

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Improved Two-level Voltage Source Converter for High-Voltage Direct Current Transmission Systems

Citation for published version:

Adam, GP, Abdelsalam, I, Fletcher, JE, Xu, L, Burt, GM, Holliday, D & Finney, SJ 2017, 'Improved Twolevel Voltage Source Converter for High-Voltage Direct Current Transmission Systems', *IEEE Journal of Emerging and Selected Topics in Power Electronics*. https://doi.org/10.1109/JESTPE.2017.2723839

Digital Object Identifier (DOI):

10.1109/JESTPE.2017.2723839

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: IEEE Journal of Emerging and Selected Topics in Power Electronics

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Improved Two-level Voltage Source Converter for High-Voltage Direct Current Transmission Systems

Grain Philip Adam, Ibrahim Abdelsalam, John Edward Fletcher, Lie Xu, Graeme M. Burt, Derrick Holliday and

Stephen Jon Finney

Abstract—this paper presents an improved two-level voltage source converter for dc transmission systems with relatively low rated power and dc operating voltage. Unlike conventional two-level converter, the presented converter employs two distributed cell capacitors per three-phase; thus, do not contribute any current when converter is blocked during dc short circuit fault as in modular multilevel converter case. The use of three-phase cells is proven to be beneficial because the arm currents do not contain 2nd order harmonic currents, and cell capacitors tend to be small as they only experience high-order harmonic current associated with the switching frequency. For the same rated dc link voltage and switching devices, the rated power of the improved two-level converter will be twice that of the conventional two-level converter. Average, switching function and electromagnetic transient simulation models of the improved two-level converter are discussed and validated against detailed switch model. The viability of the improved two-level converter for HVDC applications is examined, considering dc and ac short circuit faults. Besides, reduced complexity of the control and power circuit of the improved two-level converter, it has been found that its transient responses to ac and dc faults are similar to that of the modular multilevel converter.

Key words— ac and dc fault ride-through capability, high-voltage dc transmission systems, modular multilevel converter, and two-level voltage source converter.

I. INTRODUCTION

In the last two decades, applications of voltage source converters in high-voltage dc (HVDC) transmission systems have increased significantly, particularly, for grid reinforcement of weak ac networks, and connections of offshore wind farms and oil platforms. Significant number of dc transmission systems currently operational are based on two-level and neutral-point-clamped converters, which have robust and simple power circuits, reduced complexity of the control systems, and small footprint[1, 2]. The main drawbacks of the two-level and neutral-point-clamped converters in HVDC transmission systems are [1-4]: high semiconductor losses; expose interfacing transformers to high dv/dt; require substantial ac filtering; and input dc link capacitors contribute large transient fault current during pole-to-pole dc short circuit fault (this makes the design of dc circuit breakers increasingly challenging).

Despite the increased power circuit and control complexity of the modular multilevel converter, its introduction to the HVDC transmission applications in the last decade has proven to be attractive for utilities for the following reasons[1-4]: reduced semiconductor losses; no ac filters should the approach that uses large number of cells per arm is adopted; the use of distributed cell capacitors instead of concentrated dc link capacitors as in two-level converter is extremely useful because it leads to substantial

reduction in the magnitude of the fault current to be interrupted by dc circuit breakers; and its low dv/dt due to successive switching of small voltage steps in orderly manner, allow scalability of single pole to much higher dc operating voltage such as 640kV and 800kV.

The main drawbacks of the approach that adopts large number of distribute cell capacitors in modular multilevel converter are[1-4]: large footprint; slow dynamic response due to high energy content per converter (nearly ten times that of the two-level converter)[3, 5-12]; and exponential increase in the number of measurable quantities and in the complexity of the power circuit and control systems to level never seen before in power systems, and this makes MMC susceptible to malfunctions and less attractive for HVDC links with relatively lower rated power and dc voltage (less than 300MW and ± 150 kV per pole). On the other hand, the complex circuit structure of the MMC has improved the availability and facilitated continued operation during internal faults (submodule failures).

Besides the MMC, there are a number of hybrid multilevel converters have been proposed that retain most of the attributes of modular multilevel converter, while reducing footprint and complexity of the power circuit. But most of these hybrid converters tend to achieve the above attributes at increased semiconductor losses, with some suffer from difficulties of current or voltage commutations[2, 13].

This paper presents an improved two-level voltage source converter (I2L-VSC) for HVDC transmission systems, with relatively low dc operating voltage and rated power (less than ± 150 kV and 300MW), which aimed to:

- Reduce the complexity of the control and power circuit and converter footprint compared to MMC, thanks to the use of one three-phase cell with common capacitor per three arms.
- Reduce the current stresses on dc circuit breakers as the cell capacitors do not contribute to transient component of the fault current when converter is blocked during dc short circuit faults; thus, MMC like transient response to dc short circuit fault is achieved with minimum circuit complexity[14, 15]. This means, incorporation of the proposed converter into parts of dc grid with compatible dc voltage will not significantly alter the fault level.
- Large reduction in the cell capacitance which is achieved by the adoption of the three-phase cells could result in substantial saving in converter cost and improved dynamic response.

Moreover, this paper briefly discusses the operating principle of the improved two-level converter, including the derivations of its averaged, switching function and electromagnetic transient models, and their validations against detailed switched models. Additionally, the performances of the I2L-VSC in HVDC transmission systems have been examined, considering open loop with passive loads at 50Hz and 1Hz, closed loop grid connection at different power factors and modulation indices, and ac and dc network faults using simulations and scaled-down experimentations. Results obtained from these examinations have shown that the transient responses of the proposed converter during ac and dc faults are similar to that of the conventional MMC[14, 15], which are in line with mainstream thinking that aims to reduce design requirements for dc circuit breakers and protection of dc grids. The proposed I2L-VSC should not be seen as an alternative or competitor to MMC; instead, it represents a practical compromise between the MMC and conventional two-level converter. Therefore, the I2L-VSC are expected to be applied in dc

voltage and power levels, where the circuit and control complexity of the MMC cannot be justified, but MMC like dc fault response is paramount. Some of the potential applications of the I2L-VSC are: connection of offshore oil platforms that operate with rated dc voltage and power below 200kV and 200MW, where the offshore converter is required to operate at variable ac voltage and frequency over the full operating range; and medium-voltage dc-dc converters and dc grids.

II. IMPROVED TWO-LEVEL CONVERTER AND ITS MODELLING

A) Operating Principle

Fig. 1 shows a three-phase I2L-VSC that employs only two cell capacitors instead of six capacitors proposed in [2, 15-19] or a large number of capacitors in conventional HB-MMCs[5, 20-22]. Because of the three-phase cell in upper and lower arms, the cell capacitors of the proposed converter will not be exposed to fundamental or any low-harmonic currents as in the traditional MMC with one or 'n' half-bridge cells per arm. This allows the I2L-VSC cell capacitances to be reduced significantly. Arm inductors are needed to suppress the high frequency harmonics associated with the switching of the upper and lower cells; limit the dc inrush current due to the mismatch between the cell capacitor voltages and the input dc link voltage; limit ac current in-feed from the ac grid during dc short circuit fault; and restrain di/dt on the freewheeling diodes of the main switches being used to bypass the cell capacitors when the converter is blocked during dc short circuit fault. Besides its inherent natural cell capacitor voltage balance, the common-mode currents between the upper and lower arms of the same phase leg do not contain parasitic components such as 2nd order harmonic current, because the common-mode voltages of the individual phases do not contain a 2nd harmonic component to drive circulating current as in the conventional HB-MMC (assuming the converter passive parameters are properly selected). Since no modulation index is reserved for suppression of the 2nd harmonic current, the P-Q chart of the proposed converter is expected to be larger than that of the equivalent conventional MMC that actively suppresses the circulating (2nd harmonic) current[23, 24]. Because the connection points of the upper and lower arm cells are opposite (positive rail and ac poles for upper cells and ac poles and negative rail for lower cells), both upper and lower arms receive the same modulating signals and carriers to ensure that the Kirchhoff voltage law is satisfied by all three phases:

$$v_{abc1}(t) + v_{abc2}(t) \approx \psi V_{dc} \tag{1}$$

The column vectors for the switched output voltages of the upper and lower cells $v_{abc1} = [v_{a1}, v_{b1}, v_{c1}]^T$ and $v_{abc2} = [v_{a2}, v_{b2}, v_{c2}]^T$ are expressed in terms of the states of the upper switches of the six-pulse bridge converter being employed in each arm and cells capacitors as:

$$v_{abcl}(t) = \left[(1 - s_{a1}(t))V_{c1} \quad (1 - s_{b1}(t))V_{c1} \quad (1 - s_{c1}(t))V_{c1} \right]^{T}$$
(2)

$$v_{abc2}(t) = \begin{bmatrix} s_{a2}(t)V_{c2} & s_{b2}(t)V_{c2} & s_{c2}(t)V_{c2} \end{bmatrix}^{T}$$
(3)

where $\Psi = [1 \ 1 \ 1]^T$; $s_{abc} = [s_{a1}(t), s_{b1}(t), s_{c1}(t)]$ and $s_{abc} = [s_{a2}(t), s_{b2}(t), s_{c2}(t)]$ are switching functions of the upper switches of the upper and lower cells of the I2L-VSC in Fig. 1(a). The switching function $s_{xj}(t)$ varies between 1 and 0 (where x=a, b and c, and j=1 and 2), with '1' and '0' stand for on and off states of the switching devices S_{a1} , S_{b1} and S_{c1} and S_{a2} , S_{b2} and S_{c2} . As stated in (1), correct operation of the I2L-VSC requires upper and lower arms of the same phase-leg must be operated in complementary manner (this means, insertion of the upper cell capacitor into power path requires the lower cell capacitor of the same phase-leg to be bypassed and vice versa). Therefore, this necessitates each cell capacitor and composite switching devices to be rated at the full dc link voltage (V_{dc}). The I2L-VSC generates only two output voltage levels per phase as in the conventional two-level converter. The three-phase output voltages of the I2L-VSC represent the differential mode voltages as in the conventional MMC:

$$v_{abco}(t) = v_{abc1}(t) - v_{abc2}(t)$$
(4)

Similarly, the common-mode voltages are:

$$v_{com}(t) = \frac{1}{2}(v_{abc1}(t) + v_{abc2}(t))$$
(5)

Each cell of the I2L-VSC adheres to the same operational restrictions of the conventional two-level converter such as:

• Complementary operation of the switching devices of the same leg in order to prevent shoot-through at the cell level (

$$s_{a1,2}(t) + \overline{s}_{a1,2}(t) = 1$$
, $s_{b1,2}(t) + \overline{s}_{b1,2}(t) = 1$ and $s_{c1,2}(t) + \overline{s}_{c1,2}(t) = 1$).

• Each switching device and cell capacitor must be rated to block the full dc link voltage (V_{dc}). Therefore, for HVDC applications, series connection of switching devices is necessary to enable operation at dc operating voltage suitable for distribution and transmission systems.

Although the output voltage quality remains the same as in conventional two-level converter, the proposed structure provides a viable method for increasing the capacity of HVDC converters without the need to increase the rated dc link voltage. With the three-phase modulating signals being defined as $m_{abc}(t) = [M \sin \omega t \ M \sin(\omega t + \frac{4}{3}\pi) \ M \sin(\omega t + \frac{2}{3}\pi)]^T$, the switched output voltages in (2) and (3) could be replaced by their average values as:

$$\tilde{v}_{abc1}(t) = \left[\frac{1}{2}V_{c1}(t)(1-m_a(t)) - \frac{1}{2}V_{c1}(t)(1-m_b(t)) - \frac{1}{2}V_{c1}(t)(1-m_c(t))\right]^T$$
(6)

$$\tilde{\mathcal{V}}_{abc2}(t) = \left[\frac{1}{2}V_{c2}(t)(1+m_a(t)) - \frac{1}{2}V_{c2}(t)(1+m_b(t)) - \frac{1}{2}V_{c2}(t)(1+m_c(t))\right]^T$$
(7)

Besides sinusoidal pulse width modulation (SPWM), I2L-VSC could be control using space vector modulation (SVM) or selective harmonic elimination (SHE), with SHE reducing the switching frequency per devices considerably as demonstrated in [25]; hence, a substantial reduction in switching losses.

B) Converter Modelling

Considering the upper and lower cells in Fig. 1, the dynamics of the upper and lower cell capacitor voltages in switched forms are:

 $\frac{dV_{cl}(t)}{dt} = \overline{s}_{abcl}^{T}(t) i_{abcl}(t) / C$ (8)

$$dV_{c2}(t)/dt = s_{abc2}^{T}(t)i_{abc2}(t)/C$$
(9)

The average effect of the cell capacitor voltage dynamics could be expressed as:

$$dV_{c1}(t)/dt = \overline{d}_{abc1}^T(t)i_{abc1}(t))/C$$
(10)

$$\frac{dV_{c2}(t)}{dt} = \frac{d^T_{abc2}(t)i_{abc2}(t)}{C}$$
(11)

where $i_{abc1}(t) \approx I_d + \frac{1}{2}I_m \sin(\omega t + \gamma_{abc} + \varphi)$, $i_{abc2}(t) \approx I_d - \frac{1}{2}I_m \sin(\omega t + \gamma_{abc} + \varphi)$, $I_d \approx \frac{1}{3}I_{dc}$, $\gamma_{abc} = \begin{bmatrix} 0 & \frac{4}{3}\pi & \frac{2}{3}\pi \end{bmatrix}$ $\overline{d}_{abc1}(t) = \begin{bmatrix} \frac{1}{2}(1 - m_a(t)) & \frac{1}{2}(1 - m_b(t)) & \frac{1}{2}(1 - m_c(t)) \end{bmatrix}$ and $d_{abc2}(t) = \begin{bmatrix} \frac{1}{2}(1 + m_a(t)) & \frac{1}{2}(1 + m_b(t)) & \frac{1}{2}(1 + m_c(t)) \end{bmatrix}$.

From the above equations, the terms $d_{abc1}^{T}(t)i_{abc1}(t) = 0$ and $d_{abc2}^{T}(t)i_{abc2}(t) = 0$, which indicate the natural balancing of the cell capacitors, with no low frequency oscillations in the cell capacitor voltages as in conventional one cell or n-cell MMC cases. Considering the two loops between upper and lower arms and imaginary supply mid-point, the MMC arm dynamics are:

$$\frac{1}{2}\psi V_{dc} - v_{abc1}(t) - R_s i_{abc1}(t) - L_s di_{abc1}(t) / dt - v_{abco}(t) = 0$$
(12)

$$\frac{1}{2}\psi V_{dc} - v_{abc2}(t) - R_s i_{abc2}(t) - L_s di_{abc2}(t) / dt - v_{abco}(t) = 0$$
(13)

Fig. 1(b) and (c) show an averaged and switching function models of the proposed converter, constructed from the equations that describe the dynamics of the cell capacitor voltages and arm currents. Combining the equations $v_{abco}(t) = R_T i_{abc}(t) - L_T di_{abc}(t)/dt - v_{abc}(t)$, and $i_{abco}(t) = i_{abc1}(t) - i_{abc2}(t)$ with that of the upper and lower arms, the following equations are obtained:

$$L_{x} di_{abco}(t) / dt + R_{x} i_{abco}(t) = \frac{1}{2} m_{abc}(t) \overline{V_{c}} - v_{abc}(t)$$
(14)

$$L_{s} di_{d}(t)/dt + R_{s} i_{d}(t) = \frac{1}{2} (V_{dc} - V_{c})$$
(15)

where $L_x = \frac{1}{2}L_s + L_T$, $R_x = \frac{1}{2}R_s + R_T$ and assuming that the cell capacitor voltage ripples are ignored ($V_{c1}(t) \approx V_{c2}(t) \approx \overline{V}_c$). Fig. 2 depicts electromagnetic transient models of the upper and lower arms of the improved two-level converter and their interfacing to the power circuit. In this mode, all IGBTs are replaced by switched resistors and upper and lower arm cell capacitors described by their Thevenin equivalent based on backward Euler:

$$V_{c1}(t) = V_{c1}(t - \Delta t) + \frac{\Delta t}{C_m} I_{c1}(t)$$
(16)

$$V_{c2}(t) = V_{c2}(t - \Delta t) + \frac{\Delta t}{C_m} I_{c2}(t)$$
(17)

where, $R_{c1} = R_{c2} = \Delta t / C_m$ represent Dommel equivalent resistors [2, 26-35]. From Fig. 2(a) and (b), the capacitor currents of the upper and lower cell capacitors at present time step are calculated from the arm currents and capacitor voltages at previous time step (history terms) as:

$$I_{c1}(t) = \left[\alpha_{a1}i_{a1}(t-\Delta t) + \alpha_{b1}i_{b1}(t-\Delta t) + \alpha_{c1}i_{c1}(t-\Delta t) - G_{1}V_{c1}(t-\Delta t)\right] / (1+R_{c1}G_{1})$$
(18)

$$I_{c2}(t) = \left[\alpha_{a2}i_{a2}(t-\Delta t) + \alpha_{b2}i_{b2}(t-\Delta t) + \alpha_{c2}i_{c2}(t-\Delta t) - G_2V_{c2}(t-\Delta t)\right] / (1+R_{c2}G_2)$$
(19)

Where, $\alpha_{a1} = R_{A11}/(R_{A11} + R_{A12})$, $\alpha_{b1} = R_{B11}/(R_{B11} + R_{B12})$, $\alpha_{c1} = R_{C11}/(R_{C11} + R_{C12})$, $\alpha_{a2} = R_{A21}/(R_{A22} + R_{A22})$

$$\alpha_{b2} = R_{B21} / (R_{B21} + R_{B22}), \\ \alpha_{c1} = R_{C11} / (R_{C11} + R_{C12}), \\ G_1 = 1 / (R_{A11} + R_{A12}) + 1 / (R_{B11} + R_{B12}) + 1 / (R_{C11} + R_{C12})$$
and
$$G_2 = 1 / (R_{A21} + R_{A22}) + 1 / (R_{B21} + R_{B22}) + 1 / (R_{C21} + R_{C22}).$$

Similarly, the terminal voltages of the upper and lower cells relative to positive and negative dc link nodes are:

$$v_{a1}(t) = V_{c1}(t) \times R_{A11} / (R_{A11} + R_{A12})$$

$$v_{b1}(t) = V_{c1}(t) \times R_{B11} / (R_{B11} + R_{B12})$$

$$v_{c1}(t) = V_{c1}(t) \times R_{C11} / (R_{C11} + R_{C12})$$

$$v_{a2}(t) = V_{c2}(t) \times R_{A22} / (R_{A21} + R_{A22})$$

$$v_{b2}(t) = V_{c2}(t) \times R_{B22} / (R_{B21} + R_{B22})$$

$$v_{c1}(t) = V_{c2}(t) \times R_{C22} / (R_{C21} + R_{C22})$$
(21)

The terminal voltages calculated from (20) and (21) at each time step are fed to the controlled voltage sources of the power circuit in Fig. 2.

III. VALIDATION OF THE OF THE IMPROVED TWO-LEVEL CONVERTER MODELS AGAINST SWITCH MODEL

Fig. 3 presents simulation waveforms that validate the averaged, switching function and electromagnetic transient simulation models of the I2L-VSC presented in section II, considering open loop case with parameters depicted in Fig. 3. The plots for the output phase currents, upper and lower arm currents, cell capacitor voltages from the averaged, switching function and electromagnetic transient simulation models in Fig. 3 (a), (b), (c) and (d) indicate that these models are able to reproduce identical results as the detailed switch model (including during steady-state and transient due to change of modulation index from 0.5 to 0.95), even though the average model neglects the high frequency switching transients. Detailed switch model refers to the model that employs universal bridge from Matlab-SimPower system library, where each switching device is mimicking the conduction pattern of typical IGBT plus anti-parallel diode. Fig. 3 (e) shows the switched output phase voltage obtained from the switching function and electromagnetic transient simulation models superimposed on that of the detailed switch model. Observe that the three models produce practically identical results to microscopic level. From the plots in Fig. 3, it can be concluded that the presented average, switching function, and electromagnetic transient simulation models are good representation of the I2L-VSC. These models in their present forms could be applied to simulation detailed behaviour of the I2L-VSC during normal and abnormal operation, including symmetrical and asymmetrical ac fault of grid connected inverters and HVDC links. However, minor software overhead or modification of the power circuit (inclusion of additional IGBT and diode to each arm) are necessary to make the presented models applicable to dc fault studies.

(a)

(b) [LX1]

Fig. 1: (a) The proposed modular level converter with common cell capacitor for three-phases, (b) its averaged model and (c) its switching function model

Electromagnetic transient representation of the lower cell

Electromagnetic transient representation of the upper cell

Fig. 2: Electromagnetic transient simulation equivalent of the upper and lower cells, including illustration of their interfacing to the power circuit using controlled voltage source

Fig. 3: Open loop validation of the averaged, switching function and electromagnetic transient simulation models of the improved two-level converter against detailed switch model (V_{dc} =5kV, 2.1kHz carrier frequency, 2mF cell capacitance, 5mH arm inductance, load resistance and inductance are 10 Ω and 40mH, and step change in modulation index from 0.5 to 0.95): (a) Phase 'a' load currents of the four models (detailed, average, switch and EMTP models),(b) Upper and lower arm currents (detailed, average, switch and EMTP models), (c) Phase 'a' upper and lower arm currents (detailed, average, switch and EMTP models), (c) Phase 'a' upper and lower arm currents (detailed, average, switch and EMTP models, (d) upper and lower cell capacitors (detailed, average, switch and EMTP models) and (e) Pre-filter output phase voltage (v_{ao}) measured relative to ground (detailed, switching function and EMTP models).

IV. TEST SYSTEMS

Fig. 4 shows a two-terminal symmetrical monopole HVDC link that employs the proposed I2L-VSC. System parameters are displayed in Fig. 4 and listed in Table I. Converter terminals VSC_1 and VSC_2 regulate active power and dc link voltage respectively, and ac voltage at B₁ and B₂. Both converter terminals use two double tuned ac filters, targeted at 1st carrier frequency and dominant sidebands around the 1st and 2nd carrier frequencies, with the total filtering per converter is about 30% of the converter rating.

Table I: system parameters			
Rated dc voltage	200kV (±100kV)		
VSC_1 and VSC_2 rated apparent power	200MVA		
VSC_1 and VSC_2 rated active power	180MW		
VSC1 and VSC2 rated reactive power	±90MVAr		
VSC_1 and VSC_2 rated ac voltage	100kV		
Arm inductor (L _s)	10mH		
Cell capacitance	100µF		
Inductance of interfacing reactor	0.15pu		

Transformer leakage inductance	0.1pu
Transformer rated power	200MVA
Transformer nominal voltage ratio	100kV/400kV
DC cable resistance	9mΩ/km
DC cable inductance	1.4mH/km
DC cable capacitance	0.26µF/km

V. SIMULATIONS

Fig. 5 shows simulations waveforms when the active power regulator (VSC₁) of the HVDC link in Fig. 4 is commanded at t=0.4sto ramp its active power output from 0 to 160MW, and at t=1s, the system is subjected to a permanent pole-to-pole dc short circuit fault at the middle of the link. Fig. 5 (a), (b), (c) and (d) display three-phase ac currents VSC1 and VSC2 inject into B1 and B2, and respective arm currents. Observe that during normal operation and dc fault, the upper and lower arm currents are similar to that of the conventional modular[LX2], but the common-mode components of the arm currents do not contain any circulating currents (see Fig. 5 (e)). Moreover, during dc short circuit fault the routes of the in-feed current in the blocked converter are similar to that of the conventional MMC (freewheeling diodes of the upper switches in the upper arms, and the opposite in the lower arms). Fig. 5 (e) and (f) show that the common-mode current of each phase-leg of the improved two-level converter is practically pure dc and represents one third of the dc link current during normal operation and dc fault. Additionally, the plots for the arms and commonmode currents, and dc link current displayed in Fig. 5 (c) to (f) indicate that these currents are dominated by the ac grid contribution (steady-state component of the dc fault current), thanks to the concept of distributed capacitors. Unlike the conventional MMC, the cell capacitor voltages of the improved two-level converter do not exhibit any low frequency oscillations, thanks to the use of single capacitor per three phases in each arm (see Fig. 5 (g) and (h)). Also, the magnitudes of high-frequency oscillations seen on the cell capacitors are much smaller, and could allow the use of much smaller arm inductances in other application; however, in HVDC applications being considered here, the arm inductance is selected, taking into account its contribution to dc fault current limiting and di/dt on the freewheeling diodes. Fig. 5(i) shows positive and negative pole to-ground dc voltages measured at the terminals of VSC₁. Despite the high loss concern of the two-level converter, the above discussions show that the improved twolevel converter can be used as in point-to-point where the two-level converter offers the best overall trade-off compared to MMC, and in parts of the multi-terminal HVDC network that would be operated at relatively low dc operation voltage and power.

Fig. 6 presents selected simulation waveforms for the improved two-level converter when it is subjected to a temporary symmetrical three-phase ac fault at B_1 for period of 200ms, and VSC₁ reduces its active power injection into B_1 to zero when fault is detected at t=1s. Fig. 6 (a), (b), (c) and (d) show ac voltage at B_1 , VSC₁ output current measured at the interfacing inductor, VSC₁ upper and lower arm currents, and VSC₁ common-mode currents of the three phases. Fig. 6 (e) and (f) show VSC1 cell capacitor voltages and its positive and negative pole dc link voltages. Observe that the response of the improved two-level converter to three-phase ac fault is similar to that of the conventional MMC with large number of cells[36]. With 100µF cell capacitance (10ms), the cell capacitor voltages and positive and negative pole dc voltages exhibit limited overshoots around 17.5% during ac fault. This shows

that the substantial reduction achieved in the cell capacitance or energy content of the improved two-level converter compared to

MMC did not significantly compromise converter operation.

Fig. 4: Two-terminal symmetrical monopolar HVDC link that employs improved two-level converters at VSC_1 and VSC_2

Fig. 5: Waveforms illustrate the response of the improved two-level converter during dc short circuit fault: (a) three-phase currents at B₁, (b) Three-phase currents at B₂, (c) VSC₁ upper and lower arm currents, (d) VSC₂ upper and lower arm currents, (e) Sample of the common-mode current measured at VSC₁, $i_{abc1}^{abc} = \frac{1}{2}(i_{abc1} + i_{abc2})$, (f) DC link current measure at the terminal of VSC₁, (g) VSC₁ upper and lower capacitor voltages, (h) VSC₂ upper and lower capacitor voltages and (i) Sample of the converter dc link voltage measured at the terminals of VSC₁

Fig. 6: Simulation waveforms that illustrate the response of the improved two-level converter to symmetrical ac fault: (a) Three-phase ac voltages measured at B₁, (b) Pre-filter three-phase ac currents measured in the interfacing inductor of VSC₁, (c) VSC₁ upper and lower arm currents, (d) VSC₁ common-mode currents, (e) VSC₁ upper and lower cell capacitor voltages and (f) VSC₁ positive and negative dc link voltages

VI. COMPARISON BETWEEN THE CONVENTIONAL AND IMPROVED TWO-LEVEL CONVERTERS

Fig. 7 presents a comparison between the improved and conventional two-level converters when both are simulated as point-topoint HVDC link in Fig. 4, using parameters in Table I and exposed to the same pole-to-pole dc short circuit studied in Fig. 5. To ensure that both converters have the same inertia (stored capacitor energy) and dc current ripples, the dc link capacitance of the conventional two-level converter is set to be twice of the improved two-level converter shown in Table I.

Fig. 7(a) displays three-phase currents of the 12L-VSC (continuous lines) superimposed on that of the conventional two-level converter (doted lines), all measured at the interfacing reactors which are connected between converter terminals and low-voltage windings of the interfacing transformer. The plots in Fig. 7(a) indicate that the conventional two-level converter draws larger currents than its improved version, which is in line with the above discussions. The plots for the dc link current measured at the dc terminal of the active power regulator (VSC₁) in Fig. 7(b) show the conventional two-level converter contributes larger transient current to dc fault than the 12L-VSC, and this is due to discharge of its dc link capacitor. But due to the small residual dc voltage across the dc link capacitors of the conventional two-level converter, it has slightly lower steady-state dc fault current than the 12L-VSC (recall the latter does not use dc link capacitor across the dc link). Fig. 7(c) displays the current in the switch S_{a1} of the upper cell of the 12L-VSC. Notice that the steady-state peak current of the switch S_{a1} is equal to that of the arm currents ($\frac{1}{3}I_{dc} + \frac{1}{2}I_m$), where I_{dc} and I_m are the dc link current and peak of the output current. Fig. 7(d) shows the current in the switch S_{a1} (phase 'a' upper arm of the conventional two-level converter). Observe that the switch S_{a1} in the conventional two-level converter is exposed to the peak of the converter output current (I_m) during steady-state which is higher than that of the 12L-VSC, and its diodes are exposed to higher transient currents during a dc fault compared to that of the 12L-VSC. When 12L-VSC is blocked during pole-to-pole dc short circuit faults, the ac in-feed currents from ac to dc side flow through the diodes of the upper switches (S_{a1} , S_{b1} and S_{c1}) in the upper arms, and diodes of lower switches in the lower arms, Fig. 7(e) and (f).

From the above discussions and results in Fig. 7, the following conclusions are drawn:

- The I2L-VSC has better transient response to pole-to-pole dc short circuit faults than the conventional two-level converter, see Fig. 7(a) and (b).
- For the same rated power, dc link voltage and ac side voltage, the I2L-VSC can use switching devices with lower rated current than the conventional two-level converter, see Fig. 7(c) and (d).
- The dc fault currents in the freewheeling diodes of the conventional two-level converter rise at slower rate than that of the I2L-VSC (as the residual dc voltages across its dc link capacitors do not fall instantly to nearly zero), see Fig. 7(e).

(e)

To illustrate the power density of the I2L-VSC compared to the conventional two-level converter when both converters employ switching devices of similar current and voltage ratings, it assumes that the output phase current of phase 'a' is $i_{a0}=I_m sin(\omega t+\varphi)$. Therefore, the upper and lower arm currents of the I2L-VSC will be $i_{a1}=I_d+\frac{1}{2}I_m sin(\omega t+\varphi)$ and $i_{a2}=I_d-\frac{1}{2}I_m sin(\omega t+\varphi)$; where, $I_d=\frac{1}{3}I_{dc}$, and I_m and I_{dc} represent the peak of the output phase currents and magnitude of the dc link current. Also, recall that the I_d could be expressed as $I_d=\frac{1}{4}mI_m cos\varphi[37]$, where, m and φ are modulation index and power factor angle. On the other hand, the peak arm current for the conventional two-level converter is the same as that of the output phase currents. However, the peak arm currents of the I2L-VSC vary significantly with power factor. For example, the arm currents at zero and unity power factor boundary conditions are:

- At zero power factor, $I_d=0$, thus, $i_{a1}=+\frac{1}{2}I_m sin(\omega t+\varphi)$ and $i_{a2}=-\frac{1}{2}I_m sin(\omega t+\varphi)$. This feature could be exploited to expand the P-Q envelope of the I2L-VSC, particularly, in the current limit parts of the under excitation region, where converter reactive power output is limited by the current rating of the switching devices. In this region, reactive power capability of the I2L-VSC can be extended to up to double the rated apparent power of the conventional two-level converter, without overstressing the switching devices.
- At unity power factor and unity modulation index, the arm currents of the I2L-VSC are $i_{al} = \frac{1}{2}I_m(\frac{1}{2} + \sin(\omega t + \varphi))$ and $i_{a2} = \frac{1}{2}I_m(\frac{1}{2} \sin(\omega t + \varphi))$. These arm currents' expressions indicate that the I2L-VSC are capable of generating more active power compared to the conventional two-level converter, without overstressing its switching devices).

To substantiate the above discussions, selected waveforms that illustrate the case of zero power factor with I2L-VSC exchanges twice the rated apparent power of the two-level converter are presented in Fig. 8 and Fig. 9. The plots in Fig. 8 (a), (b) and (c) and Fig. 9 (a), (b) and (c) confirm the above discussions, with arm currents of both converters being compared have similar peak currents even though I2L-VSC exchanges twice reactive power of the conventional two-level converter.

Additional waveforms that compare the response of the conventional and improved two-level converters during power reversal are shown in Fig. 10. These waveforms show both converters being compared have similarly responses.

Table II presents semiconductor loss comparison between the conventional and improved two-level converters, using system parameters summarised in Table I, and 1200A, 2.5kV IGBT(T1200TD25A) from West-code, assuming that the voltage stress per switch is 1.250kV. On-state and switching losses of the conventional and improved two-level converter are calculated based on the approach presented in [38-42], with some modification introduced to accommodate the asymmetry of the arm currents in the improved two-level converter as suggested in [15]. The accuracy of the analytical on-state losses in Table II is confirmed using MATLAB simulation, where the average and RMS currents are calculated directly from the simulation. It has been found that the margin of error between the two results is less than 1%. The switching losses are calculated assuming that the turn-on and turn-off energy losses are linear combination of device current at the turn on and turn off instances [43]. Table II shows that the improved two-level converter has lower on-state and switching losses compared to the conventional two-level converter, benefiting from even split of the fundamental output ac current between the upper and lower arms of each phase-leg. Notice that the semiconductor losses in Table II are obtained when switching frequency is 2.1kHz, and since these losses are predominantly switching losses, the

overall semiconductor loss for the improved two-level converter could be reduced drastically by adopting selective harmonic elimination with lower equivalent switching frequency of 1.15kHz as employed in the conventional two-level converter of the Estlink HVDC link[44].

Table III presents global comparison of the attributes and limitations of the improved two-level converter with respect to the conventional two-level converter and modular multilevel converter.

Fig. 7: Selected waveforms illustrate one-to-one comparison of the responses of the proposed I2L-VSC against that of the conventional two-level converter during pole-to-pole dc short circuit fault: (a) three-phase currents measured at the interfacing reactors of the I2L-VSC superimposed on that of the conventional two-level converter; (b) dc link current measured at the terminal of the VSC₁ which is modelled as an I2L-VSC superimposed on that of the conventional two-level converter; (c) current waveform in the switch S_{al} of the I2L-VSC, measured during steady-state; (d) current waveform in the switch S_{al} of the I2L-VSC, measured during steady-state; (d) current waveform in the switch S_{al} of the I2L converter superimposed on that of the conventional two-level VSC, measured during steady-state (which represents phase 'a' upper arm current); (e) current waveform in the switch S_{al} of the I2L converter superimposed on that of the conventional two-level converter; and (f) six arm currents of the I2L-VSC

(a) VSC_1 active and reactive powers

(a) VSC1 active and reactive powers

(b) VSC₁ three-phase output currents measured at converter side (low-voltage side of the interfacing transformer)

(b) VSC₁ three-phase output currents measured at converter side (low-voltage side of the interfacing transformer)

(c) Samples of the upper and lower arm' currents of the phase a

 (c) Sample of the current in the upper arm of the phase a
 Fig. 8: Waveforms of the conventional two-level converter when it exchanges -200MVAr with the ac grid

Fig. 9: Waveforms of the improved two-level converter when it exchanges -400MVAr with the ac grid

Fig. 10: Selected waveforms illustrate the response both the conventional and improved two-level converter during power reversal (initially, both active and reactive powers are held at zero, at t=0.5s, VSC₁ ramps its active power from zero to import 160MW from G₂ to G₁; at t=1.4s, VSC₁ reverses the power flow from 160MW to -160MW, exporting power from G1 to G2; and reactive power of VSC₁ is held at zero throughout this illustration).

Table II: Semiconductor power loss comparison between conventional and improved two-level converters

	Conventional two-level converter	Improved two-level converter	
Operating condition	P=180MW & Q=0		
On-state loss	1.4734 MW	1.1996MW	
Switching loss	3.5016MW	3.0690MW	
Total semiconductor losses	4.9750MW (2.76%)	4.2686MW (2.37%)	
Operating condition	P=180MW & Q=90MVAr		
On-state loss	1.74MW	1.36MW	
Switching loss	4.06MW	3.35MW	
Total semiconductor losses	5.80MW (3.22%)	4.71MW (2.62%)	
Operating condition	P=0 & Q=180MVAr		
On-state loss	1.38MW	1.03MW	
Switching loss	3.50MW	2.71MW	
Total semiconductor losses	4.88MW (2.71%)	3.74MW (2.08%)	

Table III: Global comparison between improved and conventional two-level converters and half-bridge modular multilevel converter for HVDC transmission systems applications (Voltage per single IGBT (V_d) is assumed to be equal to that of single MMC submodule capacitor (V_{cell}), therefore, the number cell capacitors (N) is equal to the number of IGBTs in each composite switch of the conventional and improved two-level converters, i.e., $N = V_{dc}/V_d$, where V_{dc} is the dc link voltage)

	UC IIIK	voltage)	
	Improved two-level converter	Conventional two-level converter	Half-bridge modular multilevel converter
	HVDC links with rated dc power and	• HVDC links with rated dc power and dc	• HVDC links with rated dc power and dc
	dc operating voltage below 200MW	operating voltage below 200MW and	operating voltage above 400MW and
	and 200kV	200kV	400kV
	Possible to operate in offshore oil	• Offshore oil platforms that operate at	• Unviable at low frequencies[46];
	platforms that requires variable	variable frequency such as from 0 to	therefore, unsuitable for connection of
	frequencies from 0 to 63Hz as	63Hz as demonstrated in[1, 46]. It small	offshore oil platforms that operate with
	demonstrated using the conventional	footprint is attractive in offshore	variable frequency. Also, its large
Suitability for dc transmission systems	two-level converter in [43, 45, 46].	applications.	footprint is less attractive in
	Notice that continuous operation of the		applications with confined space such
	I2L-VSC at low frequencies such as		as offshore oil platforms.
	1Hz has been demonstrated in Fig. 12.		
	The I2L-VSC footprint is expected to		
	be similar to or slightly large than that		
	of the two-level converter; therefore		
	attractive in offshore applications.		
	• Its cell capacitors do not discharge	• Its dc link capacitor contributes large	• Its cell capacitors do not discharge
	during dc short circuit; thus, it exposes	transient component to dc fault current;	during dc short circuit[2, 3, 50-52];
	dc circuit breakers connected to its	thus, making design of dc circuit	thus, it exposes dc circuit breakers
	positive and negative pole to similar	breakers increasingly challenging [46].	connected to its positive and negative
	level of let-through current as the	• Exposes its freewheeling diodes to high	pole to let-through current, which is
	modular multi-level converter of	current stress as it draws extra current	predominantly ac grid contribution (its
Description of the second standard similar	similar rating (lower than the	from the ac grid as its dc link voltage	magnitude is determined by the ac grid
Response to pole-to-pole dc snort circuit	conventional two-level converter, see	collapses [47-49].	strength and amount of inductance in
rault	Fig. 7).		the fault loop such as arm and
	• Its freewheeling diodes are exposed to		transformer leakage inductances).
	similar current stresses as the modular		• Its freewheeling diodes are exposed to
	multilevel converter of similar rating		lower current stresses than the
	(lower than the conventional two-level		conventional two-level converter (the
	converter, see Fig. 7).		same improved two-level converter) [2,
			3, 50-52].
	6×2N insulated gate bipolar	$6 \times N$ insulated gate bipolar	6×2N insulated gate bipolar
Number of semiconductor switches per	transistors (IGBTs), each rated for	transistors (IGBTs), each rated for	transistors (IGBTs), each rated for
three-phase converter	V /N	V /N	V /N
		V dơ IN	
Number of switches in the conduction	21	N	21
path	1/I + 1/I (I and I are the de link	7	1/1 . 1/1
Deale around in the arrited in a dealers	$\gamma_{3ldc} + \gamma_{2lm}$, (I_{dc} and I_m are the dc link	I_m	$\gamma_{3ldc} + \gamma_{2lm}$
Peak current in the switching devices	current and peak of the output phase		
	current)		
	V_{dc} , this means each cell capacitor	V_{dc} , this means the dc link capacitor	V_{dc} , this means each arm must have
	and composite switch of each arm	and composite switch of each arm	sufficient cells to support full dc link
Voltage stress per arm	must be capable of blocking full dc	must be capable of blocking full dc	voltage (V_{dc}) , with share of voltage
	link voltage (V_{dc}) as in the	link voltage (V_{dc})	stress per cell capacitors and
	conventional two-level converter.		switching device is limited to V_{dc}/N .
	High, but slightly lower than that of the	High, see Table II	Low, see reference [15, 53-58]
Semiconductor losses	conventional two-level converter, see	6,	
	Table II		
	High, but remain tolerable as long as the	High, but remain tolerable as long as the	Low
dv/dt imposed on the interfacing reactors	improved two-level converter is applied to	conventional two-level converter is	
and transformer	system with relatively low dc operating	stretched beyond its dc operating voltage	
	voltage such as 200kV and 300kV	limits which are less 300kV	
	V _{dc} (therefore series connected devices	V _{dc} (therefore series connected devices	V _{dc} /N (where N is the number of cells per
Voltage stress per device and cell or de	are used)	are used)	arm). When N is low as in cascaded two-
link capacitor			level converter, series device connection
			is used within the cells
	Low complexity, therefore offers the	Low	Very high complexity but offers the
Power circuit and control complexity	best design trade-off for HVDC links		best design trade-off for HVDC links
	-		-

	with relatively low rated power and dc		with higher rated power and dc
	voltage.		operating voltage.
Arm currents	Continuous, with no 2 nd order harmonic	Discontinuous, but full modulation index	Continuous, but require a dedicated
	currents in its arms; therefore, full	line range is available for power transfer.	controller with at least 5% of the
	modulation index linear range is available		modulation to be sacrificed for suppression
	for power transfer.		of the 2 nd order harmonic currents in its
			arms. Therefore, its P-Q capability cureb is
			expected to be smaller the conventional
			and improved two-level converters with
			similar ratings. Alternatively, a number of
			tuned filters to be incorporated into MMC
			phase legs as being employed in ABB
			cascaded two-level converter to suppress
			the circulating currents[59].
Application to Multi-terminal HVDC network	Can be used in parts of multi-terminal dc	Not desirable because it will increase fault	Desirable for use in parts of multi-terminal
	network that operate with dc voltage,	level	dc network that operate at high-voltage,
	without increasing the fault level beyond		without increasing the fault level beyond
	that will be contributed by the cable stray		that will be contributed by the cable stray
	capacitors		capacitors

VII. EXPERIMENTAL VALIDATION

This section presents experimental validation of the I2L-VSC, considering open and closed loop operation, with the open loop results aim to illustrate the performance of the I2L-VSC during operation with 50Hz and 1Hz. Whilst the presented closed loop cases illustrate the performance of the I2L-VSC when it is connected to grid, operating at unity and zero power factors. The carrier frequency is fixed at 2.4kHz in all experimental tests presented in this paper.

A) *Open loop*: Fig. 11 shows open loop operation of the I2L-VSC when it supplies a passive load of 26Ω and 5mH at 50Hz and unity modulation index, with detailed of the test rig parameters are given in the caption of Fig. 11. Experimental waveforms for the three-phase load currents, phase 'a' upper and lower arm currents, ' i_{a1} and i_{a2} ', superimposed on its corresponding output phase current ' i_{ao} ' indicate that the I2L-VSC adheres to the same principles as the MMC, including continuous arm currents, $\frac{1}{2}i_{ao}$ superimposed on $\frac{1}{3}I_{dc}$, and no 2nd harmonic currents are observed in the arm currents as predicated in the simulation section, see Fig. 11(a) and (b). Samples of the three-phase lower arms (i_{a2} , i_{b2} and i_{c2}) in Fig. 11 (c) exhibit limited unbalanced due to inherent mismatch in the arm inductances, but this does not affect the three-phase output phase currents i_{ao} , i_{bo} and i_{co} . Fig. 11(d) shows upper and lower arm cell capacitor voltages and dc link currents, and observe the cell capacitor voltages (V_{c1} and V_{c2}) show no low frequency oscillations as predicated by the above simulation cases, but the dc link current (I_{dc}) display small low frequency ripple due to unbalanced in the ac components of the three-phase arm currents, see Fig. 11 (c).

Fig. 12 presents an additional case when the I2L-VSC imposes 1Hz on the passive load connected to its ac side; with the rest of the operating parameters remain the same as in case presented in Fig. 11. Observe that as the ac effect of the arm reactors disappears at 1Hz, the three-phase output load currents remain sinusoidal, despite the arm currents tend to drop to zero for majority of the half cycle in arm with small duty cycle (provided the upper and lower arms of the same phase-leg operate in complementary manner), see Fig. 12(a), (b) and (c). The lower arm three-phase currents appeared to be balanced as the effect of unequal arm inductors diminishes at low frequency. Fig. 12 (d) shows that both the upper and lower cell capacitors and dc link currents are pure dc and

free of low frequency oscillation as indicated earlier in simulation section, and this is because of perfect balance of the ac components of the three arm currents.

B) Closed loop: Fig. 13 presents experimental waveforms of the I2L-VSC when it injects $i_d^*=5.5A$ and $i_q^*=0$ (unity power factor) into 50Hz ac grid at 150Vrms line-to-line voltage, with control systems depicted in Fig. A 1 in appendix A is employed in this demonstration. Fig. 13 (a), (b) and (c) show the three-phase currents converter injects into ac grid superimposed on phase 'a' voltage, phase 'a' upper and lower arm and output currents, and upper and lower cell capacitor voltages and dc link current. Additional scenario that considers the case of zero power factor ($i_d^*=0$ and $i_q^*=5.5A$) is presented in Fig. 14. Observe that these results indicate that the I2L-VSC is able to operate satisfactory in all scenarios, including the scenario in Fig. 14 with zero dc link current and dc bias in the arm currents. These results support the accuracy of the theoretical discussions and analysis presented in previous sections.

C) Simulated dc short circuit fault: Fig. 15 displays experimental waveforms of the improved two-level converter when it is subjected to a permanent pole-to-pole dc short circuit fault. The dc fault is initiated by connecting 26Ω resistance across the dc link and 26Ω in series with the dc supply to limit its current. Fig. 15 (a) and (b) shows that when converter is blocked, the cell capacitor voltage remain flat at its pre-fault condition when the dc link voltage collapses to 50%, dc link current reverses direction and the upper and lower arms only conduct through their respective freewheeling diodes as expected, and illustrated in the simulation section. These results support claim with regard to similarity of the transient response of the I2L-VSC is similar to that of the conventional MMC.

Fig. 11: Waveforms that illustrate the open loop operation of the improved two-level converter at 50Hz, unity modulation index, V_{dc} =300V, passive load of 13 Ω and 5mH, 3.3mH arm inductance and 470 μ F cell capacitance: (a) Three-phase load currents i_{ao} , i_{bo} and i_{co} (5ms/div and 2A/div), (b) Phase 'a' output and upper and lower arm currents i_{ao} , i_{al} and i_{a2} (5ms/div and 2A/div), (c) Lower arm currents i_{a2} , i_{b2} and i_{c2} (5ms/div and 2A/div) and (d) Cell capacitor voltages V_{cl} and V_{c2} and dc link current I_{dc} (25ms/dv, 2A/div) and 100V/div)

Fig. 12: Waveforms that illustrate the open loop operation of the improved two-level converter at 1Hz, unity modulation index, V_{dc}=300V, passive load of 13Ω and 5mH, 3.3mH arm inductance and 470µF cell capacitance: (a) Three-phase output currents i_{ao}, i_{bo} and i_{co} (250ms/div, 2A/div), (b) Lower arm currents i_{a2}, i_{b2} and i_{c2} (250ms/div, 2A/div), (c) Phase 'a' output and upper and lower arm currents (250ms/div and 2A/div) and (d) Cell capacitor voltages V_{c1} and V_{c2} and dc link current I_{dc}(500ms/div, 2A/div) and 100V/div)

 (a) Three-phase currents converter injects into ac grid superimposed on phase 'a' of the grid voltage (5ms/div, 5A/div and 40V/div)

(b) Phase 'a' upper and lower arm currents superimposed on phase 'a' output current(5ms/div, 2A/div)

Fig. 13: Waveforms illustrate closed loop operation of the improved two-level converter when it injects $i_d^*=5.5A$ and $i_a^*=0$ into grid (unity power factor)

 (a) Three-phase currents converter injects into ac grid superimposed on phase 'a' of the grid voltage (5ms/div, 5A/div and 40V/div)

 (b) Phase 'a' upper and lower arm currents superimposed on its corresponding output phase current(5ms/div, 2A/div)

(c) Upper and lower cell capacitor voltages, V_{c1} and V_{c2}, and dc link current, I_{dc}(10ms/div, 2A/div and 100V/div)

Fig. 14: Waveforms illustrate closed loop operation of the improved two-level converter when it injects $i_d^*=0$ and $i_q^*=5.5$ into grid (zero power factor)

 (a) DC link current and voltage, and cell capacitor voltages (25ms, 5A/div and 100V/div)

(b) Upper and lower arm and output phase currents $(i_{a1}, i_{a2} \text{ and } i_{a0})$

Fig. 15: Experimental waveforms that illustrate response of the improved two-level converter to dc short circuit

VIII. CONCLUSIONS

This paper presented an improved two-level converter as potential alternative for conventional two-level converter in HVDC transmission systems, with relatively low rated dc voltage and power. The theoretical discussions, simulations and experimentations indicate that the improved two-level converter offers the best compromise between semiconductor losses, waveforms quality, system complexity and transient response to ac and dc network faults. The latter aspects are critical when considering integration of the proposed converter into dc grids, which are expected to be dominated by MMCs . Moreover, this paper presented average, switching function and electromagnetic transient simulation models of the I2L-VSC, including their validations against detailed switch model. It is worth emphasizing that the proposed converter retains ability to operate continuously with full load current at low frequencies such as 1Hz, which is not possible with conventional MMC.

IX. APPENDIX

Fig. A 1 shows generic control system employed with the HVDC link in Fig. 4. Only inner current controller implemented with the test rig in Fig. A.2 to produce experimental waveforms in Fig. 13, Fig. 14 and Fig. 15.

Fig. A 1: Simplified block diagram of the control system employed with test system in Fig. 4, while the inner controller is the only part implemented in the experimental demonstration

(a)

(b)

Fig. A.2: (a) Experimental test rig and (b) picture of the test rig

X. ACKNOWLEDGEMENT

This research was partially supported by Australian Research Council's *Discovery Projects* funding scheme (project number DP150102368), and also supported in part by the SUPERGEN Hubnet project under grant EP/I013636/1.

XI. BIOGRAPHIES

G.P. Adam (M'12) received a first class BSc and MSc in power systems and electrical machines from Sudan University for Science and Technology, in 1998 and 2002 respectively; and. a PhD in Power Electronics from University of Strathclyde in 2007. Dr Adam is a research fellow with Institute of Energy and Environment, University of Strathclyde in Glasgow, UK, since 2008. His research interests are fault tolerant voltage source converters for HVDC applications; modelling and control of HVDC transmission systems and multi-terminal HVDC networks; voltage source converter based FACTS devices; and grid integration issues of renewable energy. Dr Adam has authored and co-authored several technical reports and over 100 journal and conference papers in the area of multilevel converters and HVDC systems, and grid integration of renewable power. Moreover, Dr Adam has published two books in applications of power electronics in power systems and renewable energy. He is an active contributor to reviewing process for several IEEE and IET Transactions and Journals and conferences, and a full member of IEEE and IEEE Power Electronics Society.

Ibrahim Abdelsalam: received a first class B.Sc. and M.Sc. degrees in electrical engineering from the Arab Academy for Science and Technology and Maritime Transport, Egypt, in 2006(Alexandria campus) and 2009(Cairo campus). He received the Ph.D. degree in power electronics From University of Strathclyde, Glasgow, UK, 2016. Currently he is Lecture in electrical department at Academy for Science and Technology and Maritime Transport. His research interests are power electronic converters and their applications in wind energy conversion systems, and advanced control strategies of the multilevel voltage and current source converters.

John E. Fletcher (M' 11 – SM'13), He received the B.Eng. (with first class honors) and Ph.D. degrees in electrical and electronic engineering from Heriot-Watt University, Edinburgh, U.K., in 1991 and 1995, respectively. Until 2007, he was a Lecturer at Heriot-Watt University. From 2007 to 2010, he was a Senior Lecturer with the University of Strathclyde, Glasgow, U.K. He is currently a Professor with the University of New South Wales, Sydney, Australia. His research interests include distributed and renewable integration, silicon carbide electronics, pulsed-power applications of power electronics, and the design and control of electrical machines. Prof. Fletcher is a Charted Engineer in the U.K. and a Fellow of the Institution of Engineering and Technology.

Lie Xu (M'03–SM'06) received the B.Sc. degree in Mechatronics from Zhejiang University, Hangzhou, China, in 1993, and the Ph.D. degree in Electrical Engineering from the University of Sheffield, Sheffield, UK, in 2000. He is currently a Professor at the Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK. He previously worked in Queen's University of Belfast and ALSTOM T&D, Stafford, UK. His main research interests include power electronics, renewable energy generation and grid integration, AC/DC microgrids and HVDC systems.

Graeme M. Burt (M'95) received the B.Eng. degree in electrical and electronic engineering from the University of Strathclyde, Glasgow, U.K., in 1988 and the Ph.D. degree in fault diagnostics in power system networks from the University of Strathclyde in 1992. He is currently a professor of electrical power systems at the University of Strathclyde where he co-directs the Institute for Energy and Environment, and directs the Rolls-Royce University Technology Centre in Electrical Power Systems. His research interests lie predominantly in the areas of power system protection and control, distributed energy, and experimental validation.

Derrick Holliday has research interests in the areas of power electronics, electrical machines and drives. In 1995 he obtained the degree of PhD from Heriot Watt University and, since then, has held full-time academic posts at the Universities of Bristol and Strathclyde. He has authored or co-authored over 70 academic journal and conference publications. He is currently leading industrially funded research in the field of power electronics for HVDC applications, and is co-investigator on research programmes in the fields of photovoltaic systems and the interface of renewable energy to HVDC systems.

S.J. Finney obtained an MEng degree in Electrical and Electronic Engineering from Loughborough University of Technology in 1988. He worked for the Electricity Council Research Centre before joining the power electronics research group at Heriot-Watt University in 1990, receiving the award of PhD in 1994. From 1994 to 2005 he was a member of academic staff at Heriot-Watt University. In 2005 he joined the University of Strathclyde as a senior lecturer, where he has been promoted to reader then a Professor of Electrical Engineering with the Institute of Energy and Environment, specialising in power electronic systems. He joined University of Edinburgh as professor of electrical engineering in mid-2017. His research interests include power electronics for high power applications and the management of distributed energy resources.

XII. REFERENCES

- [1] B. JACOBSON, Y. JIANG-HÄFNER, P. REY and G. ASPLUND, "HVDC WITH VOLTAGE SOURCE CONVERTERS AND EXTRUDED CABLES FOR UP TO ±300 kV AND 1000 MW " presented at the Cigre, Paris, 2006.
- B. Jacobson, P. Karlsson, G.Asplund, L.Harnnart and a. T. Jonsson, "VSC-HVDC Transmission with Cascaded Two-level Converters," presented at the CIGRE 2010, 2010.
- [3] S. Allebrod, R. Hamerski and R. Marquardt, "New transformerless, scalable Modular Multilevel Converters for HVDC-transmission," in *Power Electronics Specialists Conference*, 2008. *PESC* 2008, pp. 174-179.
- [4] J. Pan, R. Nuqui, K. Srivastava, T. Jonsson, P. Holmberg, and Y. J. Hafner, "AC Grid with Embedded VSC-HVDC for Secure and Efficient Power Delivery," in *Energy 2030 Conference, 2008. ENERGY 2008. IEEE, 2008*, pp. 1-6.
- [5] C. Oates, K. Dyke and D. Trainer, "The use of trapezoid waveforms within converters for HVDC," in *Power Electronics and Applications (EPE'14-ECCE Europe), 2014 16th European Conference on*, 2014, pp. 1-10.
- [6] A. Nami, L. Jiaqi, F. Dijkhuizen and G. D. Demetriades, "Modular Multilevel Converters for HVDC Applications: Review on Converter Cells and Functionalities," *Power Electronics, IEEE Transactions on*, vol. 30, pp. 18-36, 2015.
- [7] S. Kenzelmann, A. Rufer, D. Dujic, F. Canales and Y. R. de Novaes, "Isolated DC/DC Structure Based on Modular Multilevel Converter," *Power Electronics, IEEE Transactions on*, vol. 30, pp. 89-98, 2015.
- [8] F. B. Ajaei and R. Iravani, "Enhanced Equivalent Model of the Modular Multilevel Converter," Power Delivery, IEEE Transactions on, vol. PP, pp. 1-1, 2014.
- R. Marquardt, "Modular Multilevel Converter: An universal concept for HVDC-Networks and extended DC-Bus-applications," in *Power Electronics* Conference (IPEC), 2010 International, 2010, pp. 502-507.
- [10] H. J. Knaak, "Modular multilevel converters and HVDC/FACTS: A success story," in *Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on*, 2011, pp. 1-6.
- [11] K. Friedrich, "Modern HVDC PLUS application of VSC in Modular Multilevel Converter topology," in *Industrial Electronics (ISIE), 2010 IEEE International Symposium on*, 2010, pp. 3807-3810.
- [12] M. Davies, M. Dommaschk, J. L. J. Dorn, D. Retzmann and D. Soerangr. HVDC PLUS Basics and Principle of Operation [Online].

- [13] T. Jonsson, P. Lundberg, S. Maiti and Y. Jiang-Häfner, "Converter Technologies and Functional Requirements for Reliable and Economical HVDC Grid Design," presented at the Cigre Canada, Calgary, Canada, 2013.
- G. P. Adam, P. Li, I. A. Gowaid and B. W. Williams, "Generalized switching function model of modular multilevel converter," in Industrial Technology [14] (ICIT), 2015 IEEE International Conference on, 2015, pp. 2702-2707.
- G. P. Adam and B. W. Williams, "Half- and Full-Bridge Modular Multilevel Converter Models for Simulations of Full-Scale HVDC Links and [15] Multiterminal DC Grids," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, pp. 1089-1108, 2014.
- J. Beerten, G. B. Diaz, S. D. Arco and J. A. Suul, "Comparison of small-signal dynamics in MMC and two-level VSC HVDC transmission schemes," [16] in 2016 IEEE International Energy Conference (ENERGYCON), 2016, pp. 1-6.
- H. SAAD, S. DENNETIERE, C. LALLEMAND, B. CLERC and Y. VERNAY, "Commissioning of the France Spain HVDC VSC control system [17] replicas," presented at the Cigre, Montréal, QC, Canada, 2016.
- K. Tahata, R. Uda, K. Kuroda, K. Kikuchi, R. Yamamoto, H. Ito, F. Page, G. P. Adam, L. Xu, S. J. Finney, B. W. Williams, and D. Holliday. Mitigation [18] on requirement of DCCB by DC reactor for multi-terminal HVDC operation. IET Conference Proceedings, 54 (6.)-54 (6.). Available: http://digitallibrary.theiet.org/content/conferences/10.1049/cp.2016.0434
- J. Wang, R. Burgos and D. Boroyevich, "Switching-Cycle State-Space Modeling and Control of the Modular Multilevel Converter," Emerging and [19] Selected Topics in Power Electronics, IEEE Journal of, vol. PP, pp. 1-1, 2014.
- M. M. C. Merlin, T. C. Green, P. D. Mitcheson, D. R. Trainer, R. Critchley, W. Crookes, and F. Hassan, "The Alternate Arm Converter: A New Hybrid [20] Multilevel Converter With DC-Fault Blocking Capability," IEEE Transactions on Power Delivery, vol. 29, pp. 310-317, 2014.
- G. P. Adam, K. H. Ahmed, S. J. Finney, K. Bell and B. W. Williams, "New Breed of Network Fault-Tolerant Voltage-Source-Converter HVDC [21] Transmission System," Power Systems, IEEE Transactions on, vol. 28, pp. 335-346, 2013.
- Y. Zhang, G. Adam, S. Finney and B. Williams, "Improved pulse-width modulation and capacitor voltage-balancing strategy for a scalable hybrid [22] cascaded multilevel converter," *Power Electronics, IET*, vol. 6, pp. 783-797, 2013. B. Tai, C. Gao, X. Liu and Z. Chen, "A Novel Flexible Capacitor Voltage Control Strategy for Variable-Speed Drives with Modular Multilevel
- [23] Converters," IEEE Transactions on Power Electronics, vol. PP, pp. 1-1, 2016.
- [24] G. P. Adam, O. Anaya-Lara, G. M. Burt, D. Telford, B. W. Williams, and J. R. McDonald, "Modular multilevel inverter: Pulse width modulation and capacitor balancing technique," Power Electronics, IET, vol. 3, pp. 702-715, 2010.
- [25] A. Lesnicar and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range," in Power Tech Conference Proceedings, 2003 IEEE Bologna, 2003, p. 6 pp. Vol.3.
- G. P. Adam, I. Abdelsalam, J. E. Fletcher, G. Burt, D. Holliday, and S. J. Finney, "New Efficient Sub-module for Modular Multilevel Converter for [26] Multi-terminal HVDC Networks," IEEE Transactions on Power Electronics, vol. PP, pp. 1-1, 2016.
- [27] G. P. Adam, I. A. Gowaid, S. J. Finney, D. Holliday and B. W. Williams, "Review of dc-dc converters for multi-terminal HVDC transmission networks," IET Power Electronics, vol. 9, pp. 281-296, 2016.
- F. Deng and Z. Chen, "A Control Method for Voltage Balancing in Modular Multilevel Converters," Power Electronics, IEEE Transactions on, vol. 29, [28] pp. 66-76, 2014.
- J. W. Moon, J. W. Park, D. W. Kang and J. M. Kim, "A Control Method of HVDC-Modular Multilevel Converter Based on Arm Current Under the [29] Unbalanced Voltage Condition," IEEE Transactions on Power Delivery, vol. 30, pp. 529-536, 2015.
- M. Sleiman, A. Al Hage Ali, H. F. Blanchette, K. Al-Haddad, B. Piepenbreier, and H. Kanaan, "A survey on modeling, control, and dc-fault protection of modular multilevel converters for HVDC systems," in *Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on, 2014*, pp. 2149-[30] 2154.
- T. Soong and P. W. Lehn, "Control of energy storage enabled modular multilevel converters with reduced storage requirements," in 2014 IEEE 15th [31] Workshop on Control and Modeling for Power Electronics (COMPEL), 2014, pp. 1-7.
- [32] W. Kui, L. Yongdong, Z. Zedong and X. Lie, "Voltage Balancing and Fluctuation-Suppression Methods of Floating Capacitors in a New Modular Multilevel Converter," *Industrial Electronics, IEEE Transactions on*, vol. 60, pp. 1943-1954, 2013. M. Ji-Woo, K. Chun-Sung, P. Jung-Woo, K. Dea-Wook and K. Jang-Mok, "Circulating Current Control in MMC Under the Unbalanced Voltage,"
- [33] Power Delivery, IEEE Transactions on, vol. 28, pp. 1952-1959, 2013.
- [34] M. Zhang, L. Huang, W. Yao and Z. Lu, "Circulating Harmonic Current Elimination of a CPS-PWM Based Modular Multilevel Converter with Plug-In Repetitive Controller," *Power Electronics, IEEE Transactions on,* vol. PP, pp. 1-1, 2013. A. Leon and S. Amodeo, "Energy Balancing Improvement of Modular Multilevel Converters under Unbalanced Grid Conditions," *IEEE Transactions*
- [35] on Power Electronics, vol. PP, pp. 1-1, 2016.
- [36] S. A. Azmi, G. P. Adam, K. H. Ahmed, S. J. Finney and B. W. Williams, "Grid Interfacing of Multimegawatt Photovoltaic Inverters," Power Electronics, IEEE Transactions on, vol. 28, pp. 2770-2784, 2013.
- Y. Zhang, G. P. Adam, T. C. Lim, S. J. Finney and B. W. Williams, "Analysis of modular multilevel converter capacitor voltage balancing based on [37] phase voltage redundant states," IET Power Electronics, vol. 5, pp. 726-738, 2012.
- W. S. Meyer and H. W. Dommel, "Numerical Modelling of Frequency-Dependent Transmission-Line Parameters in an Electromagnetic Transients [38] Program," Power Apparatus and Systems, IEEE Transactions on, vol. PAS-93, pp. 1401-1409, 1974. H. W. Dommel and W. S. Meyer, "Computation of electromagnetic transients," Proceedings of the IEEE, vol. 62, pp. 983-993, 1974.
- [39]
- H. W. Dommel and N. Sato, "Fast Transient Stability Soultions," Power Apparatus and Systems, IEEE Transactions on, vol. PAS-91, pp. 1643-1650, [40] 1972
- H. W. Dommel, "Nonlinear and Time-Varying Elements in Digital Simulation of Electromagnetic Transients," Power Apparatus and Systems, IEEE [41] Transactions on, vol. PAS-90, pp. 2561-2567, 1971.
- H. W. Dommel, "Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks," IEEE Transactions on Power [42] Apparatus and Systems, vol. PAS-88, pp. 388-399, 1969.
- [43] J. W. Kolar, H. Ertl and F. C. Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system," in Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE, 1990, pp. 502-512 vol.1. G. P. Adam, K. H. Ahmed and B. W. Williams, "Mixed cells modular multilevel converter," in Industrial Electronics (ISIE), 2014 IEEE 23rd
- [44] International Symposium on, 2014, pp. 1390-1395.
- P. Li, G. Adam, D. Holliday and B. Williams, "Controlled Transition Full-bridge Hybrid Multilevel Converter with Chain-links of Full-bridge Cells," [45] IEEE Transactions on Power Electronics, vol. PP, pp. 1-1, 2016.
- H. Mats and B. Kjell, "Operating experience with a voltage source converter (HVDC Light) on the Gas Platform Troll A," presented at the IEEE, USA, [46] 2006.
- [47] M. Hagiwara, K. Nishimura and H. Akagi, "A Medium-Voltage Motor Drive With a Modular Multilevel PWM Inverter," Power Electronics, IEEE Transactions on, vol. 25, pp. 1786-1799, 2010.
- L. He, K. Zhang, J. Xiong, S. Fan and Y. Xue, "Low-frequency Ripple Suppression for Medium-Voltage Drives Using Modular Multilevel Converter [48] with Full-Bridge Submodules," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, pp. 1-1, 2015.
- [49] S. Debnath, J. Qin and M. Saeedifard, "Control and Stability Analysis of Modular Multilevel Converter Under Low-Frequency Operation," IEEE Transactions on Industrial Electronics, vol. 62, pp. 5329-5339, 2015.
- [50] J. HÄFNER; and B. JACOBSON, "Proactive Hybrid HVDC Breakers - A key innovation for reliable HVDC grids," presented at the Cigre 2011, The Electric Power System of the Future-Integrating Supergrids and Microgrids International Symposium, BOLOGNA, 2011.
- Z. Mingxia, L. Sheng, Z. Jianhua, L. Zongqi and L. Yinhui, "A study on the black start capability of VSC-HVDC using soft-starting mode," in Power [51] Electronics and Motion Control Conference, 2009. IPEMC '09. IEEE 6th International, 2009, pp. 910-914.
- [52] D. T. Oyedokun, K. A. Folly and S. P. Chowdhury, "Effect of converter DC fault on the transient stability of a Multi-Machine Power System with HVDC transmission lines," in AFRICON, 2009. AFRICON '09., 2009, pp. 1-6.

- S. Cui and S. K. Sul, "A Comprehensive DC Short Circuit Fault Ride Through Strategy of Hybrid Modular Multilevel Converters (MMCs) for Overhead Line Transmission," *IEEE Transactions on Power Electronics*, vol. PP, pp. 1-1, 2016. [53]
- G. Liu, F. Xu, Z. Xu, Z. Zhang and G. Tang, "Assembly HVDC Breaker for HVDC Grids with Modular Multilevel Converters," *IEEE Transactions on Power Electronics*, vol. PP, pp. 1-1, 2016.
 R. Oliveira and A. Yazdani, "A Modular Multilevel Converter with DC Fault Handling Capability and Enhanced Efficiency for HVDC System [54]
- [55] Applications," IEEE Transactions on Power Electronics, vol. PP, pp. 1-1, 2016.
- G. P. Adam and B. W. Williams. (2016, Multi-pole voltage source converter HVDC transmission systems. *IET Generation, Transmission and; Distribution 10(2),* 496-507. Available: <u>http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2015.0894</u> [56]
- [57] W. Lin, D. Jovcic, S. Nguefeu and H. Saad, "Full-Bridge MMC Converter Optimal Design to HVDC Operational Requirements," IEEE Transactions on Power Delivery, vol. 31, pp. 1342-1350, 2016. R. Li, J. Fletcher, L. Xu and B. Williams, "Enhanced Flat-Topped Modulation for MMC Control in HVDC Transmission Systems," *IEEE Transactions*
- [58] on Power Delivery, vol. PP, pp. 1-1, 2016.
- [59] M. Hyttinen; and K. Bentzen, "Operating Exprience with a Voltage Source Converter (HVDC Light) on the Gas Platform Troll A," presented at the Energex 2006, Energy Systems in Transition Towards a Sustainable Development, Stavanger, Norway, 2006.