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Abstract 25 

After consolidation, information belonging to a mental schema is better remembered, but such 26 

memory can be less specific when it comes to details. A neuronal mechanism in line with this 27 

behavioral pattern could result from a dynamic interaction that entails mediation by a specific 28 

cortical network with associated hippocampal disengagement. We now report that in male and 29 

female adult human subjects, encoding and later consolidation of a series of objects embedded in a 30 

semantic schema was associated with a build-up of activity in the angular gyrus (AG) that predicted 31 

memory 24h later.  In parallel, the posterior hippocampus became less involved as schema objects 32 

were successively encoded. Hippocampal disengagement was related to an increase in falsely 33 

remembering objects that were not presented at encoding. During both encoding and retrieval, the 34 

AG and lateral occipital complex (LOC) became functionally connected and this interaction was 35 

beneficial for successful retrieval. Thus, a network including the AG and LOC enhances the overnight 36 

retention of schema-related memories, and their simultaneous detachment from the hippocampus 37 

reduces the specificity of the memory. 38 

 39 

Significance statement  40 

This study provides the first empirical evidence on how the hippocampus and the neocortex interact 41 

dynamically when acquiring and then effectively retaining durable knowledge that is associated to 42 

pre-existing knowledge, but they do so at the cost of memory specificity. This interaction is a 43 

fundamental mnemonic operation that has been largely overlooked in memory research so far. 44 

 45 

  46 
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In time, most of the details of our experiences are forgotten. Some information is, however, retained 47 

for a longer period of time and thought to be stored in neocortical networks that are separate from 48 

the hippocampus (Scoville and Milner, 1957; Squire, 1986; Bontempi et al., 1999). This selectivity of 49 

memory retention is the basis of the standard model of system-level consolidation (Alvarez and 50 

Squire, 1994; Frankland and Bontempi, 2005). After consolidation, the medial prefrontal cortex 51 

(mPFC) and mid-line cortical regions have been observed to be activated during memory retrieval in 52 

rodents (Bontempi et al., 1999; Frankland et al., 2004; Maviel et al., 2004; Takehara-Nishiuchi et al., 53 

2006; Takehara-Nishiuchi and McNaughton, 2008; Goshen et al., 2011) and humans (Takashima et 54 

al., 2006; Gais et al., 2007; Takashima et al., 2009; Bonnici et al., 2012). 55 

Schemas provide a ‘fast-track’ into successful consolidation. Schemas are frameworks of 56 

acquired knowledge that are implemented in the brain as networks of interconnected neocortical 57 

representations (Wang and Morris, 2010). Schemas facilitate the assimilation of related new 58 

information, leading to better retention (Bransford and Johnson, 1972; Tse et al., 2007; van Kesteren 59 

et al., 2010b). The mPFC is more involved in processing memories congruent with a schema 60 

compared to schema-incongruent memories (van Kesteren et al., 2010b; Tse et al., 2011; van 61 

Kesteren et al., 2013b; van Kesteren et al., 2014; Brod et al., 2015). Initial evidence suggests that the 62 

parietal cortex also participates in applying a schema to an experimental task (Hanson et al., 2007; 63 

Sweegers et al., 2014; van Buuren et al., 2014).  64 

This study investigates the possibility that the angular gyrus (AG) plays a key role in binding 65 

sensory content into a schema. Within the ventral parietal cortex, the angular gyrus (AG) is optimally 66 

located at the junction of visual, spatial, somatosensory, and auditory processing streams. These 67 

sensory-motor attributes all converge in the AG, where the perceptual details are believed to be 68 

abstracted (Fernandino et al., 2015) and bound together by semantic and conceptual associations 69 

(Binder et al., 2009b). After consolidation, the AG recombines schema components into a single 70 

memory representation (Wagner et al., 2015).  71 
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We sought to elucidate the roles of the MTL, mPFC, and AG in the encoding and 72 

consolidation of new information, followed by the later retrieval of recent (within-session) and 73 

remote (24 hr. earlier) schema-associated memories. During encoding, a series of four object 74 

photographs were presented in sequence (Figs. 1 & 2). In the schema condition these objects were 75 

all related to a real-world semantic schema (e.g. horse, spurs, boots, and a cowboy’s hat). If the AG is 76 

involved in processing schema-related objects, successive presentation of these objects will 77 

modulate activity in the AG in a different way than a series of semantically unrelated objects. At the 78 

same time, the build-up of a schema could lead to disengagement of the hippocampus during 79 

encoding. An additional condition was included where the last object of the set was incongruent 80 

with the schema (e.g. a Christmas tree instead of the cowboy’s hat). We expected the AG to respond 81 

differently to the final object based on its incongruence with the preceding object set. Finally, we 82 

also considered the implications of schemas with respect to subsequent retrieval. Shimamura (2011) 83 

suggested that the AG links “episodic features with long-term memory networks”, an idea that leads 84 

to the prediction that such networks (schemas) will be recruited as the schema is built up. This 85 

dynamic process could in turn influence the encoding and/or consolidation of schema-related 86 

information, and that the AG should differentiate between subsequent retrieval of objects that were 87 

embedded in a schema during encoding compared to objects that were not.  88 

The neocortical regions that likely support lasting memory representations include brain 89 

areas involved in the original processing of the stimulus at encoding (Tulving and Thomson, 1973; 90 

Nyberg et al., 2000; Danker and Anderson, 2010), and in the case of visually presented objects, these 91 

include ventral visual areas such as the lateral occipital complex (LOC). To test our prediction that 92 

the AG would be functionally connected to visual representation areas during encoding and item 93 

recognition, and that successful linking to these object representations would be beneficial to 94 

memory retention, we included a functional localizer scan. 95 

 96 

Materials and Methods 97 
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Participants 98 

In total, 31 participants participated in the experiment. For 7 participants, the data were excluded 99 

from the final analyses for the following reasons: Two participants did not complete the study; one 100 

participant moved 12 mm during scanning; one participant fell asleep during encoding on the second 101 

day; three participants displayed memory performance that did not exceed chance level. The 102 

presented results stem from a dataset with 24 right-handed participants (2 males, 22 females - mean 103 

age: 23.5 years, range 18-30 years). All participants were neurologically healthy and were paid for 104 

their participation (10 euro per hr., with an additional 2 euro per every 10% that they scored above 105 

50%, i.e. chance level). For two out of 24 participants, the data sets were incomplete because of 106 

scanner malfunction during one of the encoding sessions. For these incomplete data sets, the data 107 

were adjusted in further analyses (i.e. the objects they did not see during encoding were removed 108 

from the item recognition test, maximum of 20% of the trials).  109 

 110 

Stimuli 111 

Stimuli consisted of color photographs of objects. These photographs were taken from the Hemera 112 

Object Database and Google image search. Objects were shown on a white background and were 113 

made to fit exactly in a box of 300x300 pixels while keeping their aspect ratios intact.  114 

 115 

In our experiment, a schema was defined as a group of objects that are all related to each other 116 

through a semantic theme. More specific, a schema consisted of four pictures of objects (a quartet) 117 

from the same theme (see Figure 1a for an example of a “knight” schema). In total we used 100 118 

themes, consisting of places, characters, seasons, sports, events, holidays, professions, rooms, 119 

countries etc. The schemas were created by selecting sets of 4 objects that ostensibly fitted within a 120 

theme, based on a separate preparatory study (N=20). In this, participants were presented with a 121 

theme, written on a screen, and they were instructed to type in the names of at least 10 objects that 122 

they associated with this theme. The nine objects that were mentioned most frequently were used 123 



6 
 

 6 

to form two quartets per schema and one related new object (schema-based lure). Schema-strength 124 

of an object was identified as the proportion of participants that mentioned an object within a given 125 

theme. When creating the quartets, the schema-strength of the objects was taken into account such 126 

that this was divided equally over positions in the quartets (on average 27.5% for each of the four 127 

positions). A second type of quartet (incongruent) was constructed by shuffling the Schema quartets’ 128 

final objects around so that this object did not fit with the other three objects in the quartet 129 

anymore (Fig. 1a). We also constructed 100 No schema quartets in which there was no a priori 130 

association between the objects (see also Fig. 1a for an example). The schema consistency of the 131 

schemas - and the absence of schema for the No schema quartets - was confirmed in a second 132 

preparatory study (N=20). A different group of participants was asked to press a button during serial 133 

presentation of the objects in the quartets as soon as the schema was known to them. For the No 134 

schema quartets, there were no reports of schemas by the participants, whereas for the Schema 135 

quartets the average number of participants that correctly reported the schema was 90% (15% SD). 136 

 137 

Image acquisition 138 

During encoding and retrieval whole-brain images (T2*-weighted multi-echo planar imaging, 39 139 

slices, 2 mm thick with 0.5 mm gap, repetition time = 2190 ms, in plane resolution = 2.5 × 2.5 mm2, 140 

four echo times: TE1 = 9.4 ms, TE2 = 21.9 ms, TE3 = 34 ms, TE4= 47ms, flip angle = 90°, field of view = 141 

21.2 cm) were acquired on a 3T whole body MR scanner (MAGNETOM Skyra by Siemens Medical 142 

Systems, Erlangen, Germany). Fat saturation was turned off.  During the functional localizer scan, we 143 

acquired whole-brain images (echo planar imaging, 45 slices, 2 mm thick with 0.5 mm gap, repetition 144 

time = 2390 ms, in plane resolution = 2.5 × 2.5 mm2, TE = 30 ms, flip angle = 90°, field of view = 21.2 145 

cm). In addition, a high resolution structural T1-weighted 3D magnetization prepared rapid 146 

acquisition (MPRAGE) gradient echo sequence image was obtained after the functional scan (192 147 

slices, voxel size = 1×1×1 mm).  148 

 149 
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Experimental Design and Statistical Analysis 150 
 151 
Design and procedure 152 

Participants were scanned on two consecutive days (see Figure 2a). On the first day, they encoded 153 

(for 53 min) the first set of objects (called the “remote” condition by virtue of its distance from 154 

retrieval the next day). Before they started with this first encoding session, they were scanned using 155 

a functional object localizer. After 24 hr. (sleep duration was on average 7.9 hr. with a standard 156 

deviation of 45 min), they returned to the lab for the second encoding session (“recent” condition, 157 

53 min). After the second encoding session, they had a short break outside the scanner and then 158 

returned inside the scanner for the item recognition memory task probing memory for both remote 159 

and recent items (58 min). 160 

 161 

Functional localizer 162 

An independent functional localizer was included to allow us to investigate at a later time point 163 

whether PPI connectivity maps from memory areas overlapped with visual representation areas that 164 

preferentially respond to objects. The participants were told what the purpose of the localizer scan 165 

was and that they need not memorize the pictures they were shown. We used a block design using  166 

32 photographs of common objects (unrelated to the schemas in the main experiment) and 32 167 

scrambled pictures from a standard functional localizer task to localize the lateral occipital complex 168 

(LOC, (Malach et al., 1995). Images had grey backgrounds and measured 500 x 500 pixels. Images 169 

were randomly assigned to blocks of 17 images (each image was displayed for 400 ms and followed 170 

by a blank screen of 600 ms). Each block lasted 16.4 seconds. Within each block 16 images were 171 

unique and one image was repeated. The participants were instructed to detect this repetition by 172 

pressing a button with the index finger of the right hand. Each block was followed by a blank screen 173 

interval of 10 seconds. Each image was presented twice to the subject, but within different blocks. 174 

Four blocks of objects and four blocks of scrambled objects were presented. The localizer run lasted 175 

3.5 mins.  176 



8 
 

 8 

Encoding 177 

During each of two memory encoding sessions (called ‘remote’ and ‘recent’ in chronological order of 178 

presentation), 150 quartets were serially presented to the participants, one object after the other, 179 

see Figure 1a and Figure 2b. Quartets belonged to three schema conditions: First, the Schema 180 

condition, in which all objects in the quartet belong to one theme. Second, the Incongruent 181 

condition, in which the final item of the quartet was incongruent with the theme provided by the 182 

first three items. Third, the No schema condition, where there was no obvious association (schema) 183 

between the objects. The participants were instructed to remember all objects and quartets. They 184 

were also told that during the final memory test they would be presented with very similar lures so 185 

that they should try to remember as many details as possible. Simultaneously, they were asked to 186 

indicate for each object whether it would fit inside a shoebox. They responded “yes” and “no” with 187 

their index and middle finger of their right hand. Participants were told that memorizing the objects 188 

and quartets had priority over the “shoebox task”. A black fixation cross was visible on screen 189 

throughout the encoding session and this fixation cross changed to red to signal the start of a new 190 

quartet. The red fixation cross was presented for 500 ms. The objects were presented for 1500 ms 191 

and the inter-stimulus interval was 3.5 s on average. All inter-stimulus intervals were jittered 192 

between 1.5 and 5.5 s. During each encoding session they were presented with 600 objects, so 193 

across the two encoding sessions participants memorized 300 quartets containing 1200 objects. We 194 

installed a few safe-guards to minimize memory to specific items (that arise from some objects being 195 

more memorable than others): First, the quartets were counterbalanced between subjects over 196 

remote and recent encoding sessions. Second, targets and lures were counterbalanced over subjects. 197 

Third, the quartet’s final objects were semi-counterbalanced over schema conditions, as the objects 198 

in the fourth position of each quartet could not be swapped between Schema and No Schema 199 

quartets. As such, final objects were counterbalanced over Schema and Incongruent conditions 200 

across subjects, and a second counterbalancing was performed in terms of the assignment of objects 201 

to the Incongruent and No Schema Conditions. 202 
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 203 

Retrieval 204 

Retrieval was tested by an item recognition memory task. The experiment started with 3 practice 205 

trials with objects that were new and not seen before (to familiarize the participant with the timing 206 

of the events and the task). During the item recognition task, the participants were presented 207 

sequentially with photographs of objects in a pseudorandom order. The quartets’ final items were 208 

presented as old targets (Figure 1b). A perceptually similar lure was included for each target (Fig 1b). 209 

Half of the targets were presented before the lure, and half after the lure. Moreover, the spacing in 210 

time between a target and its lure was maximized. In addition, fifty objects that were related to a 211 

schema, but that were not presented during encoding, served as new Schema objects during 212 

retrieval (Fig 1b). There were another 50 objects that were new and were not related to the 213 

presented schemas, the new No schema objects. This resulted in a total of 700 objects that were 214 

presented to the participants (see Fig 2c for an overview of all conditions). 215 

After the presentation of a fixation cross (500ms), each object was presented for 1500 ms, Figure 2b. 216 

Subjects rated their memory for the objects using a confidence scale, ranging from 1 (very surely old) 217 

to 6 (very surely new). Half of the participants responded “old” with their index, middle, and ring 218 

finger of their right hand and responded “new” with their index, middle, and ring finger of the left 219 

hand and this was reversed in the other half of the participants. After a jittered interval (average = 220 

3.5 s, range: 1.5 – 4.5 s), during which the confidence levels were displayed on screen, the next 221 

object was presented. 222 

After the retrieval session the participants filled in a short questionnaire asking them about 223 

strategies used during encoding (90% reported using the schemas during encoding) and retrieval (17% 224 

reported using the schemas during retrieval) and the amount of sleep on the previous night (on 225 

average 8 hr.). 226 

 227 

Behavioral data analyses 228 
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For each subject the proportion of hits (“old” responses to old objects), misses (“new” response to 229 

old objects), correct rejections (“new” response to new objects and similar lures), false alarms (“old” 230 

response to new objects and similar lures), and “no responses” were calculated per condition as well 231 

as the confidence levels and response times for each of these variables. Trials were included at all 232 

levels of confidence, because there was above chance memory performance at all confidence levels. 233 

To account for response bias, we subtracted the proportion of false alarms made when presented 234 

with the New No schema objects, from respectively the proportions of Schema, No schema, and 235 

Incongruent hits (to targets) and false alarms (to lures). Proportion of hits minus false alarms and 236 

response times were tested in two (separate) multivariate analyses of variance (MANOVAs) with 2 237 

factors: Schema condition (with 3 levels: Schema, Incongruent, and No schema) and Study-test delay 238 

(with 2 levels: Remote and Recent). Additional differences between conditions were tested using 239 

paired-samples and one-sample t-tests. All reported p-values are two-tailed. Alpha was set to 0.05. 240 

 241 

MRI data analyses 242 

The multi-echo fMRI data were processed using in-house software written in Matlab 7.5 (The 243 

Mathworks, Inc., Natick, MA, USA), which used the first 29 scans of the session (during which the 244 

experiment had not yet commenced) to calculate the optimal weighting of echo images for each 245 

voxel (i.e. by using a weighted measure of the contrast- to-noise ratio for each echo/scan). Motion 246 

correction was performed with reference to the first echo and the realignment parameters were 247 

applied to the other echoes by using iterative rigid body realignment. Next, calculations of optimal 248 

echo-weight for each voxel were used to combine multi-echo fMRI data into single images. The 249 

combined images were further processed using BrainVoyager QX (by Brain Innovation, Maastricht, 250 

The Netherlands). Images were slice-time corrected (using sinc interpolation). Co-registration of 251 

functional and 3D structural measurements was computed by relating T2*-weighted images and the 252 

T1-weighted MPRAGE measurement, which yields a 4D functional data set. Structural 3D and 253 
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functional 4D data sets were transformed into Talairach space (Talairach and Tournoux, 1988) and 254 

spatially smoothed with a Gaussian kernel (FWHM = 8 mm).  255 

The expected BOLD signal change was modeled using a gamma function (tau of 2.5 s and a delta of 256 

1.5) and convolved with each presented object (Boynton et al., 1996). Regressors were time-locked 257 

to the onset and duration of the presentation of the objects. Data were corrected for serial 258 

correlation using the AR2 method and a percent signal change transformation was performed before 259 

statistical analysis. Statistical analyses were performed using the general linear model. For the 260 

encoding sessions we modeled the three conditions (Schema, Incongruent, and No schema) 261 

separately and subsequently remembered or forgotten separately. This means that all objects in a 262 

quartet were categorized as to whether the final object was remembered or forgotten (e.g. 263 

Condition1_Object1_Remembered, Condition1_Object2_Remembered, 264 

Condition1_Object3_Remembered, Condition1_Object4_Remembered). In the encoding sessions, 265 

the contrasts included only the final objects from the quartets. For the contrast between 266 

remembered and forgotten items, the items that were forgotten were collapsed across schema 267 

conditions, this ensured more trials in the forgotten conditions and we presume the same process 268 

for forgetting in all conditions (e.g. Schema remembered > Schema forgotten + No Schema forgotten 269 

+ Incongruent forgotten).  270 

We also constructed a parametric model in which the four objects within a block were given 271 

parametric weights (-1.5, -0.5, 0.5, and 1.5) and, per condition, the blocks were also divided 272 

depending on whether the final objects were subsequently remembered or forgotten. For the 273 

retrieval session we modeled the first 3 trials (not uniquely part of any condition: “warm-up” trials), 274 

hits, misses, false alarms and correct rejections separately for Schema, Incongruent, and No schema 275 

remote and recent objects, and to new No schema and new Schema objects, in total 29 regressors. 276 

Random-effects group analyses were performed using the analyses of variance (ANOVA) to test for 277 

interactions. The first analysis consisted of a random effects ANOVA with 3 factors: Schema 278 
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Condition (Schema, No schema, Incongruent), Study-test delay (Recent, Remote), and Memory (Hits, 279 

Misses).   280 

In addition, in all models, six derivatives of the realignment parameters were included as 281 

well as regressors for spikes related to motion (one regressor per spike). Furthermore, t-tests were 282 

used to test contrasts between different conditions. Results were thresholded at the voxel level at p 283 

< 0.001 and corrected using Monte Carlo cluster threshold correction completed over 1000 284 

iterations. Small Volume Correction was applied to the ventro-medial prefrontal cortex using False 285 

Discovery Rate correction on the voxels that were included in an anatomical mask of Brodmann 286 

areas 32 and 24. Significantly activated clusters in mPFC and angular gyrus (AG) were selected for a 287 

more sensitive region of interest (ROI) analysis. For the ROI analyses the beta values were extracted 288 

from all voxels within the ROI and averaged over ROI, subject, and condition. The ROI time courses 289 

were standardized, so that beta-weights (regression coefficients) of predictors, as indices of effect 290 

size, reflect the BOLD response amplitude of one condition relative to the variability of the signal. 291 

Beta-weights were obtained for all voxels within these regions of interest, per subject and per 292 

condition. Differences between the subject-averaged beta-weights were investigated by paired t-293 

tests with a threshold set at p < 0.05.  All t-tests were two-tailed. 294 

Finally, functional connectivity analyses (PPI) were conducted to determine the interactions 295 

between physiological data in terms of the psychological processes of the experiment (Friston et al., 296 

1997). PPI methodology followed the steps first described in Friston et al. (1997) and was 297 

implemented using a BrainVoyager plugin (sdmcalculator v0.2). For the PPI analysis on the retrieval 298 

data, the seed-region we used was the AG region that was found in the Schema > No schema 299 

contrast during retrieval. The time course was extracted and averaged across all voxels from this 300 

area for each subject. As the psychological regressor, we used the contrast Schema remote hits (+1) 301 

and No schema remote hits (-1). For a second PPI analysis, using the left parietal ROI, we used the 302 

same methodology. As the seed, we used the areas found in the contrast Schema > No schema and 303 

extracted per subject the time course from all voxels. The psychological contrast was the same 304 
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contrast as used for the previous PPI. To test for a general effect of correct responses on 305 

connectivity to the lateral occipital complex (LOC) we also calculated a PPI for remote No schema 306 

hits (+1) versus recent No schema hits (-1). For the PPIs on the encoding data we used as a seed the 307 

AG region that was active in the remote (Schema > No schema) > recent (Schema > No schema) and 308 

the LOC region from the functional localizer that was active for Objects > Scrambled. 309 

 310 

To investigate the behavioral relevance of the connectivity between the seed and target areas, we 311 

performed a correlation analysis at the group-level (using Pearson’s r) on the extracted PPI beta-312 

values from the ROI with the behavioral measures: remote Schema hits, remote schema effect 313 

(Schema minus No Schema), and remote Schema false alarms. We also calculated correlation with 314 

behavioral measures (hits minus the false alarms to new No schema objects) and the schema build-315 

up in the angular gyrus. Schema build-up was measured by subtracting beta-values to object four 316 

minus object two (the moment at which a schema can first be detected). The difference between 317 

two correlations was tested using software from Lee and Preacher (2013), available online.  318 

 319 

Results 320 

Behavioral data 321 

An important property of schema-based memories is that there is a behavioral benefit i.e. better 322 

memory retention for schema-related memories as compared to no-schema memories. Although 323 

this schema effect can be apparent immediately for associative memory, other studies have found 324 

that the difference between schema and non-schema-based item recognition is largest after a 325 

period of consolidation (van Kesteren et al., 2013a; Durrant et al., 2015). Our data are consistent 326 

with the latter pattern (Figure 3a). For all schema conditions (Schema, No Schema, Incongruent) we 327 

calculated recognition performance as hits minus false alarms (where false alarms pertain to the 328 

new No Schema objects). Participants performed well above chance in all three conditions on both 329 

study-test delays (all t(23) > 4.9, p < 0.0001). However, there was a significant study-test delay by 330 
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Schema condition interaction (F(2,22) = 3.67, p = 0.04, Wilk's Λ = 0.75). There was no difference 331 

between schema conditions for recently studied objects (Schema > No schema: t(23) = -0.93, p = 332 

0.36; Schema > Incongruent: t(23) = -1.37, p = 0.18). However, for objects encoded the day before, 333 

participants had better memory for information embedded in a schema quartet than for either 334 

objects encoded in the No schema condition (t(23) = 2.18, p = 0.04) or Incongruent quartets 335 

(t(23)=2.51, p = 0.02). Memory did not decline over 24hr for Schema objects (t(23) = 0.86, p = 0.4).  336 

In contrast, for No schema (t(23) = 3.01, p = 0.006) and Incongruent objects (t(23) = 3.44, p = 0.002), 337 

memory was poorer for remote than for recent objects. Response times for hits also decreased as a 338 

result of Study-test delay (F(1,23) = 23.03, p < 0.001, Wilk's Λ = 0.50), but there was no difference 339 

between Schema conditions on this measure. Given this comparison between recent and remote 340 

memories, the schema-benefit that we found on remote memory scores reflected better retention 341 

for schema-based memories (Figure 3b). 342 

To investigate whether schema-based memories are less specific and more ‘gist-based’ 343 

(Winocur et al., 2010), we included similar lures for each target during retrieval, as well as new 344 

objects. Lures consisted of very similar exemplars of the final object of each quartet that had been 345 

presented during encoding (Fig 1b). If memory for objects within a schema is less specific, more false 346 

alarms would occur to the similar lures compared to other novel objects. Indeed, across conditions 347 

there were more false alarms to the similar lures than to new objects. The key finding was that false 348 

alarm rates were highest to the lures of the Schema objects that were encoded just before (Recent 349 

condition: Schema > No schema: t(23) = 2.02, p = 0.055; Schema > Incongruent: t(22) = 2.21, p = 350 

0.038; Figure 3c). However, this pattern of results could also be explained by guesses informed by 351 

prior knowledge (i.e. when not sure about seeing the cowboy’s hat, a participant might be more 352 

likely to press “old” because he/she remembered seeing items from a cowboy schema and therefore 353 

saying “old” to the cowboy’s hat increases the chance of a hit). Therefore, we also included objects 354 

in the item recognition test that were not seen during encoding, but were congruent with the 355 

schemas used during encoding.  We observed that these new ‘Schema-related objects’ did not elicit 356 



15 
 

 15 

more false alarms than the new ‘Schema-unrelated objects’. If anything, there was a trend toward 357 

the opposite result (No schema > Schema: t(23) = 1.92, p = 0.067), with the subjects showing more 358 

correct rejections to the new Schema-related objects than the new Schema-unrelated objects (t(23) 359 

= 2.307, p = 0.03; Figure 3d). This latter finding indicates that the schema is actually beneficial to the 360 

correct identification of new related objects as incorrect lures. To conclude, the supposition that the 361 

schema is used for informed guessing can be ruled out. To the contrary, objects that were 362 

embedded in a schema during encoding have less specific but more resilient memory traces.  363 

To summarize, we have shown that shortly after encoding the memory for Schema objects 364 

was already less specific, leading to more false alarms to lures from recently seen Schema objects, 365 

and that this difference between false alarm rates disappeared after a delay of 24 hr. In addition, we 366 

found a behavioral benefit for Schema objects after overnight consolidation. Schema objects showed 367 

no decay in item recognition memory performance, whereas the No schema and Incongruent 368 

objects did display forgetting. We conclude that Schema memories were less specific immediately 369 

after encoding, but were retained better over 24hrs. 370 

 371 

fMRI data 372 

Encoding 373 

The neural correlates of subsequent schema memory 374 

The behavioral data demonstrated that after a short delay recognition was at ceiling. The difference 375 

in memory performance between schema conditions became apparent after 24 hr., and was 376 

reflected in better retention of schema embedded objects. Therefore, the analysis of subsequent 377 

memory effects here relates to the delay by schema interaction found in memory performance. To 378 

identify brain regions specifically involved in retention, t-test comparisons were performed 379 

comparing the subject-averaged ‘beta-maps’ from the schema contrasts between the remote and 380 

recent encoding sessions (using the contrast (remote Schema remembered > remote No schema 381 

remembered) > (recent Schema remembered > no Schema remembered)). We found that the 382 
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angular gyrus (AG) showed a Schema > No schema difference that was larger for remote than for 383 

recent encoding (Figure 4a, red overlay). For the separate contrast of Schema > Incongruent over 384 

time (remote versus recent encoding), we did not find any region at conventionally corrected 385 

thresholds (but an uncorrected voxel threshold of 0.005 did point to differential activation in the 386 

angular gyrus, hippocampus, superior frontal, and cingulate gyrus.  387 

We plotted the event-related subject-averaged time course and the subject-average beta-388 

weights from the AG region that displayed a larger schema effect with consolidation (Fig 4b and 4c). 389 

For all conditions, activation started at a comparable level, but then progressively differed as the 390 

schema unfolded. Activation built up monotonically for both the Schema and Incongruent quartets, 391 

but this effect was not seen for the No schema quartets. Importantly, activity dropped for the 392 

Incongruent condition when the final object no longer fitted the previously built-up schema. Since 393 

the AG-region was defined based on the Remote (Schema > No Schema) > Recent (Schema > No 394 

schema) contrast, we did not perform inferential statistics comparing the extracted signal across 395 

conditions. 396 

To test whether this build-up of a schema is predictive of better performance at retention, 397 

we calculated the amount of activity in the schema that was build-up (from the first moment the 398 

schema can be inferred at object position 2, up to the final 4th object of the quartet). This measure of 399 

schema build-up in the AG in individual participants during encoding correlated with 24 hr. retention 400 

measured as Schema hits minus false alarms (the latter pertaining to the New No Schema lures) of 401 

those same participants [r = 0.43, p = 0.036]. This correlation implies that the build-up of schema 402 

activity in the AG is beneficial for retaining object memories over 24 hr. This effect was specific to 403 

objects encoded in the first, i.e. ‘remote encoding session’. In the recent encoding session, there was 404 

no schema-build up that was specific for the subsequently remembered objects and no positive 405 

correlation between a possible build-up (the difference in activity to object 4 minus object 2) with 406 

successful memory retrieval scores [r = 0.04, p = 0.85]. We also tested whether the activity decrease 407 

for the fourth object (response to the fourth object minus response to the third object) in the 408 
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Incongruent quartets would be indicative of memory performance (hits minus false alarms to New 409 

No Schema objects) as this object might stand out more, similar to an oddball, but we found no 410 

evidence for this [r = -0.8, p = 0.71]. 411 

  412 

Schema build-up across object sequences 413 

An analytically interesting comparison can be made between the final objects of the Schema and 414 

Incongruent quartets that were remembered after 24 hrs. In both cases, these objects were 415 

preceded by three objects that belonged to a schema, with only the Incongruent fourth object being 416 

out of place. Importantly, this contrast was significant in the angular gyrus (bilaterally) and the right 417 

supramarginal gyrus (Fig 4a, green overlay). This means that whereas a host of regions was 418 

preferentially activated for a series of schematically congruent versus incongruent objects, only the 419 

angular gyrus and supramarginal gyrus were preferentially activated to the fourth object being 420 

congruent or incongruent with the preceding object. This finding points to the angular gyrus as the 421 

candidate area for holding the schema representation.  422 

The previous analyses already demonstrated (indirectly) a parametric build-up of activity in 423 

the AG as successive objects were presented.  This build-up is clearly schema-related, as 424 

demonstrated by the observed difference between the contrasts for Schema and No schema objects, 425 

and between Schema and Incongruent. That is, the initial three objects are modulating AG activity 426 

build-up for Schema quartets that contain the subsequently remembered object. Although we had 427 

no reason to expect a similar parametric build-up for the No schema condition, a general alteration 428 

of activity as a consequence of sequential visual input could not be ruled out.  However, our data 429 

establish that the AG is not a candidate area for such a general effect, but there might be other 430 

regions that do show either a parametric build-up or even a parametric decline. Therefore, we also 431 

performed whole-brain analyses to identify regions where activity was modulated by a parametric 432 

regressor in either encoding session, for quartets that contained subsequently remembered objects. 433 

The parametric regressor represented the hypothesized build-up or decline of activation with each 434 
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successive presentation of an object in the quartet containing the remembered final object. We 435 

tested for activity that fitted the parametric regressor for the quartets containing the subsequently 436 

remembered final objects. An overview of all brain regions is presented in Table 1. In the remote 437 

encoding session, the remembered No schema quartets did not elicit reliable parametric variation in 438 

brain activity in any region, whereas the remembered Incongruent quartets showed a parametric 439 

increase in the left superior frontal gyrus and a decrease in the right angular gyrus. As expected, 440 

during the remote encoding session, activity for the schema quartets that contained the 441 

subsequently remembered objects was parametrically modulated in the angular gyrus, confirming 442 

the analyses presented above. A particularly interesting observation was a parametric decrease for 443 

the remembered Schema quartets in the hippocampus (Fig. 5a, blue overlay), suggestive of a 444 

disengagement of the hippocampus when encoding schema memories.  445 

For the recent encoding session, we found no parametric modulation of activity in 446 

subsequently remembered Schema quartets. When taking remembered and forgotten schema 447 

quartets together, the left angular gyrus did show a parametric increase in activity (peak: x = -45, y = 448 

-64, z = 22 t(23) = 3.99, p < 0.001). This shows that for recently encoded objects the schema is being 449 

build-up in the angular gyrus as well, but that this build-up is apparently only beneficial for 450 

remembering these objects after a period of 24 hr. This is consistent with the build-up being 451 

associated with consolidation.  We also found no parametric schema effect for subsequently 452 

remembered quartets (Schema parametric > No schema parametric). During remote encoding we 453 

found a parametric schema effect in areas that largely overlapped with the main effect of schema 454 

(see Fig 4a blue overlay and Table 2) including the AG.  455 

Since the AG is being modulated by the build-up of a schema by presenting related objects, 456 

we suspected that the object representations in the ventral visual stream could be contributing to 457 

the schema build-up. A connectivity analysis (PPI) using the lateral occipital region from the localizer 458 

scan (objects > scrambled) as seed did indeed show that this region was connected to the AG during 459 
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encoding of schema objects, (see fig 4a orange overlay). This AG area overlaps almost completely 460 

with the AG regions showing a remote schema effect and schema build-up. 461 

 462 

Interplay between AG and hippocampus during encoding of schema quartets 463 

The parametric decrease that we observed in the hippocampus (Fig 5b) raises the intriguing 464 

possibility that the connection between the AG and hippocampus is inhibitory in nature and leads to 465 

the hippocampus becoming less involved in encoding memories when a schema is present. This fits 466 

with a model of accelerated systems-level consolidation for schema memories. Interestingly, the 467 

parametric value for the Schema decrease in the posterior hippocampus correlated negatively with 468 

the amount of schema build-up in AG (Fig 5c, r = -0.45, p = 0.027). This indicates that a greater 469 

schema build-up effect was paired with a stronger parametric decrease of activity in the 470 

hippocampus. This could mean that the AG, as it is becoming more involved in encoding Schema 471 

objects, starts signaling the hippocampus that its involvement is no longer necessary.  To test this 472 

idea, we performed a PPI connectivity analysis with the same AG seed region, investigating increased 473 

connectivity as a function of the parametric build-up of a schema. This analysis revealed that the 474 

right posterior hippocampus is indeed functionally coupled to the AG during encoding and that the 475 

degree of connectivity is modulated in association with the parametric build-up of the schema 476 

during presentation of the quartets (Fig 5a, red overlay). 477 

The differential expression of detailed versus gist-like memory representations may reflect 478 

differential activation in hippocampus and cortex.  Specifically, if the hippocampus disengages, there 479 

may be a less detailed memory trace. We therefore examined the correlation between false alarms 480 

and AG-hippocampus PPI connectivity scores. Those participants with higher AG-hippocampus PPI 481 

connectivity did not show more false alarms to Schema lures (r = 0.07, p = ns), but they did show a 482 

higher rate of false alarms to new Schema objects (r = 0.48, p = 0.018). The higher number of false 483 

alarms to new objects from the same schema may indicate that when detailed memory of the 484 
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schema objects is lacking, because of less hippocampal involvement during encoding, the gist of the 485 

schema prevails. 486 

 487 

Retrieval 488 

Interaction between schema condition and study-test delay in medial prefrontal cortex (mPFC) at 489 

retrieval. 490 

It was of interest to explore whether the neuronal schema effect during retrieval mirrors the schema 491 

effect found during encoding and in the behavioral data, in the sense that they become apparent 492 

only after consolidation. An interaction between Schema condition and Study-test delay was 493 

observed in the medial prefrontal cortex during retrieval (mPFC, coordinates of the peak: x = -6, y = 494 

39, z = 2, F(1,23) = 26, p < 0.05 Small Volume Corr.; Figure 6). To secure insight into the direction of 495 

this interaction, we extracted beta-weights from the mPFC for remote and recent hits in each 496 

condition. When comparing these subject-averaged beta-weights, we found that mPFC activity was 497 

higher for Schema than No schema for remote hits (t=2.54, p = 0.011) and Schema activation was 498 

also higher for remote than recent Schema hits (t=2.33, p = 0.020).  However, Incongruent hits did 499 

not differ from either Schema (remote: t = 1.39, p = 0.16) and No schema hits (remote: t = 1.09, p = 500 

0.27). MPFC activity to Incongruent hits showed a trend towards increased activity over time 501 

(Incongruent: remote > recent: t=1.87, p = 0.06). This interaction confirmed that the schema 502 

differences in mPFC become apparent after a 24 h delay at the same time as the behavioral benefit 503 

arises.  504 

 505 

Schema effect in parietal cortex 506 

To test whether there were brain areas that were more activated by Schema relative to No schema 507 

during item recognition, we used a direct contrast between conditions (omitting the misses). We 508 

found five areas that responded more to Schema than No schema, these were the right AG, left 509 

parahippocampal gyrus, left precuneus (extending into the cuneus), the dorsal medial thalamic 510 
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nucleus, and left inferior parietal lobe (Figure 6).  No areas were more active during retrieval of No 511 

schema or Incongruent objects than Schema objects. Since the AG showed behaviorally relevant 512 

schema activation during encoding, the AG and parietal areas were further inspected in an ROI 513 

analysis (Figure 7). Using a PPI analysis with remote Schema memories versus remote No schema 514 

memories (hits) we found connectivity with the AG to be higher for the remote Schema memories in 515 

several areas in the left hemisphere (Figure 8). Furthermore, we found increased connectivity 516 

between AG and LOC that correlated positively with correct recognition (proportion hits) of remote 517 

Schema objects (r = 0.42, p = 0.039). To rule out a general effect of retrieval success we also 518 

calculated the correlation between the PPI value in the AG and hits to No schema objects and there 519 

we found no correlation (r = -0.18, p = ns) and the difference between both correlations was 520 

significant (Z= 2.08, p = 0.038). These findings suggest that the AG is specifically involved in 521 

successful retrieval of schema objects. 522 

 523 

Discussion 524 

Schemas are believed to be beneficial for memory of conceptually related information (Bransford 525 

and Johnson, 1972) and thought to accelerate consolidation (Wang and Morris, 2010; van Kesteren 526 

et al., 2012; Ghosh and Gilboa, 2014). Here we found behavioral and neuroimaging evidence for 527 

accelerated consolidation for schema memories that could be linked to memory processes in the 528 

angular gyrus (AG), hippocampus, and medial prefrontal cortex (mPFC) during encoding, 529 

consolidation and retrieval.  530 

First, objects embedded in a schema (that our subjects identified as successive stimuli were 531 

presented) were better remembered 24hr later compared to those that were either not embedded 532 

in a schema or incongruent with one. Second, during encoding, the AG showed an activity pattern 533 

that reflected the build-up of a schema. This build-up of activity was specific for schema memories 534 

that were retained for 24hr, with the amount of AG build-up predictive of memory retention. One 535 

interesting aspect of ‘build-up’ is that it parallels old data from Bransford (Bransford, 1979; Morris et 536 
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al., 1979), which suggests schemas are only effective as aids to memory if they are activated. This 537 

was first shown in Bransford’s famous story about ‘washing clothes’, a schema which everyone has 538 

presumably obtained, but which in the story was obscured by the manner in which the passage of 539 

prose was written. Once the theme was revealed, its effectiveness for supporting memory is 540 

dramatic. Third, in parallel with the build-up in AG, we observed that the hippocampus decreased its 541 

activity when a schema was presented. Disengagement of the hippocampus from encoding a schema 542 

object fits with the notion that schemas are stored in the neocortex and accelerate systems-level 543 

consolidation (Tse et al., 2007; Tse et al., 2008; van Kesteren et al., 2010a). It also provides a 544 

potential explanation why schema memories were found to be less specific, or less detailed, 545 

compared to memories that were not embedded in a schema.  546 

There are subtle features of the behavioral data related to the specificity of memory. For 547 

example, the behavioral schema effect (positive difference in memory scores between schema and 548 

no-schema conditions) was not present immediately after encoding, but emerged after 549 

consolidation. This fits with previous reports of a benefit for schema memories after a night of sleep 550 

(Tse et al., 2007; van Kesteren et al., 2013a; Durrant et al., 2015). Comparing remote and recent 551 

schema memories within participants enabled us to conclude that the schema effect reflects better 552 

retention across time for schema objects, indicating that a schema makes memories more resilient 553 

to forgetting. However, such a result could also be explained by using a schema for informed 554 

guessing after a delay and we sought data that might help to distinguish between a consolidation 555 

and guessing interpretation. Overall, for schema and non-schema conditions, participants made 556 

more false alarms and less correct rejections to the lures that were similar to the targets relative to 557 

new lures. This has also been reported in other studies (Gutchess and Schacter, 2012; Bowman and 558 

Dennis, 2015). However, we also observed that our participants made more false alarms to similar 559 

lures of targets that might potentially have been embedded in a schema during encoding relative to 560 

lures from both non-schema conditions. This subtle detail indicates that schema memories can be 561 

less detailed and possibly more gist-based. However, the critical comparison to rule out guessing 562 
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was whether the participants would falsely recognize new objects that were related to the schema 563 

but not seen during encoding; that is, they were first encountered during item recognition. It turns 564 

out they did not make more false alarms to these new schema lures compared to new no-schema 565 

lures. In fact, they made more correct rejections to the new schema lures. These findings together 566 

suggest that schemas are not used for guessing, but that objects related to a schema are encoded in 567 

a less specific manner, thereby giving rise to more false alarms directly after encoding.  568 

Might the finding of less specificity for memories of schema objects be related to the 569 

reduced involvement of the hippocampus in memorizing objects from a schema? The hippocampus 570 

has circuitry well-suited for discriminating between studied items and similar lures, and does so 571 

through pattern-separation (Bakker et al., 2008; Yassa and Stark, 2011). In our study, we found that 572 

targets and similar lures from a schema were more difficult to dissociate. One possibility is that a 573 

schema could act, in part, as an inhibitor of hippocampal functioning, as proposed by the SLIMM 574 

framework (van Kesteren et al., 2012). In our experiment, the AG showed functional coupling with 575 

the posterior hippocampus. More schema-related activity in AG was associated with greater 576 

deactivation of the hippocampus. In addition, a larger influence of AG on hippocampus was related 577 

to more false alarms to new schema objects, indicative that the gist but not the details of the 578 

memory were preserved. Overall, the finding of less hippocampal involvement for schema memories 579 

fits with the findings from rodents (Tse et al., 2007; Tse et al., 2008) and humans (van Kesteren et al., 580 

2010a; van Kesteren et al., 2014) and provides more evidence for accelerated consolidation of 581 

schema memories. In addition, it provides an explanation why schema memories seem less detailed 582 

and more gist-based (Lewis and Durrant, 2011). 583 

What is the relative role of mPFC and AG?  To date, the partial disengagement of the MTL 584 

memory system for schema-memories has been linked to the allocation of the neural correlates of 585 

schema memory to the medial prefrontal cortex (mPFC) – during both encoding (van Kesteren et al., 586 

2010a; van Kesteren et al., 2012; van Kesteren et al., 2013b; van Kesteren et al., 2014) and retrieval 587 

(van Kesteren et al., 2010b; Brod et al., 2015). We found no evidence for involvement of the mPFC 588 
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during encoding of objects embedded in a schema, but the mPFC did show an interaction between 589 

study-test delay and schema condition when monitored at the time of retrieval. This result confirms 590 

extensive data pointing to the involvement of the mPFC in retrieving remote memories (Bontempi et 591 

al., 1999; Frankland et al., 2004; Maviel et al., 2004; Takashima et al., 2006; Takehara-Nishiuchi et al., 592 

2006; Gais et al., 2007; Takehara-Nishiuchi and McNaughton, 2008; Takashima et al., 2009; Goshen 593 

et al., 2011; Bonnici et al., 2012).  In contrast, the retention of schema objects for 24hr was related 594 

to a build-up of schema activity in the AG during encoding. The AG is high-up in the hierarchy of 595 

convergence for unimodal and supramodal representations (Fernandino et al., 2015), which fits with 596 

the content of a schema. In addition, the AG is involved in processing thematic relationships 597 

(Kalenine et al., 2009), closely resembling the kind of schemas used in our experiment. This also fits 598 

with the notion that the AG is a ‘binding zone’ that is believed to combine representations in a 599 

conceptual manner (Binder et al., 2009a; Binder and Desai, 2011; Shimamura, 2011; Price et al., 600 

2015). This binding function of the AG has recently been linked directly to recombining visual 601 

representations into schemas (Wagner et al., 2015), in accordance with our findings.  602 

 Connectivity analyses using PPI revealed that object representations in LOC seemed to co-603 

activate along with the related schema in AG. Typically, response patterns in LOC elicited by pictures 604 

of objects show categorical clustering (Eger et al., 2008). This clustering is remarkably consistent 605 

across species (Kriegeskorte et al., 2008) and reflects categorical as well as shape similarity (Bracci 606 

and Op de Beeck, 2016). It is likely that the AG receives ‘bottom-up’ information when object 607 

representations are activated that show conceptual clustering. The AG then binds these related 608 

representations in a schema during encoding.  During retrieval, the AG responded more to those 609 

objects that were embedded in a schema during encoding compared to non-schema objects. This 610 

likely reflects that the schema was also active during retrieval. Such retrieval-associated AG 611 

activation of a schema (consisting of related and connected object representations) leads to the 612 

expectation that the AG would similarly be connected to ventral visual representation areas such as 613 

LOC during item recognition.  The successful linking of the schema to these object representations 614 
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would be beneficial to memory scores, as was observed. In addition, connectivity from AG to visual 615 

representation area such as the LOC, overlapping with those found in our object localizer, was higher 616 

for remote schema memories than for remote No schema memories. This finding corroborates a 617 

recent study in which it was also shown that the interplay between AG and ventral visual areas was 618 

important for memory success (Kuhl and Chun, 2014). Thus, during retrieval, schema information is 619 

used to reactivate object representations in LOC and to match the target to the previously seen 620 

object representations.  621 

To conclude, this study provides behavioral and neuronal evidence to support the idea that 622 

schemas give rise to improved memory consolidation.  The mPFC is involved in the retrieval of 623 

memories dependent on schemas. However, at least for the type of task described here, the schema 624 

information itself appears to be stored in the AG. Schema activation in AG at encoding determines 625 

whether an object is successfully remembered after 24hr. The AG binds together schema-related 626 

object representations during encoding and uses this information again during retrieval. The 627 

simultaneous disengagement of the hippocampus from schema memory formation is further 628 

evidence for accelerated schema-associated consolidation and provides a potential explanation of 629 

why schema memories are less detailed. 630 
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Figures and legend 779 

Figure 1 780 

 781 

Fig 1. Stimuli. a. During both encoding sessions, participants were presented with quartets 782 

belonging to the Schema, No schema, and Incongruent conditions. A quartet consisted of four 783 

objects that were presented serially. The first quartet (row 1) is an example of the “knight” schema. 784 

Next, in the No schema condition (row 2), four objects that have no pre-existing association were 785 

presented. For the Incongruent condition (row 3), the first three objects from the “Easter” schema 786 

were followed by an incongruent final object (e.g. a high-visibility vest). b. During item recognition, 787 

the participants were presented with the quartets’ final objects (column 1). The quartet’s final object 788 

was presented once exactly as seen before (Target) and once as a very similar exemplar of the same 789 

object (Lure; column 2). In addition (column 3), there were objects that were new and belonged to 790 

the schemas that were presented (new Schema-related) or new but unrelated objects (new Schema-791 

unrelated). 792 

793 
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Figure 2. 794 

 795 

Fig 2. Design. a. Participants were scanned on two consecutive days. On the first day, they encoded 796 

the first set of objects (remote condition). After 24 hr. they returned to the lab to encode the second 797 

set of objects (recent condition). The second encoding session was followed by the item recognition 798 

task after a short break. b. During encoding four objects were presented serially (for 1500 ms each). 799 

Participants were instructed to memorize the objects and quartets and to indicate for each object 800 

whether it fitted in a shoebox (“yes” or “no”). A black fixation cross was visible on screen throughout 801 

the experiment and this fixation-cross changed to red to signal the start of a new quartet. The inter-802 

stimulus interval was 3.5 s on average. All inter-stimulus intervals were jittered between 1.5 and 5.5 803 

s. During item recognition the participants were presented with pictures of objects (1500 ms). They 804 

rated their memory for the objects using a 6-level confidence scale, ranging from 1 (very surely old) 805 

to 6 (very surely new). After a jittered interval (average = 3.5 s, range: 1.5 – 4.5 s), during which the 806 
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confidence levels were displayed on screen, the next object was presented. c. Objects were 807 

presented during item recognition across 14 conditions, with 700 objects distributed equally over 808 

Schema condition (Schema, No schema, and Incongruent), Study-test delay (New, Remote, and 809 

Recent), and Type of object (Target or Lure), resulting in 50 objects per bin. 810 

 811 

 812 

813 
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Figure 3. 814 

 815 

Fig 3. Behavioral data. a. Proportion of hits (hits minus false alarms to the new No schema condition) 816 

are presented for recent and remote conditions for Schema, Incongruent and No Schema conditions. 817 

b. Proportion of forgetting (recent minus remote hits) is presented for the three schema conditions. 818 

c. Proportion of false alarms for all schema conditions (false alarms minus the proportion of false 819 

alarms to the new No schema condition) are presented for recent and remote conditions. d. 820 

Proportion of correct rejections and false alarms to the new No schema and new Schema objects are 821 

presented. For all plots: black color represents the Schema condition, dark gray: Incongruent, and 822 

light gray: No schema. Error bars represent the standard error of the mean (S.E.M.). * denotes a 823 

significant p-value of < 0.05. 824 

 825 

  826 
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Figure 4. 827 

 828 

Figure 4. Schema effects in the AG during encoding. a. Inflated hemisphere (left hemisphere, dark 829 

gray areas are sulci) with overlays of four contrasts that all converge in the angular gyrus. In green, 830 
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areas that were more active in the remote encoding session to Schema than to Incongruent 831 

remembered final objects. In orange, areas that showed functional coupling with the LOC during 832 

encoding of subsequently remembered Schema objects. In red areas that showed a larger schema 833 

effect in the remote encoding session as compared to the recent encoding session ((remote Schema 834 

remembered > remote No schema remembered) > (recent Schema remembered > no Schema 835 

remembered)). In blue, areas that showed a parametric schema effect, i.e. a build up of activation 836 

with each object presentation (parametrically modulated activity during schema quartets > 837 

parametrically modulated activity during No schema quartets). The dotted lines present the superior 838 

temporal sulcus (STS) and intraparietal sulcus (IPS) and are depicted for anatomical reference. All 839 

maps were corrected at a cluster-level of p < 0.05 (voxel-level threshold was p < 0.001). b. The 840 

subject-averaged event-related time course from the AG region defined by the contrast: remote 841 

(Schema > No schema) > recent (Schema > No schema) and is presented by the red blob in Fig. 4a. 842 

We plotted the percent signal change at each TR (TR was 2190ms) for the three schema conditions 843 

(black: Schema, light gray: Incongruent, dark gray: No schema). The gray area indicates the time of 844 

the presentation of the quartet, the first object is presented at TR= 0 and the offset of the final 845 

object of the quartet is on average (with jittered intervals) at TR= 7. Error bars are S.E.M. c. For each 846 

encoding session, we plotted the subject-averaged beta-weight for each of the four objects in the 847 

quartet from the same ROI as used in Fig. 4b. In black for schema quartets, in light gray incongruent 848 

quartets and in dark gray No schema quartets. d. The correlation between the build-up of a schema 849 

(beta-weight to object 4 minus beta-weight to object 2) and the proportion of hits minus false 850 

alarms is plotted for both encoding sessions (from the same ROI as used in Fig. 4b). Remote 851 

encoding session is the session that was 24 hr. prior to retrieval. Recent encoding session was the 852 

session immediately preceding retrieval. 853 

 854 

  855 
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Figure 5 856 

 857 

Figure 5. Hippocampal deactivation during encoding of Schema quartets. a. The blue overlay shows 858 

the posterior hippocampus area in which activity decreased parametrically for Schema quartets in 859 

the remote encoding session. Since the map shown is depicting a group-averaged, normalized, 860 

spatially smoothed overlay, voxels extend into the ventricle (6% overlap with the anatomical mask of 861 

the hippocampus). However, the peak voxel of the activation (x = 23, y = -37, z =13, parametric 862 

decrease t(23) = 4.398197, p < 0.001) falls within the posterior hippocampus. In red (98% overlap 863 

with the anatomical mask of the hippocampus) the result from the PPI connectivity analysis with the 864 

AG as a seed region showing that the posterior hippocampus is modulated by the parametric 865 

increase of schema-related activity in the AG. Both maps are thresholded at a cluster-level corrected 866 

p < 0.05. b. The subject-averaged beta-weights from the hippocampal ROI showing the parametric 867 

decrease (represented by the blue blob in Fig. 5a) for each of the four objects in the quartet as a 868 

function of schema condition. In black Schema quartets, in light gray Incongruent quartets and in 869 
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dark gray No schema quartets. c. Subject-averaged beta-values representing the parametric scores 870 

of the hippocampal ROI that showed a parametric decrease in activity (represented by the red blob 871 

in Fig. 5a) correlated with the amount of schema build-up in the AG. d. The PPI values from the 872 

connectivity analysis from the AG to the hippocampus correlate with the amount of false alarms 873 

participants made to the new Schema objects.  874 
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Figure 6 875 

 876 

Fig. 6. Study-test delay by schema condition interaction during retrieval. We found a Study-test 877 

delay by Schema condition interaction in the right medial prefrontal cortex (mPFC, coordinates of 878 

the peak: x = -6, y = 39, z = 2, F(1,23) = 26, p = 0.00004, SVC corr. < 0.05) during retrieval. The mPFC 879 

result is presented on an inflated right hemisphere; dark gray colors represent the sulci. Plotted 880 

below are subject-averaged beta-weights extracted from all voxels within this mPFC region for 881 

Schema (black), No schema (dark gray), and Incongruent (light gray) remote and recent hits to 882 

provide information on the direction of the interaction and are shown here for this purpose (error 883 

bars reflect standard error of the mean).  884 
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Figure 7 885 

 886 

Fig. 7. Areas active during Schema retrieval.  The contrast between Schema and No schema objects 887 

(collapsed over time) was displayed as an overlay on three sagittal slices. The graphs below present 888 

the beta-weights from both ventral parietal areas (R Ang G, right angular gyrus and LIPC, left 889 

intraparietal cortex). Error bars represent the standard error of the mean.  890 



39 
 

 39 

Figure 8 891 

 892 

Fig 8. Angular gyrus connectivity during schema retrieval. Connectivity from the angular gyrus (AG) 893 

seed region (in orange) was explored with a PPI analysis for remote Schema objects compared to 894 

remote No schema objects (overlay in blue). These results are overlaid on two inflated hemispheres 895 

and combined with the overlay (in yellow) from the functional localizer contrasting objects with 896 

scrambled objects. The right graph represents the correlations between memory performance 897 

(proportion of hits in the remote condition) and PPI connectivity scores for Schema objects as 898 

indicator of the strength of the psychophysiological interaction (PPI). 899 

  900 
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Tables 901 

 902 

Area x y z t 

Parametric increase 

R Middle Frontal G 30 17 31 5.40 

Thalamus 12 -10 4 4.79 

Parahippocampal G -6 -61 4 5.47 

L Inferior Frontal G -30 32 19 5.56 

L Angular G -30 -67 37 5.91 

L Superior Temporal G -36 -25 10 4.72 

Parametric decrease 

R posterior hippocampus 27 -40 10 -5.18 

 903 

Table 1. Schema build-up. Areas modulated by the parametric regressor for schema build-up in the 904 

remote encoding session for quartets with a subsequently remembered final object. Coordinates are 905 

Talairach coordinates of the peak voxel. For all t-values (df = 23) p was < 0.0001. 906 

 907 

Area x y z t 

R Superior Temporal G 57 -1 4 4.51 

Bilateral Parietal and Cuneus 9 -82 25 6.63 

R Precentral G 33 -16 43 4.35 

R Superior Frontal G 27 59 19 4.50 

Precuneus 15 -46 40 5.46 

L Inferior Occipital G -6 -61 4 4.52 

L Middle Frontal G -30 53 10 5.98 
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 41 

L Precentral G -51 -22 40 5.03 

L Postcentral G -57 -22 22 5.07 

 908 

Table 2. Parametric schema effect. Areas that show a larger parametric build-up for Schema versus 909 

No schema quartets in the remote encoding session. Coordinates are Talairach coordinates of the 910 

peak voxel. For all t-values (df = 23) p was < 0.001. 911 
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