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Abstract—This paper explores the need for, and challenges
associated with the probabilistic assessment of the generation
adequacy of power systems in Sub-Saharan Africa, using Kenya
and Ghana as examples. Some relevant distinctive characteristics
of these systems are discussed, and previous work in this area is
reviewed. Illustrative data analysis for the future Kenyan system
is presented, exploring the temporal relationship between the
wind power resource, demand, and the hydro power resource
— to provide insight on the potential contribution of large wind
projects to generation adequacy.

I. INTRODUCTION

Many countries in the Sub-Saharan Africa (SSA) region are
experiencing very rapid changes in the size and generation mix
of their power systems, due to rapid economic and population
growth. For example, the region experienced a 45% increase in
annual energy consumption between the years 2000-2014 [1],
with the growth in some countries much higher. Organisations
such as the World Bank, Western governments and private
developers — in addition to many African leaders — are keen
to see high penetrations of variable renewable (VR) generation
within the emerging systems, as evidenced by e.g. [2].

This paper studies generation capacity adequacy assessment
in SSA countries, and considers the power systems of Kenya
and Ghana as examples. In those countries, detailed and
necessarily ambitious plans and scenarios have been developed
for generation capacity expansion, and those plans are largely
being successfully executed. However, no probabilistic capac-
ity adequacy study has yet been conducted for the planned
future systems, although the need for such a study for Ghana
was identified in [3].

Indeed, adequacy assessment in SSA countries — and indeed
in the developing world generally — has received very little
attention in the academic literature, or in institutional reports.
This paper will identify the main technical challenges for
SSA countries, review the relevant literature, and present some
illustrative numerical examples for wind generation in Kenya.

II. DISTINCTIVE CHARACTERISTICS OF SSA POWER
SYSTEMS IN ADEQUACY ASSESSMENT

This section presents some differences between the chosen
SSA power system examples and those in developed countries,
pertinent to generation adequacy assessment. In the SSA
systems:
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o Energy constraints have a strong negative impact on
adequacy, so detailed assessment must involve sequential
simulation, with dispatch considered, rather than only the
mechanical availability of generators. This is true largely
due to a combination of the historical dominance of hydro
power and the very significant inter-annual variability of
the hydro resource [3]. The governments of both countries
are therefore attempting to reduce the penetration of large
hydro in their generation mix.

« Energy constraints may also apply, to some extent, to
thermal generators - due to fuel supply problems, such
as restricted supply of gas from Nigeria to Ghana [4].

e Load shedding is common [4], both planned and un-
planned, due to operational difficulties and the unreliable
nature of distribution networks, in addition to insufficient
transmission and generation capacity.

o Demand therefore cannot be equated with dispatch, par-
tially due to the load shedding, but also due to suppressed
demand, of different types. At the one end, some house-
holds or businesses are forced to consume less when
prices are higher; at the other end is missed opportunities
for investment in productive activity due to the persistent
unreliability of the system [3] [8].

III. PREVIOUS WORK AND CHALLENGES FOR SPECIFIC
ASPECTS OF ADEQUACY ASSESSMENT

A. Accurate Demand Forecasting

Demand growth in the Kenya and Ghana power systems
has been very rapid during recent years, a trend that is set
to continue into the future. For example, Kenya’s Least Cost
Development Plan for 2011-2033 [8] has their central forecast
for peak demand rising from 1,606 MW in 2013 to 21,075SMW
by 2033. The forecast has much associated uncertainty, with
the feasible ‘low growth’ forecast being roughly 50% lower
than the central forecast by 2033, while the ‘high growth’
forecast is roughly 50% higher.

The forecasts of [8], use macroeconomic analysis to make
their predictions, as is typical globally. The limitations of rely-
ing solely on such ‘bottom-up’ analysis for rapidly developing
systems is highlighted by a research article by the Wold Bank
[9]. The authors point out that accurate demand estimates



depend on realistic estimates of disaggregated demand, includ-
ing suppressed demand. Successful forecasts, they state, must
account for physical, financial, and institutional constraints
and make use of detailed demographic data and distribution
network planning.

B. Thermal Generation

The main challenge associated with modelling thermal gen-
eration is the relative sparsity of data, particularly in the public
domain, relating to their reliability in an SSA context — for
example how quickly faults might be fixed. This is particularly
true for Kenya, where much of the new generation being built
and planned is geothermal. There is also uncertainty about the
extent to which their fuel supply can be modelled as reliable,
as previously mentioned.

C. Hydro Generation

Rapid growth has meant that the demands made of hydro
reservoirs are greater than they can sustain, and levels regularly
fall below the minimum for operation. Accounting for the
complex meteorology is challenging, particularly given the
uncertainties of climate change. Modelling joint availabilities
for the hydro and VR resources is complex but essential,
which motivates the exploration of temporal relationships
between the hydro and wind resources in Kenya in section IV.
In Ghana, plans are in place to significantly increase small
and micro hydro capacity, which presents further modelling
challenges [5].

D. Variable Renewable Generation

Interest in photovoltaic (PV) solar energy is strong in both
countries, but particularly Ghana. Provisional licences have
been granted by Ghana’s Energy Commission to solar projects
there with a total capacity of 2,748.5MW, despite the peak
power dispatch in 2015 being only 2,118MW. Kenya is in
the process of dramatically increasing it’s wind generation
capacity, through large and high profile projects such as
310MW at Lake Turkana.

Modelling the output of grid-scale PV projects has an
advantage over wind projects in that meteorological stations,
introduced for agriculture, are typically in locations where
the solar resource is more closely matched to that found at
prospective project locations. However, meteorological station
insolation data is not ideal for modelling purposes, as their
measures of cloud cover may not reflect what matters for
PV generation. Also, modelling the output of many small
PV systems would require some challenging spatio-temporal
statistical modelling.

Most work to date on variable renewable energy generation
in Kenya and Ghana has been concerned with assessing and
characterising the wind and solar resource, e.g. assessment
of the wind resource along the coast of Ghana in [10]. This
paper is the first to explicitly consider their contribution from
a system perspective.

Solar generators would make very little direct contribution
to the generation adequacy of the Kenyan system, since the

daily demand profile has a distinct peak during dark evening
hours, as shown in fig. 2. In Ghana, the profile is much flatter
— although an evening peak is present [3], so solar could make
somewhat more of a contribution. In both cases, however, solar
could potentially make an indirect contribution during times
of drought by reducing the demand for hydro power during
daylight hours [11].

The Ghana Energy Commission has also granted a provi-
sional licence for a 1000MW wave energy project, however,
given the immaturity of this technology it seems unlikely that
this project will be developed in the foreseeable future.

E. Whole System Adequacy Assessment

The acquisition and model development work required for a
full probabilistic generation adequacy assessment of the Kenya
and Ghana systems would be very significant, particularly for
the radically different systems predicted to exist even in the
near future.

A deterministic reliability assessment for Ghana was com-
pleted in 2010 [3], which covered generation, transmission and
distribution. A Masters thesis by Rose [11] was concerned with
calculating the economic value of various penetrations of solar
generation to Kenya’s power system, achieved by developing
a dispatch optimisation model. Although the analysis is deter-
ministic, use is made of historical resource time series, and
risk metrics were derived. Extension of this work to include
stochastic optimisation would be of great value, albeit very
computationally expensive.

Due to the load shedding and suppressed demand, it can
be argued that traditional adequacy metrics — particularly the
Loss of Load Expectation, might not be the most appropriate
for SSA countries. After all, it might be the case that the
full demand is never entirely met. One alternative might be
quantiles for the energy that can be served for each hour on
a typical weekday, conditional on some target dispatch.

IV. EXEMPLAR: WIND ENERGY IN KENYA
A. The Scenario

This section explores the potential contribution of large
wind energy projects to generation adequacy in the Kenyan
power system. It does so by examining temporal relationships
between wind resource availability and demand, and also — on
a coarse resolution — between the wind and hydro resources.
With the data available sparse, strong modelling assumptions
are necessary, however all major modelling components were
re-run with contrasting assumptions, to assess the sensitivity
of results to the assumptions made.

We consider a scenario for the Kenyan system circa 2020, in
which the peak power demand is 4GW and there is 925.5 MW
of installed wind capacity. The wind projects in this scenario
and their capacities (based on August 2016 plans) are: Lake
Turkana - 310 MW, Meru - 400 MW, Kajiado - 100 MW,
Ngong Hills - 25.5 MW, Lamu - 90 MW. The peak demand
value of 4GW in 2020 corresponds approximately to the best
central forecast reported in [8].



B. Relationships between Wind Power and Demand

A 22 year, hourly resolution time series of modelled wind
generation was derived from wind speed series recorded at 5
meteorological stations in Kenya (Dagoretti, Lamu, Makindu,
Marsabit, Meru), between 1980-2001. Each series acted as a
proxy for the speeds at one of the project locations, with linear
and power transformations applied so that the series matched
estimated values of mean wind speed and mean cubed wind
speed at the project sites, as given by a wind resource map
of Kenya [6]. Diurnal patterns in mean were removed from
the series before matching with the map values. The reason is
that the diurnal patterns at hub height are unknown, while it
is known that such patterns diminish significantly with height
in some climates [7]. The transformed wind speeds were
converted to normalised powers using a large-area wind farm
power curve, before being scaled according to the capacities
of the planned projects, and finally summed. This modelling
approach is referred to here as the ‘base model’ for wind.

A year-long, hourly resolution time series of generation
dispatch was obtained from the system operator, Kenya Light
and Power. The dispatch is taken as a proxy for demand here,
after being linearly scaled-up to a peak level of 4GW. The
validity of such a simple transformation is supported by the
fact that the demand load factor remains almost unchanged in
the forecasts of [8]. There is no discernible annual reasonality
in the demand trace, and since there is little demand on the
system for space heating and cooling, there is no obvious
machanism for demand to vary from year to year given
constant underlying patterns.

The fairly small annual seasonality in wind power is pre-
sented in fig. 1, which shows average values for the 22 year
sample. The figure also demonstrates roughly the season to
which each month belongs, and presents average monthly
precipitation for a single location, Makuyu, obtained from
[12]. As is discussed below, the latter is taken in this work
as a proxy for the monthly inflow into the Masinga reservoir,
the largest hydro power scheme in terms of energy. Figure 1
demonstrates that the relative availability of the wind resource
during the ‘hot dry’ month is rather disappointing, but it is
good during the longer ‘cool dry’ season.

Since removal of the diurnal profile from the wind speeds
in the base model is one of a number of plausible ways of
dealing with this particular uncertainty, it is worth considering
the typical relationship between wind power and demand for
a wind model variant where the diurnal pattern remains. This
is presented in fig. 2, which shows that the diurnal pattern in
wind power is significant, but not very pronounced. Further,
the profile peaks are not coincident, with wind power peaking
during the hottest hours of the afternoon, while demand peaks
during dark evening hours. Thus, it is unlikely that conclusions
about the potential contribution of wind to capacity adequacy
are very sensitive to assumptions about the diurnal variability
of wind.

Figures 3-5 present duration curves for demand net wind
generation. These were obtained by repeating the scaled-up
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Fig. 1. Normalized monthly profiles of modelled wind resource (base model,
Kenya 4GW peak scenario) and Masinga reservoir inflow. Four Kenyan
seasons indicated.
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Fig. 2. Normalized diurnal profiles of wind resource — assuming variability
preserved — and demand, 4GW peak Kenya scenario

demand trace 22 times and subtracting the wind power trace.
Figure 3 and fig. 4 present results for the full range of net
demand values observed in the series, and use a linear and log
scale for the number of hours where net demand is exceeded,
respectively.

Results using the base model of wind power are contrasted
with those where there is no wind generation, and also with
2 variants of the wind power model. The ‘linear scaling’
variant has wind speeds transformed using linear re-scaling
only; while the ‘single turbine’ variant adopts the power curve
of a single turbine only. Results for the self-explanatory ‘keep
diurnal’ variant were also calculated, but are omitted from
the figure since they are indistinguishable from the base case,
confirming the observation above. Indeed, the results are,
generally, strikingly non-sensitive to the model variants. One
partial exception is that results are moderately sensitive to the
choice of power curve for peak net demand levels.

Results were also calculated for a 2024 scenario (based
on [8], 2013 update), where peak demand has increased
to 6GW, and the total wind power capacity has increased
by the same proportion. However, 2 scenario variants were
considered, exploring the impact of spatial smoothing: (i) 4
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Fig. 3. Modelled duration curve for demand net wind generation (base model),
4GW peak Kenya scenario, linear scale.
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Fig. 4. Modelled duration curve for demand net wind generation (base model),
4GW peak Kenya scenario, log scale.

additional projects have been built — the ‘additional locations’
model variant; (ii) only the same 5 projects exist, but the
capacity of each has increased by 50%. It was found, rather
surprisingly, that there is generally very little difference in the
duration curves for these variants, with the only real difference
occurring at the high net demand demand extreme. These peak
demand results are presented in fig. 5.

C. Relationships between the Wind Power and Hydro Re-
sources

Analysis of relationships between the wind and hydro power
resources involves monthly resolution data for two reasons: (i)
finer resolution data on the hydro resource is harder to obtain,
and (ii) we do not know what the operating strategy for hydro
power might be in the chosen scenario, in particular the extent
to which close coordination between wind projects and hydro
reservoirs might be achievable.

Kenya has many hydro reservoir and run of river schemes,
including a cascading scheme of reservoirs. This illustrative
analysis requires a single variable that summarises the hy-
drological resource at a given time, and water inflow to the
Masinga reservoir was chosen. As explained in [13], this
variable is suitable on account of the fact that the Masinga
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Fig. 5. Modelled duration curve for demand net wind generation (base model),
peak demand region, log scale, 2 scenarios for 6GW peak in Kenya.

dam’s essential roles are to regulate water flow into subsequent
dams, particularly during the dry seasons, as well as preventing
flooding. While downstream reservoirs have much greater
power capacities, and have other sources of river inflows
apart from Masinga discharge, during the dry season these
are insufficient for effective operation. Net inflow here means
gross inflow minus evaporation and spillage, and annual values
are provided in [13] for the period 1982-2001.

In order to move to monthly resolution data, precipitation
data must be used, after calibration to the annual inflow series.
Use was made of 2 data sources, each associated with a model
variant — again for sensitivity analysis.

One source is a precipitation time series for an unspecified
location in Kenya, obtained from a World Bank climate data
repository [14], which also spans the period 1982-2001. The
assumption was made that, for a given year, the relative
contribution from each month to the annual Masinga dam
inflow was identical to the relative contribution of each month
to the total annual precipitation in the World Bank data, i.e.
there is 100% correlation across the county with regard to this
aspect.

The opposite modelling assumption, included to assess
sensitivity, is that there is no correlation across space with
regard to the relative contribution from each month. As a
result, the best way of constructing a monthly resolution series
is to take a long term average profile of precipitation, and
scale it to match the total inflow for each year. This was done
using the profile obtained from [12], since Makuyu is located
in the hills feeding the Masinga reservoir. The contrasting
assumptions are labelled model 1 and 2, respectively.

Figure 6 presents 20-year series for wind generation and
the model 1 inflow. The plot shows that the size of the wet
season ‘spikes’ in the inflow series exhibit distinct but complex
clustering behaviour. The wind power series also possesses
clear seasonality, but much less pronounced than inflow; also
there are very low frequency trends on a time scale of decades.
The resources therefore appear to be somewhat complemen-
tary, although the relationship requires further elucidation. For
model 2, the inflow series displays the same characteristics, but
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els.

the exact location and amplitude of spikes within the clusters
are are occasionally quite different.

Additional clarity regarding the extent of complimentarity
between the resources is provided by a scatter plot in fig. 7.
The hydrology data in the figure is not the raw inflow series,
rather the accumulation over time of anomalies from the
average behaviour. Very roughly, a large positive cumulative
anomaly means the dams are likely full, while a large negative
value implies they are likely empty. The figure shows that there
is not a strong relationship between the 2 variables.

However, many of the strongest months for the wind re-
source occur when the anomaly is negative, implying that
wind can make an useful contribution. It is also worth noting
that the monthly wind load factors are consistanly high, with
the worst month being ; 40% of the highest. It is true that
during the most extreme anomaly values, the wind resource
is disappointing, but the dataset is too small to draw any
conclusions from this — a metrorological explanation would
be required. The consistency of the rough shape of the scatter
plot across the 2 models indicates that results are not sensitive
to this aspect of the modelling.

V. CONCLUSION

It was seen that there is a strong need for capacity adequacy
assessment for the power systems of Kenya and Ghana, which
are both growing in size very rapidly, and are likely to see
a large penetration of variable renewable generation. There
are however many technical challenges to be addressed before
such assessments can be completed. This paper has explored
temporal relationships between the wind power resource and
demand, and between the wind and hydro power resources for
near-future scenarios of the Kenyan system. Results inicate
that there is some complimentarity between these variables,
and as such the planned large wind projects might be able
to contribute significantly to generation adequacy. Due to
limitations on the data currently available, strong assumptions
were necessary in order to produce results, however these
preliminary conclusions demonstrate that there is value in
further, more detailed studies, including more resource devoted
to data gathering.
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