are small. For the polydisperse ferrofluid at the same concentration, the MMF2+

is clearly better than the MMF2 theory, but there are still significant deviations from the

simulation results. The simulation results show considerable scatter at low temperature,

despite very long simulations; this will be explained below. At intermediate concentrations

[M(∞) = 50 and 75 kA m−1] the MMF2 theory gives good predictions for the monodisperse

ferrofluid, while the MMF2+ theory is reliable for the polydisperse ferrofluid. At the highest

concentration [M(∞) = 100 kA m−1] neither theory works well: although the MMF2 theory

is closer to the simulation results for both the monodisperse and polydisperse ferrofluids,

the deviations at all but the highest temperatures are substantial. The overall theoretical

trend for both the monodisperse and polydisperse ferrofluids is that at low concentration, the

MMF2+ susceptibility is higher than the MMF2 one, and that with increasing concentration,

the order is reversed, with the crossover occurring at lower concentration in the monodisperse

case.

As a further comparison between monodisperse and polydisperse ferrofluids, Fig. 4(a)

shows the ratio of the initial susceptibilities, χpoly/χmono. The MC simulation results show

that: (i) χpoly/χmono approaches 1 with increasing temperature, as the dipolar coupling

constants decrease, and the Langevin susceptibility decreases; (ii) for a given temperature,

χpoly/χmono decreases with increasing concentration, starts from a value greater than 1 at low

concentration, and becomes less than 1 between M(∞) = 75 and 100 kA m−1. The latter

observation agrees with results for four-fraction ferrofluids with ϕm ≤ 0.119 [or M(∞) ≤

57 kA m−1], where χpoly/χmono decreases with increasing ϕm. Now, a glance at Fig. 3 shows

that the MMF2+ prediction is χpoly/χmono > 1 at all concentrations, and moreover the ratio

increases with increasing concentration, which clearly isn’t correct. MMF2 theory is more

accurate for the monodisperse ferrofluids, and therefore the theoretical curves plotted in

Fig. 4(a) are given by the ratio of MMF2+ theory (for the polydisperse ferrofluid) and the

MMF2 theory (for the monodisperse ferrofluid). These curves show reasonable agreement

with simulations at M(∞) = 50 and 75 kA m−1, but deviate from the results at M(∞) = 25

and 100 kA m−1, as per the results in Fig. 3.

To get microscopic insight on these trends, Fig. 5 shows some simulation snapshots of the

systems at low temperature (T = 221.25 K) in zero external field. The particles have been

divided up in to three groups according to the dipolar coupling constants at T = 295 K

listed in Table I: 379 ‘small’ particles with λ ≤ 1; 99 ‘medium’ particles with 1 < λ ≤ 4;
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and 22 ‘large’ particles with λ > 4. λ > 4 is roughly the region where nose-to-tail, chain-

like correlations between dipoles are expected to become important in low-concentration

ferrofluids [34]. The snapshots show that at low temperature and at all concentrations,

the large particles are aggregated, although not in well-defined separate chains, and so a

cluster distribution will not be very informative. Instead, Figs. 6 and 7 show the radial

distribution functions (RDFs) g(r) and the static structure factors S(q), respectively, calcu-

lated separately for each of the small, medium, and large-particle groups at low temperature

(T = 221.25 K) and at infinite temperature (λ = 0) in zero external field. The purpose of

this comparison is to see how much structure there is in the system due to strong dipolar

interactions as compared to hard-sphere interactions alone. Results are shown from both

computer simulations and the theory at the MMF2+ level. In the simulations, g(r) was

calculated in the usual way [33], while the structure factor was calculated using the explicit

reciprocal-space sum S(q) = N−1〈ρ(q)ρ(−q)〉 where ρ(q) =
∑N

i=1 exp (−iq · ri), and results

for equal q = |q| were averaged. The theoretical expression for g(r) in zero field is detailed in

Appendix B, and S(q) = 1+4πρ
∫∞

0
dr r2[sin (qr)/qr][g(r)−1] was determined by numerical

integration.

Considering the simulation results first, Fig. 6 shows that all of the RDFs develop larger

primary and second peaks with increasing concentration, as measured by M(∞). The fine

structure corresponds to the differences between the discretized hard-core diameters in each

fraction. The small-particle RDFs are insensitive to temperature, since the dipolar coupling

constants are low even at low temperature. The medium-particle RDFs are more sensitive

to temperature due to the stronger dipolar interactions. The large-particle RDFs show very

strong clustering at low temperature – although the data are very noisy – and only moder-

ate ordering at high temperature. These trends are mirrored in the static structure factor,

shown in Fig. 7. Again, the results for the small-particle and medium-particle fractions are

much less sensitive to temperature than those for the large-particle fraction. S(q) for the

large particles at low temperature and low concentration shows the familiar small-q increase

expected for chain-like correlations [35]; turning off the dipolar interactions leads to an al-

most total disappearance of non-trivial structure. The extent of large-particle clustering

decreases with increasing concentration, showing that the hard-sphere correlations become

more important. These results confirm that, overall, the dipole-dipole interactions between

the large particles give rise to clustering, while the small and medium particles remain disor-
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dered. The presence of large-particle clusters is responsible for the imperfect convergence of

the MC simulations: it takes a long time for magnetization fluctuations of clusters to relax.

Nonetheless, the particles do not aggregate irreversibly, the clusters continue to evolve (al-

beit slowly), and so the suspension has not coagulated. The ferrofluid is therefore a stable

colloidal suspension.

The comparison between theory and simulation gives some useful insights. The agree-

ment between theory and simulation is quite good at low concentration, but worsens with

increasing concentration due to the truncation of g(r) to terms of order ρ. For the same

reason, the predicted small-q behavior of S(q) is inaccurate because of the omission of long-

range correlations mediated by two or more particles in between a chosen pair of particles

[36, 37]. The theory gets right the general increase in structure with decreasing temperature,

but the details are wrong because of the truncation of the expansion in λ. For the large

particles in systems with M(∞) ≤ 75 kA m−1, the theory does quite well in predicting the

strong increase in structure with decreasing temperature; this is easier to see in the results

for S(q), as the simulation results for g(r) are very noisy.

These results shed some light on the reasons for the relative performance of each theory in

predicting the properties of the polydisperse ferrofluid. At low concentrations, the magnetic

properties of the polydisperse ferrofluid are strongly influenced by the dipole-dipole inter-

actions between the large particles. To describe the orientational correlations arising from

these interactions would require a large number of terms in the expansion in λ, but both

MMF theories are truncated at low order. At high concentrations, the structural properties

of the ferrofluid are dictated by the hard-sphere interactions, but the MMF2 and MMF2+

theories are truncated at low order in ρ, and so they do not give an accurate representation of

the hard-sphere reference system. At intermediate concentrations, neither the hard-sphere

correlations nor the dipolar chain-like correlations between large particles are so pronounced,

and so it seems that the MMF2+ theory is able to give a reasonable account of both within

a perturbative scheme. In fact, the phenomenon of strong dipolar correlations between large

particles having a greater effect at low concentration than at high concentration has been

seen before in the context of centrifugal sedimentation and separation of small and large par-

ticles in ferrofluids [38]. The separation factor describing the segregation of small and large

particles in strong effective gravitational fields is greater at low concentration than at high

concentration, and this can be explained by the large particles forming distinct aggregates
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and sedimenting out at low concentration.

B. Bidisperse ferrofluid

The results from Section III A show that the MMF2 theory works well for the monodis-

perse ferrofluid, and MMF2+ works well for a polydisperse ferrofluid containing a signif-

icant fraction of ‘large’ particles with λ > 4 that aggregate. To determine if this is a

general feature, two bidisperse ferrofluids have been studied at a single concentration of

M(∞) = 75 kA m−1, and with the same Langevin susceptibility as the corresponding

monodisperse and polydisperse ferrofluids (see Table I). Bidisperse configuration 1 contains

24% of particles with λ = 3.26, which is not in the regime where strong cluster formation is

expected. Bidisperse configuration 2 contains 6% of particles with λ = 5.82, which should

form clusters.

Figure 8 shows the full magnetization curves for the monodisperse, bidisperse 1, and

bidisperse 2 configurations at T = 295 K. A direct comparison of the simulation results

[panel (a)] shows that, for a given magnetic field, the magnetization decreases with in-

creasing polydispersity, i.e., from monodisperse, to bidisperse 1, to bidisperse 2. As for the

monodisperse versus polydisperse case, large particles are easily oriented with the field, while

small particles are only aligned at high magnetic fields. In all cases, the MMF2 and MMF2+

predictions are similar to each other [panels (b)–(d)] and generally in good agreement with

the simulation results. In the case of bidisperse configuration 2, the MMF2+ curve is slightly

lower than the MMF2 curve, and closer to the simulation results.

Figure 9 shows the low-H behavior of the magnetization curves. Figure 9(a) shows all

of the simulation results, along with the limiting linear slope calculated using Eq. (35),

showing good consistency. The initial susceptibilities of the monodisperse configuration and

bidisperse configuration 1 are very similar, while that of bidisperse configuration 2 is clearly

much larger. The comparisons with theory [panels (b)-(d)] show that MMF2 theory works

well for the monodisperse configuration and bidisperse configuration 1, and that MMF2+

works best for bidisperse configuration 2.

Figure 10 shows the initial susceptibility over the temperature range 221.25 K ≤ T ≤

324.50 K. The direct comparison of simulation results [panel (a)] shows that bidisperse con-

figuration 2 consistently has a much higher susceptibility than the other two configurations,
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which are very similar to one another over the whole temperature range. The comparisons

with theory [panels (b)–(d)] show that MMF2 is best for the monodisperse configuration

and bidisperse configuration 1, and that MMF2+ is accurate for bidisperse configuration 2.

These results are consistent with those presented in Section III A. When the ferrofluid has

low polydispersity, and therefore does not contain particles large enough to form aggregates,

then the MMF2 theory is most accurate; this is the case for the monodisperse configuration

and bidisperse configuration 1. When the ferrofluid has high polydispersity, and does contain

aggregated large particles, then the MMF2+ theory is most accurate; this is the case for the

polydisperse configuration and bidisperse configuration 2.

The relationship between the initial susceptibilities of the monodisperse and bidisperse

configurations is shown as the ratio χbidi/χmono in Fig. 4(b). Here the simulation results are

compared to both the pure-MMF2+ prediction, and the ratio of the MMF2+ and MMF2

predictions for the bidisperse and monodisperse configurations, respectively. The MMF2+

theory predicts that χbidi/χmono > 1 for both configurations, which is true for bidisperse

configuration 2, but for bidisperse configuration 1, the ratio is almost equal to 1, as would

be expected if χ depended only on χL. The mixed MMF2+/MMF2 curve for bidisperse

configuration 2 agrees well with the simulation results, but the agreement for bidisperse

configuration 1 is less good. Clearly neither approach gets the precise behavior correct for

both configurations.

IV. CONCLUSIONS

A MMF theory of the magnetic properties of concentrated, high-susceptibility ferrofluids

has been completed by derivation of the magnetization curve to supplement the known

expression for the initial susceptibility. The basic approach is to determine the effective

field felt by a particle due to the external magnetic field and the orientational correlations

induced in all of the other particles, and then the magnetization curve is given by the familiar

Langevin expression but with the effective field in place of the external magnetic field. The

accuracy of the new MMF2+ theory is controlled by an expansion of the pair correlation

function, and the final expression for χ contains all terms up to ρ3λ4. The widely used

MMF2 theory only contains terms of order χL, χ2
L, and χ3

L, where χL ∝ ρλ. All of the

results are generalized to take account of particle-size polydispersity, something which is not
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always given the attention it deserves [31].

Both theories have been tested against simulation results for systems with well-defined

particle-size distributions, equal saturation magnetizations, the same Langevin susceptibil-

ities, and over a broad range of temperature. It is found that the MMF2 and MMF2+

theories work best for moderately concentrated monodisperse and polydisperse systems,

respectively. Neither theory is very accurate for the polydisperse ferrofluid at low concen-

tration, although the MMF2+ theory performs much better than the MMF2 theory. This

was shown to be due to the presence of large-particle aggregates stabilized by strong dipole-

dipole interactions, which require extra terms in the expansions of the effective field and the

initial susceptibility. At high concentration neither theory works very well, and this appears

to be due to the strong structuring arising from the short-range repulsions.

The idea that large-particle correlations require extra terms in powers of λ was confirmed

by studying two moderately concentrated bidisperse ferrofluids with the same saturation

magnetization and Langevin susceptibility: one contained large particles which were not

large enough to aggregate, and in this case the MMF2 theory worked best; the other con-

tained large particles which can aggregate, and in this case the MMF2+ theory worked best.

Therefore, the MMF2+ theory captures some of the effects of large-particle aggregation in

polydisperse ferrofluids, but as noted in Section I, including extra terms in λ is not guaran-

teed to give successively better results in the strong-interaction regime. This also applies to

monodisperse ferrofluids with strong dipolar interactions; from the present work, it would

appear that λ ' 2 is moderately large.

The technical reasons for this behavior lie in the values of Λ0, Λ1, and Λ2 in Eq. (29). For

highly polydisperse ferrofluids, Λ0 becomes very large, and it needs the small-and-positive Λ1

term and the large-and-negative Λ2 term for counterbalance, mainly the latter. Therefore,

ferrofluids with a large-particle component are best described with the MMF2+ theory. For

monodisperse ferrofluids, and ferrofluids without a large-particle component, the Λ1 and Λ2

terms tip the balance the other way, and lead to an underestimate of the susceptibility, as

noted at the end of Section II B.

This work provides generally quite reliable theoretical expressions for fitting the magnetic

properties of concentrated ferrofluids down to low temperatures, and with high magnetic

susceptibilities up to χ ∼ 100. Highly concentrated ferrofluids still represent a challenge

due to the need to capture both the dipolar correlations and the short-range correlations in
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the same theoretical framework, but for systems of moderate concentration (here meaning

ϕ <∼ 0.38) the MMF2+ theory looks to be reliable.
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Appendix A: Expansion of g(1, 2)

Differentiation of Eq. (22) with n = 2 brings down factors of Ud and U2
d in to the

integrand. The key step in the expansion of g(1, 2) is to separate out the terms in Ud and

U2
d that depend on the coordinates of particles 1 and/or 2. The dipolar energy itself is easy

enough:

Ud = ud(1, 2) + (N − 2)ud(1, 3) + (N − 2)ud(2, 3) +
1

2
(N − 2)(N − 3)ud(3, 4). (A1)

U2
d is much more complicated, but the end result is

U2
d = u2

d(1, 2) + (N − 2)u2
d(1, 3) + (N − 2)u2

d(2, 3) +
1

2
(N − 2)(N − 3)u2

d(3, 4)

+ 2(N − 2)[ud(1, 2)ud(1, 3) + ud(1, 2)ud(2, 3) + ud(1, 3)ud(2, 3)]

+ (N − 2)(N − 3)[ud(1, 3)ud(1, 4) + ud(2, 3)ud(2, 4)]

+ 2(N − 2)(N − 3)[ud(1, 3)ud(3, 4) + ud(2, 3)ud(3, 4)]

+ (N − 2)(N − 3)(N − 4)ud(3, 4)ud(4, 5)

+ (N − 2)(N − 3)ud(1, 2)ud(3, 4) + 2(N − 2)(N − 3)ud(1, 3)ud(2, 4)

+ (N − 2)(N − 3)(N − 4)[ud(1, 3)ud(4, 5) + ud(2, 3)ud(4, 5)]

+
1

4
(N − 2)(N − 3)(N − 4)(N − 5)ud(3, 4)ud(5, 6).

(A2)

One can check that the total number of terms is [N(N − 1)/2]2, as it should be. With these

expressions, it is straightforward but tedious to determine the derivatives of g(1, 2), using

the definition of the n-particle distribution function in Eq. (22). The first derivative is [24]

[
∂g(1, 2)

∂ε

]
ε=0

= −gs(1, 2)βud(1, 2)− ρ
∫

d3gs(1, 2, 3)[βud(1, 3) + βud(2, 3)]

− 1

2
ρ2

∫
d3

∫
d4[gs(1, 2, 3, 4)− gs(1, 2)gs(3, 4)]βud(3, 4).

(A3)
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The second derivative is much more complex.[
∂2g(1, 2)

∂ε2

]
ε=0

= gs(1, 2)[βud(1, 2)]2

+ ρ

∫
d3gs(1, 2, 3){[βud(1, 3)]2 + [βud(2, 3)]2

+ 2βud(1, 2)βud(1, 3) + 2βud(1, 2)βud(2, 3) + 2βud(1, 3)βud(2, 3)}

+
1

2
ρ2

∫
d3

∫
d4gs(1, 2, 3, 4){2βud(1, 3)βud(1, 4) + 2βud(2, 3)βud(2, 4)

+ 4βud(1, 3)βud(3, 4) + 4βud(2, 3)βud(3, 4) + 4βud(1, 3)βud(2, 4)}

+ ρ2

∫
d3

∫
d4[gs(1, 2, 3, 4)− gs(1, 2)gs(3, 4)]βud(1, 2)βud(3, 4)

+
1

2
ρ2

∫
d3

∫
d4[gs(1, 2, 3, 4)− gs(1, 2)gs(3, 4)][βud(3, 4)]2

+ ρ3

∫
d3

∫
d4

∫
d5[gs(1, 2, 3, 4, 5)− gs(1, 2, 3)gs(4, 5)]

× [βud(1, 3)βud(4, 5) + βud(2, 3)βud(4, 5)]

+ ρ3

∫
d3

∫
d4

∫
d5[gs(1, 2, 3, 4, 5)− gs(1, 2)gs(3, 4, 5)]βud(3, 4)βud(4, 5)

+
1

4
ρ4

∫
d3

∫
d4

∫
d5

∫
d6[gs(1, 2, 3, 4, 5, 6)− gs(1, 2, 3, 4)gs(5, 6)

− gs(1, 2)gs(3, 4, 5, 6)− gs(1, 2)gs(3, 4)gs(5, 6)]βud(3, 4)βud(5, 6)

(A4)

At no point has the thermodynamic limit been considered; these results are exact for a finite

system. It would be easy to simply truncate Eqs. (A3) and (A4) at order ρ, but there is

a subtlety which should be pointed out in connection with the terms proportional to ρ2

and which contain the difference ∆gs(1, 2, 3, 4) = gs(1, 2, 3, 4)− gs(1, 2)gs(3, 4). As discussed

in Ref. 24, one must be careful in taking the thermodynamic limit, because ∆gs(1, 2, 3, 4)

gives a term of O(1/N) which will reduce the prefactor ρ2 to ρ. To see this, it is sufficient

to consider the asymptotic behavior of the distribution functions at low density, and when

particles 1 and 2 are far from particles 3 and 4. The precise definition in Eq. (22), and the

leading-order terms from the virial expansions of gs [24], give

∆gs(1, 2, 3, 4) ≈
(

1− 1

N

)(
1− 2

N

)(
1− 3

N

)
e−βus(1,2)−βus(3,4)

−
(

1− 1

N

)2

e−βus(1,2)−βus(3,4)

' − 4

N
e−βus(1,2)−βus(3,4).

(A5)
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This means that

ρ2

∫
d3

∫
d4∆gs(1, 2, 3, 4)[βud(3, 4)]n = −4ρe−βus(1,2)

∫
dΩ3

∫
d4e−βus(3,4)[βud(3, 4)]n

(A6)

where the position of particle 3 has been integrated out to give a factor of V . This result can

be used for each of the three relevant terms that appear in Eqs. (A3) and (A4). The final

steps are to combine the expansion of g(1, 2) up to order ρ, insert the following approximate

expressions for gs(1, 2) and gs(1, 2, 3),

gs(1, 2) = [fs(1, 2) + 1] + ρ[fs(1, 2) + 1]

∫
dr3fs(1, 3)fs(2, 3) +O(ρ2), (A7)

gs(1, 2, 3) = [fs(1, 2) + 1][fs(1, 3) + 1][fs(2, 3) + 1] +O(ρ), (A8)

collect all terms that contribute to the parameter a1, and discard everything else. The

relevant terms are evaluated in Appendix B.

Note that the expansion of g(1, 2) can be used to calculate the Helmholtz free energy and

hence all other thermodynamic functions [24]. One particularly interesting application is the

determination of the phase diagram. The existence of a purely dipole-driven phase transition

in monodisperse ferrofluids has long been debated: simulations suggest that there is no

phase transition due to extensive chaining and ring formation [39], but that weak isotropic

attractive interactions are sufficient for phase separation even in the strong-aggregation

regime [40]. All standard liquid-state theories – including perturbation theories and integral

equations – predict phase separation with critical temperatures at which it is known that

neither significant particle aggregation nor phase separation occur; the so-called λ-expansion

will be no different. One interesting extension of the current approach could be to thin films

of ferrofluids, in which field-induced transitions to spatially modulated hexagonal and stripe

phases are known [41]; the theory could be used to evaluate the bulk contribution to the

free-energy functional, expressed in terms of the non-uniform particle density.
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Appendix B: Evaluation of g(1, 2) and Ψ

Considering Eqs. (20), (23), (A3), (A4), (A6), (A7), and (A8), there are only five terms

in g(1, 2) up to order ρ that contribute to a1; the rest are therefore irrelevant.

g(1, 2) =
5∑

k=1

Ik + irrelevant terms +O(ρ2) (B1)

The five terms I1–I5 are as follows.

I1 = fs(1, 2) + 1 (B2)

I2 =
1

2
[fs(1, 2) + 1] [βud(1, 2)]2 (B3)

I3 = −ρ [fs(1, 2) + 1]

〈∫
d3 [fs(1, 3) + 1] [fs(2, 3) + 1] [βud(2, 3)]

〉
3

=

(
µ0µ2ρ

kBT

)
[fs(1, 2) + 1]

{
1

3
(µ2 · z) 〈µ3L(α3)〉3

+ [3(r12 · µ2)(r12 · z)− (µ2 · z)] 〈µ3L(α3)G1(r12, σ1, σ2, σ3)〉3

}
(B4)

I4 =
1

2
ρ [fs(1, 2) + 1] [βud(1, 2)]2

〈∫
dr3fs(1, 3)fs(2, 3)

〉
3

=

(
πρ

24r12

)
[fs(1, 2) + 1] [βud(1, 2)]2

×
〈
(σ13 + σ23 − r12)2 [r12 (r12 + 2σ13 + 2σ23)− 3 (σ13 − σ23)2]〉

3
(B5)

I5 =
1

2
ρ [fs(1, 2) + 1]

〈∫
d3fs(1, 3) [fs(2, 3) + 1] [βud(2, 3)]2

〉
3

=

(
3ρ

64π

)(
µ0µ2

kBT

)2

[fs(1, 2) + 1] (r12 · µ2)2

〈
µ2

3

L(α3)

α3

G2(r12, σ1, σ2, σ3)

〉
3

(B6)

Here z is the unit vector aligned along the field direction (the laboratory z axis) and the

auxiliary functions are as follows.

G1(r12, σ1, σ2, σ3) =


0 0 ≤ r12 < σ12∫ r12+σ13
σ23

H1(r12, r23, σ1, σ2, σ3)dr23 σ12 ≤ r12 < σ12 + σ3∫ r12+σ13
r12−σ13 H1(r12, r23, σ1, σ2, σ3)dr23 r12 ≥ σ12 + σ3

(B7)

H1(r12, r23, σ1, σ2, σ3) =
[σ2

13 − (r12 − r23)2][σ2
13 − (r12 + r23)2][σ2

13 − (r2
12 + r2

23)]

32r3
12r

4
23

(B8)

24



G2(r12, σ1, σ2, σ3) =


0 0 ≤ r12 < σ12∫ r12+σ13
σ23

H2(r12, r23, σ1, σ2, σ3)dr23 σ12 ≤ r12 < σ12 + σ3∫ r12+σ13
r12−σ13 H2(r12, r23, σ1, σ2, σ3)dr23 r12 ≥ σ12 + σ3

(B9)

H2(r12, r23, σ1, σ2, σ3) =
(r2

12 + r2
23 − σ2

13)3

4r3
12r

7
23

− r2
12 + r2

23 − σ2
13

r12r5
23

(B10)

On substituting g(1, 2) in to Eq. (20), five terms corresponding to I1–I5 will appear, such

that

Ψ(ω1) = α1 cosω1 +
5∑

k=1

Ψk(ω1). (B11)

The five terms Ψ1(ω1)–Ψ5(ω1) are as follows.

Ψ1(ω1) =
ρ

3

(
µ0µ1

kBT

)
〈µ2L(α2)〉2 cosω1 =

(
µ0µ1

kBT

)[
1

3
ML(H)

]
cosω1 (B12)

Ψ2(ω1) =
( ρ

48π2

)(µ0µ1

kBT

)3

×
〈
µ3

2

σ6
12

{
L(α2)

25
P1(cosω1) +

[
L3(α2)

105α2

− L(α2)

525

]
P3(cosω1)

}〉
2

(B13)

Ψ3(ω1) =

(
µ0ρ

3kBT

)2

µ1 cosω1

×
〈
µ2

2µ3L(α3)

{
L2(α2) +

(σ1σ2 + σ2σ3 + σ1σ3)3

160σ3
12σ

3
23

[
L(α2)

α2

− 2

]}〉
2,3

'
(
µ0µ1

kBT

)[
1

144
ML(H)

dML(H)

dH

]
cosω1 (B14)

Ψ4(ω1) =
71

2880

(
ρ2

4π〈σ3〉

)(
µ0µ1

kBT

)3

×
〈
µ3

2A(σ1, σ2, σ3)

{
L(α2)

25
P1(cosω1) +

[
L3(α2)

105α2

− L(α2)

525

]
P3(cosω1)

}〉
2,3

(B15)

Ψ5(ω1) =
3 ln 2− 7

360

(
µ0ρ

kBT

)2(
µ0µ1

4π〈σ3kBT 〉

)
cosω1

×
〈
µ3

2µ
2
3B(σ1, σ2, σ3)L(α2)

L(α3)

α3

〉
2,3

(B16)

The exact expression for Ψ3(ω1) is more complicated than the usual result from the MMF2

theory, but for all of the monodisperse and polydisperse systems studied, the numerical

values coincide almost exactly, and so the simpler MMF2 result is written in Eq. (B14). In

Eqs. (B12)–(B16), Lj(z) = 1−jL(z)/z, and the functions A and B are given in Eqs. (26) and

(27), respectively. Note that Ψ1(ω1), Ψ3(ω1), and Ψ5(ω1) are all proportional to cosω1, and

so they contribute entirely to the effective Langevin parameter a1 in Eq. (19). Ψ2(ω1) and

25



Ψ4(ω1) each contain terms proportional to P1(cosω1) and P3(cosω1), but only the prefactors

of the first Legendre polynomial cosω1 contribute to the effective Langevin parameter a1.

Combining Eqs. (19) and (B11) gives the effective field in Eq. (25).

In Section III A, the approximate expression for g(1, 2) given in Eq. (B1) is used to con-

struct the zero-field radial distribution functions for small-particle, medium-particle, and

large-particle fractions in a polydisperse ferrofluid, and the results are compared with sim-

ulations. In zero field, I3 = 0 (B4) because it depends on ud(2, 3) which disappears on

orientational averaging. All of the ‘irrelevant terms’ in Eq. (B1) are also equal to zero ex-

cept one – the hard-sphere three-body term of order ρ given in Eq. (A7). The final expression

is of the form

g(1, 2) =

〈∫
dΩ1

∫
dΩ2 (I1 + I2 + I4 + 2I5) + ρ[fs(1, 2) + 1]

∫
dr3fs(1, 3)fs(2, 3)

〉
1,2

(B17)

where the factor of 2 in I5 comes from topologically equivalent contributions involving

[ud(1, 3)]2 and [ud(2, 3)]2.
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TABLE I. Particle-size distributions in the ferrofluids studied in this work. x is the magnetic-core

diameter, Ni is the number of particles in a fraction, and λ is the dipolar coupling constant for

magnetite particles at T = 295 K. For each fraction, λ = µ0µ
2/4πkBTσ

3 where µ = πx3Ms/6 is

the dipole moment on a particle, and σ = x+ 4 nm is the hard-sphere diameter. The bottom row

gives the average dipolar coupling constant (10).

Monodisperse Bidisperse 1 Bidisperse 2 Polydisperse

Fraction Ni x/nm λ Ni x/nm λ Ni x/nm λ Ni x/nm λ

1 500 13.934758 1.97 380 11.434970 0.943 470 9.974882 0.560 4 3 0.00330

2 120 16.008959 3.26 30 18.841444 5.82 38 5 0.0332

3 100 7 0.137

4 129 9 0.375

5 108 11 0.814

6 66 13 1.52

7 33 15 2.58

8 14 17 4.04

9 5 19 6.00

10 3 21 8.51

Average 1.97 1.89 1.71 1.74
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FIG. 1. Full magnetization curves of monodisperse [(a), (c), (e), (g)] and polydisperse [(b), (d),

(f), (h)] ferrofluids at T = 295 K and various concentrations: (a) and (b) M(∞) = 25 kA m−1; (c)

and (d) M(∞) = 50 kA m−1; (e) and (f) M(∞) = 75 kA m−1; (g) and (h) M(∞) = 100 kA m−1.

The points are from MC simulations, the solid lines are from MMF2 theory, and the dashed lines

are from MMF2+ theory.
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FIG. 2. Low-field magnetization curves of monodisperse [(a), (c), (e), (g)] and polydisperse [(b),

(d), (f), (h)] ferrofluids at T = 295 K and various concentrations: (a) and (b) M(∞) = 25 kA m−1;

(c) and (d)M(∞) = 50 kA m−1; (e) and (f)M(∞) = 75 kA m−1; (g) and (h)M(∞) = 100 kA m−1.

The points are from MC simulations, the solid lines are from MMF2 theory, and the dashed lines

are from MMF2+ theory.
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FIG. 3. Initial susceptibility as a function of temperature for monodisperse [(a), (c), (e), (g)]

and polydisperse [(b), (d), (f), (h)] ferrofluids at various concentrations: (a) and (b) M(∞) =

25 kA m−1; (c) and (d) M(∞) = 50 kA m−1; (e) and (f) M(∞) = 75 kA m−1; (g) and (h)

M(∞) = 100 kA m−1. The points are from MC simulations, the solid lines are from MMF2

theory, and the dashed lines are from MMF2+ theory.
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FIG. 4. The initial susceptibilities for (a) polydisperse and (b) bidisperse ferrofluids divided by

those for monodisperse ferrofluids at various concentrations. The points are from MC simulations,

the solid lines in (a) and (b) are from MMF2+ theory for the polydisperse/bidisperse ferrofluids

and MMF2 theory for the monodisperse ferrofluids, and the dashed lines in (b) are from MMF2+

theory for all ferrofluids.
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FIG. 5. Simulation snapshots for the polydisperse ferrofluid in zero field and at T = 221.25 K: (first

row) M(∞) = 25 kA m−1; (second row) M(∞) = 50 kA m−1; (third row) M(∞) = 75 kA m−1;

(fourth row) M(∞) = 100 kA m−1. The first column shows all of the particles, the second column

shows the small particles, the third column shows the medium particles, and fourth column shows

the large particles.
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FIG. 6. Radial distribution functions of polydisperse ferrofluids at [(a), (c), (e)] T = 221.25 K

and [(b), (d), (f)] T =∞, and various concentrations: (a) and (b) small (S) particles; (c) and (d)

medium (M) particles; (e) and (f) large (L) particles. Results are shown for M(∞) = 25 kA m−1,

50 kA m−1, 75 kA m−1, and 100 kA m−1 as indicated, and are separated from one another by one

unit for clarity. Simulation results are shown as solid lines and the MMF2+ predictions are shown

as dashed lines.

0

2

4

6

g
S
(r

)

(a)

M(∞) = 100 kA m
−1

M(∞) = 75 kA m
−1

M(∞) = 50 kA m
−1

M(∞) = 25 kA m
−1

(b)

(c)

0

3

6

9

g
M

(r
)

(d)

0 10 20 30 40 50

r (nm)

0

4

8

12

g
L
(r

)

(e)

0 10 20 30 40 50

r (nm)

(f)

36



FIG. 7. Static structure factors of polydisperse ferrofluids at [(a), (c), (e)] T = 221.25 K and

[(b), (d), (f)] T = ∞, and various concentrations: (a) and (b) small (S) particles; (c) and (d)

medium (M) particles; (e) and (f) large (L) particles. Results are shown for M(∞) = 25 kA m−1,

50 kA m−1, 75 kA m−1, and 100 kA m−1 as indicated, and are separated from one another by one

unit for clarity. Simulation results are shown as solid lines and the MMF2+ predictions are shown

as dashed lines.
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FIG. 8. Full magnetization curves of monodisperse and bidisperse ferrofluids at T = 295 K and

with M(∞) = 75 kA m−1: (a) all simulation results; (b) monodisperse configuration; (c) bidisperse

configuration 1; (d) bidisperse configuration 2. The points are from MC simulations, the solid lines

are from MMF2 theory, and the dashed lines are from MMF2+ theory.
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FIG. 9. Low-field magnetization curves of monodisperse and bidisperse ferrofluids at T = 295 K

and with M(∞) = 75 kA m−1: (a) all simulation results; (b) monodisperse configuration; (c)

bidisperse configuration 1; (d) bidisperse configuration 2. The points are from MC simulations, in

(a) the lines are the linear parts of the magnetization curves with the initial susceptibility calculated

using Eq. (35), and in (b)–(d) the solid lines are from MMF2 theory, and the dashed lines are from

MMF2+ theory.
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FIG. 10. Initial susceptibility as a function of temperature for monodisperse and polydisperse

ferrofluids with M(∞) = 75 kA m−1: (a) all simulation results; (b) monodisperse configuration;

(c) bidisperse configuration 1; (d) bidisperse configuration 2. The points are from MC simulations,

the solid lines are from MMF2 theory, and the dashed lines are from MMF2+ theory.
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