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Abstract:

Zn isotope is a useful tool for tracing biogeochemical processes as zinc plays

important role in the biogeochemistry of natural systems. However, Zn isotope

composition in the lake ecosystems has not been well characterized. This study aim to

investigate the Zn isotope compositions of suspended particulate matter (SPM) and

biological samples collected from the Aha Lake and Hongfeng Lake, and their

tributaries in summer and winter, in order to explore the potential of this novel isotope

system as a proxy for biogeochemical processes in aqueous environments.

Concentration of dissolved Zn ranged from 0.65 to 5.06 ug/L and 0.74 to 12.04 ug/L

for Aha Lake and Hongfeng Lake respectively, while the SPM-Zn ranged from 0.18 to

0.70 mg/g and 0.24 to 0.75 mg/g for Aha Lake and Hongfeng Lake respectively. The

Zn isotope composition in SPM from Aha Lake and its main tributaries ranged from

-0.18%o to 0.27%0 and -0.17%o to 0.46%o respectively, and it varied from -0.29%o to 0.26%o

and -0.04%o. to 0.48%. respectively in Hongfeng Lakes and its main ftributaries,

displaying a wider range in tributaries than lakes. From the results and discussion,

they implied that Zn isotope composition mainly affected by tributaries inputting in Aha

Lake, while adsorption process by algea was major factor for the Zn isotope

composition in Hongfeng Lake, and ZnS precipitation leads to the light Zn isotope

composition of SPM in summer. These data and results provide the basic information

of the Zn isotope for the lake ecosystem, and promote the application of Zn isotope in

biogeochemistry.

Key words: Zn isotope composition; SPM (Suspended particulate matter); Lake;
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Tributary

1. Introduction

With the development of MC-ICP-MS, transition metal isotopes have received

increasing attention over the last 15 years, and have been successfully applied to trace

biogeochemical processes (Luck et al., 1999; Beard et al., 2003; Weiss et al., 2007; Viers

et al., 2007; Mattielli et al., 2009; Bigalke et al., 2010; Mathur et al.,2005, 2012; Blatter et

al., 2015; Li et a., 2015; Song et al., 2011; Reddy et al., 2015 ). As one of the second most

abundant transition metal elements, Zn occurs widely in the atmosphere, soil, rivers,

plants and animals (Hutchinson., 1957; Matthys., 1975; Alloway et al., 2004), and is also a

critical element for biological functioning (Brand et al., 1983; Olhaberry et al., 1983;

Shankar and Prasad, 1998; Hambidge, 2000; Andreini et al., 2006). It has also been

demonstrated that Zn participates in multiple biological processes, notably as cofactor in

enzymatic photosynthetic reactions (Frausto J J R, 1991). In particular, Zn is a cofactor in

the carbonic anhydrase enzyme that catalyzes the conversion between HCO5; and CO,

(Brown et al., 1993, Lippard S J, 1994; Nimer N A, 1995). However, it also has detrimental

effects on living organisms when present at high concentration (Cloquet et al., 2006).

The fractionation mechanism of Zn isotopes has been studied by many scientists,

who have identified three main processes that cause Zn fractionation (Budd et al., 1999;

Maréchal et al., 2002a,b; Zhu et al., 2002; Stenberg et al., 2004; Weiss et al., 2005;

Pokrovsky et al., 2005; Gélabert et al., 2006; Bryan et al., 2015). Firstly, Zn isotope can be

www.earth-science.net



O©oo~NOOOPRWN -

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Journal of Earth Science

fractionated during plant uptake (Weiss et al., 2005; Vance et al., 2006) and adsorption
processes (Gélabert et al., 2006; Pokrovsky et al., 2005; Kafantaris S C V., 2014).
Secondly, zinc adsorption on soil, Mn oxyhydroxide, kaolinite and sediments is an another
factor of isotope fractionation (Cacaly et al.,2004; Rousset et al., 2004; Pokrovsky et
al.,2005; Bryan et al.,, 2015; Guinoiseau et al., 2016). Finally, zinc isotope can
fractionation during the sphalerite precipitated from the solution or rock material, and also
can fractionation during different Zn species, like sulfide, chloride and carbonate (Archer
et al., 2004, Wilkinson et al., 2005; John et al., 2008; Jujii., 2011 & 2012). Generally
speaking, the range of 5%€Zn values in geological materials on Earth is between -0.91%. to
1.04%0 (Luck et al., 1999; Maréchal et al., 2000; Mattielli et al., 2009; Pichat et al., 2003;
Dolgopova et al., 2006; Weiss et al., 2007; John et al.,2007; Mason et al., 2005, little et al.,
2016), and it is relatively narrow compare to the lunar samples(-3.83%. to 6.89%.)(Monyier
et al., 2006).

The Zn isotope composition of different materials collected from atmosphere, soll,
sediment, ocean, and river, has been analyzed and applied to trace sources of Zn
(Maréchal et al., 1999; Maréchal et al., 2000; Dolgopolova et al., 2006; Cloquet et al.,
2006; Berimin et al., 2006; Weiss et al., 2007; Sivry et al., 2008; Mattielli et al., 2009; Chen
et al., 2009; Thapalia, et al., 2010). It was found that the Zn isotope composition in rainfall
is lighter than in carbonatite as early as 1999 (Luck et al., 1999). Zn isotope composition
were also combined with lead isotope ratios to trace that the Zn in lichen and birch at
Orlovka—Spokoinoe mining district, Eastern Transbaikalia, Russia, mainly comes from the

mining area (Dolgopolova et al., 2006). Zn isotopes were investigated in a variety of
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stream waters draining mining districts located in the United States and estuary in pairs,
and it demonstrated that Zn isotopes maybe used to probe biogeochemical processes
(Borrok et al., 2008; Chen et al., 2009). The Zn isotope composition of soils shows that
mining areas are a source of heavy metal pollution (Bigalke., et al., 2010). Zn isotope
composition of snow, ice and atmosphere indicate that 5%Zn is useful tool in pollution
provenance (Mattielli et al., 2009; Voldrichova., et al, 2014). In addition, Zn isotopes
composition was also studied in the Ocean to trace the Zn biogeochemical cycle (John et
al., 2004; John et al., 2014; Zhao et al., 2014; Little et al., 2016).

However, Zn isotope composition in the lake ecosystem has not been well
characterized, besides the research from the eutrophic Lake Greifen, Switzerland (Peel et
al., 2009). Accordingly, there is still much work to be done before using Zn isotopes to
unravel biogeochemical cycling of Zn in the lake ecosystem successfully. Lakes are easily
accessible natural laboratories with well-established biogeochemical processes (Sigg et
al., 1985). This work aims to investigate the Zn isotope composition of suspended particle
matter (SPM) in Aha Lake and Hongfeng Lake, both are eutrophic and seasonal anoxic
lakes, and located at the southwest suburb of Guiyang, Guizhou Province, China. SPM of
lakes is a mixture of organic and inorganic detritus, Fe-Mn oxhydroxides, clay minerals,
carbonates, phytoplankton, zooplankton, bacteria, and other particles that are retained on
0.45 pm pore size filter. SPM can affect transportation and transformation of trace
contaminants among water, sediment and the food chain, hence it is a critical chemical
component of the biogeochemical cycling in lakes (Odman et al., 1999; Turner and

Millward, 2002). The Zn isotopic compositions of SPM in Hongfeng and Aha Lakes and
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their tributaries were investigated in this research, to assess the behavior of zinc isotopes
composition during biogeochemical processes in the aqueous environment.
2. Study background and sample collection
2.1 study site

Aha and Hongfeng are artificial river interception reservoirs located in southwest of
Guiyang city about 8 km and 31.5 km respectively, in a subtropical humid monsoon
climate zone. The catchments are characterized by low rainfall and river discharge during
winter and spring, whereas high temperatures in summer and autumn bring more rainfall
and high river flow (Table1). They are both seasonally anoxic reservoirs. Aha lake covers
an area of 4.5 km? ,with a total water volume of 4.45x 10" m®. The average and maximum
depths are 13 m and 24 m, respectively. The residence time of lake water is about 0.44
year. The watershed area is 190 km? with an average annual precipitation of 1109 mm,
and the average annual temperature is 13.8-15.5 °C. Previously, more than 200 coal
mines were widely distributed in the watershed, where significant amount of acid mining
drainages and dump filtrates were produced. There are six main rivers flowing through the
watershed area including five inflowing tributaries, Youyu River (YYR), Caichong River
(CCR), Lannigou River (LNR), Baiyan River (BYR) and Sha River (SR), and only one
draining river, Xiaoche River (XCR) (Fig1). YYR and BYR are mainly polluted by coal
mines, CCR and LNGR are mainly polluted by domestic sewerage, and SR polluted by
industrial and domestic sewerage. The surface of lake water is colonized by sparse
diatoms and cause eutrophication in summer.

Hongfeng Lake covers an area of 57.2 km? and much bigger than Aha lake, its
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reservoir storage capacity is 6.01 X 10°m?, with a drainage area of 1596 km?, the water
residence time is about 0.33 year. The average and maximum water depth is 10.52 m and
45 m, respectively. Hongfeng Lake consists mainly of two areas: the North Lake and the
South Lake, and there are six main tributaries flowing through the watershed area,
including five inflowing tributaries, YCR (Yangchang River), MXR (Maxian River), HLR
(Houliu River), MBR (Maibao River), THYR (Tachuayuan River), and one draining river,
MTR (Maotiao River) (Fig 1). The discharges of YCR and THYR are larger than others
among these tributaries. The industrial wastewater pollution constitutes a more serious
impact on the water quality of Hongfeng Lake. In particular, the fertilizer plant of Guizhou
is the most serious polluting enterprise, it discharges lots N, P into the lake every year.
Accordingly, the lake becomes eutrophic in the spring and summer, as evident from the
presence of cyanobacteria and algea.
2.2 Sampling

Samples were mainly collected in Aha Lake and Hongfeng Lake and their tributaries
(Fig 1). For the Aha Lake, samples were collected at AHLJK (Liang Jiang Kou) as the
upstream site and AHDB (Da Ba) as the downstream site. For Hongfeng Lake, samples
were collected along the flow direction from south to north, with HFHW (Hou Wu) site of
South Lake and HFDB (Da Ba) site of North Lake. The samples were collected with
stratified collection at each site; sampling interval with water depth in each site is slightly
different, but generally ranged between 3 and 5 meters. Samples of all tributaries were
collected at sites near the lake but far away from living areas. All samples were collected

in August 2006 (summer) and January 2007 (winter). The algea samples were collected

www.earth-science.net
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using nylon net from the surface of the Maxian River (MXR).

All collection wares used in the field were carefully cleaned. Polyethylene bottles,

tubes for sample collectors were all soaked in 6 N HCI (GR) for more than three days and

then rinsed with 18.2 Q Milli-Q water. Bottles for sampling were pre-rinsed with the

corresponding water samples three times prior to sampling. A multi-parameter sensor was

used for determining the pH, water temperature (T), and DO (dissolved oxygen). Water

samples for measurement of Zn isotope composition of SPM were collected in 10 liters

polyethylene barrels; water samples for determining the concentration of SPM,

concentration of Zn and Al in SPM, and speciation of SPM were collected in 1.5 L

polyethylene bottles; water samples for analyzing chlorophyll were collected in 50 ml

brown glass bottles with two drops of HgCl, to prevent metabolic activity. Samples for

analyzing the dissolved Zn were filtered with 0.45 pm Millipore membrane filter in the field

and acidified to pH<2 with ultra-pure HNO3. All samples were transported to laboratory as

soon as possible after collection.

3. Sample preparation for Zn isotope analysis

The sample preparation work was carried out in a clean room. All the critical work

including sample filtration, digestion and purification was completed in class 100 laminar

flow hoods. Hydrochloric acid (HCI) was distilled twice in quartz sub-boiling still,

Hydrofluoric acid (HF) and Nitric acid (HNOj3) were distilled with Teflon two-bottle setup.

Milli-Q water (18.2 MQ) was used throughout the procedures. The filters were treated

three times with 1 N HCI (double-distilled), rinsed with Milli-Q water (18.2 MQ), and then

dried at 50°C in an oven and weighted. After those processes, the blank of filters is as low

www.earth-science.net
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as 0.001 ug/L and can be negligible.
3.1 Sample preparation

The SPM for measurement of Zn isotope composition was isolated by collecting SPM
both deposited either on Millipore HA membrane filter (100 mm, 045 um) or particulate
matter that settled at the bottom of the container. The filters with SPM were stored in
polyethylene tubes in a fridge. The sample for measuring the concentration of SPM, the
speciation of SPM and concentration of Zn and Al in SPM was also filtered through
Millipore HA membrane filter (45 mm, 0.45 ym), then dried at 50°C in the oven, and
weighed. The volume of water filtered was recorded to calculate the concentration of SPM.
Samples for determination of chlorophyll were filtered and chlorophyll quantified following
the acetone extraction spectrophotometric method (Barnes et al., 1992). Algea samples
were cleaned and dried in a freeze dryer, and then ground to 50 meshes for digestion and
8%Zn analysis.

The speciation of SPM was determined following a sequential extraction procedure
(Tessier, et al, 1979). For this, we only extracted three fractions, including adsorption,
exchangeable and carbonate bound (AEC) fraction using pH=2 HCI, bound to organic
matter fraction using 30% H,O, (pH=2), and residual fraction. The extracted solution was
evaporated on a hot plate and the solid residue was digested, and then all of them were
dissolved in 2% HNOj; for analysis.

3.2 Sample digestion
All SPM and algea samples for zinc isotope measurement, concentration of Zn, Al, and

the residual fraction of SPM were digested. These samples were soaked with 3 ml aqua

www.earth-science.net
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regia and 0.5 ml concentration HF for 48h in acid-cleaned Teflon beakers (7 ml, Savillex).

The beakers were placed on a hot plate and dried at 80°C. Another 3 ml aqua regia and

0.5 ml concentration HF were added and the closed beaker was placed on a hot plate for

72h at 140°C for digestion. The procedure was repeated until the particles were

thoroughly digested. After samples were digested thoroughly, solutions of sample were

left on the hot plate to dry at 80°C. For the zinc isotope measurement samples, the last

step was sequentially repeated three times with 0.5 ml concentrated HCI to eliminate

HNO3; and HF, and then the residue re-dissolved in 7 N HCI+0.001% H,0O, for chemical

purification. Other samples were just re-dissolved in 2% HNO; for analysis.

3.3 Chemical purification

Chemical purification was carried out using procedures similar to those of Maréchal

et al. (1999), Ding et al., (2006) and Tang et al. (2006), with slight modifications. Details

are as follow: Anion-exchange chromatography was performed with polypropylene

column (Bio-Rad, diameter: 6.8 mm, height 4.3 cm) filled with AG MP-1 resin (Bio-Rad,

100-200 mesh, chloride form). The resin was first cleaned with 2 ml 0.5M HNO;

alternating with 10 ml 18.2 MQ Milli-Q water three times. Then 5 ml Milli-Q water was used

to ensure that the HNO3; was thoroughly removed. The resin was then continuously

pre-conditioned with 5 ml 7 N HCI+0.001%H,0, and 4 ml 7 N HCI+0.001%H,0,. Then the

prepared samples were loaded on the resin and the matrix were striped with 35 ml 7 N

HCI+0.001%H,0,; Fe was eluted with 20 ml 2 N HCI+0.001%H,0,, and Zn was eluted

with 10 ml 0.5 N HNO3. The Zn eluate was evaporated to dry on a hot plate at 80°C and

dissolved in 0.1 N HNO; to a concentration of 100 to 200 pg/L for isotope analysis. The

10
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recoveries of Zn for all samples were nearly 100%, so the Zn isotope fractionation can be
avoid during the purification process (Maréchal et al., 2002b). The procedural blanks
including digestion, column purification and evaporation were always less than 0.11% of
the total Zn extracted from the samples.
3.4 Mass spectrometry

The concentration of dissolved Zn was analyzed on Quadrupole ICP-MS (GV
Instruments), and the concentration of Zn and Al in SPM was analyzed on ICP-OES
(Varian vista MPX). The Zn isotope composition was analyzed on Nu Plasma instrument
HR MC-ICP-MS at Laboratory of isotope Geology, MLR, Institute of Geology, CAGS,
Beijing, China. The Zn samples and standard Zn sample, with concentrations ranging
from 100 to 200 ug/L in 0.1 N HNOj, were introduced to the argon plasma via a
desolvation nebulizer DSN-100 system, with gas flow rates of 50-100 pL/min. The typical
ion beams for 200 ug/L Zn solutions of both standards and samples were 4-6 V on ®Zn
and the blanks were always below 0.005 V. The standard-sample bracketing (SSB)
method has been used throughout the study to minimize the instrumental mass bias and
the standard-sample concentrations matched within 5%. The performance of the
instrument was assessed by repetitive measurements of an internal lab standard (GSB-Zn)
relative to the Zn isotope reference material Romil. The average Zn isotope values for
GSB Zn is 5°°Zn =6.96+0.11%0, 5°'Zn =10.4+0.23 8%Zn=13.2%:+0.22 (2SD) in high
resolution mode under optimized conditions. The long-term instrumental reproducibility
defined from the 7 months' replicate analyses are 0.11%o for 5°°Zn, 0.23%, for 5°’Zn and
0.22 for 5°®Zn. The detailed conditions and the performance of isotope measurements

11
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were described in Li et al. (2008) and Gao et al. (2014).

Zn isotope data was reported in 5*Zn (5%°Zn, 5%Zn) as parts per thousand deviations
relative to JMC 3-0749. All the 3%*Zn and §°°Zn values obtained in this study followed the
theoretical mass-dependent fractionation line, with a formula of

5%%7Zn=1.976x5%Zn+0.0005(R*=0.9998).

[ 66 7. )
64
ZH sample

(66 Z% )
“n Jic

— 1] %1000

66 _
o Znﬂ/C =

4. Results
4.1 Temperature, DO (Dissolved Oxygen), pH and chlorophyll in Aha Lake and
Hongfeng lakes, and their tributaries.

Environment parameters are summarized in Table 1, and plotted in Figs. 2 and 3. In
summer thermal stratification was observed in August with a temperature gradient of ca.
10°C in Aha Lake. The thermoclines were located at a water depth ca. 10m for AHDB and
ca. 6m at for AHLJK station. Dissolved oxygen declined sharply below the thermoclines,
with average concentration ca.1.2 mg/L in Aha Lake, and there was also a marked
decrease in pH of ca. 0.5 units below the thermocline for AHDB profile. However, there
were no clear depth-dependent variations in temperature, DO and pH in the winter both
for AHDB and AHLJK profiles (Fig 2). Moreover the temperature gradient was ca. 6°C
from surface water to thermocline for Hongfeng Lake, and the thermocline was located at
a water depth ca. 12m for HFHW station in summer. DO was also almost depleted under

the thermocline, with average concentration of 2.0 mg/L, and hypoxic conditions prevailed
12
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in summer. There was also marked decrease of ca. 2 units in the deep layers at Hongfeng.

However, there were also no clear depth-dependent variations in temperature, dissolved

oxygen and pH in the winter for Hongfeng Lake in winter (Fig 3).

The concentration of chlorophyll was measured for both Aha Lake and Hongfeng

Lake. In summer, the concentration of chlorophyll was very high, reaching 42.1 ug/L at

surface water, with marked decreasing to 5.2 pg/L at the bottom for HFHW station, while

the concentration of chlorophyll varied from 11.1 to 2.1 ug/L for AHDB station. It is

apparent that eutrophication occurred at the surface of Hongfeng Lake in summer (Figs 2

and 3).

Temperature, DO and pH were also measured for all tributaries. The temperatures of

most tributaries were similar to that of the thermocline of the lake, and concentrations of

DO for most rivers in summer were lower than in winter.

4.2 SPM concentration, Zn in dissolved and SPM, and speciation Zn in SPM for Aha

Lake and Hongfeng Lake.

The average concentration of SPM was 1.88 and 2.73 mg/L in summer for AHDB and

AHLJK profiles respectively, it was higher than in winter(average is 1.02 and 0.98 mg/L for

AHDB and AJLJK respectively), and it decreased with increasing water depth in summer.

Similarly, the average concentration of SPM was 2.79 mg/L in summer for HFHW, it was

also higher than in winter (average is 1.96 mg/L), and the concentration was higher at the

surface than bottom in summer (Tables 1 and 2, Figs 2 and 3.).

Dissolved Zn ranged from 0.65 to 5.06 ug/L and 0.74 to 12.04 ug/L for Aha Lake and

Hongfeng Lake respectively, the SPM-Zn ranged from 0.18 to 0.70 mg/g and 0.24 to 0.75

13
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mg/g (Figs 2 and 3). Generally speaking, the concentration of Zn in Hongfeng Lake was

higher than in Aha Lake, but dissolved Zn concentration did not exceed regulatory limits in

both lakes, in contrast to Yellow River and Greece Kalloni bay (Hong et al, 2006; Gaverill

et al., 2005). Dissolved Zn was slightly higher in winter than in summer, but there was no

significant variation with water depth for Aha Lake. Meanwhile, average of SPM-Zn in

summer was very similar to that in winter. Dissolved Zn in winter was higher than in

summer for Hong Lake, which was similar to Aha Lake; while average of SPM Zn in

summer was slightly higher than in winter for Hongfeng Lake (Fig 2 and 3).

The speciation of Zn in SPM also was determined. It was found that AEC-bound Zn

ranged from 57.4 to 94.7% and 29.1 to 90.1% for Aha and Hongfeng Lake respectively

(table2 and Fig4). The percentage of organic bound Zn averaged 17.1% in summer,

higher than average 7.4% in winter for AHDB station. In addition, the percentage of

organic bound Zn reached 53.1% at subsurface water and averaged 14% in summer for

HWFW station, higher than the average 7.4% in winter at Hongfeng Lake, which is

analogous to HFHW station.

Concentration of SPM, dissolved Zn and SPM-Zn varied significantly in time and

space (Table 3). For Aha Lake, SR and YYR had the higher SPM (78.03 mg/L and 65.93

mg/L) and YYR (18.07 ng/L) had the highest dissolved Zn content than other rivers. The

concentrations of SPM and dissolved Zn in summer were higher than in winter for most

rivers, and concentration of SPM-Zn varies between summer and winter. In addition,

average dissolved Zn (5.3 pg/L) and SPM-Zn (0.51 mg/g) of Aha tributaries were higher

than Aha Lake (2.03 pg/L and 0.36 mg/g, respectively). For Hongfeng Lake, THYR had
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highest SPM (9.4 mg/L) and dissolved Zn content (14.78 ug/L) concentration than other
rivers. The concentration of dissolved Zn in winter was higher than in summer for most of
rivers, and THYR also had the highest SPM-Zn content (2.9 mg/g). Moreover, average
dissolved Zn (4.63 ug/L) in Aha lake was similar to that in Hongfeng Lake (5.73 ug/L), but
average SPM-Zn (0.70 mg/g) was higher than in the Hongfeng lake (0.40 mg/g).

4.3 Zn isotope composition in Hongfeng, Aha lakes and their tributaries

The Zn isotope composition of SPM varied significantly in time and space. Generally
speaking, 5°°Zn of SPM ranged from -0.29%o to 0.55%o for these samples which collected
from Aha Lake and Hongfeng Lake and their tributaries, the variation is about 9-10 times
compared to precision of determination. This falls largely within the previously determined
isotope range of particle Zn from Greifen Lake (-0.66%. to 0.21%.) and Seine river (-0.08%o
to 0.30%.), but slightly lighter than terrestrial geological material (0.4%. to 1.4%.)(Peel et
al., 2009; Chen et al., 2009; Cloquet et al., 2006; litter et al., 2016). All the 5°°Zn data for
SPM from Aha Lake and Hongfeng Lake are given in Table 1 and 5°°Zn data for SPM from
tributaries are given in Table 3.

The Zn isotope composition of SPM for Aha Lake ranged from -0.18%o to 0.27%o,
slightly lighter than Aha tributaries. The Zn isotope composition in the summer (-0.18%o to
0.19%0) was lighter than in winter (0.03%. to 0.27%0) for Aha Lake. The Zn isotope
composition of SPM for Hongfeng Lake ranged from -0.29%. to 0.26%o, and it was also
slightly lighter than the Zn isotope composition of SPM in Hongfeng tributaries (-0.04%o. to
0.48%o). Similarly, the 3%°Zn varied from -0.29%o to 0.20%o for Hongfeng Lake in summer,
also slightly lighter than the 5°°Zn in winter (Figs 2, 3, Table 1).
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For Aha Lake, there were no discernible trends with increasing water depth both in
AHDB and HALJK stations in winter, but it was apparent that the heavier 5%zn appeared
at the surface for AHDB, which was similar to the HFHW in summer. Whereas, there was
also a clear increase of 5°°Zn with water depth for AHLJK station in summer. For the
Hongfeng Lake, there were no clear trends with depth in winter for both sites HFHW and
HFDB. However, a pronounced decrease of 5%Zn was observed with increasing water
depth to -0.29%o. at a depth of 12 m in summer at HFHW station. Lower 5%zn appeared at
the thermocline while the higher 5%Zn appeared at the surface. This trend was similar to
that of particles collected from Atlantic and Pacific Oceans (Maréchal et al., 2000).

The Zn isotope of SPM in tributaries also varied significantly in time and space. For
Aha Lake, the 5%5Zn of YYR and BYR were -0.09%. and -0.17%o in summer respectively,
which were isotopically light relative to sphalerite (0.02%. to 0.44%.), but same as the
pyrite (-0.19%o to -0.19%.) (Maréchal et al., 1999). In addition, YYR and BYR have lighter
5°°Zn in summer than in winter. However, the 5°°Zn of CCR was 0.34%o in summer, which
was isotopically heavier than in winter (0.10%o). For the only draining river of the Aha Lake,
XCR had similar 5°¢Zn value in summer and winter.

For Hongfeng Lake, THYR and YCR had slightly heavier Zn isotope of 0.40%o in
summer than in winter (0.25%o and 0.04%o), and the 5°°Zn of MXR in summer (0.30%o) was
slight lighter than in winter (0.48%o) in contrast. Moreover the MTR and HLR had similar
5%Zn value in summer and winter. Two algea samples had similar Zn isotope composition
of 0.41%o and 0.40%o respectively, and the §°°Zn of algea collected from MXR was 0.21%o.
5. Discussion
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SPM in lake water is mainly supplied by fluvial input, plankton and inorganic materials
produced within the lake (autochthonous material), and sediment resuspension
(Hakanson and peters, 1995, Sigg et al., 1995; Riemann et al., 2005). Aha Lake and
Hongfeng Lake have surface area of 4.5 km? and 57.2 km?, water depth of 14 to 24 m and
10 to 45 m respectively, as well as temperature gradients of >10 °C (Fig 2 and 3), which
implied that wind induced resuspension of sediment will have limited contributions.
Furthermore, Aha and Hongfeng both are seasonal anoxic lakes, therefore our discussion
will focus on fluvial, plankton and seasonal anoxic controls.

5.1 Effect of Zn fluvial input from Tributaries on 5%Zn of SPM

The Zn contents were normalized to Al to determine Zn enrichment due to
non-detrital inputs since Al concentration is a good indicator of detrital input (Chen et al.,
2009). Here we investigated the relation between §°°Zn and Zn/Al (Fig 5). The Zn/Al ratio
of Aha Lake ranged from 0.007 to 0.153 and average was 0.045, it was much higher than
Zn/Al in Hongfeng Lake (average was 0.0145), and indicating SPM Zn was more enriched
in Aha Lake than in Hongfeng Lake.

For the Aha Lake, including AHDB and AHLJK Profile in summer, a clear negative
relationship between §°°Zn and Zn/Al can be observed (Fig 5). Samples in summer
showed higher Zn/Al ratio and lighter Zn isotope composition, whereas samples in winter
showed lower Zn/Al ratio and heavier Zn isotope composition. As the discharge of YYR,
BYR and SR are relatively bigger than other rivers, the §°°Zn of SPM for Aha Lake maybe
controlled by these rivers. The discharge (1.18 m*/s) of YYR is largest of any other rivers,
and it mainly contaminated by coal mine and with bigger discharge and high SPM
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concentration, displays a higher Zn/Al and lighter Zn isotope in summer, and represents
the detrital input from the coal mine, thus the °°Zn of SPM maybe effected by inputting of
the YYR with the coal mine. By contrast, SR displayed lower Zn/Al ratio and heavier Zn
isotope, and represents input from domestic and industrial activities, Its 5%Zn (0.05%0 and
0.29%o) were close to anthropogenic samples, ranging from 0.08%o. to 0.31%. (Chen et al.,
2009). Comparing the discharge and concentration of SPM of SR (0.83 m®s and 78.03
mg/L respectively) river with BYR (0.90 m%s and 4.53 mg/L) (Table 2), shows that the
discharge of them were similar, but the concentration of SPM of SR was almost 18 times
higher than BYR. Therefore the main SPM source was likely to be SR, and $°°Zn of SPM
likely to be affected by the inputting of SR with domestic and industrial waste water.
Consequently, §%Zn of SPM for Aha Lake mainly be affected by mixing of YYR and SR
process (Fig 5).

We further investigated the relationship between 3%5Zn of SPM and the Residual Zn
of SPM (Fig 6), since the residual fraction of metals comes mainly from primary and
secondary minerals in which trace metals are not expected to be released in solution over
a reasonable time under natural conditions (Tessier et al., 1979). Thus, the residual form
of SPM may represent the material from background or terrigenous sediment (Odman et
al, 1999; Turner and Millward, 2002; Tessier, 1979).

We can see clearly that there was linear relationship between Zn isotope composition
and residual fraction of Zn in Aha Lake (Fig 6). There were a positive relationship between
Zn isotope composition and residual fraction of Zn in summer for AHDB, and a negative
relationship in summer and positive relationship in winter for AHLJK. Although there were

18

www.earth-science.net

Page 20 of -



Page 21 of 49

O©oo~NOOOPRWN -

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

Journal of Earth Science

little data, and they are not significantly correlated with each other, we still can obtain
some information from these data. As mentioned above, the main input tributarie was SR
for AHDB profile, therefore the main SPM source of AHDB is likely to be SR. According to
the Zn isotope composition of SR (0.29%o) and AHDB profile (-0.05%o to 0.19%o), the Zn
isotopic composition of SR are heavier than AHDB profile in summer, thus it lead to
positive relationship between Zn isotope composition and residual Zn at AHDB.
Consequently, we can draw the Zn isotope composition of SPM for AHDB was mainly
affected by input of SR. Similarly, YYR was the main source of AHLK profile according the
table 3. Comparing the Zn isotope composition of YYR in summer (-0.09%o) to that in
winter (0.46%o), we can obtain that YYR had light Zn isotopes in summer and acts as a
heavy Zn isotope source in winter, consistent with a negative correlation in summer and
positive correlation between §%°Zn and Zn/Al in winter for AHLJK profile(Fig 6).
Accordingly we can draw the Zn isotope composition of SPM for AHLJK was mainly
affected by inputting of YYR. These conclusions were agree with these from the relation
between §°°Zn and Zn/Al of SPM, and further approved that Zn isotope composition of
Aha Lake was mainly affected by SR and YYR, and it is a mixing of endmember process.

By contrast, there was no correlation between Zn/Al and Zn isotope composition of
SPM in HFHW and HFDB both in summer and winter and there were no significant
variations of Zn/Al ratio for all samples in Hongfeng Lake. Furthermore, there still was no
clear correlation between $°°Zn and residual Zn of SPM in Hongfeng Lake

The §°Zn of MXR, THYR and YCR in summer were isotopically heavier than 8%Znin
Hongfeng lake, however there was no clear relationship between tributaries and the
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Hongfeng Lake (Fig5 and Fig6). Therefore there was no significant effect on Zn isotope
composition come from fluvial input in Hongfeng Lake.

From above discussion, we accordingly draw the conclusion that Zn isotope
composition at Aha Lake was mainly controlled by inputting of YYR with coal mine input
and SR with the domestic and industrial particulate input, whereas the Zn isotope
composition was not necessarily affect by fluvial inputting for Hongfeng Lake.

5.2 Effect of algal activities on Zn §°Zn of SPM

The 5%Zn of SPM depth profile above the thermocline at HFHW profile in summer
showed surface SPM had the heaviest Zn isotope composition, and 5%zn gradually
decreasing with depth. Similarly for AHDB profile, the heaviest 5°°Zn of SPM appeared at
the surface in summer, and then there was a drop at the sub-surface. These similar
phenomena that 5%Zn decreased with depth were found for particle samples in Central
Atlantic Ocean (Maréchal et al., 2000), and that 5°°Zn of seawater decreased with water
depth above 100 m in the North east Pacific Ocean (Bermin et al., 2006), were thought to
be mainly related to the activity of phytoplankton. In addition, the 5%Zn of seawater
increased with water depth in North Atlantic Ocean, it was also related to phytoplankton
and organic matter (John et al., 2014).

In summer, the lake water was stratified; the temperature, pH and dissolved oxygen
decrease with depth, and the algal proliferate in the surface water of Hongfeng Lake (Fig
3). Therefore, the variation in 8°°Zn in Hongfeng Lake may be related to the algal
activities.

Zn isotope fractionation by biological processes occurs by preferential adsorption of
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the heavy Zn isotope onto the surface of diatoms, and by the preferential incorporation of
the light isotope into biological material (Gélabert et al., 2006; Weiss et al., 2005). Hence,
we examined whether there was a correlation between Zn isotope composition and
chlorophyll, as chlorophyll is an important indicator of primary producers of phytoplankton
biomass, and is the main pigment of photosynthetic phytoplankton (Reynold, 1984;
Kasprzak et al., 2008) .

Figure 7 showed that that when the concentration of chlorophyll was low in winter, the
Zn isotope composition of SPM was heavy, when concentration of chlorophyll was high in
summer, the Zn isotope composition of SPM was Iight(ASBGanimer-SummeFO.17%0 for Aha
Lake, AS°®ZNyinter-summer=0.07%o for Hongfeng Lake). Moreover, a significant positive
relationship was evident between 5%Zn and chlorophyll at HFHW profile in summer, and
there was no relationship between 5%®Zn and chlorophyll in AHDB and AHLJK profiles in
summer. It was notable that the biomass of phytoplankton in Hongfeng Lake was much
higher than in Aha Lake in summer (Fig. 7), suggesting that phytoplankton play a major
role in controlling Zn isotope variability for Hongfeng Lake in summer.

How the algea affect the Zn isotope composition during the biogeochemical process
remains unclear? Maréchal et al (2000) thought 5°°Zn of particle decreasing from surface
to bottom may be caused by activity of phytoplankton and remineralization, and John was
aware that the incorporation by phytoplankton mainly accounts for the 5%Zn of seawater
increasing with the depth of water(John et al., 2014). At here, we can discuss from
absorption and adsorption processes to explain the Zn isotope variation of SPM for
Hongfeng Lake in summer, and to compare which one is the major control factor.
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Firstly, the Zn isotope composition of SPM in Hongfeng Lake in summer whether

affected by incorporation into algal process? On one hand, as algal incorporation is

expected to produce lighter Zn isotope composition of SPM in surface water relative to

bottom water according to other research (Gélabert et al., 2006; Weiss et al., 2005).

However, our data showed that the Zn isotope of SPM at surface water was heavier than

bottom water at HFHW and AHDB in summer (Figs 2 and 3). Hence it was contradictory

that absorption was major control factor on the Zn isotope composition. On the other hand,

Organic-bound Zn was 12.53% on average, which is much lower than AEC-bound Zn

(69.87% on average) (Fig 4), and this further illustrates that effect of algal absorption

process on the Zn isotope is minor than adsorption process.

Secondly, the Zn isotope composition was possible affected by the adsorption onto

the surface of algea. AEC-bound Zn accounts for 69.87% of the total SPM Zn (Table 2) for

HFHW profile, which indicated the Zn isotope composition of SPM being controlled by

adsorption process. Generally speaking, the adsorption processes contain abiotic

adsorption onto the mineral particle (goethite, hematite and birnessite) and biotic

adsorption onto the surface of phytoplankton (Pokrovsky et al., 2005a, b; Gélabert et al.,

2006; Weiss et al., 2005). The Zn isotope fractionation exceeds 0.5%. from surface water

to deeper water at HFHW profile, as Zn isotope fractionation does not exceed 0.5%o

during adsorption onto most mineral particles (Pokrovsky et al., 2005; Guinoiseau et al.,

2016), thus adsorption onto abiotic surfaces was not the main cause for the variation in Zn

isotope composition, whereas adsorption onto algea can be the major factor. Zn isotope

can be fractionated during preferential adsorption heavy Zn onto diatoms and plankton
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(Maréchal et al., 2000; Pokrovsky et al., 2005; Gélabert et al., 2006; Balistrieri et al., 2008;

Juillot et al., 2008). This occurs because during adsorption onto diatoms surfaces, Zn

reduces its coordination number from six (octahedrally coordinated to H,O in bulk solution)
to four (oxygen and nitrogen tetracoordinated complexes), so the bond distance becomes

shorter while bond strength increases, hence the heavy isotope preference join with

stronger metal binding species (Criss, et al., 1999; Young and Ruiz et a., 2003). Therefore,
an increase of algea leaded to heavier Zn isotope composition at surface of HFHW in

summer (Fig.3). In addition, the 5%2Zn of algea in MXR ranged from 0.21 to 0.41%o (table2),
and it was isotope heavier than in Hongfeng Lake, also can explained by adsorption

process. Consequently, adsorption onto algea is the major effect factor for the Zn isotope

composition in Hongfeng Lake in summer.

For Aha Lake, algal biomass was relatively small in summer, so there was no
relationship between Zn isotope composition and chlorophyll. However, this interpretation
remains to be confirmed given that our data were reported firstly for lake water column. In
the absence of isotope data on dissolved Zn due to the low concentration, it is premature
to argue about whether isotope fractionation between biologic particles and lake water
takes place at equilibrium or by purely kinetic control. Therefore, much work is still
required to develop a full understanding of the use of Zn isotope in lake biogeochemistry
and material recycling processes.

5.3 The effect of seasonal anoxia and ZnS predicated on Zn isotope composition.

So far, we can conclude from sections 5.1 and 5.2 that Zn isotope composition was
mainly affected by the tributary input for Aha Lake, whereas the Zn isotope composition
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for Hongfeng Lake was mainly affected by algal adsorption. However, we saw in Fig 3 that
the Zn isotope composition of SPM in summer was lighter than in winter for both
Hongfeng and Aha Lakes. This result was very similar to 5%Zn seasonal variation in SPM
from Lake Greifen, Switzerland (Peel et al., 2009), and 5°Fe value of SPM were also
lower in summer than in winter in Aha Lake(Song et al., 2011). Nevertheless, both of the
tributary input and algal adsorption can’t account for this phenomenon. Instead, it implied
that the Zn isotope composition of Hongfeng and Aha Lake in summer may be affected by
another factor.

As previous studies that Zn isotope can fractionation during process of sphalerite
precipitation, and sphalerite preferential incorporation of light Zn isotope(Archer et al,2004;
Wilkinson et al., 2005; Kelley et al.,2004; John et al., 2008; Juijii et al., 2011 & 2012).
Archer investigated that ZnS precipitated in an anoxic environment at room temperature
can fractionated the Zn isotope, and the A8%®ZN 74 dissoved= 0.36%o. (Archer et al.,2004);
Wilkinson and Gagnevin also found the rapid sphalerite precipitation from the fluid or ore
system result in light Zn isotope (Wilkson et al., 2005; Gagnevin et al., 2012; Kelley et al.,
2009); John studied that subsurface cooling of hydrothermal fluids leads to precipitation of
isotopically light sphalerite (Zn sulfide), and this process is a primary cause of Zn isotope
variation in hydrothermal fluids(John et al., 2008); Fujii investigated the 8%°Zn in different
species, like aqueous sulfide, chloride, and carbonated species using ab initio methods,
and negative 5%Zn down to at least -0.6%o can be expected in sulfides precipitated from
solution with pH>9(Fujii et al., 2011 & 2012).

Aha Lake and Hongfeng Lake both are seasonal anoxic lakes. The concentration of
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DO (dissolved oxygen) were range from 1.60 to 7.80 mg/L, and average was 4.2 mg/L for
Aha Lake in summer, which was much lower than in winter(the concentration of DO were
range from 7.7 to 9.0 mg/L and average is 8.6 mg/L). For Hongfeng Lake, The
concentration of DO were range from 1.0 to 8.1 mg/L and average was 3.6 mg/L in
summer, which was also much lower than in winter( average was 12.7 mg/L). In addition,
the concentration of DO deceased from surface to bottom rapidly for all profiles(AHDB,
AHLJK, HFHW and HFDB), and the DO only 1.0 mg/L and depth of 15 m in HFHW in
summer, the bottom of Lakes were depleted oxygen in summer. This seasonal anoxic
characteristic was also appeared in Baihua Lake and Black Sea (Bai et al., 1996; Sun and
Wakeham, 1994). At this anoxic condition in summer, SRB (sulfate reducing bacterial) can
reduce the SO, to S*(Sass et al., 1997; Bailey et a., 2017), thus Zn can be precipitated
from the water, and exist as the species of the sphalerite (ZnS) in the SPM, and this can
be approved by the concentration of dissolved Zn was lower in summer than in winter
(Fig2 and Fig3). As discussed above, The sphalerite (ZnS) preferential incorporated the
light Zn isotope during the precipitation process, therefore the Zn isotope composition of
SPM should be light in summer than in winter, and this conclusion coupled with our
5%°Zn data for both Aha Lake and Hongfeng Lake. This maybe account for why the 5%Zn

in summer was lower than in winter.

6. Conclusion
This study described seasonal variation of 5%Zn values for Hongfeng and Aha Lakes,
as well as data for tributaries and biological samples, and arrived following conclusions.
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Concentration of dissolved Zn ranged from 0.65 to 5.06 ug/L and 0.74 to 12.04 ug/L
for Aha and Hongfeng Lake respectively, while the SPM-Zn ranged from 0.18 to 0.70 mg/g
and 0.24 to 0.75 mg/g for Aha and Hongfeng Lake respectively. The 5°°Zn of SPM ranged
from -0.29%o to 0.26%o for the Hongfeng Lake and its tributaries respectively, the 5°°Zn of
SPM ranged from -0.18%0 to 0.27%0 and -0.17%o to 0.46%. for the Aha Lake and its
tributaries, displaying a wider range in tributaries than lakes.

From the relation of °°Zn versus Zn/Al and 5%°Zn versus residual-bond Zn, we
conclude that Zn isotope composition of Aha Lake is mainly affected by SR and YYR, and
it is @ mixing of endmember process. Discussion the relation of 5%Zn versus chlorophyll
and proportion of AEC-bond Zn, it suggests that Zn isotope composition of Hongfeng Lake
mainly controlled by the adsorption process of algea. As sphalerite (ZnS) preferential
incorporated the light Zn isotope during the precipitation process, this can account for why
the 5°°Zn in summer is lower than in winter.

In summary, Zn isotopes composition in Aha Lake and Hongfeng Lake are reported
firstly, and the major affect factors are discussed, this providing the basic information of Zn

isotope in lake system, and promoting the application of Zn isotope in biogeochemistry.
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Fig. 2. Plots of Temperature, pH, Chlorophyll, DO (Dissolved Oxygen), Concentration of SPM,
concentration of dissolved Zn, concentration of SPM Zn and 5°°Zn of SPM (suspended
particulate matter) for AHDB and AHLJK profile of Aha Lakes. For both profiles, green triangle
and red triangle refer to date of August 2006 and January 2007 for AHDB, respectively; while
green square and red square refer to date of August 2006 and January 2007 for AHLJK,

respectively.
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Fig. 4. The proportion of Zn different speciation of SPM. Plot A is the proportion of Zn different
speciation of SPM for Aha Lake, while plot B is for Hongfeng lake. For both of two lakes, the
open columns refer to AEC-bound Zn, green columns refer to organic-bound Zn, and slash
column refer to the residual-bound Zn.
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Fig. 5. Relation between Zn isotope composition of SPM and Zn/Al ratio. Plot A is for Aha Lake
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red square. In addition, the date of YYR, SR and BYR were plotted, as their discharges are
bigger than other rivers. For plot B, data points for SPM of HFHW in summer is green circle,
HFHW in winter is red circle, HFDB in winter is red diamond, and date of YCR, THYR and
MXR are plotted as they are the main tributaries of Hongfeng Lake.
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Table1. pH, temperature, DO(dissolved oxygen), concentration chlorophyll, SPM and

Journal of Earth Science

dissolved Zn in summer and winter for Aha Lake and Hongfeng Lake, southwest of China.

Sample site Sampling date Depth pH T(C) DO Chlorophyll SPM Zn(DIS)
SPM m (C) mg/L mg/L mg/L ng/L
AHDB Aug 0 8.19 25 7.00 11.08 227 1.28
AHDB Aug -4 8.32 252 7.04 6.64 213 2.21
AHDB Aug -8 7.93 24.6 5.1 8.06 1.53 0.77
AHDB Aug -12 7.7 22.3 5.32 7.26 1.33 1.97
AHDB Aug -16 7.53 17.4 2.09 4.86 2.00 1.94
AHDB Aug -20 75 14.9 1.98 2.05 1.73 1.70
AHDB Aug -23 7.6 14 2.00 2.20 0.65
AHDB Jan 0 7.49 7.9 8.43 3.79 1.19 2.99
AHDB Jan -5 7.49 7.4 7.70 297 1.31 2.60
AHDB Jan -10 7.97 7.3 8.14 3.05 0.96 2.64
AHDB Jan -15 7.95 71 8.76 1.46 0.80 2.66
AHDB Jan -20 7.92 7.23 8.80 3.21 1.05 2.19
AHDB Jan -23 7.9 7.3 8.33 2.56 0.82 2.67
AHLJK Aug 0 8 25.1 7.80 6.08 3.00 1.65
AHLJK Aug -3 7.8 221 6.51 5.82 3.20 1.78
AHLJK Aug -6 7.6 19.2 2.33 5.75 2.40 1.29
AHLJK Aug -9 75 18.6 1.65 6.11 2.50 1.20
AHLJK Aug -13 7.6 14.2 1.60 2.53 1.05
AHLJK Jan 0 7.95 7.95 9.00 2.80 0.86 2.01
AHLJK Jan -3 7.8 7.8 8.88 3.00 1.26 5.06
AHLJK Jan -6 7.87 7.87 8.60 2.50 0.91 1.98
AHLJK Jan -10 7.46 7.46 9.20 2.00 0.89 2.32
HFHW Aug 0 9.37 281 8.10 42.10 3.73 1.48
HFHW Aug -3 8.49 26.6 7.50 29.23 3.00 0.75
HFHW Aug -6 8.42 26.3 5.20 21.06 3.00 1.55
HFHW Aug -9 8.21 259 1.20 11.74 3.27 1.80
HFHW Aug -12 7.66 24.1 1.10 7.50 2.60 1.67
HFHW Aug -15 7.54 23.3 1.00 5.23 1.73 1.29
HFHW Aug -19 7.44 226 1.20 220 1.22
HFHW Jan 0 8.31 8 15.00 9.91 2.59 213
HFHW Jan -5 7.99 7.8 14.20 10.61 248 2.58
HFHW Jan -10 8.13 8.1 14.00 10.52 1.40 2.15
HFHW Jan -15 7.94 8 13.00 8.36 1.94 2.83
HFHW Jan -20 8.18 7.8 12.00 8.34 1.87 5.69
HFHW Jan -25 8.08 7.5 12.50 5.58 1.49 12.04
HFDB Jan 0 7.75 8.1 12.10 7.30 1.09 244
HFDB Jan -5 7.84 7.7 11.90 5.30 1.72 2.20
HFDB Jan -10 7.81 7.8 11.80 6.50 1.27 3.94
HFDB Jan -15 7.79 7.7 11.90 5.20 1.82 1.95
HFDB Jan -20 7.51 77 12.10 4.90 1.54 3.21
HFDB Jan -30 7.7 7.6 11.80 5.10 1.58 2.83
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1
2
3 Table2: The Zn isotope composition, SPM Zn and Al,O3, and speciation Zn of SPM in
g summer and winter for Aha Lake and Hongfeng Lake.
6 Sample site  Date  Depth AlLOA(SPM) Zn(SPM) AEC-Zn(SPM)  oraanic-Zn(SPM) Residual-Zn(SPM) 8%Znw~  Zn/Al
7 SPM m % mg/g % % % (%o)
8 AHDB Aua 0 4.44 0.26 70.23 16.05 13.72 0.10 0.0110
AHDB Aug -4 0.37 0.30 74.26 19.04 6.69 -0.05 0.1529
9 AHDB Aug -8 3.1 0.32 68.00 23.90 8.10 -0.03 0.0195
1 O AHDB Aug -12 1.57 0.40 86.87 9.04 4.09 0.02 0.0481
1 1 AHDB Aug -16 0.80 0.48 78.59 18.49 2.92 0.01 0.1135
1 2 AHDB Aug -20 1.57 0.70 66.67 23.25 10.08 0.02 0.0840
1 3 AHDB Aug -23 1.23 0.32 86.80 9.73 3.47 0.19 0.0490
14 AHDB Jan 0 5.14 0.36 86.42 4.04 9.55 0.16 0.0131
1 5 AHDB Jan -5 5.24 0.57 79.07 15.46 5.47 0.23 0.0205
1 6 AHDB Jan -10 6.45 0.27 83.66 8.42 7.92 0.27 0.0080
1 7 AHDB Jan -15 1.28 0.25 87.69 5.43 6.89 0.21 0.0372
1 8 AHDB Jan -20 4.01 0.40 94.72 3.86 1.42 0.55 0.0187
19 AHDB Jan 23 3.05 0.27 020  0.0167
20 AHLJK Aug 0 0.62 0.38 59.37 18.38 22.25 -0.18 0.1149
21 AHLJK Aug -3 0.47 0.18 70.89 12.92 16.20 0.05 0.0738
22 AHLJK Aug -6 1.46 0.24 86.92 12.24 0.83 0.12 0.0307
23 AHLJK Aug -9 2.39 0.26 83.21 8.99 7.80 0.16 0.0203
24 AHLJK Aug -13 1.17 0.32 57.36 19.50 23.14 0.09 0.0514
25 AHLJK Jan 0 2.15 0.21 81.94 4.76 13.30 0.13 0.0187
26 AHLJK Jan -3 2.65 0.69 76.91 8.83 14.26 0.03 0.0488
27 AHLJK Jan -6 2.99 0.40 71.59 7.31 21.10 0.20 0.0254
28 AHLJK Jan -10 2.85 0.32 75.64 5.56 18.80 0.14 0.0213
29 HFHW Aug 0 2.15 0.39 54.69 9.10 36.21 0.20 0.0344
30 HFHW Aug -3 6.44 0.48 52.01 11.26 36.73 0.01 0.0140
HFHW Aug -6 3.28 0.34 29.13 53.14 17.73 -0.11 0.0193
31 HFHW Aug -9 5.13 0.60 75.72 7.59 16.69 -0.19 0.0220
32 HFHW Aug -12 6.58 0.35 80.71 5.82 13.47 -0.29 0.0101
33 HFHW Aug -15 517 0.29 84.00 5.65 10.35 -0.20 0.0107
34 HFHW Aug -19 5.89 0.52 81.80 7.69 10.50 -0.11 0.0167
35 HFHW Jan 0 4.75 0.40 83.39 6.12 10.48 0.15 0.0158
36 HFHW Jan -5 4.29 0.24 78.95 10.84 10.21 0.10 0.0104
37 HFHW Jan -10 5.22 0.31 86.33 5.26 8.40 0.12 0.0112
38 HFHW Jan -15 8.77 0.30 81.88 4.74 13.38 0.22 0.0065
39 HFHW Jan -20 10.41 0.75 84.66 5.97 9.38 0.26 0.0136
40 HFHW Jan -25 12.02 0.48 75.27 12.77 11.95 0.13 0.0075
41 HFDB Jan 0 4.76 0.30 89.07 6.01 4.92 0.11 0.0121
42 HFDB Jan -5 4.56 0.34 86.79 5.40 7.80 0.20 0.0141
43 HFDB Jan -10 4.30 0.38 89.36 4.64 6.00 0.07 0.0166
44 HFDB Jan -15 5.37 0.40 90.08 4.63 5.29 0.17 0.0142
45 HFDB Jan -20 5.02 0.35 82.15 12.06 5.79 0.12 0.0132
46 HFDB Jan -30 4.70 0.34 88.66 5.08 6.26 0.22 0.0136
47
48 Sampling site station
49 Algae MXR 0.41
50 Aglea MXR 0.40
51 Plant MXR 0.21
52
53
54
55
56
57
58
59
60
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Table3. The pH, temperature, DO(dissolved oxygen), discharges, concentration of

dissolved Zn, SPM and SPM Zn, and Zn isotope composition in tributaries of Aha Lake

and Hongfeng Lake.

Journal of Earth Science

Sampling site Sampling  Average discharge Draining pH T Do SPM  Zn-DIS Zn-SPM AL,O; 8%Znyc Zn/Al
m%sS In/Out (C) mg/L mg/L ug/L mg/g % %o
Tributaries of Aha Lake
XCR Aug 0.65 Out 7.21 12 5.19 0.87 1.07 0.84 1.35 0.20 0.1166
XCR Jan 0.65 Out 7.66 7.7 8.45 1.03 2.48 0.62 5.57 0.11 0.0212
BYR Aug 0.90 In 8.14 21.8 7.47 4.53 1.53 0.26 5.64 -0.17  0.0088
BYR Jan 0.90 In 8.36 7.4 10.32 221 5.68 0.26 6.84 0.05 0.0073
CCR Aug 0.21 In 7.66 21.6 5.19 6.27 1.42 0.93 4.99 0.34  0.0351
CCR Jan 0.21 In 7.71 9.3 8.8 1.71 7.54 0.43 1.27 0.10  0.0635
SR Aug 0.83 In 8.28 22.6 7.6 78.03  1.03 0.00
SR Jan 0.83 In 8.28 8.7 10.4 3.29 5.13 1.27 8.02 0.29  0.0299
YYR Aug 1.18 In 8.18 21.6 8.17 6593 18.07 049 1.24 -0.09 0.0744
YYR Jan 1.18 In 7.88 8.6 9.28 21.53 4.78 0.49 1.24 0.46  0.0744
LNGR Aug 0.15 In 7.61 21 1.6 27.40 3.56 0.00 4.38
LNGR Jan 0.15 In 7.14 8.7 5.11 14.00 11.30 0.51 3.17 -0.04  0.0303
Turbutaries of Hongfeng
lake
MTR Aug 14.74 Out 7.49 20.7 5.98 0.93 1.48 0.19 1.21 0.22  0.0288
MTR Jan 14.74 Out 7.42 6.9 6.91 1.48 2.95 0.48 5.38 0.10  0.0170
THYR Aug 4.14 In 713 245 7.8 940 1478 290 10.28 040 0.0533
THYR Jan 4.14 In 7.29 5.6 9.23 4.91 5.31 1.83 7.49 0.25 0.0462
YCR Aug 12.67 In 7.37 26.5 7.2 3.00 2.59 0.70 9.61 0.40 0.0137
YCR Jan 12.67 In 7.08 3.4 10.2 3.42 12.42 0.43 5.79 0.04 0.0141
MXR Aug 5.31 In 8.04 26.3 8.17 3.47 0.24 0.17 6.85 0.30  0.0048
MXR Jan 5.31 In 7.67 4.2 10.38 0.91 2.46 0.25 6.06 0.48 0.0079
HLR Aug 1.86 In 8.07 24.9 7.38 1.20 0.65 0.00 0.03
HLR Jan 1.86 In 9.72 3.9 9.76 1.74 4.13 0.25 16.70 0.13  0.0028
MBR Jan 0.32 In 7.44 9 8.32 1.93 3.94 046 1244  0.14 0.0069
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