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ABSTRACT 

Most study samples show less variability in key variables than do their source populations due most 

often to indirect selection into study participation associated with a wide range of personal and 

circumstantial characteristics. Formulas exist to correct the distortions of population-level correlations 

created. Formula accuracy has been tested using simulated normally-distributed data, but empirical 

data are rarely available for testing. We did so in a rare dataset in which it was possible: the 6-Day 

Sample, a representative subsample of 1208 from the Scottish Mental Survey 1947 of cognitive ability 

in 1936-born Scottish schoolchildren (70,805). 6-Day Sample participants completed a follow-up 

assessment in childhood and were re-recruited for study at age 77. We compared full 6-Day Sample 

correlations of early-life variables with those of the range-restricted correlations in the later-

participating subsample, before and after adjustment for direct and indirect range restriction. Results 

differed, especially for two highly correlated cognitive tests; neither reproduced full-sample 

correlations well due to small deviations from normal distribution in skew and kurtosis. Maximum 

likelihood estimates did little better. To assess these results’ typicality, we simulated sample selection 

and made similar comparisons using the 42 cognitive ability tests administered to the Minnesota 

Study of Twins Reared Apart, with very similar results. We discuss problems in developing further 

adjustments to offset range-restriction distortions and possible approaches to solutions. 
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Despite often extensive and broad recruitment efforts, those willing to participate in scientific studies 

tend not to represent their full populations well. Among other characteristics, they tend to be a little 

healthier, wealthier, more likely female, more conscientious, lower in  neuroticism, better educated, 

and to score higher on cognitive ability measures than general populations (Lonnqvist, Paunonen, 

Verkasalo, Leikas, Tuulio-Henriksson, & Lonnqvist, 2007; Nishiwaki, Clark, Morton, & Leon, 2005; 

Volken, 2013). It is a positive development in social science research that there is increasing 

awareness of this among those interested in associations between psychological, lifestyle, and 

demographic characteristics and physical and mental health outcomes. There is also increasing 

awareness among researchers that these deviations from full population representativeness introduce 

distortions in estimates of the very associations in which they are most interested, sometimes even 

misrepresenting their direction (Ree, Carretta, Earles, & Albert, 1994). 

 This growing awareness takes two forms in the literature. First, there has been a steady 

stream of papers introducing new methods to adjust results to offset the distortions in estimates 

created by sampling selectivity, both intended and not (Alexander, 1990; Bobko, Roth, & Bobko, 

2001; Botella, Suero, & Gambara, 2010; Hagglund & Larsson, 2006; Hunter, Schmidt, & Le, 2006; 

Mendoza & Mumford, 1987; Taylor, 2004). Second, it is increasingly common for researchers to 

report their estimates after ‘correction’ using these adjustment formulas (e.g., Berry & Zhao, 2015); 

Berry & Sackett, 2007; Deary, Pattie, & Starr, 2013; Johnson, Corley, Starr, & Deary, 2011; 

Tarescavage, Fischler, Cappo, Hill, Corey, & Ben-Porath, 2015). Emergence of the latter attests to 

successful communication of the former, but it can only improve the accuracy of the literature to the 

extent that the adjustment formulas produce accurate corrections to the estimates to which they are 

applied. Much of the impetus for this work has come from meta-analysis. Gene Glass (1976), who 

perhaps did the most to originate the technique, realized from the beginning that accuracy of any 

summary of study results depends intrinsically on quality of the individual studies being summarized 

and actively worked to create statistical procedures to compensate ex post facto for study limitations 

during the meta-analytic process (e.g., Glass, 1982). As with most areas of statistics, techniques have 

improved dramatically in recent years, often driven to large degrees by improvements in computing 

power and ease of use. Schmidt and Hunter (2014), two of the major contributors to this effort, even 

feature need for it in the subheading of the title of the third edition of their classic textbook on meta-

analysis, but their concern for its need goes back to the first edition. 
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Researchers developing adjustment formulas do of course attempt to test their accuracy, and 

their tests have generally supported the formulas’ accuracy at least within bounded circumstances 

outlined by the researchers (e.g., Alexander, 1990; Alexander, Carson, Alliger, & Cronshaw, 1989; 

Bobko, Roth, & Bobko, 2001; Chernyshenko & Ones, 1999; Greener & Osburn, 1980; Gross & 

Fleischman, 1983; Hoffman, 1995; Lawley, 1943; Le & Schmidt, 2006; Ree, Carretta, Earles, & Albert, 

1994; Sackett, Laczo, & Arvey, 2002; for examples of exceptions pointing out remaining biases, see 

Gross & Fleischman, 1983; Mendoza & Mumford, 1987; Roth, Bobko, Switzer III, & Dean, 2001). Yet 

the circumstances outlined have generally focused on the kinds of contexts faced by organizations 

that make selection decisions such as which job applicants to hire or which applications to 

educational programs to accept and then later follow up to understand sources of relative levels of 

performance that can assist the next round of applicant review. In these situations, awareness of 

need to consider sample selectivity tends to be particularly high because overt efforts have been 

made to select the ‘best’, however defined, from some broader pool. As the studies cited exemplify, 

the tests are usually carried out by simulating very large random samples drawn from variables with 

properties considered similar to those encountered in practice in these kinds of settings, imposing 

various forms of selection on the randomly generated samples to mimic the levels of association and 

sample sizes often encountered. Then the sample properties of interest can be calculated in the 

selected samples, the adjustment formulas applied, and results compared to those in the full random 

samples. 

This is a sound approach. Simulation can reveal how well a method can recover the true 

underlying model or data properties in a way that empirical data never can. But simulation only works 

well if the assumptions on which the random samples and variable distributions on which they are 

based are realistic representations of those encountered in the real world. In tests of sample-selection 

adjustment formulas, this means that the variable properties assumed in the random sample 

generation and the full random samples and the processes used to impose selection on them 

represent those encountered in practice thoroughly. If these properties do not, simulation not only can 

fail to reveal ‘truth’, but it can provide an inappropriate sense of security that methods function as 

intended. Most researchers carrying out tests of sample-selection adjustment formulas have assumed 

selection to be direct. Selection is strictly direct when selectors simply will not select candidates with 

scores on some variable above or below some pre-set cut-off score. This takes place in practice 
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occasionally in some application settings, for example when some passing score is required on a job-

knowledge test. ‘Directness’ of selection is often relative or dimensional, however, even in these 

settings, with scores or evaluations on several different measures being considered probabilistic 

predictive indicators of in-role performance, without strictly applied cut-off scores on any of them. 

Many universities (and other organizations) even have overtly compensatory selection processes in 

which, for example, grades can offset lower Scholastic Assessment Test or other scores, or low 

socioeconomic status can offset both. 

 In many other selection settings, especially research sample recruitment settings, selection 

on variables with relevance to research questions of interest is almost always quite indirect. 

Considered dichotomously, selection is indirect when there is only a tendency for people with some 

levels of a variable of interest to be more likely to be selected than others rather than some cut-off 

requirement. For example, if a job ad specifies that the employer is looking for applicants with 

university degrees, there will be direct selection for university degree, but the applicant pool will, as a 

by-product, indirectly also tend to over-represent the above-average ranges of the population 

distribution of IQ and under-represent the below-average ranges because people who attain 

university degrees tend to have higher IQs than those who do not. But people from the lower ranges 

of the IQ distribution have not been precluded from applying. Some who do have university degrees 

will usually apply, and may even be hired, though usually indirect selection is considerably stronger 

(or, practically if not conceptually equivalent, less indirect, reflecting dimensionality in ‘directness’) in 

the group actually hired than it was in the applicant pool. Researchers’ participant-selection settings 

are far less formal. Researchers are usually looking for samples as broadly representative of their 

target populations as possible, and are rarely intentionally picking and choosing among possible 

participants on the basis of the variables on which indirect selection into their samples tends to take 

place. But the same kinds of individual self-selection processes involving personality and cognitive 

characteristics that get people to apply for some jobs and not others are often if not usually involved in 

decisions to participate in research studies, especially when researchers issue calls for volunteers 

rather than recruiting from population rosters (e.g. Johnson, Brett, Calvin, & Deary, 2016). 

Unfortunately, the challenges involved in adjusting correlations for direct selection are 

straightforward compared to those for adjusting for indirect selection. Since most studies evaluating 

adjustment formula accuracy have focused on direct-selection adjustment formulas and tested their 
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accuracy by simulating direct-selection situations, the relevance of their conclusions to indirect-

selection situations is not clear. Moreover, these formula-evaluation studies have tended to be based 

on assumption that the variables on which the focal range restriction takes place are normally 

distributed, at least in the full population (e.g., Hoffman, 1995; Sackett, Laczo, & Arvey, 2002). 

Formally, normality of these variables is not required for formula accuracy (Lawley, 1943); all that is 

required is that eliminated data be formally ‘missing at random’, regression of range-restricted 

variable on the other variable be linear, and involved error variances be homogeneous (Greener & 

Osburn, 1980).The latter two, however, generally depend on population-level normality of at least one 

of the relevant distributions, but range-restriction formula-evaluation studies have not generally 

considered this. Even Greener and Osburn’s (1980) study, that established this by testing sampling-

selectivity correction formula accuracy when the variable on which range was restricted substantively 

deviated from normality in 6 different ways, assumed that the other variable, or outcome, in the 

correlation was normally distributed in the underlying population. 

The formal term ‘missing at random’ (MAR) has found a place in the statistical literature, but 

this is somewhat unfortunate, as many assume that it means that the probability of missingness is 

unrelated to the data distribution in any way, formally ‘missing completely at random’ (MCAR; Little & 

Rubin, 1987). This situation is clearly not the case when range is restricted, but the term ‘MAR’ does 

not have this meaning. Instead, it has the less restrictive meaning that the conditional probability of 

missingness is unrelated to the data distribution. In other words, the probability of missingness can 

depend on the data distribution as it exists in the full-population sample, but not on the data 

distribution as it exists in the selected sample. For example, the common situation that older 

participants who tend to score lower on cognitive tests are less likely to participate in research studies 

that test cognitive ability makes the data not MCAR. It would take something such as reluctance to 

participate explicitly because of participant awareness of their likely low scores to make the data not 

MAR. As this is much less common, it is often reasonable to consider range restriction to be an 

example of randomly missing data absent evidence that it is not. 

 For many constructs, at least population-level normal distribution and MAR may generally be 

reasonable assumptions, perhaps especially for the kinds of cognitive ability and achievement-related 

measures often the focus of studies of situations such as evaluation of job and educational program 

applicants where awareness of need to consider sample selection has been particularly high. But 
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even if the constructs we intend to measure are completely normally distributed in the population, 

none of our measures of them ever is in practice, even at the population level (Micceri, 1989). This is 

of course at least partly due to the fact that we never manage to obtain completely population-

representative samples, but it is importantly also due to the fact that our measures are never 

adequate to generate completely normally-distributed samples even if we were able to obtain a 

completely population-representative sample of a completely normally-distributed construct.  When 

samples are close to population-representative and relations among constructs reasonably linear (or 

their deviations from linearity reasonably captured by straightforward transformations such as 

squaring or taking logarithms), many estimation procedures are quite robust to small deviations from 

normality, and the boundaries beyond which they are not, and what to do about it, have been quite 

well articulated (e.g., Wilcox, 1996; 1997). But sample selection, by its very nature, usually alters not 

just the variance of a distribution but its degrees of skew and kurtosis because it eliminates or ‘thins 

out’ representation of people who earn scores at one end of the distribution more than the other. 

These are exactly the kinds of circumstances that introduce violations of linearity and homogeneity of 

variance in selected samples where they do not exist in the full population. Moreover, in practice, 

sample range is often restricted not just on one variable, but on several, including the variable 

considered the outcome, all of which inevitably show at least small deviations from normality at the 

population level. Formula-evaluation studies have not generally considered the impact of this. 

Accuracy of estimates adjusted for deviations from underlying assumptions is more sensitive to 

appropriateness of underlying assumptions than is accuracy of the estimates themselves. This is 

because any adjustment formula must accurately reflect both how far off the estimate is and 

counteract that inaccuracy, but the estimation process only has to remain relatively stable in the 

presence of the deviation from assumption. Perhaps even more importantly, even norming samples of 

most psychological measures are still subject to considerable selection, so we can never be sure that 

what we observe to be ‘the’ score distribution from a sample intended to represent the population 

reflects test properties rather than sample selection. 

 This paper is an outgrowth of work with a sample for which there was evidence of unusual 

population representativeness (the Scottish Mental Survey, 1947 [SMS1947]; Scottish Council for 

Research in Education [SCRE], 1949), a subsample that resulted from a commonly-used and 

thoroughly applied recruitment process (the 6-Day Sample Follow-Up Study; Brett & Deary, 2014; 
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Deary and Brett, 2015), and two well-known and highly correlated cognitive tests considered to have 

high construct, concurrent, and predictive validities and test-retest reliabilities that showed similar 

evidence of indirect selection effects in the subsample relative to the full population from which the 

subsample was recruited. In the full sample, both tests also showed very typical distributional 

properties that would not generally arouse any suspicion of deviation from normality, though the 

particular small deviations they did show differed. Usually, the underlying population correlation that is 

the target of procedures adjusting subsample correlations for selection is unknown, so it must be 

assumed that any such procedures applied have ‘done the job’ as there is no practical way to 

evaluate their actual accuracy. In our case, however, this was possible. 

In the process of work focusing on the follow-up subsample, we noted that application of the 

most commonly used approaches to adjusting correlation coefficients involving these cognitive tests 

for range restriction in the subsample did not reproduce full-sample correlations involving these tests 

at all well, and that the kinds and magnitudes of deviations the two tests produced differed. This led to 

exploration of the reasons for the failures of the adjustment procedures and evaluation of the degrees 

to which such failures are typical. This kind of exploration must be supplemented by empirical data: 

simulation can help to test whether potential reasons for any failures are accurate, but it cannot reveal 

the extent to which failures may be typical in practice as it relies on aggregations of large numbers of 

samples and variables that must be generated artificially based on ultimately arbitrary assumptions 

that can never reflect all real-world possibilities. Of course, no single empirical study can do this 

either, because, like simulation, empirical data have much more power to refute arguments or 

theories than they do to confirm them. Still, empirical data can reveal common conditions that 

simulators would never conceive of modelling. This article thus reports the results of empirical 

explorations in typical real-world data. The 6-Day follow-up sample was a small subset of even the 

surviving members of the original sample, so of course one of the primary possible reasons for failure 

was violation of the required assumption that the missing data were at random (MAR; Little & Rubin, 

1987). Based on available measures, there was no evidence that this was the case, but the data were 

clearly not missing completely at random, and there was no way to verify completely that they were in 

fact MAR. To accomplish our evaluations of the degrees to which such failures are typical, we thus 

turned to a separate study in which a larger, more population-representative group of participants had 
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completed 42 different typical cognitive ability tests comprising three separate test batteries and in 

which we could ensure MAR subsamples. 

METHOD 

Source of Our Original Observations: The 6-Day Sample and Older-Age Follow-Up Study 

 Participants. SCRE conducted the SMS1947 on June 4, 1947, of almost all children born in 

1936 who were attending schools in Scotland (n=70,805 of the full birth cohort of 75,211; those not 

tested were not present that day at school; SCRE, 1949). The purpose of the survey was to examine 

to what degree the population distribution of cognitive ability might have changed since SCRE’s first 

such survey in 1932 of children born in 1921 (SCRE, 1933). These two surveys are among the most 

completely population-representative samples ever (they tested almost the entire population year-of-

birth cohorts), as extensive efforts were made to test all schoolchildren born in the targeted years, 

even those in remedial or special education programs or who suffered other disabilities. Following the 

1947 Survey of those children who had been born in 1936, a subsample of survey-eligible children 

born on the first day of any even-numbered month (thus effectively randomly) received an additional 

cognitive assessment and their families and teachers completed a Sociological Survey at age 11 and 

were re-assessed almost annually on a number of factors from ages 15-27. These 1208 (618 female) 

participants were called the 6-Day Sample (MacPherson, 1958; Maxwell, 1969). Teachers, 

educational psychologists, and survey administrators representing SCRE visited and surveyed 

participants’ homes and interviewed sample members and their parents on measures of personality, 

details of family socioeconomic circumstances, school attendance, and, after participants left 

secondary school, details of further schooling, employment, marriage and family to administer the 

follow-up surveys, and head teachers completed assessments of participating students at their 

schools at age 14. Table 1 shows data comparing the 6-Day Sample to the full SMS participant group 

on demographic variables available in the full SMS. All differences were of very small effect size, and 

the largest were in age, consistent with the 6-Day Sample participants’ births on the first days of 

months. 

 In 2012, a follow-up study was launched to re-contact the 6-Day Sample participants in older 

age. The original 6-Day sample participants were traced through United Kingdom and Scottish 

population records, locating as many of those surviving as possible and recording deaths and their 

causes (Brett & Deary, 2014; Deary & Brett, 2015). Located participants residing in Scotland, 
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England, or Wales were invited by mail to participate in a study to explore associations between their 

early-life demographic circumstances and psychological characteristics and their current demographic 

circumstances, psychological characteristics, well-being, health status, and attitudes toward life in late 

2012 and 2013, when they were about age 77 years. The invitation included the assessment 

package, with instructions for self-administration. Invitees were requested to return a one-page form 

indicating willingness (or not) to participate, and to return the assessment package by mail upon 

completion. 

 Of the original 1208 participants, 636 (including 1 earlier emigrant; 370 females) were located 

and invited to the follow-up. About a third (417; 164 females) were deceased; 66 could not be located; 

and 89 had emigrated from the United Kingdom. Among the 636 invited, since being located, 1 had 

emigrated, 2 were deceased, and 20 were deemed not capable by English/Welsh law. Despite follow-

up mailing, no replies were received from 268; another 139 refused participation. The primary reason 

for refusal was lack of interest. The remaining 205 indicated willingness to participate, either by 

completing the one-page form or telephoning the study office. Completed assessments were received 

from 171 (90 females), for participation rates of 27% of those invited and 83% of those who had 

indicated willingness. These participation rates may sound low, but the number-invited denominator 

represents the total cohort potentially available much more clearly and likely fully than those from 

many studies. This is because of the extensive efforts involved in locating or accounting for all of the 

original participants of the unusually population-representative 6-Day Sample, including matching to 

National Health Service medical records on which almost everyone in the UK is recorded. 

Measures. We examined accuracy of the standard range-restriction adjustment formulas to 

reflect actual associations among several variables from the early-life survey whose content would 

commonly be of interest today. The particular associations we report in the 6-Day Sample follow-up 

participants would not generally be of interest in themselves as the measures were taken at age 11, 

and the selection processes examined reflected survival and study participation status at age 77. 

They offered, however, an unusual opportunity to assess the accuracy of adjustment formulas in real-

world test data under a naturally occurring selection process, using correlations of magnitudes similar 

to those often explored in recent studies. Previous studies of adjustment-formula accuracy have, 

among other potential limitations, relied upon modelled selection processes. Any model requires 

assumptions about appropriate representation of the process being modelled, and it is not uncommon 
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that later-emerging empirical data indicate that the assumptions used in simulation studies generated 

results that misled researchers who relied on them. There are, for example, several instances of this 

in genetic research in the last 50 years or so, including too-long prevailing ideas that genetic 

stratification in populations, gene-environment interaction and correlation, and inter-generational 

transmission of gene expression patterns (epigenetics) could be disregarded in understanding inter-

relations of genetic and environmental influences on behavioral traits and clinically-related 

phenotypes. 

The measures we considered were the following.  

Moray House Test #12 (MHT). Most (n=1,112) of the 1,208 6-Day Sample participants had 

been present at school on the day of the Scottish Mental Survey of 1947, and so completed the MHT. 

This test (SCRE, 1933) requires 45 minutes to administer and is a valid, group-administered test of 

cognitive ability consisting of 71 items (SCRE, 1949, 1953), with a maximum possible score of 76. It 

features many types of items, though verbal reasoning items predominate. Specific test-retest 

reliability over short time periods has not been assessed, but given its stability over long time periods 

and comparability with other IQ and cognitive ability tests, Deary, Whiteman, Starr, Whalley, and Fox 

(2004) estimated it at .90. 

Terman-Merrill IQ Test – 1937 Revision (TMIQ). Participants in the 6-Day Sample also 

completed the individually-administered L form of the TMIQ, one of the best-validated and most often 

used IQ tests at the time (SCRE, 1949). One of the purposes of administering this test was to 

corroborate validity of the MHT (SCRE, 1949); the correlation between the two tests’ scores was .80. 

Weiner (2003) listed the test-retest reliability of the related Stanford-Binet test at .90. 

Personality. Teachers assessed six areas of 6-Day Sample participants’ personalities as part 

of the First School Schedule in 1950. They rated self-confidence, perseverance, mood stability, 

conscientiousness, originality, and desire to excel, each on a scale that ranged from ‘marked lack’ (1) 

to ‘very’ (5). All these personality characteristics tend to be related conceptually and empirically to 

school achievement regardless of specific measure used. As cognitive ability scores are also related 

to school achievement, the question of association between cognitive ability scores and ratings of 

personality is often of interest. We selected two of the rated characteristics, Self-Confidence and 

Originality, to use as example correlations in this study. In the full sample, Originality’s correlations 

with the cognitive tests were the highest of the personality measures; Self-Confidence’s correlations 
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were typical of the personality characteristics rated. All were higher than commonly observed for 

personality-cognitive ability associations, likely due to their having been rated by the children’s 

teachers. Test-retest reliability of single items can vary considerably, is not often directly measured, 

and was not assessed for these teachers’ ratings of child personality. Littman, White, Satia, Bowen, 

and Kristal (2006) found retest-reliabilities of .66 and .74 for two single items of psychosocial stress. 

We considered .70 a reasonable estimate for our personality items. 

Height was measured in inches at age 11. We considered height because it is commonly 

considered in epidemiological studies to reflect social class and/or general constitutional robustness, 

and samples are often healthier than their underlying populations. As height was measured at school 

and thus with considerable consistency, we considered .99 a good estimate of the measure’s 

reliability. 

Sample Used to Evaluate ‘Typicality’: The Minnesota Study of Twins Reared Apart (MISTRA) 

Participants. The MISTRA participants were gathered over a period extending from about 

1979-2000, as rarely-occurring pairs of twins who were separated early in life, reared in adoptive 

families, and not reunited until adulthood came to the attention of the researchers and were recruited 

for study. The purpose of the study was to quantify the degree to which personal, medical, 

anthropomorphic, and psychological characteristics that show individual differences can be 

considered genetically influenced in a sample of people for which genetic and familial environment 

influences were not inherently confounded. To enhance incentive to participate, twins were 

encouraged to invite their spouses and adoptive and other biological relatives and friends as available 

to participate as well. The assessment covered a very wide range of individual differences. The 

researchers were particularly interested in the various ways in which cognitive abilities can be 

manifested and administered a very comprehensive set of 42 individual cognitive ability tests that 

spanned 3 established test batteries (Johnson & Bouchard, 2011). The 436 (188 males, 248 females) 

participants that contributed data for these analyses came from a broad range of occupations and 

socioeconomic backgrounds and several different countries, though most were from the United States 

or Great Britain. They varied in age from 18 to 79 (mean = 42.7), with education levels that ranged 

from less than high school to postgraduate experience. Details of recruitment and assessment are 

reported by Segal (2012). 

 Measures: The 3 test batteries administered were the following: 
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Comprehensive Ability Battery (CAB). Developed by Hakstian and Cattell (1975), the CAB 

consists of 20 specific ability tests intended to span the range considered relevant to human 

intelligence. Each test is short, requiring only 5 to 6 min to keep administration varied and 

manageable. To avoid task duplication in the extensive MISTRA assessment, 6 of the tests in the 

CAB were not administered to the participants. In addition, because we judged it not directly relevant 

to cognitive ability, we eliminated the Esthetic Judgment test. As the Verbal Ability test consists of two 

completely separable tasks, we considered the scores on the two parts separately. Thus we had a 

total of 14 test scores from this battery. Hakstian and Bennett (1977) reported split-half and retest 

reliabilities for its subtests ranging from .64 for Perceptual Speed and Accuracy to .96 for Memory 

Span. 

Hawaii Battery, including Raven’s Progressive Matrices (HB). The HB consists of 15 tests of 

primary abilities. It was developed to assess familial resemblance in cognitive ability in the Hawaii 

Family Study of Cognition (DeFries, et al., 1974). Again, each test is short, requiring 3 to 10 min. for 

administration. To avoid duplication of tasks and more fully identify likely ability factors, 2 tests were 

not administered and the battery was supplemented with 4 tests from the Educational Testing 

Services, so there were 17 tests in this battery. In the validation sample, internal consistency and 

retest reliabilities for the tests ranged from .58 for Immediate Visual Memory to .96 for Vocabulary 

(Kuse, 1977). We referred to Desai’s (1952) estimated reliability of .77 for the Raven, and Watkins 

(1979) for reliabilities for the supplemented Educational Testing Services tests. 

Wechsler Adult Intelligence Scale (WAIS; Wechsler, 1955). The 11 subtests of the 1955 

version of the WAIS were administered. According to the manual, internal consistency reliabilities 

range from .79 for Comprehension to .94 for Vocabulary. For this sample, scores normed at the 1955 

level ranged from 79 to 140, with mean of 118.5, standard deviation of 19.8, and skew of -.08. 

Hanson, Hunsley, and Parker (1988) reported test-retest reliabilities for the WAIS subtests, and we 

made use of their estimates. Adjusted to time of administration for the Flynn effect, the IQ scores 

ranged from 61 to 140, with mean of 101.2, standard deviation of 14.8, skew of .02, and kurtosis of -

.23. Given the long time-span between publication of the WAIS version used and even the earliest 

MISTRA assessments, the sample was quite representative of English-speaking countries and it was 

also quite normally distributed. For this study, we used the subtest scores as individual cognitive 

tests, and the Flynn-adjusted IQ scores as the test variable with which to correlate them. Because of 
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application of the formula for calculating WAIS IQ scores from the raw subtest scores, and removal of 

age and sex effects from this followed by adjustment for the Flynn effect, there was no direct 

dependency between any subtest score and the IQ score. We considered its reliability to be .90. 

Personality. The MISTRA sample completed the full 300-item version of the Multidimensional 

Personality Questionnaire (MPQ; Tellegen & Waller, 2008). From the 11 scales it includes, we 

selected Wellbeing, Absorption, and Alienation to use as examples of personality correlations with 

cognitive abilities due to the variety of distributional properties they encompassed. High scorers on 

the Wellbeing scale have cheerful dispositions, feel good about themselves and their lives, are 

optimistic, and enjoy their activities. The scale tends to be somewhat negatively skewed in most 

samples, including MISTRA (-1.29, with kurtosis of 1.18). High scorers on the Absorption scale are 

responsive to sensory stimulation, tend to think in images and experience vivid imaginings, and often 

have cross-modal experiences and become ‘lost in thought’. The scale is generally quite normally 

distributed, and was so in MISTRA (-.10, with kurtosis of -.70). High scorers on the Alienation scale 

feel ‘used’ and ‘pushed around’ by friends, and believe that they have been victims of bad luck and 

others wish them harm and have betrayed and deceived them. The scale tends to be somewhat 

positively skewed in most samples, including MISTRA (1.28, with kurtosis of 1.07). Tellegen and 

Waller (2008) reported 30-day test-retest reliabilities of .90 for Wellbeing, .91 for Absorption, and .87 

for Alienation. 

Analytical Approach 

 Five methods for adjusting observed correlations for range restriction can be considered 

broadly recognized and in common or recommended use. Four have been tested for accuracy using 

simulated population samples assumed to be normally distributed; the fifth has been tested only in a 

form relevant to meta-analysis. It was in applying these approaches to adjust observed correlations in 

the early-life measures in the Follow-Up Study sample that we observed their inaccuracies, 

particularly for the two cognitive tests, relative to those observed in the full original 6-Day Sample. To 

assess the extent to which such problems are common, we generated two completely random 

subsamples of the full MISTRA sample, mimicking the kinds of indirect selection on general cognitive 

ability, as measured by Flynn-adjusted IQ (Johnson, et al., 2007; important because IQ was assessed 

using the 1955 version of the Wechsler in this sample recruited throughout the period from the late 

1970s until 2000), that tend to occur within research studies. Of course, like other studies that have 
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assessed adjustment-formula accuracy, we simulated these processes. However, we had two 

advantages that other studies of formula accuracy have lacked: 1) Other studies have had to rely on 

guesses about how populations stratify into study samples, but we could use the naturally-selected 6-

Day Sample follow-up participation patterns as general guides in modelling the processes to generate 

the two MISTRA subsamples while assuring random, if not completely random (Little & Rubin, 1987) 

missingness. That is, we divided the full 6-Day Sample into quintiles, noted the proportions of these 

quintiles participating in the Follow-Up Study, ratioed these up to two different degrees because the 

participation rate in the 6-Day Follow-Up Study was so low and we wanted overall higher 

‘participation’ rates in our samples, applied these ratios of the quintiles of the MISTRA Flynn-adjusted 

IQ scores, and generated completely random Bernoulli-distribution variables to indicate including or 

not each MISTRA participant in our two ‘selected’ MISTRA samples  2) Prior studies of formula 

accuracy have had to rely on assumed distributions of the full-population scores used to assess 

formula accuracy, and have assumed at least the outcome distributions to be formally normal; in 

contrast, we had 42 available examples of naturally-occurring ‘population-level’ score distributions to 

which to apply our simulated selection processes to both variables in the correlations, all of which 

showed very typical small deviations from formally normal distribution. We modelled extent of indirect 

selection on IQ as somewhat stronger in the second selected MISTRA subsample than in the first. We 

applied each of the five adjustment methods to the correlations in the two selected subsamples 

between each of the 42 MISTRA cognitive ability tests and Wechsler IQ, and each of the three MPQ 

scales. 

Selection Processes Generating Range Restriction and the Commonly Used Adjustment 

Methods. Direct selection often (but far from always) reduces the sample standard deviation relative 

to that in the full population. If the relation between the two variables is linear and homoscedastic in 

the population, extent of attenuation is directly impacted by the direct-selection cut-off score. 

Thorndike (1949) laid out the relations among the distribution properties involved. Formally, the 

degree of attenuation is 

𝑠

𝜎

√1+((
𝑠2

𝜎2)− 1)𝜌2

        (1), 

where σ is the population standard deviation, s the sample standard deviation,  and ρ the population 

correlation (Hunter, Schmidt, & Le, 2006). Theoretically, the correlation in a directly selected sample 
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can be corrected to the full population level correlation by multiplying it by the reciprocal of Equation 

(1). But this requires knowledge of both the full population correlation and the full population standard 

deviation. Often neither of these is known, and the exercise would not even be necessary if we knew 

the former. In his Case II, Thorndike (1949) handled this by ‘reversing the nonlinear algebra of the 

attenuation formula’ (Hunter, Schmidt, & Le, 2006, p. 596) to approximate the full population 

correlation ρ as 

𝑟 ∙
𝜎

𝑠

√1+( (
𝜎2

𝑠2 )−1)𝑟2
        (2), 

where r is the sample correlation, and this has become the standard treatment. In practice, the 

correction adjustment is often approximated even further by dropping the denominator in Equation (2) 

completely because the population standard deviation is unknown and so must be assumed. This is 

apparently done under the further assumption that, given the approximation involved in assuming the 

population standard deviation,  the adjustment offered by the denominator is small. Terming the 

adjustment ‘small’ is a matter of judgment, of course. For example, with a rather low ratio of 

population-to-selected sample standard deviation of 1.2, and a moderately strong observed sample 

correlation of .40, the full population correlation would be estimated at .46 using (2), and .48 using (2) 

without the denominator. Higher ratios of population-to-selected sample standard deviation and higher 

correlations, common in psychology study variables and samples, generate greater distortions. For 

example, with a ratio of population-to-selected ratio of 1.4, the analogous estimates would be .52 and 

.56. With a sample correlation of .5, they would be .57 and .60. 

 Thorndike’s (1949) Case III formula has long been considered standard for adjusting for 

indirect range restriction. This is 

                                                                                                                     (3), 

 

where UZ is the ratio of the full population standard deviation to the sample standard deviation of the 

unmeasured variable on which direct selection has actually taken place that is correlated with at least 

X. In research participant-recruitment settings, Z would be willingness to or interest in participating in 

research studies. Of course the distributional properties of this variable are effectively never known, in 

either the sample or the population. This is no doubt part of the reason that the formula for direct 

range restriction has been applied in practice and tested for accuracy much more often than (3), even 

in situations where selection is clearly indirect. The tests comparing accuracy of the direct- and 
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indirect-selection formulas that have been applied have generally involved substantial additional 

volumes of calculations and work to apply the indirect formula, as is apparent in inspecting the 

formulas. Their indications that the direct formula is relatively accurate have justified continuing its 

use. 

 Questions about accuracy, however, continue to surface, especially as meta-analysis has 

become more widely used and thorough, because there researchers must cope with many different 

samples and specific measures, inevitably gathered under different conditions, while relying only on 

reports of those conditions from the primary researchers. Recently, Hunter, Schmidt, and Le (2006) 

developed a procedure they termed ‘Case IV’ to estimate the needed Z distributions and to 

incorporate recognition of imperfect test reliability in both direct and indirect range restriction 

situations. Under this procedure, the researcher first estimates the reliability ρXX of X in the full 

population as 

1 − 𝑢𝑋
2(1 −  𝑟𝑋𝑋)    (4), 

where uX is the reciprocal of UX, the ratio of the sample standard deviation of the test to its full 

population standard deviation, and rxx is the reliability of the test in the sample population. The next 

step is to estimate uZ = 1/UZ, or the ratio of the sample standard deviation of the unmeasured variable 

on which direct selection into the sample (some kind of willingness to participate in the study) has 

taken place to its full population standard deviation,  as 

[
𝑢𝑋

2 − (1− 𝜌𝑋𝑋)

𝜌𝑋𝑋
]

2

     (5). 

Then the researcher corrects the observed correlation for population-level unreliability in the two 

measures by dividing it by  

√(𝑟𝑋𝑋𝑟𝑌𝑌)     (6) 

to obtain rC. The final step is to apply Thorndike’s (1949) Case II formula for direct range restriction to 

rC, using the estimated UZ. That is,  

ρ = 
𝑈𝑍𝑟𝐶

√𝑈𝑧
2𝑟𝐶

2− 𝑟𝐶
2+1

       (7). 

 The fourth method we applied has not been as widely used or discussed, but it has been 

mentioned occasionally as a possibility for over 20 years (e.g., Mendoza, 1993) and has started to 

receive increased attention as a way to adjust correlations in range-restricted samples to population 

levels. This is maximum likelihood estimation (MLE) of expected population-level statistics given only 
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a subset of the full population. Use of this method relies on the assumptions that the restricted range 

of the data in the examined sample has arisen because some data are MAR (Little & Rubin, 1987), 

and independent and identically (basically) normally distributed, though the method can be used 

assuming any distribution that seems relevant. The normal distribution has usually been the 

distributional form considered most relevant in studies of psychological variables involved in range-

restricted samples. Here, considerable work has been done to evaluate MLE’s robustness to 

violations of normality in general, and to offer alternatives where important. Enders (e.g., 2011) and 

Savalei (e.g., Savalei & Rhemtulla, 2012) have been particularly active, though their work has not 

focused specifically on selection-based range restriction. 

 Given the assumed properties and the observed data, the goal of MLE is to estimate 

parameters of the distributional function underlying the data. In range-restricted samples, this would 

mean, for example, estimating the full-population-level mean and variance and correlations of the 

variable with other variables of interest. The first step in doing this is to consider the joint probability 

density function that must exist to generate all these data, given its parameters. The data can then be 

considered the parameters of this joint density function, and this function itself considered the 

likelihood of these particular parameters (data) having arisen. The next task is then to maximize this 

likelihood function. Parenthetically, it is often more computationally tractable to work with the 

logarithm of this function rather than the function itself, giving rise to the commonly used term 

‘maximum log-likelihood’. The result is the same either way (given appropriate back-transformation) 

as the logarithmic function increases monotonically. Sometimes this process leads to a directly 

computable solution, but often it does not, and numerical optimization methods must be applied. 

Other potential practical problems in using this method are that it is not uncommon that there are 

many very similarly maximally likely solutions, the likelihood just keeps increasing indefinitely, and/or 

the indicated maximum likelihood varies with the values used to start needed numerical optimization 

methods, making it difficult to ascertain that any indicated solution is in fact the true maximally likely 

one. Many programs operationalizing this method, however, have built-in features that address these 

complications.  

 Finally, noting concerns over inaccuracies that can arise in the Le and Schmidt (2006) ‘Case 

IV’ adjustment method, Le, Oh, Schmidt, and Wooldridge (2016) recently developed a ‘Case V’ 
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adjustment method, based on a previously little-known formula developed by Bryant and Gokhale 

(1972). They adapted Bryant and Gokhale’s basic formula 

𝜌 =  𝑟𝑐𝑢𝑥𝑢𝑦 + √(1 −  𝑢𝑥
2)(1 −  𝑢𝑦

2)  (8), 

where uy is the ratio of the sample outcome variable standard deviation to its full population standard 

deviation, to reflect unreliability of measurement in the two variables involved in the correlation. This 

means adjusting for unreliability of measurement and indirect range restriction in the two variables in 

the correlation, using rxp = rc/√𝑟𝑦𝑦 and rtp = rxp/√𝑟𝑥𝑥 to correct the two variables’ unreliability, and  

𝑢𝑡 =  √𝑟𝑥𝑥𝑟𝑥𝑝
2 /(1 + 𝑟𝑥𝑥𝑟𝑥𝑝

2 −  𝑟𝑥𝑝
2 )  (9) 

and 

𝑢𝑝 =  √𝑟𝑦𝑦𝑟𝑡𝑝
2 /(1 + 𝑟𝑦𝑦𝑡𝑥𝑝

2 −  𝑟𝑡𝑝
2 )  (10) 

to account for indirect selection. With these adjustments in place, the adapted Bryant and Gokhale 

(1972) formula becomes 

𝜌 =  𝑟𝑡𝑝𝑢𝑡𝑢𝑝 + √(1 − 𝑢𝑡
2)(1 − 𝑢𝑝

2)  (11). 

They noted that sometimes the two variables involved in the correlation are correlated with the 

indirectly selected variable in opposite directions. When this is the case, the plus sign before the 

radical should be changed to a minus sign. As Le et al. (2016) noted, the correlation between the two 

variables of interest will also generally be negative unless it is rather low. If it is substantially negative, 

one variable could be reverse-scored and formula (11) applied. Le et al. evaluated the accuracy of 

their adapted formula for meta-analytic purposes, but not for use with individual sample correlations. 

In doing so, they considered individual study situations with considerably more regularity and smaller 

ranges of variation in correlation size than tend to occur in practice, and, in particular simulated 

distributions of true full population construct correlation and observed sample measure correlation 

pairs from varying numbers of studies with varying numbers of sample sizes. In the process, they did 

not address the possibility that observed standard deviation was greater than population standard 

deviation. Their formula generally becomes undefined when this is the case for one of the involved 

variables. We evaluated their formula for use in individual studies. Along with even the basic Bryant 

and Gokhale (1972) formula (8)’s reliance on knowing the full population standard deviations for both 

variables, this is likely one of the reasons their formula has never received much attention. 

RESULTS AND DISCUSSION 
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6-Day Sample Results Motivating Further Study 

 To indicate the extent to which the 6-Day Sample actually represented the full birth cohort 

form which it was drawn, Table 1 compares its relevant statistics with those in the much larger 

SMS1947. Inevitably, given two separate sampling procedures, there were some mean differences. 

All were also inevitably significant, given the large size of the SMS1947. The effect sizes of the MHT-

score differences were, however, trivial, and even standard deviations and skews of all the variable 

distributions were highly similar. The 6-Day sample was slightly older than the SMS1947 sample, but 

the difference corresponded to 18 days. This is slightly longer than the average difference between 

the first and last day of any month, and thus almost exactly what would be expected given selection 

on birthdate the first of even-numbered months, and could also possibly explain their slightly higher 

MHT scores. The 6-Day Sample did have a slightly higher proportion of females than did SMS1947 

(less than 2% difference). Given higher rates of infant mortality and incapacitating disabilities in males 

than females (National Records of Scotland, 2013), however, it is very possible that the 6-Day 

Sample was the more population-representative. The MHT scores were consistently slightly 

negatively skewed in females and males, This appears to be a general property of the test rather than 

a product of sample selectivity, as it has been observed in all samples studied to date and other 

cognitive tests in these samples did not show negative skew (Johnson, Brett, Calvin, & Deary, 2016). 

Skews of similar magnitudes in either direction are generally found in all psychological measures. 

They can arise through item-‘difficulty’ properties of the measures as well as through population 

characteristics, and most analytical methods in common usage are robust to such minor violations of 

the normality assumption commonly underlying them. 

 Table 2 compares the youth scores of the 791 original participants surviving to be potentially 

eligible to participate in the age-77 Follow-Up study and those who actually agreed to participate in it 

with the full original sample. The first thing to note is the distributional properties of the measures in 

the full sample, particularly the skews in parentheses following the standard deviations, because they 

provide the best indications of the measures’ psychometric properties. The TMIQ distribution was 

similar to the properties usually noted for it, and generally claimed for it. Though not shown in the 

table, the relative magnitudes (ratios) of standard deviations to means are important in evaluating the 

shapes of distributions, and such ratios can be compared in measures on very different scales, as 

was the case here. The two personality measures had similar ratios (.27 and .31), with the TMIQ’s 
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being lower (.20) and the MHT’s higher (.42). Height’s ratio was very small (.05). These ratios indicate 

that MHT scores varied much more within their possible range than did TMIQ scores, which can 

reflect more detail in measurement scaling, but also lower reliability when the scores are intended to 

measure the same construct, as these two are. When these ratios are not similar, the dissimilarity can 

also primarily reflect degree of population clustering around the mean, which was probably the 

primary reason for the low height ratio. 

None of the measures was skewed to a degree that would typically generate concern about 

material deviation from normal (maximum magnitude -.78 in the Follow-Up Sample MHT), but the two 

cognitive tests were more skewed than the other three, and the TMIQ was somewhat positively 

skewed (.50), while the MHT was somewhat negatively skewed (-.31). In addition, the TMIQ became 

less positively skewed as degree of selection increased, while the MHT became more negatively 

skewed. This is typical when the lower scores of such distributions are dropped in greater proportions 

than higher scores. Survivors to age 77 had moderately higher cognitive test scores in youth than 

those who had passed away before that age (effect sizes of .35 and .37 for MHT and TMIQ, 

respectively). They also had slightly higher Originality scores as rated by their teachers (effect size 

.19), but did not differ significantly in either Self-Confidence or height. Survival sets the ultimate 

boundary for participation, so selection of at least these magnitudes would be expected among the 

participants in the Follow-Up study relative to the original full sample, but there is no predominating a 

priori reason for it to be greater within the surviving group. In fact, however, actual selection among 

participants was considerably larger: compared to surviving non-participants, participants had 

considerably higher cognitive test scores in youth (effect sizes of .74 and .65 for MHT and TMIQ, 

respectively), and somewhat higher Self-Confidence and moderately higher Originality as rated by 

their teachers (effect sizes of .26 and .43, respectively. They were also taller in youth (effect size .23). 

This indicated considerable selection on characteristics that are usually very highly correlated (stable 

in population-level rank ordering) over long periods of the lifespan in the age-77 Follow-Up Sample. 

 Table 3 gives the correlations that motivated this paper. For purposes related to a paper on 

another topic completely, we happened to calculate the correlations between the 6-Day Sample MHT 

and TMIQ and personality and height measures (all taken in youth) in the age-77 Follow-Up Sample 

and in those who had survived to be potentially eligible for the Follow-Up Study. These correlations 

were not of intrinsic interest in and of themselves, and generally would not be. But the opportunity to 
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make such calculations in naturally-selected samples for which the full-sample correlations can also 

be made is rare. As is common, the Follow-Up-participant correlations were considerably lower than 

the full-sample correlations. This was not the case for the survivor-sample correlations: they were 

much closer to the full-sample correlations, and some were higher but others lower, though none 

reproduced the full-population correlation exactly. We applied the methods outlined above (omitting 

the approximate adjustment for direct selection often made in the absence of knowledge of the full-

population standard deviation) to adjust the sample correlations for direct and indirect selection and 

made maximum-likelihood estimates of the full-sample correlations based on both selected-sample 

correlations. For the adjustments for indirect selection, we had to assume test-retest reliabilities for 

some of the measures, and those noted in Methods for Originality and Self-Confidence were of 

necessity particularly arbitrary. All else being equal, lower reliabilities generate higher adjusted 

correlations and vice versa, so we were able to assess the impacts of likely differences between our 

assumed reliabilities and actuals. As the table shows, all the adjusted estimates differed from the 

actual full-population correlations, some of them considerably. The magnitudes and directions of 

deviation also differed somewhat systematically for the two cognitive tests and the adjustment 

methods applied. Though selection on cognitive ability appeared to be involved in both Follow-Up 

Study participation and survival, the specific processes involved appeared to differ, as the patterns of 

deviation in the two samples differed as well. 

 For example, for the MHT, some of the adjustments overstated the full-population 

correlations, while others understated them, and over- and understatement were consistent in the two 

samples for one correlation, but not the other two. In contrast, for the TMIQ, all the adjustments 

understated the full-population correlations, and most of the understatements were quite a bit larger in 

absolute magnitude than those with the MHT. The TMIQ in this sample was rather unusual in that its 

standard deviation remained effectively the same no matter the degree of naturally-occurring 

selection that took place, and the arithmetic of the direct- and indirect-selection adjustment formulas 

generated these understatements. The maximum-likelihood estimates tended to be most accurate in 

both samples, and it appeared that participation selection was much more directly on MHT score than 

on TMIQ score, given that its correlations adjusted for direct were more accurate than those for 

indirect range restriction, but the opposite was the case for the TMIQ. This was especially puzzling 

given the consistency of the biasing of estimates of the population correlation by all methods for this 
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test, which would tend to suggest more overt sample selection based on it. In contrast, if anything, 

this situation was reversed for survival selection, though less consistently so. For the MHT, the 

adjustment for indirect selection that relied upon our assumed test-retest reliabilities overestimated all 

the full-sample correlations, but it underestimated them for the TMIQ. This meant that, had we 

assumed lower reliabilities, the formula would have generated greater errors for the MHT correlations, 

but smaller errors for the TMIQ correlations, but would not have altered the overall extent of formula 

misestimation. 

It was this consistent presence of differences between the actual population-level correlations 

and their estimates using commonly used or considered methods to offset the clearly-present range 

restriction (especially in the follow-up participant sample) that led us to evaluate how common such 

deviations might be and whether, if common, there might be consistent patterns in them that could be 

more clearly revealed. To evaluate this, we needed many more test scores in a single sample, 

preferably ranging in size of correlation in systematic ways. To accomplish this, we turned to the 

MISTRA sample with its 42 cognitive ability tests and personality measures as described above. 

MISTRA Sample Results 

 Basic Statistics. Table 4 shows the descriptive statistics for each of the 42 cognitive ability 

tests administered in MISTRA in the full and two selected samples. In the full sample, all the tests 

would be considered very reasonably normally distributed: all had means and standard deviations 

close to those expected for standardized variables, with the deviations reflecting having winsorized 

outliers that occurred in removing effects of age and sex from the variables. None of the skews 

exceeded the commonly-applied rule-of-thumb level of 1.00 in absolute value, and most were 

substantially below that. Still, some of the tests generated small negative skews, while others 

generated small positive skews. Kurtosis levels also were small, but some tests generated scores 

more concentrated around 1 standard deviation in absolute value than would be expected in a strictly 

normal distribution (Moors, 1986), while others did the opposite. This variety without extremity was a 

good feature of these data for our purpose, as would be expected if there were no systematic biases 

in either the participant or test samples. 

 Table 5 shows the correlations between each of the 42 MISTRA cognitive ability tests and 

Flynn-adjusted IQ and MPQ Wellbeing, Absorption, and Alienation in the full and two selected 

samples. The magnitudes of these correlations reflected both individual measure reliability and 
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content. As would be expected, all the correlations with Flynn-adjusted IQ were positive and generally 

at least moderate, ranging from .201 for CAB Immediate Visual Memory to .650 for WAIS Vocabulary. 

Those with Wellbeing were also almost all positive, though generally small. Absorption correlations 

were also generally positive, but even smaller, and several were negative. Alienation correlations 

were negative, and small to moderate. About a third of the correlations were weaker in the selected 

than in the full sample, as is often assumed to be the case when range is known to be restricted but 

no further information is available, but often the difference was tiny. And about two-thirds of the 

correlations were actually stronger in the selected samples; some also took the opposite direction. 

This suggests quite strongly that the common assumption that correlations in range-restricted 

samples are weaker than the full-population correlations is at best tenuous. 

 Accuracy of Formulas to Adjust for Range Restriction. The degree to which the adjustment 

formulas intended to account for direct selection could recover the full-sample correlations in the two 

selected samples is recounted in Table 6. At the top of the table, we show statistics about the 

differences between the full sample correlations and the subsample correlations, followed by the 

same kinds of comparisons for the estimates of the full correlations based on application of the 

adjustment formulas. The means of the differences between the full and subsample correlations look 

rather small, but this obscures that for some tests the subsample correlations were higher than the full 

sample correlations, and the reverse was true for others. Reflecting this, in all cases, the means of the 

absolute values of the correlation differences were higher than the means of the raw correlation 

differences, and the overall adjusted subsample averages tended to be stronger than the actual 

averages. These were sometimes trivially so, other times quite substantially so. Extent of the former 

depended on variabilities of under- and overstatement of the adjustments, the latter on relations 

between magnitudes of under- or overstatement and correlation. The correlation ratios depict this, as 

they represent the differences in proportion to the raw differences. Because researchers tend to 

assume that range restriction suppresses correlations relative to their full-population levels, the not-

uncommon presence of higher subsample than full-sample correlations is important. Proportions of 

overstated subsample correlations were greater when the means of the absolute values of the 

differences were relatively larger than those of the raw differences. The correlation ratios simply 

reinforced these observations. 



Skew and kurtosis distort range restriction adjustments 25 

 Comparing results for the two subsamples offered further insight. First, it emphasized the 

weakness of the common assumption that range restriction results in underestimation of correlations. 

Recall that indirect selection on IQ was greater in Subsample 2 than 1. Contrary to expectations 

based on this, at mean level, the correlation differences from the full-sample correlations were smaller 

in Subsample 2 than 1. Explanation for this comes from the means of the absolute values of the 

correlation differences. Though these were also smaller in Subsample 2 than 1, with the exception of 

that for Absorption, this was true to a much smaller degree than for the mean raw differences (e.g., in 

absolute value, the Subsample 1 raw and absolute means differed by .012 [.042-.033]) for FSIQ, 

while those for Subsample 2 differed by .023 [.038-.015]). This indicated that there was more variance 

in sign of the differences in the more highly selected Subsample 2, so that ability to guess at direction 

of bias decreased with greater indirect selection. The correlation ratios make clear that the degree to 

which this was true was a function of size of correlation: bias was more likely to take the commonly 

assumed direction for the higher FSIQ correlations than for the lower personality correlations. Even 

this was not completely reliable, however, as all bets on direction and degree of bias were essentially 

off for the very low raw Absorption correlations, yet the mean absolute correlation ratio was moderate. 

 In general, adjustments resulting from the commonly used formula for direct selection were 

tiny, making little difference, especially in the first subsample. In the second, more selected, 

subsample, however, the differences between actual and estimated full-sample correlations were 

sometimes larger after this adjustment (Compare raw and adjusted mean absolute correlation 

differences and ratios in Table 6.) The ranges of adjusted correlations and the mean absolute 

correlation ratios made clear that this was mostly when raw correlations were low. Applying the full 

adjustment for direct selection improved this situation, but not much. 

 Table 7 presents analogous information for the adjustment for indirect selection and 

maximum-likelihood estimation of the full-sample correlation based on the subsamples. In general, 

the adjustment for indirect selection overestimated the full sample correlations, sometimes rather 

badly, so that it was more inaccurate than the full adjustment for direct selection. A primary reason for 

overstatement was inaccuracy of the assumption that indirect selection results in range restriction that 

understates correlations. That is, in many cases it had not, and even when it did, it did not do so as 

much as assumed in the indirect selection adjustment process. Still, accuracy was slightly better in 

the more selected second subsample, except for the very low correlations with Absorption. This 
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suggested that, when correlations were at least moderate, adjustment formula accuracy improved 

with greater sample selection.  Maximum-likelihood did considerably better, and, overall, slightly 

better than full adjustment for direct selection. This was true particularly in the second subsample, 

though again not for the lowest-correlating Absorption.  

Finally, the Le et al. (2016) Case V adjustment method failed slightly more than half the time, 

primarily due to subsample standard deviations that were larger than those of the full-sample. The 

rather high frequency of this was probably due to sampling quirks in the relatively small ‘population’ in 

this case, but norming samples for even widely used personality and intelligence tests are always far 

from completely population-representative and not uncommonly around the size of the full MISTRA 

sample. This means that reliance on standard deviation ratio is a rather serious limitation of this 

adjustment method. To be specific, of the 42 tests, the method failed for all four outcome tests 27 

times in the first selected subsample. In the second, it failed for 18 for Flynn-Adjusted FSIQ, 24 for 

each of WB and AL, and 18 for AB. Where it worked, it produced results very similarly lacking in 

accuracy to the others (see online supplemental table). 

General Comments. We recommend first applying maximum likelihood estimation, applying 

adjustments as completely as possible for direct selection preferred over the method used here for 

indirect selection, which is intended to be the most accurate available, even when selection is very 

likely indirect. Applying both maximum-likelihood and adjusting for direct selection, comparing results, 

and interpreting accordingly is better still. 

 The adjustment formulas all tended to be somewhat more accurate when applied to positive 

than to negative correlations. This can be seen by comparing the means of the absolute values of the 

correlation differences for FSIQ and Well-being with those for Absorption, keeping in mind that the 

adjustment formulas tended to be somewhat more accurate for higher correlations. This is what made 

this tendency more apparent in the absolute correlation ratios. It was, however, far from completely 

reliable. Still, it is probably a good idea to reverse one of the measure’s scoring when the raw sample 

correlation is negative and estimating extent of its sampling bias is a goal. 

 Greater skew and kurtosis also tended to be associated with greater distortion in estimated 

full-sample correlations. Unfortunately, however, as for estimates due to range restriction themselves, 

neither skew nor kurtosis directions nor magnitudes appeared to be systematically associated with 

degree of distortion. For example, degree of skew was associated in the first sample with greater 
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distortion in direct selection-adjusted correlations with FSIQ, but not in correlations with the 

personality measures (except for a statistical ‘tendency’ for association with distortion of WB). This 

could suggest that skew might matter more when observed (positive) correlations are greater, as that 

is the primary common difference between the personality measures and FSIQ in this study, but there 

was no association in the second sample.  

 Instead there was an association with degree of kurtosis in the second sample, which showed 

up for AL too. It makes a certain amount of sense that kurtotic associations could be picked up in 

correlations of smaller magnitudes in negative correlations just as easily as in positive correlations in 

positively selected samples such as occur most commonly in research studies and were modelled 

here, as kurtosis reflects more symmetrical deviations from normality than does skew. It also makes 

sense that it would be picked up in AL in this study as its correlations tended to be the strongest 

among the personality measures, but they were negative, which might matter for skew but would be 

less likely to matter for the more symmetrical kurtotic measure of deviation from normality. 

These tendencies for greater degree of distortion in range-restriction adjustment formulas with 

greater skew and/or kurtosis were not consistent in the two samples, Even in these at most very 

moderately skewed and kurtotic variables (whose deviations from normality would not usually arouse 

any concern) they were strong enough that examining results of adjustment formulas with and without 

transforming variables to improve normality is a good idea. Of course, all such transformations 

change the way the correlation should be interpreted, but we rarely have any sense that the 

numerically ratio or interval scales we often use to measure psychological constructs actually capture 

those constructs in those ways, so this is probably not as big a problem as it might superficially 

appear. 

 Examination of the specific effects of the same sample selections on the means, standard 

deviations, skews, and kurtoses in the 42 cognitive tests studied here suggests no clear patterns. 

Greater sample selectivity did tend to produce higher means, but even this did not happen 

consistently. Researchers often tend, at least implicitly, to assume that sample selection produces 

smaller standard deviations, but in these data this was not true about as often as it was true, and 

patterns for differences in skew were not more regular. Moreover, patterns of combinations of effects 

of sample selection on standard deviation, skew, and kurtosis were even less consistent. It was 

possible to examine individual tests and make some inferences about the particular distributional 
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properties of that test in the full sample, but these inferences could not get beyond the inevitable 

confound between specific item properties of that test that would apply in any sample and the sample-

specific clusterings of participants’ actual abilities in the areas items tested. 

CONCLUSION 

 We began this article lauding researchers’ increasing awareness that participants in their 

studies tend not to represent the population from which they come very well. We noted that this has 

been addressed in two ways, through development of new methods to adjust results to offset the 

resulting distortions in estimates and tests of their accuracy, and by increasing application of existing 

formulas in reporting estimated associations in actual study samples. These efforts fully deserve the 

praise we offered. Based on this study, however, we have to conclude that the accuracy tests run to 

data have not been sufficient to resolve the problem of distortions in estimated associations from 

population levels that selection into research participation creates. This is of course of necessity a 

subjective judgment; some may see the deviations we picked up as too small to matter, noting that no 

adjustment formula could ever be expected to recover the intended statistic exactly. Several of the 

deviations in both tests in the 6-Day Sample were not small in absolute value and were quite large in 

relation to the observed correlations (see Table 3). The same was true of many of the specific test 

observations in the MISTRA sample, even when not true of the mean levels (see especially the 

ranges in Tables 6 and 7). We believe that the ratios of deviations to the observed correlations are 

particularly relevant because accuracy is always relative to the size of whatever is being measured. 

Lab tests are commonly considered relatively accurate when their results ‘generally’ fall within 10% of 

actual values, both by lab course instructors and medical technicians. By this standard, 68% of the 

common approximations, 68% of the full adjustments for direct selection, 90% of the adjustments for 

indirect selection, and 73% of the EM adjustments would be considered inaccurate. Doubling 

tolerance to 20%, 49% of the common approximations, 47% of the full adjustments for direct 

selection, 72% of the adjustments for indirect selection, and 51% of the EM adjustments would be 

considered inaccurate. We suggest that either psychological measurement somehow merits being 

held to much lower standards of accuracy, or these adjustment formulas too often do not perform 

adequately. 

The deviations we observed were apparently due to too-restrictive assumptions about the 

shapes of the distributions cognitive ability tests take in actual populations and the natures of the 
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distortions in those distributions imposed by the multi-faceted, largely indirect selection processes that 

get some targeted people to participate in research studies and others not. Sources of deviation from 

normality could not be pinpointed exactly in this study because sampling variability is inevitably 

confounded in empirical data with systematically selective participation (whether direct or indirect, 

random or non-random), population-level deviations from normality, and incompletely uniform item 

coverage of the construct range, but the common ‘symptom’ of all these sources of ‘malaise’ was 

small and very typical deviations from normality in the population-level full MISTRA sample. Moreore 

work is needed to develop better adjustment formulas and test them more thoroughly using the kinds 

of distributions that measures in common use actually produce at population levels, and models of the 

processes that reflect how people actually sort into both research and personnel selection samples. 

This work needs to recognize that such distributions basically always differ somewhat from the 

normal. Researchers producing estimates in existing study samples also need to be much more 

circumspect than they often have been in assuming they have some idea what form of distortion the 

particular patterns of selection into their samples has created. This may be especially important for 

meta-analysis, as its results are often considered to be more generally applicable, and the distortions 

in estimates that sample-selection adjustment formulas can contain may actually make them less so. 
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DATA TRANSPARENCY APPENDIX 

The data reported in this manuscript have been previously published and were collected as part of 

two completely independent larger data collections, one of which ended over 10 years before the 

other began. Findings from each data collection effort have been reported in multiple separate 

papers, numbering in the dozens if not hundreds, over a period of 30 years. No other paper has used 

data from both of these completely independent studies in anything close to this manner. 
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Table 1        
The 6-Day Sample and the Scottish Mental Survey     
____________________________________________________________________________________ 

       Effect Size 

 6-Day Sample, n=1208 Scottish Mental Survey, n=70,805 of Mean 

 Mean SD Skew Mean SD Skew Difference 

Full Sample        
Age at MHT 10.98 .33 .27 10.93 .29 -.08 .17 

% Female 51.16 --- --- 49.45 --- --- 1.71 

MHT Score 37.4 15.8 -0.31 36.6 15.8 -.34 .05 

        

Females        

Age at MHT 10.96 .32 .19 10.93 .29 -.07 .10 

MHT Score 37.8 14.9 -.27 37.5 15.1 -.36 .02 

        
Males        
Age at MHT 11.00 .35 .31 10.93 .29 -.08 .24 

MHT Score 37.1 16.7 -.32 35.8 16.4 -.30 .08 

____________________________________________________________________________________ 

Note: SD is standard deviation. MHT is Moray House Test. Effect size is   
(6-Day mean-SMS mean)/SMS SD, except for sex, which is simple percentage difference. 
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Table 2     

6-Day Sample Youth Descriptives of Age-77 Participation Status Groups  
______________________________________________________________________  

                                  Mean (SD, Skew)_____________                                  

 Full 6-Day Alive Participating  

 Sample at Age 77 at Age 77  

 n=1208 n=791 n=171  

     

Moray House Test 37.4 (15.8, -.31) 39.3 (15.3, -.38)*1 48.1 (11.3, -.78)*2  

Terman-Merrill IQ 102.6 (20.1, .50) 105.0 (20.6, .49)*3 115.6 (19.7, .18)*4  

Self-Confidence 3.0 (.80. 06) 3.0 (.80, .03) 3.2 (.76, .05)*5  

Originality 2.6 (.80, -.16) 2.7 (.79, -.15)*6 2.9 (.75. 10)*7  

Height 54.0 (2.8, .05) 54.1 (2.9, .00) 54.7 (2.8, .55)*8  
______________________________________________________________________  
Note: All measures in youth. *Difference in means was significant between  
survivors and deaths (middle column), or participants and non-participants  
(right column), at p<.01 to offset multiple testing. Superscripts note effect sizes  
of differences, more restricted less less restricted: 1) .35, 2) .74, 3) .37, 4) .65,  
5) .26, 6) .19, 7) .43, 8) .23    
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Table 3

6-Day Sample Early-Life Correlations 

___________________________________________________________________________________

Maximum-

Direct Range Indirect Range Likelihood

Moray House Test Observed Restriction Restriction Estimate

Participating at 77

Originality .323 .423 .538 .409

Self-Confidence .152 .203 .269 .248

Height .199 .263 .532 .268

Alive at 77

Originality .437 .450 .567 .441

Self-Confidence .255 .263 .333 .268

Height .315 .325 .367 .298

Difference/Ratio Between Actual and Estimated

Full Sample in Participating Sample

Originality .383 -.040/.906 -.155/.712 -.026/.936

Self-Confidence .246 .043/1.212 -.023/.914 -.002/.992

Height .314 .051/1.194 -.218/.590 .046/1.172

Terman-Merrill

Participating at 77

Originality .288 .293 .370 .428

Self-Confidence .144 .147 .185 .248

Height .210 .215 .241 .259

Alive at 77

Originality .474 .473 .576 .470

Self-Confidence .283 .282 .340 .278

Height .306 .305 .327 .289

Difference/Ratio Between Actual and Estimated

Full Sample in Participating Sample

Originality .432 .139/1.474 .062/1.168 .004/1.009

Self-Confidence .272 .125/1.850 .087/1.470 .024/1.097

Height .296 .081/1.376 .055/1,228 .037/1.143

___________________________________________________________________________________

Note: See text for reliabilities used in calculating the estimated correlation adjustments.

Adjusted for
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Table 4

MISTRA Full and Selected Samples -- Descriptive Statistics for Age-Sex-Adjusted Cognitive Test Scores

_________________________________________________________________________________________________

Cognitive

Test Mean SD Skew Kurt. Mean SD Skew Kurt. Mean SD Skew Kurt.

Hawaii Battery

Vocabulary .010 .991 -.318 -.716 .074 .923 -.372 -.522 .181 .962 -.461 -.645

Immed Vis Mem .016 .933 -.685 .353 .045 .940 -.654 .273 .113 .870 -.822 .471

Subtract/Multipl -.001 .993 .393 -.057 .044 .980 .373 .026 -.002 .948 .257 -.297

Line Dots -.011 .988 .170 .064 .029 1.013 .124 .345 .050 .976 .074 -.094

Word Begin/End .003 .995 .227 -.191 .034 .920 .130 -.214 .178 1.039 .053 -.045

Card Rotation -.010 .956 .443 .476 .010 .493 .726 .908 -.076 .989 .584 .459

Delay Vis Mem .014 .990 -.253 -.146 .089 1.005 -.331 -.157 .154 .941 -.210 -.006

Pedigrees .011 .994 -.328 -.016 .036 .964 -.484 .075 .143 .995 -.199 -.460

Mental Rotation -.001 .985 .113 -.203 .047 .975 .112 .253 .109 .940 .205 -.051

Identical Pictures .001 1.004 .225 -.256 .046 1.010 .147 -.267 .116 1.005 .279 -.188

Paper Form Bd .005 1.001 .460 -.082 .068 .977 .589 .227 .160 1.091 .467 -.343

Hidden Patterns -.002 1.000 -.161 -.297 .123 1.027 -.293 -.359 .117 .998 -.262 -.250

Things -.003 .994 .262 -.124 .002 1.016 .418 -.007 .160 1.039 .108 -.389

Different Uses -.003 .998 .083 -.333 -.017 .973 -.005 -.266 .180 1.037 .060 -.439

Cubes -.001 .993 .334 .186 -.126 1.050 .343 -.208 .164 .980 .453 .299

Paper Folding .002 .999 .053 -.311 .038 1.046 .043 -.467 .113 1.038 .163 -.319

CAB

Vocabulary .010 .982 -.738 -.124 .086 .915 -.661 -.240 .182 .998 -.974 .317

Proverbs -.009 .995 -.886 .223 .032 .946 -1.096 .767 .134 .984 -1.057 .661

Number .005 .996 .248 .017 .009 .935 .278 -.147 .094 1.079 .156 -.333

Spatial .009 .998 .047 .286 -.056 1.014 -.072 .304 .087 .962 .310 .178

Speed of Closure -.001 1.000 .552 .330 -.117 .986 .729 .511 -.037 .993 .559 .265

Perceptual Speed -.001 .995 .346 -.022 .011 1.061 .335 -.323 .057 .951 .278 -.164

Induction .001 .994 .151 -.322 .122 .978 -.242 -.183 .120 1.019 .203 -.355

Flex of Closure -.004 .998 .054 -.763 .051 1.009 .025 -.792 .144 .991 -.025 -.802

Assoc Memory .010 1.002 .517 -.573 .140 1.007 .398 -.543 .115 .973 .418 -.659

Mechanical Reas .011 .994 -.249 -.330 .091 .950 -.116 -.296 .246 .955 -.226 -.513

Memory Span .004 .986 -.023 -.426 -.015 .981 -.070 -.138 .076 1.004 -.094 -.407

Meaningful Mem .000 1.002 -.362 -.648 .116 .981 -.380 -.602 .108 .987 -.444 -.511

Spelling .006 .994 -.177 -.975 -.022 .951 -.268 -.826 .145 1.013 -.392 -.815

Word Fluency .013 .999 .133 .286 .042 .923 .220 .928 .168 1.041 -.107 .093

WAIS

Information -.023 .992 -.229 -.444 .066 .965 -.380 -.475 .115 1.009 -.246 -.522

Comprehension -.018 .994 -.516 -.134 .052 .967 -.301 -.186 .196 .912 -.612 .263

Arithmetic .003 .997 -.129 -.733 .114 .951 -.059 -.796 .124 1.006 -.321 -.652

Similarites -.008 .997 -.661 .160 .025 .944 -.648 .382 .080 .992 -.609 -.154

Digit Span -.006 .991 .313 -.559 -.002 .954 .353 -.556 .040 .983 .199 -.501

Vocabulary -.015 .994 -.481 -.191 .060 .879 -.779 .572 .212 .979 -.598 .022

Digit Symbol .007 .999 -.144 -.302 .037 .940 -.263 -.280 .097 .982 -.135 -.182

Picture Complet -.007 .989 -.354 -.025 .053 1.036 -.555 .164 .075 .958 -.315 -.178

Block Design .004 .990 -.280 -.113 .026 1.035 -.399 -.023 .114 1.035 -.492 .239

Pattern Arrangmnt -.002 .999 -.221 -.355 .106 .973 -.218 -.512 .097 .997 -.277 -.587

Object Assembly -.004 .985 -.659 .093 -.020 .997 -.723 .206 .066 1.008 -.644 -.199

Raven -.002 .998 -.668 -.090 .059 .977 -.487 -.352 .111 .999 -.694 -.131

Mean .002 .992 -.081 -.176 .037 .968 -.087 -.089 .115 .992 -.128 -.189

________________________________________________________________________________________________

Full Sample First Selected Sample Second Selected Sample
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Table 5

Full- and Selected-Sample Correlations by Cognitive Test

_____________________________________________________________________________________________________________

Cognitive

Test Flynn- Flynn- Flynn-

Adj. Well- Absorp- Alien- Adj. Well- Absorp- Alien- Adj. Well- Absorp- Alien-

Hawaii Battery FSIQ being tion ation FSIQ being tion ation FSIQ being tion ation

Vocabulary .597 .068 .151 -.298 .600 .175 .157 -.345 .590 .018 .229 -.316

Immed Vis Mem .201 .047 -.040 -.142 .165 .052 -.016 -.174 .173 .120 -.014 -.131

Subtract/Multipl .384 .098 -.044 -.264 .461 .180 .004 -.316 .551 .055 .040 -.211

Line Dots .264 .055 .066 -.142 .251 .141 .033 -.113 .322 .069 .196 -.220

Word Begin/End .526 .181 .124 -.263 .557 .249 .161 -.297 .573 .208 .139 -.273

Card Rotation .286 .212 .001 -.158 .255 .216 -.050 -.221 .355 .211 .179 -.248

Delay Vis Mem .269 .073 .059 -.156 .261 .139 .030 -.229 .340 .099 .098 -.217

Pedigrees .569 .190 .108 -.301 .648 .255 .096 -.416 .609 .239 .237 -.346

Mental Rotation .314 .116 .079 -.113 .403 .159 .068 -.255 .323 .081 .248 -.197

Identical Pictures .417 .127 .106 -.202 .479 .175 .106 -.297 .401 .117 .237 -.283

Paper Form Bd .490 .215 .122 -.172 .492 .224 .096 -.199 .482 .225 .309 -.335

Hidden Patterns .484 .164 .098 -.212 .542 .229 .097 -.314 .549 .131 .250 -.212

Things .453 .134 .172 -.114 .499 .127 .191 -.176 .425 .202 .272 -.107

Different Uses .483 .179 .232 -.165 .554 .194 .252 -.243 .471 .282 .306 -.221

Cubes .440 .199 .057 -.241 .398 .218 .008 -.281 .449 .220 .190 -.329

Paper Folding .460 .232 .036 -.303 .477 .276 .004 -.400 .463 .109 .191 -.362

CAB

Vocabulary .597 .090 .162 -.317 .580 .165 .140 -.418 .633 .147 .229 -.338

Proverbs .545 .066 .206 -.232 .595 .115 .170 -.267 .504 .025 .255 -.156

Number .511 .135 .039 -.270 .610 .212 -.009 -.357 .584 .161 .173 -.260

Spatial .321 .192 .019 -.184 .306 .202 -.005 -.211 .343 .242 .171 -.350

Speed of Closure .339 .148 .104 -.205 .482 .166 .042 -.313 .393 .056 .210 -.226

Perceptual Speed .351 .088 -.003 -.207 .432 .146 .004 -.276 .396 .079 .206 -.221

Induction .463 .130 .021 -.218 .464 .180 -.006 -.273 .500 .099 .101 -.167

Flex of Closure .440 .131 .053 -.210 .503 .236 -.042 -.299 .463 .204 .208 -.216

Assoc Memory .324 .142 .044 -.244 .377 .169 .023 -.329 .312 .165 .152 -.286

Mechanical Reas .419 .143 .040 -.142 .452 .190 .009 -.232 .433 .096 .123 -.206

Memory Span .415 .093 -.005 -.256 .502 .121 .029 -.296 .420 -.002 .128 -.129

Meaningful Mem .472 .118 .078 -.285 .498 .242 .143 -.343 .464 .088 .149 -.279

Spelling .540 .126 .067 -.314 .585 .208 .137 -.350 .559 .102 .151 -.277

Word Fluency .515 .146 .071 -.256 .543 .220 .119 -.403 .574 .162 .117 -.282

WAIS

Information .634 .149 .184 -.256 .655 .151 .160 -.326 .535 .133 .294 -.269

Comprehension .579 .093 .233 -.173 .563 .120 .241 -.246 .517 .145 .311 -.244

Arithmetic .587 .156 .041 -.273 .649 .235 .020 -.336 .559 .172 .100 -.265

Similarites .571 .145 .127 -.255 .569 .161 .092 -.307 .461 .133 .239 -.218

Digit Span .405 .122 .013 -.182 .486 .202 .020 -.190 .409 .058 -.026 -.121

Vocabulary .650 .100 .160 -.290 .676 .175 .129 -.360 .618 .155 .219 -.288

Digit Symbol .464 .119 -.015 -.278 .547 .183 .013 -.360 .457 .054 .052 -.258

Picture Complet .480 .107 .085 -.198 .490 .057 .043 -.269 .477 .019 .147 -.265

Block Design .498 .204 .095 -.219 .513 .244 .082 -.307 .543 .172 .323 -.274

Pattern Arrangmnt .436 .103 .170 -.087 .473 .161 .158 -.154 .437 .028 .256 -.042

Object Assembly .389 .096 .101 -.106 .398 .026 -.001 -.163 .464 .008 .223 -.212

Raven .538 .136 .052 -.255 .531 .152 .023 -.318 .602 .029 .170 -.262

Mean .455 .133 .083 -.218 .489 .177 .071 -.285 .470 .122 .185 -.241

____________________________________________________________________________________________________________

________Full Sample________ ____First Selected Sample____ ___Second Selected Sample___

_______MPQ_______ _______MPQ_______ _______MPQ_______
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Table 6

Means and Ranges of Effectiveness of Range-Restriction Adjustments to Selected-Sample Correlations for Direct Selection

____________________________________________________________________________________________________________

Flynn- Flynn-

Adjusted Adjusted

FSIQ Wellbeing Absorption Alienation FSIQ Wellbeing Absorption Alienation

Mean Full Sample Corr. .455 .133 .083 -.218 .455 .133 .083 -.218

Range of Correlations (.321,.650) (.047,.232) (-.044,.233) (-.314,-.106) (.321,.650) (.047,.232) (-.044,.233) (-.314,-.106)

Mean Correlation Diff. -.033 -.045 .004 .067 -.015 .011 -.106 .023

Range of Differences (-.143,.042) (-.124,.070) (-.089,.095) (-.030,.147) (-.167,.110) (-.103,.123) (-.294,.039) (-.127,.163)

Mean, Abs. Val. of Diffs. .042 .051 .029 .069 .038 .047 .108 .049

Mean Correlation Ratio .941 .829 3.038 .768 .970 .728 .369 .965

Range of Differences (.703,1.218) (.389,3.743) (.020,70.0) (.664,1.266) (.791,1.238) (.388,-41.1) (.006,2.019) (.501,2.083)

Mean Abs. Corr. Ratio 1.090 1.346 4.379 1.244 1.083 2.942 1.669 1.237

Common Approximation

Mean Range Res. Adj. 1.003 1.003 1.003 1.003 1.018 1.018 1.018 1.018

Range of Adjustments (.917,1.090) (1.090,.917) (.917,1.090) (.917,1.090) (.938,1.131) (.938,1.131) (.938,1.131) (.938,1.082)

Mean Adj. Correlation .488 .177 .079 -.285 .480 .124 .081 -.245

Range of Adj. Corrs. (.177,.687) (.025,.234) (-.051,.288) (-.416,-.144) (.172,.698) (-.002,.289) (-.052,.296) (-.362,-.043)

Mean Adj. Corr. Diff. -.033 -.044 .004 .067 -.025 .008 .001 .027

Range of Differences (-.146,.039) (-.125,.071) (-.084,.094) (-.029,.154) (-.174,.084) (-.110,.128) (-.087,.096) (-.126,.171)

Mean, Abs. Val. of Diffs. .042 .051 .029 .069 .043 .049 .030 .050

Mean Adj. Corr. Ratio .939 .830 3.083 .767 .954 .714 3.171 1.257

Range of Adj. Corr. Ratios (.698,1.136) (.378,3.830) (-.020,72.7) (.423,1.251) (.688,1.172) (.391,-40.9) (-.019,76.2) (.523,3.593)

Mean Abs. Corr. Ratio 1.088 1.352 4.465 1.245 1.090 2.934 4.536 1.340

Full Adjustment for Direct Selection

Mean Further Adj. 1.001 1.000 1.000 1.000 .994 1.000 .999 .999

Range of Futher Adjs. (.971,1.029) (.998,1.004) (.993,1.003) (.994,1.010) (.951,1.013) (.996,1.001) (.996,1.005) (.991,1.006)

Mean Further-Adj. Corr. .489 .178 .079 -.286 .476 .124 .081 -.245

Range of Fur.-Adj. Corrs. (.177,.682) (.025,.267) (-.051,.286) (-.416,-.114) (.172,.664) (-.002,.289) (-.052,.295) (-.359,-.043)

Mean Adj. Corr. Diff. -.034 -.044 .004 .067 -.021 .009 .001 .027

Range of Differences (-.146-.038) (-.112,.071) (-.084,.094) (-.029,.153) (-.172,.090) (-.075,.128) (-.087,.093) (-.068,.170)

Mean, Abs. Val. of Diffs. .041 .051 .029 .069 .040 .048 .030 .050

Mean Adj. Corr. Ratio .936 .829 3.083 .767 .960 .714 3.167 .948

Range of Adj. Corr. Ratios (.699,1.139) (.378,3.830) (-.020,72.7) (.424,1.251) (.691,1.170) (.391,-40.9) (-.019,76.0) (.457,2.028)

Mean Abs. Corr. Ratio 1.085 1.351 4.465 1.245 1.086 2.934 4.532 1.233

____________________________________________________________________________________________________________

Note: Differences are full (actual) sample correlation less selected (sub)sample correlation, after adjustment as labeled.

Absolute correlations ratios are |(1-ratio)+1|. For the ranges of ratios, the extremes are expressed as the greatest absolute

ratios to 1; this does not always note the largest sign shift. FSIQ is (WAIS) full-scale IQ. MPQ is Multidimensional

Personality Questionnaire.

_________Second Selected Sample____________________First Selected Sample__________

____________MPQ________________________MPQ____________
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Table 7

Means and Ranges of Effectiveness of Range-Restriction Adjustments to Selected-Sample Correlations for Indirect

Selection and Maximum-Likelihood Estimates of Full-Sample Correlations

____________________________________________________________________________________________________________

Flynn- Flynn-

Adjusted Adjusted

FSIQ Wellbeing Absorption Alienation FSIQ Wellbeing Absorption Alienation

Mean Full Sample Corr. .455 .133 .083 -.218 .455 .133 .083 -.218

Range of Correlations (.321,.650) (.047,.232) (-.044,.233) (-.314,-.106) (.321,.650) (.047,.232) (-.044,.233) (-.314,-.106)

Adjustment for Indirect Selection

Mean Adj. Correlation .578 .210 .092 -.343 .572 .154 .233 -.303

Range of Adj. Corrs. (.204,.778) (.032,.307) (-.058,.343) (-.508,-.141) (.196,.781) (-.002,.574) (-.022,.505) (-.647,-.057)

Mean Adj. Corr. Diff. -.123 -.077 -.010 .125 -.117 -.022 -.150 .085

Range of Differences (-.239,.030) (-.169,.064) (-.110,.099) (-.001,.220) (-.495,.034) (-.362,.112) (-.504,.048) (-.113,.489)

Mean, Abs. Val. of Diffs. .123 .082 .037 .125 .120 .065 .153 .095

Mean Adj. Corr. Ratio .794 .699 2.618 .639 .807 .492 .316 .780

Range of Adj. Corr. Ratios (.559,.986) (.317,3.006) (-.017,63.6) (.358,1.009) (.366,1.057) (.342,-37.8) (.002,1.790) (.244,1.791)

Mean Abs. Corr. Ratio 1.206 1.425 3.984 1.361 1.199 2.702 1.722 1.299

Maximum-Likelihood Estimates

Mean Est. Correlation .483 .167 .071 -.279 .464 .114 .185 -.239

Range of Est. Corrs. (.154,.607) (.025,.276) (-.042,.252) (-.414,-.104) (.162,.626) (-.013,.256) (-.026,.323) (-.355,-.035)

Mean Est. Corr. Diff. -.027 -.034 .012 .061 -.009 .019 -.103 .021

Range of Differences (-.127,.071) (-.099,.071) (-.070,.102) (-.018,.139) (-.159,.099) (-.067,.124) (-.228,-.039) (-.137,.160)

Mean, Abs. Val. of Diffs. .040 .043 .032 .062 .037 .044 .105 .049

Mean Est. Corr. Ratio .955 .889 -1.633 .781 .982 2.111 .421 .984

Range of Est. Corr. Ratios (.728,1.308) (.389,3.79) (-020,-102.4) (.449,1.144) (.707,1.238) (.410,32.4) (.539,2.914) (.509,2.509)

Mean Abs. Corr. Ratio 1.089 1.325 5.041 1.225 1.082 3.629 1.671 1.249

____________________________________________________________________________________________________________

Note: Differences are full (actual) sample correlation less selected (sub)sample correlation, after adjustment as labeled.

Absolute correlations ratios are |(1-ratio)+1|. For the ranges of ratios, the extremes are expressed as the greatest absolute

ratios to 1; this does not always note the largest sign shift. FSIQ is (WAIS) full-scale IQ. MPQ is Multidimensional

Personality Questionnaire.

__________First Selected Sample__________ _________Second Selected Sample__________

_____________MPQ_____________ _____________MPQ_____________


