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Abstract

Cerebral small vessel disease (SVD) can manifest in a number of ways. Many

of these result in hyperintense regions visible on T2-weighted magnetic reso-

nance (MR) images. The automatic segmentation of these lesions has been the

focus of many studies. However, previous methods tended to be limited to cer-

tain types of pathology, as a consequence of either restricting the search to the

white matter, or by training on an individual pathology. Here we present an

unsupervised abnormality detection method which is able to detect abnormally

hyperintense regions on FLAIR regardless of the underlying pathology or lo-

cation. The method uses a combination of image synthesis, Gaussian mixture

models and one class support vector machines, and needs only be trained on

healthy tissue. We evaluate our method by comparing segmentation results from

127 subjects with SVD with three established methods and report significantly

superior performance across a number of metrics.

1. Introduction

Cerebral small vessel disease (SVD) is common in the elderly with severe

cases leading to cognitive impairment and dementia. While the aetiology of SVD15

is not always clear, risk factors include age, smoking, and elevated blood pressure
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(van Dijk et al. (2008)). SVD can manifest in a number of ways (Wardlaw et al.

(2013)), usually as a result of intrinsic brain small vessel abnormality leading

to an inadequate blood supply (ischemia). Brain tissue damaged as a result

of ischemia presents as hyperintense on T2-weighted (T2-w) magnetic resonance20

(MR) images and often hypointense on T1-weighted (T1-w) images, see Figure 1.

SVD can also lead to lacunes (fluid filled cavities < 20 mm diameter with

MR signal properties similar to cerebrospinal fluid (CSF), sometimes with a T2-

w hyperintense ring); enlarged perivascular spaces (extracerebral fluid around

vessels, < 2 mm diameter, similar MR appearance to small lacunes without25

T2-w hyperintense ring); and cerebral microbleeds (leakage of blood cells into

perivascular tissue, visible as < 10 mm diameter hypointensity on T2∗-weighted

and susceptibility weighted MR sequences) (Wardlaw et al. (2013)).

Most attempts to automatically quantify SVD (Caligiuri et al. (2015)) have

focused on the accurate segmentation of hyperintense lesions within the white30

matter (WM) on fluid attenuated inversion recovery (FLAIR) MR images (Ha-

jnal et al.). FLAIR is the most useful MR sequence for the detection of these

lesions as it is a T2-w sequence in which signals from confounding sources of

hyperintensity, primarily CSF, are canceled out. There has been compara-

tively little work on identifying the other manifestations of SVD such as lacunes35

(Ghafoorian et al. (2016)), perivascular spaces (Valdés Hernández et al. (2013b))

and microbleeds (Kuijf et al. (2012)).

Of the proposed methods to segment WM lesions, very few are publicly

available. Of these, the most common comparator methods belong to the Le-

sion Segmentation Toolbox1 (LST). The LST contains two methods, the Lesion40

Growth Algorithm (LGA) (Schmidt et al. (2012)) and Lesion Prediction Algo-

rithm (LPA). Both methods were developed for the segmentation of multiple

sclerosis (MS) lesions. However due to the similarities between the appearance

of Multiple Sclerosis (MS) lesions and WM lesions, MS lesion segmentation al-

gorithms (Garćıa-Lorenzo et al. (2013); Lladó et al. (2012)) and WM lesion seg-45

1www.statistical-modelling.de/lst
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Figure 1: T1-w (left) and FLAIR (right) image of a subject with periventricular (labeled A)

and deep (labeled B) white matter lesions. Note that pathology is more visible on the FLAIR

image than it is on the T1-w image.

mentation algorithms can often be used interchangeably. As such, both methods

from the LST are commonly used as benchmarks for hyperintense lesion seg-

mentation. Another publicly available method is LesionTOADS (Shiee et al.

(2010)), which simultaneously performs both tissue and lesion segmentation in

an unsupervised manor. At the moment, LPA is the closest the field has to a50

readily available and robust gold standard, having been shown to consistently

offer good results across a number of datasets despite being primarily an MS

lesions segmentation tool. However, a recently published method, BIANCA,

(Griffanti et al. (2016)) reports some promising results surpassing LPA in a

number of metrics including Dice Similarity Coefficient (DSC) (BIANCA: 0.79,55

LPA: 0.76) on a neurodegenerative dataset (n=85).

Image synthesis is the name given to the process of synthesising an image

from a particular modality from images from one or more other modalities.

The majority of existing methods (Roy et al. (2010b,a, 2011); Konukoglu et al.

(2013); Rueda et al. (2013); Huang & Wang (2013); Cao et al. (2014); Ye et al.60

(2013); Tsunoda et al. (2014); Cao et al. (2013); Roy et al. (2014); Huang et al.

3



(2016); Roy et al. (2016)) for image synthesis stem from an initial framework

proposed in (Hertzmann et al. (2001)), whereby a dictionary of source / target

patch pairs is initially learned, with synthesis being performed on a patch by

patch basis by finding the closest source patch and propagating the correspond-65

ing target patch to the synthetic image. The main sources of variation in the

methods based upon this being in differing techniques to efficiently search the

large patch dictionary, and additional constraints to ensure the selected patch

is spatially coherent with its neighbours. Another family of approaches treats

the problem as one of regression and looks to learn a set of functions which will70

map an intensity from one modality to another either through regression forests

(Jog et al. (2013); ?, 2015, 2017)) or by learning the most common intensity

relationships (Kroon & Slump (2009)). Recently, deep learning solutions have

been also been proposed (Van Nguyen et al. (2015); Vemulapalli et al. (2015);

Sevetlidis et al. (2016)) demonstrating some good results. Further approaches75

include the use of deformable atlases (Miller et al. (1993)), registration and

intensity fusion (Burgos et al. (2013)) and generative models (Cardoso et al.

(2015)). The ability of the latter to identify white matter lesions as outliers was

also explored.

The majority of these approaches aim to address the problem of multi-modal80

registration (Iglesias et al. (2013); Cao et al. (2013); Roy et al. (2014); Cao et al.

(2014); Kroon & Slump (2009); Jog et al. (2013); ?); Chen et al. (2015b)) or su-

per resolution (Roy et al. (2011, 2013, 2010b,a); Zhang et al. (2012); Konukoglu

et al. (2013); Rueda et al. (2013); ?). The idea of “pseudo-healthy” image syn-

thesis has also been explored whereby the aim is to synthesise a pathology free85

subject specific image in a target modality. This has been used by (Ye et al.

(2013)) to perform tumour segmentation, by (Tsunoda et al. (2014)) to detect

lung nodules on CT images, and had its potential for WM lesion segmentation

suggested in passing by (Roy et al. (2013)). This approach is most useful when

pathology is not visible on one modality, but visible on another. Synthesising a90

pathology free version of the pathological modality allows abnormalities to be

identified though subtraction. This is not necessarily the case in SVD where
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pathology can be visible on both T1-w and FLAIR images (Figure 1). In fact,

existing methods have been demonstrated to synthesise hyperintensities (Roy

et al. (2013); Jog et al. (2017)), and even exploit this (Jog et al. (2015)) for95

the purposes of lesion segmentation in the absence of FLAIR. However careful

design of synthesis algorithm allows a pathology free FLAIR to be synthesised

in the presence of T1-w visible pathology.

Here we build upon our previous work (Bowles et al. (2016)) and present

a method for FLAIR hyperintensity segmentation though image synthesis and100

outlier detection. We first describe a method for robust “pseudo-healthy” image

synthesis in the presence of of T1-w visible pathology using kernel regression to

learn the expected relationships between T1-w and FLAIR intensities at each

location within the brain. Subtraction of the “pseudo-healthy” image from the

acquired image then gives an indication of pathology. A Gaussian mixture model105

is then used to locate abnormally bright areas in the FLAIR image. These two

pieces of information are then combined with an SVD atlas within a one class

classification framework, and the output is post-processed using a conditional

random field (CRF).

The proposed method is unsupervised in the sense that it does not require110

any manually segmented ground truth images to train on, and is therefore less

prone to overfitting than supervised methods. It is also flexible enough to seg-

ment a wide range of abnormalities without needing to be trained on examples

of different pathologies. It does however need to be trained on non-pathological

tissue. This can either be from images of healthy subjects, or from the regions115

outside of manual segmentations of pathological images.

1.1. A note on terminology

The terminology and definitions surrounding SVD and associated imaging

features can vary significantly between studies (Wardlaw et al. (2013)). To

avoid confusion we define the following relevant terms explicitly in line with120

those given by Wardlaw et al. with examples of each shown in Figure 2. The

term white matter hyperintensities of presumed vascular origin (WMHpvo) refers
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Figure 2: Examples of different hyperintensities relating to SVD. Top left: White matter hy-

perintensity of presumed vascular origin. Top right: Recent small subcortical infarct. Bottom

left: A: Evolution of a recent small subcortical infarct into a T2-w hyperintensity, B: Lacunar

cavity forming at the edge of a WMH of unclear origin. Bottom right: Cortical infarct.
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to the lesions within the WM which appear hyperintense on T2-w MRI (includ-

ing FLAIR) which are often present in images of older people. WMHpvo are

often symmetrical and their aetiology is unclear. The term recent small sub-125

cortical infarct (RSSI) refers to a T2-w / DWI hyperintense region indicating

a recent infarction. An RSSI will evolve into either a lacunar cavity (T1-w /

T2-w hypointense “space”, usually with a T2-w hyperintense ring) or T2-w hy-

perintensity. We use the term white matter hyperintensity (WMH) to include

T2-w hyperintensities caused by WMHpvo, RSSIs, RSSIs which have evolved into130

T2-w hyperintensity and the T2-w hyperintense areas around lacunar cavities.

Finally, we use the term cortical infarct to refer to T2-w hyperintense regions

which appear wholly or partly in the cortical grey mater (GM) following an

arterial distribution.

Whilst MS lesions also appear as hyperintense WM on FLAIR (Polman et al.135

(2011)), no MS pathology is present in any of our experiments, hence we reserve

the definition of WMH to the above and refer to MS induced hyperintensities

separately as MS lesions. No other cause of T2-w hyperintensity (eg. cancer,

traumatic brain injury) is discussed in this paper, or present in any experiments.

2. Method140

2.1. Overview

The proposed method treats the problem of lesion segmentation as an outlier

detection task. The first stage is to produce two likelihood maps:

LSYN, is formed by synthesising a healthy looking FLAIR image from a

subject’s T1-w image. Subtraction of this synthetic FLAIR image from the145

subject’s true FLAIR image produces a difference image which represents the

likelihood of a FLAIR voxel intensity to be abnormal, given the subject’s T1-w

image and an expected pre-determined relationship between healthy T1-w and

FLAIR intensities. This value is low in the presence of healthy tissue, and high

in the presence of pathological tissue.150

7



LFLAIR, represents the likelihood for a given FLAIR voxel to be abnormal

given a pre-computed Gaussian-mixture model of expected FLAIR intensities

at that location.

These likelihood maps are then combined with a WMHpvo probability atlas

within a one-class classification framework to provide a single likelihood map155

reflecting the degree of abnormality at each voxel. Finally, a conditional random

field (CRF) is applied, resulting in a binary segmentation.

LSYN, LFLAIR, and the one-class classifier used to combine them all require

a training set of healthy subjects. LSYN a requires both T1-w and FLAIR im-

ages, whilst LFLAIR and the one-class classifier require FLAIR images. There is160

no requirement for the three training sets to include the same subjects, however

it is practical to use the same set of FLAIR images. We therefore refer to the

T1-w and FLAIR images in this dataset as Ttrain and Ftrain respectively.

2.2. Preprocessing

Preprocessing is required to normalise the images to a standard set of prop-165

erties, ensuring subsequent steps are robust to the heterogeneous image char-

acteristics found both within and between medical imaging datasets. These

preprocessing steps also compute a number of segmentations and transforma-

tions which are required in subsequent steps. Preprocessing is identical for both

the training set and the images we wish to segment, which we refer to from here170

as the test set.

2.2.1. Registration

Registration is performed using the MIRTK suite of registration tools (avail-

able at2). A rigid transformation from the T1-w to FLAIR image spaces is first

computed. A free-form deformation (FFD) (Rueckert et al. (1999)) transforma-175

tion (Resolution levels: 40mm, 20mm, 10mm, 5mm; Image dissimilarity mea-

sure = SSD; Bending energy weight = .1) is then computed between the T1-w

2www.biomedia.doc.ic.ac.uk/software/mirtk/
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image in FLAIR image space and an MNI template (ICBM 2009a Nonlinear

Symmetric, available at3). The inverse transformation is also computed.

2.2.2. Bias correction, brain extraction and anatomical segmentation180

A multi-atlas based anatomical segmentation tool, MALPEM (Ledig et al.

(2015)) (available at4), is applied to the T1-w image providing both binary and

probabilistic segmentations of 142 anatomical structures. As part of the segmen-

tation process, MALPEM applies bias field correction using the N4 (Tustison

et al. (2010)) algorithm and brain extraction using the pincram algorithm (Heck-185

emann et al. (2015)), outputting the resulting T1-w image and brain mask. WM

and GM probability maps are computed from the probabilistic segmentations.

Bias correction is performed separately on the FLAIR image using the N4

algorithm and the T1-w brain mask is transformed to FLAIR image space, re-

sampled using nearest-neighbour interpolation and used to crop the FLAIR190

image.

2.2.3. Intensity normalisation

Intensity normalisation is an especially important procedure since many sub-

sequent steps involve direct comparisons between voxel intensities across images

from different subjects. However, the nature of hyperintense lesions means that195

several commonly used normalisation methods are inadequate. The often used

approach of linear scaling of intensities to the range [0, 1] with a certain per-

centage of the lowest and highest intensities saturated at 0 and 1 respectively

(Cao et al. (2014)) will result in different intensity mappings dependent on the

volume of hyperintense lesions compared to the percentage of voxels saturated.200

Histogram matching (Ye et al. (2013)) suffers similar problems in the presence of

hyperintensities. Scaling images to have a zero mean and unit variance (Hertz-

mann et al. (2001)) is also inadequate as the degree of hyperintensity will bias

both the mean and the variance of the image.

3www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
4www.doc.ic.ac.uk/~cl6311/software
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To make intensity normalisation invariant to degree of hyperintensity and205

atrophy common in elderly subjects, we employ the method used in (Huppertz

et al. (2011)). Two sets of voxels corresponding to WM and GM are produced

by filtering probabilistic WM and GM masks to include only voxels with a

> 95% probability of being of that tissue class. Next, these two sets are further

refined by intensity to contain only intensities which fall within a 95% confidence210

interval so as to remove outliers. This leaves two sets which are highly likely to

contain WM and GM, and which are not outliers within these groups, therefore

corresponding only to healthy tissue. The mean of each set of intensities is

calculated to give the expected intensity of healthy tissue in the WM and GM.

The mean of these two values is subsequently calculated to provide a single fixed215

point. Finally, image intensities are scaled linearly such that this fixed point is

set to the arbitrary value of 1000.

This method is applied to both the T1-w image and FLAIR image, using

the probabilistic WM and GM masks derived from the previously computed

anatomical segmentations. In the case of the FLAIR image these masks are220

transformed to FLAIR image space and re-sampled using linear interpolation.

2.3. Training

In order to produce LSYN and LFLAIR, two sets of models are trained. The

first is a synthesis model that learns the relationship between T1-w and FLAIR

intensities. The second is a Gaussian mixture model (GMM) which learns the225

expected intensity distributions within a FLAIR image.

To account for imperfect tissue segmentation, common in the presence of

hyperintense lesions, and for intensity variations within a tissue type, we com-

pute both sets of models in a voxel-wise manner within MNI space. A separate

model is produced for each voxel, computed using information taken from a230

patch around that voxel in each co-registered training image. The process of

training both models is summarised in Figure 3.
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Figure 3: An overview of the training process.

2.3.1. Synthesis model

The key step for the computation of LSYN is the calculation of a pseudo-

healthy FLAIR image from a subject’s T1-w image. Our proposed method uses235

voxel-wise kernel regression to learn a direct mapping between healthy T1-w and

FLAIR intensities at each voxel.

A set of n training image pairs Ttrain and Ftrain are transformed to MNI

space using the transformations calculated during preprocessing and re-sampled

onto a 1mm isotropic voxel lattice. Intensities in Ttrain are capped at a value240

tmax. At each voxel x, two one-dimensional vectors tx and fx are formed from
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Ttrain and Ftrain respectively containing the voxel intensities from an a-by-

a-by-a patch around x in each image. A kernel regression model Mx with

bandwidth h is computed relating tx to fx and evaluated at m equally spaced

values k between 0 and tmax.245

Mx(k) =

∑
i(K((tx(i))/h)fx(i))∑
iK((k − tx(i))/h)

, K(p) =
1√
2π
e−

1
2p

2

. (1)

Higher values of m and tmax result in more accurate synthesis at the cost of

model size and computation time, whilst the number of voxels (na3) must be

sufficiently large to contain enough information to fit the model. Preliminary

experiments showed thatm = 100, tmax = 1500, n = 20 and a = 5 were sufficient

to produce useful images whilst remaining tractable (<4 hours to train, <1s to250

synthesise), with larger values having negligible impact on final results.

An example showing the models produced at two voxels is shown in Figure 4.

The top right figure clearly displays the desired relationships in a location which

can contain WM, GM or CSF. The brightest T1-w intensities correspond to

darker FLAIR intensities, corresponding to WM appearing brighter on T1-w255

images than on FLAIR. GM appears darker on T1-w images and brighter on

FLAIR, explaining the peak of the model. Finally, the darkest T1-w intensities

correspond to CSF, as is the case on FLAIR, which is represented by the leftmost

section of the model. However, in the top left figure we have the model formed

in a location containing only WM, equivalent to the rightmost section of the260

previous model. Since there is no more information upon which to fit the model,

the model extrapolates to predict the same FLAIR intensity across the whole

range of T1-w intensities. This gives the model the desired ability to predict

normal looking WM even in the presence of hypo-intense T1-w visible lesions,

such as those in Figure 1.265

A consequence of using kernel regression for synthesis is that the contrast

between WM and GM in the synthetic image is reduced. This is due to the

smoothing effect encouraging the model away from the extreme intensity values

and towards the mean. As a result, the very highest and lowest FLAIR intensi-

12



Figure 4: Two models produced using kernel regression to act as a mapping from T1-w to

FLAIR intensities. Top left: A model produced at a location within the WM which contains

only WM voxels. Top right: A model produced at a location which can contain WM, GM or

CSF voxels. Bottom left: Mean T1-w training image. Bottom right: Mean FLAIR training

image. Note that the model produced from WM, GM and CSF voxels is more complex than

the one produced within the WM as a result of having to capture more intensity relationships,

and that the extrapolation in the case of the latter provides the ability for the model to predict

healthy WM FLAIR intensities even in the presence of T1-w visible pathology.

ties would never be synthesised. To correct this, an intensity transfer function270

is computed for each subject in Ttrain by using histogram matching to match

the intensity histograms of the synthesised image to the FLAIR image. The

13



median of these transfer functions (Figure 5) is computed and used to correct

all images, the effects of which can be seen in Figure 6.

Figure 5: Transfer functions computed to map synthetic FLAIR images to their corresponding

training FLAIR images. Thick blue line indicates the median which is used to correct all

images.

2.3.2. Gaussian Mixture model275

LFLAIR is a representation of the likelihood of a voxel intensity being ab-

normal given previous knowledge of the expected distribution of intensities at

each location. The distribution of intensities found across the whole brain is

wide and complex, however at a voxel level, these distributions become nar-

rower and easier to represent. It is common to treat intensities within a single280

tissue class as belonging to a Gaussian distribution, hence why many tissue

segmentation algorithms are based upon an Expectation Maximisation (EM)

framework (Zhang et al. (2001)). Intensities at a single voxel across a num-

14



Figure 6: Effects of intensity correction and registration of synthetic images on a (top)

pathology free and (bottom) pathological subject. (A) FLAIR image. (B) Rigidly registered

synthetic image. (C) Difference image from (A) to (B). (D) Rigidly registered intensity cor-

rected synthetic image. (E) Difference image from (A) to (D). (F) FFD registered intensity

corrected synthetic image. (G) Difference image from (A) to (F). Note that the intensity

correction and FFD registration do not prevent detection of the pathology (arrows).

ber of co-registered images will therefore likely belong to either one (when the

voxel lies within a tissue class) or a mixture of two (when the voxel lies on the285

boundary between tissue classes) Gaussian distributions. We therefore use an

EM approach (McLachlan & Peel (2000)) to learn a GMM with two components

from Ftrain at each voxel in MNI space. Due to a limited number of training

images and the need for a lot of samples to confidently fit the GMM, voxels

in a b-by-b-by-b patch around the target voxel are used, whilst boundary cases290

are handled by only considering non-zero intensities. Preliminary experiments

showed that b = 5 provided sufficient information to confidently fit the models

with 20 training images. An example showing the models produced at the same

two locations as shown in Figure 4 is shown in Figure 7.

2.4. Testing295

Having produced the two sets of models, we can now apply them to test

images to produce LSYN and LFLAIR. A summary of the process can be seen

in Figure 8.
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Figure 7: Two GMMs learned to represent the normal distribution of FLAIR intensities

around their corresponding voxel. Top: A model produced at a location near the boarder

between GM and WM. Middle: Mean FLAIR training image. Bottom: A model produced

at a location within the WM. Note that the model produced from the border between WM

and GM has two distinct components representing the two tissue types, whereas the model

produced from within the WM contains two very similar components.

16



Figure 8: An overview of the process of creating the LSYN and LFLAIR likelihood maps.

17



2.4.1. LSYN

To synthesise a voxel x of synthetic image S using regression model M , the300

corresponding voxel in the subject’s T1-w image, Tx, is capped at tmax and

turned into an index i = dmTx/tmaxe. This index is then used to index into

Mx to give Sx. The intensities of S are finally adjusted using the previously

computed transfer function. An example of successful pseudo-healthy synthesis

in the presence of WMH can be seen in Figure 10.305

As we will be performing voxel-wise comparisons of F and S, it is important

that we have a good registration between them. As discussed earlier, studies

have shown the benefits of using synthetic images to achieve more accurate

multi-modal registrations by reducing the problem to a mono-modal one be-

tween the synthetic and target images. We therefore register S directly to F,310

producing SF. Despite this registration theoretically being rigid, we introduce a

small non-linear term. This is to make the registration more robust to artefacts

present in either one of the images, in particular distortions caused by eddy

currents, and by partial volume effects often caused by FLAIR images having a

large slice thickness.315

We must make a special case for the region around the ventricles. Small

hyper-intensities around the ventricular wall known as “bands” and “caps” are

common in aging and can be a result of a several phenomena (Barkhof et al.

(2011)). The presence of these “bands” and “caps” in the otherwise healthy

training data leads to the undesired synthesis of clinically relevant WMH around320

the ventricles, see Figure 9. To avoid this leading to inaccurate segmentations,

the intensities of WM in the synthetic images within 15 mm of the ventricles,

as determined by a distance transform, are capped at a value corresponding to

the expected intensity of healthy WM in this region.

LSYN is then computed as F − SF. At this point an approximate seg-325

mentation could be formed by applying a threshold to LSYN, however there

are situations which could cause errors to arise in the resulting segmentation.

Artefacts in the T1-w image, particularly ringing artefacts, will cause errors in

18



Figure 9: An example where periventricular WMH has been synthesised. Left: Normalised

T1-w image. Right: Corresponding synthetic FLAIR image.

the synthesised image. These could introduce both false positives (seen in Fig-

ure 11), and false negatives should the ringing negate the signal from a lesion.330

Cortical infarcts can sometimes be synthesised as hyper-intense as a result of

being treated like GM due to their proximity to the cortex, seen in Figure 12.

Whilst juxtacortical infarcts are brighter than normal GM on T2-w images, the

difference in intensity will be small, and could fall under a threshold. Finally,

the high slice thickness common in FLAIR images can result in partial volume335

effects. These are particularly visible in the axial plane at the boundaries be-

tween CSF and WM or GM, such as at the top of the 3rd and 4th ventricles and

the base of the frontal and temporal lobes. The synthetic image formed from

the higher resolution T1-w image will not suffer these effects and will therefore

appear brighter within the brain matter, leading to potential false positives.340

In order to limit false positives due to T1-w artefacts and FLAIR partial

volumes, and to reinforce areas of small differences in LSYN such as could be

seen in the case of lesions in or near the cortex, additional information related

to the brightness of the FLAIR image is required. We obtain this from LFLAIR.
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Figure 10: A case where a lesion is correctly synthesised as the same intensity as the sur-

rounding WM. Left: T1-w image. Middle: FLAIR image. Right: Corresponding synthetic

FLAIR image.

Figure 11: A case where ringing artefacts in a subject’s T1-w image results in errors in the

synthesised FLAIR image whereby juxtacortical WM is synthesised as GM in the indicated

locations. Left: T1-w image. Right: Corresponding synthetic healthy FLAIR image.
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Figure 12: A case where a lesion close to the cortex is mistakenly synthesised as hyper-intense.

Left: T1-w image. Middle: FLAIR image. Right: Corresponding synthetic FLAIR image.
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2.4.2. LFLAIR
345

To compute LFLAIR, a relative likelihood is computed at each voxel reflect-

ing the likelihood of that voxel being abnormal given the previously computed

GMMs. To assign a likelihood to a given voxel, x in a test image, the log-

likelihood of the intensity of the voxel is computed using the corresponding

two- component GMM, parametrised by weights (w1,x,w1,x), means (µ1,x,µ2,x)350

and standard deviations (σ1,x,σ2,x). The resulting value will be large for both

abnormally hyper- and hypo-intense voxels. To ensure only hyper-intense voxels

are identified the likelihood is set to zero in regions with a FLAIR intensity Fx

less than the mean of the average intensities of GM and WM, previously set to

1000 during normalization.355

LFLAIR
x =


w1,x

1√
2σ2

1,xπ
e

Fx−µ21,x
2σ21,x + w2,x

1√
2σ2

2,xπ
e

Fx−µ22,x
2σ22,x if Fx ≥ 1000

0 otherwise

(2)

2.5. Combining LSYN and LFLAIR

To combine the information from LSYN and LFLAIR we use a similar frame-

work to that proposed in Karpate et al. (2015), where the authors combine a

number of probability maps using a supervised SVM. We choose to use unsu-

pervised one-class SVMs, such as in (El Azami et al. (2016)), to remove need for360

labeled data and to maintain the proposed method’s flexibility by allowing it to

be used for general abnormality detection and not be restricted to a particular

pathology present in a training set.

2.5.1. Training

The SVMs are trained using the same subjects which formed the training set365

used to train the models used to produce LSYN and LFLAIR, with both likeli-

hood maps in MNI space. A 3-by-1 feature vector is computed for each voxel

containing the values of LSYN, LFLAIR and an in house probabilistic WMHpvo

atlas generated by averaging co-registered manual WMHpvo segmentations, a

full description of which can be found in (Chen et al. (2015a)).370
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A separate one-class SVM is trained for WM and GM. Fifty-thousand train-

ing points are randomly sampled from the feature vectors coming from each

tissue class with an outlier percentage of 5% and 0.3% for the WM and GM

classifiers respectively. These percentages were chosen empirically by visually

assessing the resulting classifier’s tendency to over/under-segment within each375

tissue class. Apparent over-segmentation lead to the outlier percentage being

increased, whilst under-segmentation lead to a decrease.

2.5.2. Testing

To analyse a test image, the corresponding LSYN and LFLAIR likelihood

maps are combined with the WMHpvo atlas to form a feature vector at each380

voxel. Vectors are then classified using the previously trained one-class SVM

corresponding to the tissue type which has the greater probability at that voxel.

If the voxel falls outside of the decision boundary, and is therefore considered

an outlier, a score is formed for that vector defined by its distance from the

decision boundary. A single likelihood map, LSVM, is formed from these scores.385

2.5.3. CRF refinement

To binarize and remove false positives from LSVM we apply a final post

processing step using a 3D fully connected CRF, described first in Krähenbühl

& Koltun (2011) and extended to 3D and implemented in Kamnitsas et al.

(2016).390

3. Experiments

To evaluate the performance of the proposed method we compare it to three

of publicly available methods for lesion segmentation. Two methods from the

LST (available at5) LGA and LPA, and LesionTOADS (available at6).

5www.applied-statistics.de/lst
6www.nitrc.org/projects/toads-cruise
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3.1. Data395

The data for our evaluation comes from a heterogeneous dataset containing

data acquired using three different acquisition protocols. All image data were ac-

quired at the Brain Research Imaging Centre of Edinburgh7 on a GE Signa Hori-

zon HDx 1.5T clinical scanner (General Electric, Milwaukee, WI), equipped with

a self-shielding gradient set and manufacturer-supplied eight-channel phased-400

array head coil. Details of the protocols used for acquiring the data are given

in Table 1, and their rationale is explained in (Valdés Hernández et al. (2015)).

Formal written consent from all subjects and ethical approval was acquired

from the Lothian Research Ethics Committee (09/S1101/54, LREC/2003/2/29,

REC 09/81101/54), the NHS Lothian R+D Office (2009/W/NEU/14), and the405

Multi-Centre Research Ethics Committee for Scotland (MREC/01/0/56) and

conducted according to the principles expressed in the Declaration of Helsinki.

All image sequences (from each patient) were co-registered using FSL-FLIRT

(Jenkinson et al. (2002)) and mapped to the patient’s T2-w space. Lesions from

images acquired under protocols 1 and 3 were extracted using histogram-based410

thresholding on FLAIR and manually rectified by an expert. Lesions from im-

ages acquired under protocol 2 (Table 1) were segmented by an expert following

the procedure described in (Valdés Hernández et al. (2015, 2013a)), which uses

a multispectral colour-fusion-based semi-automatic segmentation method and

considers hyperintense signals that simultaneously appear in all T2-based se-415

quences.

The 20 subjects with the lowest lesion volume (so as to maximise healthy

tissue) were selected to form Ttrain and Ftrain and excluded from further anal-

ysis. The manual masks for these subjects were dilated by one voxel and used

to mask out regions of pathology from the training process. Note that this step420

would not be necessary if pathology free subjects were available to form the

training set.

7www.sbirc.ed.ac.uk
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Table 1: Summary of the acquisition and segmentation protocols present in the dataset.

1(Valdés Hernández et al. (2015, 2013a))

Protocol 1 2 3

Number

(test/train)

18/5 70/11 39/4

T1-w TR/TE/TI

(ms)

9/440 9.7/3.984/500

FLAIR TR/TE/ TI

(ms)

9002/147/2200 9000/140/2200

Ground Truth Expert cor-

rected his-

togram segmen-

tation

Multispectral

colour-fusion-

based semi-

automatic

segmentation 1

Expert cor-

rected his-

togram segmen-

tation

Lesion Types

Present

WMHpvo WMH / Corti-

cal infarcts

WMHpvo
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3.2. Evaluation metrics

We computed a set of subject-wise similarity metrics to quantify the perfor-

mance of each method by comparing segmentation volumes Va to target volumes425

Vt, and corresponding surfaces Sa and St:

• Dice Similarity Coefficient (DSC):

A measure of overlap between the volume of the computed segmentations

and the corresponding reference segmentations (Dice (1945)). Provides

an overall measure of the accuracy of the computed segmentation, but430

becomes more sensitive to errors for small lesions. A DSC of 0 indicates

no overlap, while a DSC of 1 indicates a perfect overlap.

Defined as 2|Va∩Vt|
|Va|+|Vt| .

• Average Symmetric Surface Distance (ASSD, mm): A measure of the

average distances between the surface of the computed segmentations and435

the reference segmentations, and vice-versa. Provides an indication of how

well the boundaries of the two segmentations align.

Defined as 1
2 (Σt=St(mindist(t, Sa)/|St|) + Σa=Sa(mindist(a, St)/|Sa|))

where mindist(p, S) is the smallest Euclidean distance between surface

point p and any point on S.440

• Hausdorff Distance (HD, mm): A measure of the maximal distance be-

tween the surfaces of the computed and reference segmentations. More

sensitive to segmentation errors occurring away from segmentation bound-

aries than ASSD.

Defined as max{{mindist(a, St), a ∈ Sa}, {mindist(t, Sa), t ∈ St}}, where445

mindist(p, S) is the smallest Euclidean distance between point p and any

point in S and max{A} returns the greatest value in set A.

• Precision: The proportion of the computed segmentation which over-

laps with the reference segmentation. Provides an indication of over-

segmentation. Ranges between 0 and 1.450
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Defined as |Va∩Vt||Va| .

• Recall : The proportion of the reference segmentation which overlaps with

the computed segmentation. Provides an indication of under-segmentation.

Ranges between 0 and 1.

Defined as |Va∩Vt||Vt| .455

We also computed groupwise correlations across all test subjects:

• Intra Class Correlation (ICC): A measure of correlation between |Vt| and

|Va|. Calculated as ICC(A,1) defined as in (McGraw & Wong (1996)).

Scatter and Bland-Altman plots showing the relationship between these

were also produced.460

• Correlation with Fazekas score: Spearman’s rank correlation coefficient

calculated between |Va|/|Vic| and a combined Fazekas Fazekas et al. (1987)

score over all subjects, where |Vic| is a subject’s intercranial volume mask.

A Fazekas score is a clinical measure of WMH, comprising of two integers

in the range [0, 3] reflecting the degree of periventricular WMH and deep465

WMH respectively. For the purposes of this comparison the two scores

were added giving a single value in the range [0, 6].

• Scatter and Bland-Altman plots: Scatter and Bland-Altman plots show-

ing the relationship between |Va|/|Vic| and |Vt|/|Vic|. The lesion volumes

were observed to be non-normal and hence non-parametric metrics were470

produced. The scatter plots allow us to see how closely the two sets of

values are related, with a low variance distribution along the line y = x

being desired. The Bland-Altman plots allow us a further measure of

the agreement between the two sets of values, robust to sample selection

(Bland & Altman (2010)). We plot |Va|/|Vic|−|Vt|/|Vic|
0.5(|Va|/|Vic|+|Vt|/|Vic|) and desire the475

mean to be close to zero, indicating a lack of fixed bias, and variance to

be small, indicating a high degree of agreement. Visually we also desire

for there to be no trends or patterns in the data which would indicate a

volume dependent bias.
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– Equation of best fit line: Of the form y = mx+c, found by minimising480

the sum of squared errors (SSE). Indicates how close the relationship

between the two datasets is to the ideal (y = 1x+ 0). A larger value

of |c| indicates a constant error independent of lesion volume, while

the a value of x differing from 1, indicates an error dependent on

lesion volume.485

– r2: The square of the Pearson correlation coefficient. Indicates how

strongly correlated the two volume measures are with a value of 1

indicating a perfect correlation.

– SSE: Indicates how well the above equation fits the data.

– RPC: Reproducibility coefficient. Indicates how well the automated490

method reproduces the results of the reference volumes.

– CV: Coefficient of variation. Indicates the strength of agreement

between the two volume measures.

– Mean: Indicates a fixed bias if different from zero. P-values signaling

this difference are also given.495

Finally, we computed two volume dependent metrics which provide addi-

tional insight into the conditions in which each method performs well, and

where they are limited:

• Lesion volume dependent DSC (DSCl): The DSC calculated within the

bounding box of each lesion, separated into groups corresponding to very500

small (VS < 0.01 ml), small (0.01 ≤ S < 0.1 ml), medium (0.1 ≤ M

< 1 ml), large (1 ≤ L < 10 ml), very large (10 ml ≤ VL) lesions. A

lesion is defined as a single connected component within the reference

segmentation. The bounding box of a lesion is defined as the smallest

volume 3D box containing the lesion with dimensions parallel to the axes505

of the global coordinate system.

• Subject volume dependent DSC (DSCs): The DSC for subjects separated

into groups corresponding to very low (< 5 ml), low (5-10 ml), medium
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(10-15 ml) and high (>15 ml) lesion volume according to reference seg-

mentations.510

3.3. Compared methods

• LGA: One of the methods available in the Lesion Segmentation Toolbox.

LGA (Schmidt et al. (2012)) is an unsupervised method which requires

both a T1-w and a FLAIR image. The T1-w image is used to create a

tissue type segmentation using an expectation maximisation approach.515

These tissue maps are propagated to the FLAIR image and used to create

an initial lesion belief map which is binarised using a tunable threshold,

κ. The authors suggest a κ value of 0.3, although they strongly encour-

age that this value be optimised for a particular dataset. The resulting

segmentation is used as a seed for a region growing algorithm. The out-520

put of the algorithm is a probabilistic lesion map which must then be

thresholded. Parameters (suggested): κ (0.3), threshold (0.5).

• LPA: The second algorithm available in the LST. LPA is a supervised

algorithm which has been trained on 53 subjects with severe MS lesion

patterns, and requires only a FLAIR image. A number of covariates for525

a logistic regression model are derived from the FLAIR image including a

lesion belief map similar to the one produced by LST-LGA. The trained

model in then used to assign a lesion probability estimate for each voxel,

which is thresholded. Despite being supervised, the fact the model has

been previously trained means it can be directly applied without requiring530

a training set. Parameters (suggested): threshold (0.5).

• LesionTOADS (Shiee et al. (2010)): This unsupervised algorithm intro-

duces lesion segmentation to a previously developed structural segmenta-

tion method - TOpology-preserving Anatomical Segmentation (TOADS)

- by incorporating an additional lesion class. TOADS performs iterative535

segmentation driven by both statistical and topological atlases to ensure

intensity and topological constraints are observed. LesionTOADS intro-
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duces a new class within the WM, with the union of the lesion and WM

class following the same topological constraints as the original WM class.

The algorithm requires both a T1-w and FLAIR image and outputs both540

a lesion and structural segmentation.

For each method, we performed experiments using both default parameters

and optimised parameters based upon a grid search across one or two parameters

which maximised DSC. For the proposed method these parameters relate to the

CRF, with the default parameters being those suggested in the CRF implemen-545

tation (available at8) adjusted for an isotropic voxel grid. During optimisation,

two parameters were varied. w(2) adjusts the relative weighting between the

two CRF energy terms, and σγ determines how strongly homogeneity within

the segmented region is enforced. Average subject-wise metrics and correla-

tions for each method can be seen in Table 2, whilst volume dependent metrics550

for the optimal parameters can be seen in Tables 4 and 3. Significance testing at

a 5% significance level was performed using paired Wilcoxon signed rank tests

on subject wise metrics, and by comparing 95% confidence intervals for ICC.

We were able to successfully run LPA and the proposed method on all sub-

jects, however LGA and LesionTOADS failed to run on two and three subjects555

respectively. Intercranial volume was also unavailable for two subjects. Re-

sults are given across all subjects for which the method was successful, whereas

comparisons between methods were only taken across subjects which were suc-

cessfully processed across both methods.

We also analysed the results by grouping subjects into the three acquisition560

protocols and computing the average DSC over each protocol, giving further

insight into the strengths and weaknesses of each method, Table 5.

3.4. Clinical validation

In addition to the above quantitative evaluation, we also carry out a clinical

validation by examining the coefficients of a general linear model formed from565

8github.com/Kamnitsask/dense3dCrf
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the normalised segmentation volumes of each method and a number of clinical

and radiological variables. These coefficients are then compared to those formed

from a model relating the variables to the reference segmentations. The models

are composed as such:

V ol%method
i =β0 + β1 Agei + β2 Genderi + β3 Diabetesi +

β4 Hypertensioni + β5 Hyperlipidaemiai + β6 Smokingi +

β7 Cholesteroli + β9 PV SBGi + β9 DeepAtrophyi + εi,

(3)

where V ol%method is the lesion segmentation volume for each method as a570

percentage of intercranial volume, i indicates a particular subject, Diabetes,

Hypertension and Hyperlipidaemia are binary variables, Smoking is an inte-

ger (range [0,2] -never smoked, used to smoke, smokes), Cholesterol (mmol/L),

PV SBG is a radiological observation reflecting the number perivascular spaces

in the basel ganglia (Potter et al. (2015)), DeepAtrophy is a radiological ob-575

servation reflecting the degree of deep cortical atrophy (Farrell et al. (2009)), ε

is a residual error term and β is the set of coefficients which minimises
∑
i εi.

Gender is included to remove bias but is not considered a risk factor and there-

fore not reported.

The strength of association between each clinical or radiological variable and580

the lesion volume produced by each method were measured by conducting a t-

test for each coefficient βi under the hypothesis that βi = 0. By setting a 5%

significance level, the set of variables which have the strongest association with

the measured lesion volume was found for each method.

An additional set of models were formed by replacing PV SBGi in Equation585

3 with Fazekasi, being the combined Fazekas score for subject i. Whilst ex-

pected to be strongly associated, comparing the β9 coefficient calculated for each

automated method to that calculated for the reference segmentations provides

a further indicator as to which methods more accurately model the process of

producing the reference segmentations.590
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Note that evaluation is carried out across only the subjects (n = 96) for

which all clinical and radiological variables are available.

4. Results and Discussion

When comparing methods it is necessary to understand the aims and limita-

tions of each algorithm. The methods contained in the LST were developed to595

segment MS lesions, while LesionTOADS aims to segment both WMH and MS

lesions. These methods are therefore only interested in lesions within the WM,

and restrict their search to reflect this using a WM tissue segmentation. On the

other hand, our proposed method aims to segment all hyperintense lesions on

FLAIR, including WMH, MS lesions, and cortical infarcts, and as such, cannot600

restrict the search to the WM. Both approaches have advantages and disadvan-

tages, which are reflected in the results and discussed in the following sections.

The main advantage of restricting the search to the WM is that it avoids false

positives occurring in the GM. This is important as GM can have a similar in-

tensity distribution to WMH and MS lesions on FLAIR, and can therefore be a605

considerable source of false positives. The obvious drawback is that such meth-

ods will struggle to identify cortical infarcts. Figure 13 shows some example

segmentations demonstrating the consequences of these approaches.

4.1. Whole dataset analysis

When considering the dataset as a whole, Table 2 shows that the proposed610

method generally outperforms the existing methods, with significant improve-

ments in DSC, ASSD and ICC. Despite being developed for and trained on

MS lesions, LPA performs very well, and is the closest competitor across these

metrics, with a significantly superior HD. This superior HD can be explained

by the reduced likelihood of false positives in the GM when compared to the615

proposed method, as discussed earlier. Any tendency towards false positives far

away from real lesions, such as in the GM, will be strongly punished by HD.

LesionTOADS and LGA both fall well short of LPA and the proposed method.
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Table 2: Table showing the results of each method over the whole dataset. Optimal parameter

combinations indicated by *. Statistical differences between the closest competitor (optimised

LPA) and the proposed method at a 5% significance level are bold. For comparison, correlation

between ground truth volumes and Fazekas scores is 0.829.

Method Parameters DSC ASSD HD Prec. Recall ICC Faz. Corr.

LGA
κ = 0.3

t = 0.5
0.382 5.77 48.6 0.925 0.265 0.693 0.782

LPA t = 0.5 0.536 2.60 37.3 0.926 0.416 0.874 0.846

LesionTOADS 0.497 2.74 34.3 0.667 0.498 0.488 0.358

LGA
κ = 0.11*

t = 0.01*
0.473 4.54 39.9 0.698 0.403 0.836 0.767

LPA t = 0.15* 0.683 1.62 33.3 0.759 0.681 0.952 0.805

Proposed
w(2) = 8*

σγ = 2.5*
0.703 1.23 38.6 0.763 0.695 0.985 0.862

It is clear that the suggested thresholds of 0.5 and κ of 0.3 result in consider-

able under segmentation and overall poor results. It is however interesting to620

observe that these methods do achieve high correlations with Fazekas scores de-

spite lower performance compared to ground truth segmentation. This suggests

that a fully accurate segmentation may not be necessary to predict a Fazekas

score. The proposed has the strongest correlation with Fazekas scores (0.862),

which is stronger that of the reference segmentations (0.829), though with a625

p-value of 0.18, we cannot say conclusively that the automated method outper-

formed the reference segmentations in this regard. Similarly the power (56%,

non-parametrically estimated through bootstrapping) of the DSC comparison

between LPA and the proposed method suggests that additional data would

help to strengthen our conclusions.630

The relative performance of each method compared to one another indicated

by these results are further supported by the scatter and Bland-Altman plots

shown in Figures 14 to 17. We see a clear visual improvement going from

LesionTOADS to LGA, to LPA, and to the proposed method, along with an

improvement in the associated metrics. A common feature of LesionTOADS,635
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Table 3: Lesion volume dependent DSC (DSCl) for each optimised method. Statistical dif-

ferences between the closest competitor (optimised LPA) and the proposed method at a 5%

significance level are bold.

Method <0.01 ml 0.01-0.1 ml 0.1-1 ml 1-10 ml >10 ml

LesionTOADS 0.077 0.155 0.333 0.514 0.629

LGA 0.024 0.048 0.214 0.467 0.599

LPA 0.094 0.198 0.496 0.691 0.797

Proposed 0.150 0.335 0.577 0.713 0.807

Table 4: Subject volume dependent DSC (DSCs) for each optimised method. While the

proposed method obtains the largest DSCs values, the differences with the closest competitor

(optimised LPA) are not significant.

Method <5 ml 5-10 ml 10-15 ml >15 ml

LesionTOADS 0.157 0.440 0.426 0.614

LGA 0.343 0.334 0.374 0.577

LPA 0.558 0.615 0.569 0.762

Proposed 0.576 0.628 0.666 0.770

LPA and LGA is a tendency to underestimate lesion volumes at larger lesion

loads, whilst the proposed method appears unaffected. One contributory factor

towards this could be our intensity normalisation procedure which we chose so

as to be unaffected by lesion load.

4.2. Volume specific analysis640

When we divide the data set into subsets with different lesion volumes we

see that the proposed method performs better across all subsets. Whilst indi-

vidually not significant at a 5% level due to the lower power of the subsets, the

consistency of these result leads to the significantly higher DSC observed in Ta-

ble 2. We also observe the trend that DSC increases as lesion volume increases,645

shown in Table 4. This is an expected result, and one which has been frequently
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observed (Griffanti et al. (2016)). A similar trend is observed when examining

results on individual lesions in Table 3. The smaller the lesion, the lower the

expected DSC. This is a feature of DSC and can be explained by a number of

factors. First, the larger lesions present in subjects with a high total volume of650

lesions have a higher ratio of internal to boundary voxels. Internal voxels tend

to be more hyperintense and have more support from adjacent voxels, leading

to easier segmentation. Secondly, smaller lesions tend to be less hyperintense,

reducing the contrast with surrounding tissue, making them harder to segment.

Finally if we assume a rate of false positives due to noise or artifacts indepen-655

dent of total lesion volume, these will have a much larger impact on the DSC

for subjects with a low total lesion volume than those with a high total lesion

volume where the potential for true positives to counter the effects of the false

positives is much greater.

A consequence of the above is that the overall DSC reported in Table 2 is660

dominated by the ability of the algorithm to detect large lesions. Over 80% of

the total volume of lesions belong to lesions with a size >1 ml, and over 95%

belong to lesions> 0.1 ml. However, small but strategically placed lesions can be

clinically vital and the ability to detect these should form part of the evaluation

of an algorithm. The results in Table 3 allow us to compare the performance of665

each method on differing sizes of lesion. We observe that whilst the proposed

method and LPA get similar results on the larger lesions, the proposed method

performs much better than the other methods at detecting smaller lesions.

4.3. Protocol specific analysis

It is possible to gain further insight into the merits of each method by looking670

at the results over each of the three protocols present in the dataset, allowing

for more direct comparisons between the methods. It is important to remember

that subdividing the dataset in this way leads to in a loss of sample power.

Whilst the lower sample size is offset by stronger differences between LPA and

the proposed method in the cases of protocols 2 and 3 (power = 74% and 57%675

respectively), these are still lower than desired and the small sample size for
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Table 5: Table comparing average DSC for each method on images belonging to each proto-

col. Statistical differences between the closest competitor (optimised LPA) and the proposed

method at a 5% significance level are bold.

Protocol 1 2 3

LesionTOADS 0.431 0.535 0.445

LGA 0.322 0.453 0.568

LPA 0.688 0.678 0.690

Proposed 0.645 0.710 0.719

protocol 1 leads to a power of just 2%. As such the results should only be

considered along with other factors, such as algorithm design, to lend support

to hypotheses regarding the strengths and weaknesses of each method.

Images acquired under protocols 1 and 3 contain only WMHpvo and are680

therefore ideal cases for both LST methods and LesionTOADS due to the lack

of cortical infarcts. On the other hand, images acquired under protocol 2 can

contain both WMH and cortical infarcts, the latter being more likely to be

segmented by the proposed method. The results in Table 5 suggest that LPA

performs better on protocol 3 than on protocol 2, whilst the metrics for the685

proposed method are similar between the two protocols. This supports the

hypothesis that LPA suffers in the presence of cortical infarcts.

Protocol 3 allows for a direct and fair comparison between the methods, as it

does not contain cortical infarcts and is therefore not biased against the meth-

ods which only search in WM. Despite this, the proposed method significantly690

outperforms the other methods on protocol 3, indicating the superior results

seen across the full dataset are not simply due to the ability to detect cortical

infarcts.

However, both the proposed method and LGA perform worse on protocol

1 than protocols 2 and 3, whereas LPA performs equally well on protocols695

1 and 3. Whilst the power of the comparison is extremely small, there are

compelling reasons why LGA and the proposed method might not perform as
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well on protocol 1 as protocol 3. While LPA uses only the subject’s FLAIR

image, LGA and the proposed method use both T1-w and FLAIR. The FLAIR

acquisition protocol differs very little across the three protocols, however the700

T1-w acquisition does. The T1-w images acquired under protocol 1 come from a

spoiled gradient echo sequence, as opposed to the magnetisation prepared fast

gradient echo sequence used in protocols 2 and 3. This leads to lower contrast

T1-w images in protocol 1, and a negative effect on the results of the two methods

which use T1-w images.705

Finally, recent work (Haller et al. (2016)) has shown that protocol specific

MR parameters can systematically bias the results of automated volume estima-

tion of a number of brain structures by 4-5%. We must therefore consider the

possibility of a similar effect could being present when estimating lesion volume.

Whilst this is hard to observe from the results, given that the three protocols710

differ by more than just MR parameters, it should be considered as a potential

contributory factor to explain the differences between the results from protocol

1 and those from 2 and 3.

4.4. Clinical Validation

Looking for associations between clinical and radiological measurements and715

calculated lesion volumes provides an alternative way to compare methods.

Whilst the dataset we use contains a variety of pathologies and degrees of ab-

normality, and as such we do not expect to find strong associations with all risk

factors, comparing what associations are found to those found using the refer-

ence segmentations provides confirmation that the methods we are comparing720

produce segmentations with the same distribution across subjects.

Figure 6 shows that there is a strong association between the reference seg-

mentation volumes and perivascular spaces in the basel ganglia, deep atrophy

and diabetes. This pattern is reflected in the results from LPA and the proposed

method, suggesting good correspondence between these segmentations and the725

reference. The results from LGA agrees with two out of the three associations,

but also suggests an association with cholesterol with is not present in the refer-
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Table 6: P-Values of the coefficients found using the model shown in Equation 3 . Bold

indicates statistical significance of the coefficients from 0 at a 5% level.

WMH Reference LGA LPA Proposed LesionTOADS

Age 0.82 0.88 0.11 0.55 5× 10−3

Diabetes 0.03 0.45 0.01 0.02 0.71

Hypertension 0.28 0.09 0.22 0.39 0.11

Hyperlipidaemia 0.37 0.87 0.24 0.29 0.78

Smoking 0.63 0.27 0.40 0.27 0.78

Cholesterol 0.95 0.04 0.12 0.11 0.53

PVSBG 4× 10−13 7× 10−7 2× 10−9 2× 10−8 0.13

DeepAtrophy 0.02 2× 10−5 3× 10−5 6× 10−4 0.40

ence. The results from LesionTOADS find only an association with age, sharing

no associations with that of the reference. These results are in keeping with our

previous observations, reinforcing the belief that LPA and the proposed method730

both produce more accurate segmentations than the other two.

The coefficients in Figure 7 suggest that an increase in 1 in the combined

Fazekas score is associated with an increase in reference lesion volume of 0.649.

This association is most similar to that found from segmentations from the

proposed method (0.717), with those from LPA (0.555) also similar. Again,735

LGA is next closest, followed by LesionTOADS.
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Table 7: Coefficients of found using the model show in Equation 3 with Fazekas in place of

PV SBG. Bold indicates coefficients which are significantly different from 0 at a 5% level.

WMH Reference LGA LPA Proposed LesionTOADS

Age −3× 10−4 −5× 10−4 0.019 0.008 0.032

Diabetes 0.189 -0.083 0.477 0.248 -0.119

Hypertension 0.251 0.196 0.028 0.121 -0.118

Hyperlipidaemia -0.098 -0.065 -0.029 0.043 -0.103

Smoking -0.030 0.029 0.014 0.033 0.003

Cholesterol 0.107 -0.026 0.017 0.028 0.077

Fazekas 0.649 0.320 0.555 0.717 0.150

DeepAtrophy 0.002 0.012 0.013 0.010 -0.002
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Figure 13: A selection of segmentations showing the features of the proposed method and

LPA. (A) and (B) show cases where both methods perform well. (C) shows a case where the

proposed method produces false positive voxels (arrow) in the GM, not present in LPA which

does not consider GM. (D) shows a large infarct extending into the cortex where the extension

into the cortex (arrow) is poorly segmented by LPA. (E) shows a case where small lesions are

missed by LPA, despite considerable over segmentation (arrow).
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Figure 14: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage

of intercranial volume) from LesionTOADS to those from the reference segmentations.
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Figure 15: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage

of intercranial volume) from LGA to those from the reference segmentations.
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Figure 16: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage

of intercranial volume) from LPA to those from the reference segmentations.
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Figure 17: Scatter and Bland-Altman plots comparing of the lesion volumes (as a percentage

of intercranial volume) from the proposed method to those from the reference segmentations.
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5. Conclusion

We have presented a method for brain lesion segmentation through the use

of an image synthesis algorithm, regardless of underlying pathology. We have

shown that an apparently healthy FLAIR image can be synthesised from a sub-740

ject’s T1-w image, and that the differences between this synthetic FLAIR and

the real FLAIR can be combined with information from the real FLAIR to indi-

cate the location of lesions. The resulting segmentations are objectively superior

when compared to a ground truth to a number of established methods across

a range of clinically relevant metrics, including a particularly strong ability to745

detect smaller lesions. The results allow us to make the following conclusions:

• The proposed method significantly outperforms the existing methods on

a heterogeneous dataset across most metrics.

• The proposed method does particularly well in cases with cortical infarcts,

which are undetected by other methods.750

• One of the biggest advantages of the proposed method is its ability to

detect smaller lesions, something which, depending on the application,

could be clinically highly relevant.

• Whilst not catastrophic, a limitation of the proposed method is that it

requires both FLAIR and T1-w images, and any significant changes in T1-755

w acquisition protocols may negatively impact performance, see Table 5.

Future work will involve extending the framework to allow for the detection

of unexpected hypointensities, such as lacunar cavities, and other hallmarks

of SVD such as microbleeds and enlarged perivascular spaces. Modifying the

approach to more readily handle a variety of acquisition protocols will also make760

the method more robust. This could be achieved though an extension of the

regression model itself, or as a preprocessing step using sequence normalisation

(Roy et al. (2013)) which could also provide improved intensity normalisation.
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