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Genome-wide meta-analyses of stratified
depression in Generation Scotland and UK
Biobank
Lynsey S. Hall 1,2, Mark J. Adams 1, Aleix Arnau-Soler3, Toni-Kim Clarke1, David M. Howard 1, Yanni Zeng1,4,
Gail Davies5,6, Saskia P. Hagenaars 1,5,6, Ana Maria Fernandez-Pujals1, Jude Gibson 1, Eleanor M. Wigmore1,
Thibaud S. Boutin4, Caroline Hayward 4,7, Generation Scotland7, Major Depressive Disorder Working Group of the
Psychiatric Genomics Consortium, David J. Porteous 3, Ian J. Deary5,6, Pippa A. Thomson 3,6, Chris S. Haley4 and
Andrew M. McIntosh 1,6

Abstract
Few replicable genetic associations for Major Depressive Disorder (MDD) have been identified. Recent studies of MDD
have identified common risk variants by using a broader phenotype definition in very large samples, or by reducing
phenotypic and ancestral heterogeneity. We sought to ascertain whether it is more informative to maximize the
sample size using data from all available cases and controls, or to use a sex or recurrent stratified subset of affected
individuals. To test this, we compared heritability estimates, genetic correlation with other traits, variance explained by
MDD polygenic score, and variants identified by genome-wide meta-analysis for broad and narrow MDD classifications
in two large British cohorts - Generation Scotland and UK Biobank. Genome-wide meta-analysis of MDD in males
yielded one genome-wide significant locus on 3p22.3, with three genes in this region (CRTAP, GLB1, and TMPPE)
demonstrating a significant association in gene-based tests. Meta-analyzed MDD, recurrent MDD and female MDD
yielded equivalent heritability estimates, showed no detectable difference in association with polygenic scores, and
were each genetically correlated with six health-correlated traits (neuroticism, depressive symptoms, subjective well-
being, MDD, a cross-disorder phenotype and Bipolar Disorder). Whilst stratified GWAS analysis revealed a genome-
wide significant locus for male MDD, the lack of independent replication, and the consistent pattern of results in other
MDD classifications suggests that phenotypic stratification using recurrence or sex in currently available sample sizes is
currently weakly justified. Based upon existing studies and our findings, the strategy of maximizing sample sizes is
likely to provide the greater gain.

Introduction
Major Depressive Disorder (MDD) is a frequently dis-

abling, chronic disorder for which there is substantial
evidence of a genetic contribution to its liability1. Until

recently, the largest international mega-analysis of clini-
cally diagnosed MDD (9240 MDD cases and 9519 con-
trols) yielded no genome-wide significant findings2. Given
the success of similarly sized studies for other adult psy-
chiatric disorders3,4, this study suggested that MDD is an
extensively heterogeneous phenotype. This heterogeneity,
in addition to the relatively high prevalence and low
heritability of MDD, impacts substantially on the statis-
tical power to detect genetic effects1,5. Possible means of
improving statistical power include stratifying the
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phenotype into potentially more homogeneous subtypes,
or considerably increasing the sample size whilst accept-
ing a broader phenotype. Both of these approaches have
since identified associations between genetic variants and
MDD6–9.
A genome-wide association study (GWAS) from the

CONVERGE consortium identified two genome-wide
significant loci (chromosome 10q21.3 and 10q26.13)
using a severe depressive phenotype (5053 cases and 5337
controls) in female Han Chinese individuals, treated in a
hospital setting6. A subsequent study by the Psychiatric
Genomics Consortium (PGC) stratified the PGC MDD
mega-analysis sample2 by age of onset and identified a risk
conferring locus at chromosome 3q27.2 in individuals
with onset after 27 years of age9.
In contrast to the above study designs, two studies have

utilized larger sample sizes with less detailed structured
clinical assessments. The first of these studies came from
the CHARGE consortium and employed a quantitative
assessment of depressive symptoms using the Center for
Epidemiological Studies Depression Scale. In a combined
dataset of 51 258 individuals, a genome-wide significant
locus was identified at chromosome 5q21.27. More
recently, Hyde et al8 conducted a GWAS using 23andMe
data of self-reported depression in 45,773 cases and
106,354 controls, revealing 15 genome-wide significant
loci. The genetic correlation (rG) between the 23andMe
depression phenotype and the clinical phenotype reported
by the PGC was rG(SE)= 0.73(0.09), suggesting a strong
association between the additive genetic components of
each trait. Previous work comparing self-reported
depression and clinically defined MDD in Generation
Scotland: Scottish Family Health Study (GS:SFHS) also
provides evidence that these traits have substantially
overlapping common genetic architectures10.
The findings from these four studies support both

phenotypic stratification and increased sample size as
strategies which may help reveal the underlying archi-
tecture of MDD. The international collaborative efforts by
groups such as the PGC and the development of large-
scale biobanks with genetic and extensive phenotypic
information will ensure ever increasing sample numbers.
It is therefore timely to investigate the contrasting stra-
tegies that may be employed in the analysis of these
emerging datasets.
In the current study, we sought to compare these stra-

tegies by conducting a suite of genetic analyses for
depression and stratified subtypes in two UK-based
cohorts: GS:SFHS11,12 and UK Biobank (UKB)13,14. To
maximize the sample size, an unstratified analysis was
initially conducted. This used MDD diagnostic informa-
tion obtained at structured clinical interview15 in GS:
SFHS (2603 cases, 16,122 controls), and a probable MDD
phenotype obtained from a touchscreen questionnaire16,

previously validated by Smith et al17, in UKB (8248 cases,
16,089 controls). Subsequent analyses stratified the phe-
notype on the basis of recurrence or sex. Each approach
was evaluated using several metrics: the successful iden-
tification of variants reaching genome-wide significance in
GWAS meta-analysis, an increased SNP-based heritability
estimate, identification of significant genetic correlations
with other traits using LD score regression, and increased
variance explained by polygenic profile scores for MDD
derived from three independent cohorts. These metrics
aim to test whether basic stratification of the MDD phe-
notype improves etiological insight.

Materials and methods
This study analyzed data from Generation Scotland:

The Scottish Family Health Study (GS:SFHS), (data
available on request: http://www.generationscotland.co.
uk) and UKB, (data available on request: http://www.
ukbiobank.ac.uk). GS:SFHS received ethical approval
from the NHS Tayside Committee on Medical Research
Ethics (REC Reference Number: 05/S1401/89). UK Bio-
bank received ethical approval from the Research Ethics
Committee (REC Reference Number: 11/NW/0382). The
present analyses were conducted under UK Biobank data
application number 4844. All participants provided
informed consent.

Data and code availability
Data are available to qualified researchers on a cost-

recovery basis via online application processes, accessible
via www.gsaccess.org and www.ukbiobank.ac.uk/register-
apply/. The code used in these analyses is available on
request from the lead author.

Participants
Generation Scotland: The Scottish Family Health Study (GS:
SFHS)
GS:SFHS is a family and population-based study con-

sisting of 23,690 participants recruited via general medical
practices across Scotland. The recruitment protocol and
sample characteristics are described in detail else-
where11,12. Briefly, participants were over 18 years old,
and not ascertained on the basis of having any particular
disorder. A diagnosis of depression (MDD) was made
using the structured clinical interview for DSM-IV dis-
orders (SCID)15. Participants who answered yes to either
of the two screening questions were invited to continue
the interview, which provided information on the pre-
sence or absence of a lifetime history of MDD, age of
onset and number of depressive episodes. Participants
who answered no to both screening questions or who
completed the SCID but did not meet the criteria for
depression were assigned control status. Case definition
was further refined through NHS data linkage. Controls
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with a history of antidepressants or who had been referred
to a secondary psychiatric care centre (n= 1 072) were
excluded, as were cases who had received a previous
diagnosis of schizophrenia or bipolar disorder (n= 47).
This resulted in 2603 depression cases (of which 1289
were recurrent) and 16,122 controls. Stratification by sex
resulted in 1859 female cases, 9159 female controls, 770
male cases and 6958 male controls.

UK Biobank (UKB)
UKB13 is a population-based health research resource

consisting of approximately 500,000 people, aged between
40 and 69 years, who were recruited between the years
2006 and 2010 from across the UK14. Of these, 152,729
individuals were included in the first genotype data
release. In the current study we restricted the sample to
individuals of white British ancestry. Participants who
were also in GS:SFHS, their relatives and relatives of
remaining UKB participants (relatives: up to and includ-
ing third degree) were identified by a kinship coefficient ≥
0.0442, using the KING toolset18, and subsequently
excluded (n= 7 698). Depression case/control status was
assessed in 172,751 of the 500,000 individuals using a self-
diagnosed touchscreen questionnaire. Case status was
defined as either “probable single lifetime episode of
major depression” or “probable recurrent major depres-
sion (moderate and severe)”. Control status was defined as
“no mood disorder”, as described by Smith et al17. 149,847
individuals had sufficient data to allow an assessment of
case/control status. Individuals with probable bipolar
disorder (n= 1 615) or mild depressive/manic symptoms
(n= 26 847) were excluded. After exclusions outlined
above, this resulted in 8248 depression cases (of which
6056 were recurrent) and 16,089 controls. Stratification
by sex resulted in 5138 female cases, 7013 female controls,
3110 male cases and 9076 male controls. Further infor-
mation on sample collection, genotyping and assessment
of the depression phenotype in GS:SFHS and UKB are
provided in the Supplementary Methods.

Imputation and quality control
GS:SFHS
Autosomal genotype data were available for all GS:SFHS

individuals in the present study (n= 18 725). Genotypes
were imputed using the Haplotype Reference Consortium
reference panel (HRC.r1-1)19 via the Sanger Imputation
Server pipeline (https://imputation.sanger.ac.uk). Prior to
imputation, individuals with missingness ≥ 3% were
excluded, as were SNPs with a call rate of ≤98%, Hardy
Weinberg Equilibrium (HWE) P-value ≤ 1× 10−6, and a
minor allele frequency (MAF) ≤ 1%. Phasing of genotype
data was performed using the SHAPEIT2 algorithm20

utilizing the duoHMM option, which refines phasing by
utilizing pedigree information. Imputation was performed

using PBWT software21. Multi-allelic variants, mono-
morphic variants and SNPs with an imputation INFO
score< 0.8 were removed22. Population outliers (more
than 6SDs from the mean of the first principal component
(PC)) were identified and removed from the sample23, as
were one from each of 52 monozygotic twin pairs, iden-
tified by IBD (preferentially retaining cases), and 7 indi-
viduals who matched samples from the Psychiatric
Genomics Consortium, identified using genotype check-
sums24. After imputation, individuals with missingness ≥
2%, and genotype with a call rate of ≤98%, MAF ≤ 0.5%
and HWE P-value ≤ 1E-05 were excluded using PLINK
version 1.9.25,26. Strand ambiguous SNPs with 40% ≤
MAF ≤ 50% were also excluded.

UKB
Autosomal genotypes were available for all UKB indi-

viduals in the present study (n= 24 337). Pre-imputation
QC, phasing and imputation are described elsewhere27. In
brief, prior to phasing, multiallelic SNPs or those with
MAF ≤ 1% were removed. Phasing of genotype data was
performed using a modified version of the SHAPEIT2
algorithm28. Imputation to a reference set combining the
UK10K haplotype and 1000 Genomes Phase 3 reference
panels29 was performed using IMPUTE2 algorithms30,31.
A further QC protocol was then applied at the Wellcome
Trust Centre for Human Genetics before the data was
released, as described elsewhere32. The analyses presented
here were restricted to autosomal variants with an
imputation INFO score ≥ 0.9 and MAF ≥ 0.5%.
Of the SNPs which passed QC in each dataset, only

SNPs in common between both datasets were used in
subsequent analyses, with allele and strand in GS:SFHS
harmonized to be consistent with UKB, resulting in
7,105,178 autosomal SNPs.

Statistical analysis
All analyses present here were performed on four sub-

sets of the data: all available cases and controls (MDD), all
controls and recurrent cases (rMDD), female controls and
cases (fMDD), and male controls and cases (mMDD). The
total sample size for each depression subgroup was n= 43
062 for MDD, n= 39 556 for rMDD, n= 23 169 for
fMDD and n= 19 886 for mMDD. The number of cases
and controls and demographic information for these
subsets are shown in Supplementary Table 1.

Association analysis
GS:SFHS
GWAS of MDD, rMDD, fMDD and mMDD in GS:

SFHS were conducted using mixed linear model based
association (MLMA) analysis33, implemented in GCTA
(v1.25.)34. To account for population structure, two
genomic relationship matrices (GRMs) were used, as this
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method allows the inclusion of closely and distantly
related individuals in genetic analyses35. The first GRM
included pairwise relationship coefficients for all indivi-
duals. The second GRM had off-diagonal elements<
0.05 set to 0. GRMs were created using the mixed linear
model with candidate marker excluded (MLMe)
approach, where GRMs are calculated excluding SNPs
located on the chromosome under analysis33. No fixed
effects covariates were fitted in this analysis as sex was
being assessed as a stratifier, and the two GRMs ade-
quately accounted for population stratification (tested
using univariate LD Score Regression36). MLMA employs
restricted maximum likelihood methods on the linear
scale. As such, test statistics (betas and their corre-
sponding standard errors) were transformed to Odds
Ratios and their corresponding 95% Confidence Intervals
on the liability scale using a Taylor transformation
expansion series37,38. Further details of GWAS can be
found in the Supplementary Methods.

UKB
GWAS of MDD, rMDD, fMDD, and mMDD in UKB

were conducted using logistic regression, implemented in
PLINK v1.925. Assessment centre, genotype array and
batch were fitted as fixed effects. The first 8 PCs (out of
15) supplied by UKB were also fitted, as visual inspection
indicated that these PCs resulted in multiple clusters,
indicating structure in the data.

Meta-analysis, variant look-up and gene-based analysis
The meta-analysis of GS:SFHS and UKB was conducted

using the classical inverse-variance approach, which
weights effect sizes by sampling distribution, imple-
mented in the METAL package39. SNPs with a meta-
analysis P-value of P ≤ 1E-05 were subjected to clump-
based linkage disequilibrium pruning using PLINK25

using an LD r2 cut off of 0.1 and a 500 kb sliding window
to create SNP sets of approximately independent “lead
SNPs”. All SNPs which surpassed genome-wide sig-
nificance were entered into the NHGRI-EBI catalog of
published GWAS40,41 (www.ebi.ac.uk/gwas/) to observe
whether these SNPs had been previously observed in
association analysis.
Gene-based analysis was performed for MDD, rMDD,

fMDD, and mMDD using MAGMA42. The gene-based
statistics were derived using the summary statistics from
each meta-analysis. Genetic variants were assigned to
genes based on their position according to the NCBI 37.3
build, with a gene boundary defined by an extended
region between 20 kb upstream of transcript start site and
20 kb downstream of transcript end site for each of the
genes. This resulted in a total of 18 111 genes for MDD,
fMDD, and mMDD, and 17,225 genes for rMDD being
analyzed. The European panel of the 1000 Genomes data

(phase 1, release 3) was used as a reference panel to
account for linkage disequilibrium43. A genome-wide
significance threshold for gene-based associations was
calculated using the Bonferroni method (α= 0.05/18 111;
P< 2.76× 10−6 for MDD, fMDD and mMDD; α= 0.05/
17 225; P< 2.90× 10−6 for rMDD).

Pathway and functional genomic analyses
Pathway and functional genomic analyses were per-

formed using the GWAS results for each of the MDD
meta-analyses. These included DEPICT analyses44, refer-
ence to RegulomeDB45 (http://www.regulomedb.org/)
and to the Genotype-Tissue Expression Portal (http://
www.gtexportal.org) for independent SNPs with P<
1.0× 10−5 and all genome-wide significant SNPs (P<
5.0× 10−8, nSNPs= 6). Further information on pathway
and functional genomic analysis can be found in the
Supplementary Methods.

Heritability, polygenicity and cross-trait genetic
correlations
Univariate GCTA-GREML46 analyses were used to

estimate the proportion of variance explained by all
common (MAF> 1%) SNPs for each of the depression
phenotypes. A relatedness cutoff of 0.05 was used in the
generation of the genetic relationship matrix, as including
close relatives inflates heritability estimates47. This did not
alter the sample size in UKB due to previous sample fil-
tering, however in GS:SFHS this reduced the sample size
by 38.5–58.4% (Supplementary Table 15). In GS:SFHS, the
first 20 PCs were fitted as fixed effects. In UKB, batch,
recruitment centre and the first 8 PCs were fitted. Uni-
variate Linkage Disequilibrium Score regression (LDSR),
implemented in LD Score (v1.0.0.)36, was applied to
GWAS summary statistics to evaluate the proportion of
inflation in the test statistics caused by confounding bia-
ses, such as population stratification, relative to genuine
polygenicity. This method also provides an estimate of
SNP-based heritability. Pre-computed LD Scores were
used, estimated from the European-ancestry samples in
the 1000 Genomes Project43. To obtain heritability esti-
mates on the liability scale, sample and population pre-
valence estimates were used. Sample prevalence estimates
were calculated as the proportion of cases in each subset.
Population prevalence estimates were derived from the
literature48–50. Prevalence estimates used in GCTA-
GREML and LDSC are given in Supplementary Table 1.
Genetic correlations between meta-analyzed depression
subgroups and 200 health-related traits were calculated
using bivariate LDSR51, implemented in the LD Hub
software52. Traits derived from non-Caucasian or mixed
ethnicity samples were removed prior to analysis. False
discovery rate (FDR) correction was applied across the
800 tests to correct for multiple testing53.
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Polygenic profiling analysis
To test the association of MDD-associated alleles with

each subtype of MDD in GS:SFHS and UKB, summary
statistics for major depressive disorder from the Psy-
chiatric Genomics Consortium (minus GS:SFHS, n= 50
455 cases, 105,411 controls; minus UKB, n= 43 204 cases,
95,680 controls)54, UKB and GS:SFHS (from the current
study) were used to provide weights for polygenic profile
scores (PGS).
PGS for GS:SFHS and UKB individuals were derived at

5 GWAS P-value thresholds (PT< 0.01,< 0.05,< 0.1,<
0.5 and all SNPs) using PRSice55. Genotyped SNPs (with
MAF> 1%) were subjected to clump-based linkage dis-
equilibrium (LD) pruning, using an LD r2 cut off of 0.25
and 200 kb sliding window to create SNP sets in
approximate linkage equilibrium. PGS were then stan-
dardized to have a mean of zero and a unit standard
deviation.
In GS:SFHS, the associations between PGS and MDD,

rMDD, fMDD, and mMDD were tested using a mixed
linear model, covarying for the first 20 PCs to account for
population stratification. Prior to this analysis, the requi-
site number of PCs was established using a stepwise linear
regression approach, adding one PC at a time, and using a
likelihood-ratio test (LRT), the output of which was
assessed against a mixed 0.5(χ2)+ 0.5(0) distribution56.
An additive genetic component was fitted as a random
effect to account for the increased relatedness within GS:
SFHS. To ensure that common environment was ade-
quately modeled, models incorporating shared parent-
offspring, sibling, and spousal environmental components
as additional random effects were tested using a stepwise
LRT approach, however no environmental component
improved model fit. Further details of mixed linear model
selection are provided in the Supplementary Methods. F-
statistics, degrees of freedom, effect sizes, Z-scores and P-
values were derived using the Wald Conditional F-test57,
in ASReml-R58.
In UKB, the association between PGS and MDD,

rMDD, fMDD, and mMDD was tested in a generalized
linear model framework by regressing the PGS onto the
phenotype, covarying for assessment centre, genotype
array and batch and the first eight PCs.
FDR correction was applied across the 80 tests to cor-

rect for multiple testing53. For both GS:SFHS and UKB,
trait variance explained by the PGS was calculated using:
(var(x× β))/var(y), where x was the standardized PGS, β
was the corresponding regression coefficient and y was
the phenotype59.

Results
Meta-analysis of depression in GS:SFHS and UKB
One genomic region on chromosome 3p22.3 achieved

genome-wide significance in the males only case/control

(mMDD) analysis (index SNP rs4478037, β(SE)= 0.29
(0.05), P= 2.29× 10−8). None of the SNPs achieving
genome-wide significance (nSNPs= 6) associated with
any phenotype in currently published GWAS available via
the NHGRI-EBI catalog. One variant (rs7613051) within
the local genomic region (defined 3:33000000–33200000)
has previously shown an association with Atopic derma-
titis60, however this SNP is not in LD with the genome-
wide significant SNPs (r2< 0.1). Meta-analysis of MDD,
rMDD, and fMDD did not yield any genome-wide sig-
nificant findings. Manhattan plots are shown for each trait
in Fig. 1, and summary statistics for independent loci with
a meta-analysis association P ≤ 1× 10−6 are shown in
Table 1. A regional association plot for genome-wide
significant index SNP, rs4478037, is shown in Fig. 2.
Regional association plots for this SNP in other depres-
sion subtypes are shown in Supplementary Figure 4,
demonstrating that this locus does not replicate in any
other depression subtype (minimum P= 8.05× 10−4 in
MDD, β(SE)= 0.10(0.05)). Full details of all independent
loci used in downstream analyses (P ≤ 1× 10−5) are
shown in Supplementary Tables 4-11. The QQ plots
(Supplementary Figure 3) demonstrate λGC ranged
from 1.02–1.06, comparable to the value (1.056) observed
in the PGC mega-analysis of MDD2. Univariate LDSR
analyses estimated that meta-analyzed MDD subtypes
had mean chi-squared statistic (μχ2) values ranging
from 1.018 (mMDD) to 1.062 (MDD) with a Ratio,
defined as (Intercept-1)/(μχ2-1), ≤ 0.35 across subtypes,
indicating that any inflation in μχ2 can be attributed to
polygenicity rather than residual population
stratification36.

Gene based analysis of MDD subtypes
Three genes at chromosome 3p22.3 (CRTAP, GLB1,

and TMPPE) were significantly associated with mMDD
after Bonferroni correction (Supplementary Table 12).
Whilst CRTAP and GLB1 have not previously shown
association with psychiatric disorders, both genes are
members of the CNTN1 PPI subnetwork. This subnet-
work contains CNTN1, which encodes a protein that
may play a role in the formation of axon connections in
the developing nervous system61. Furthermore, the
CNTN1 PPI subnetwork also contains HTR1A, which
encodes a serotonin (5-HT) receptor subtype that binds
endogenous 5-HT62. To assess whether significant asso-
ciation of these 3 genes was due to LD in the region, the
meta-analysis of MDD in males was re-run conditional on
SNPs with an R2> 0.9 with the top ranking SNP,
rs4478037. This analysis, implemented in GCTA
(v1.25)34, indicated that the signal was being driven by LD
across the region (Supplementary Figure 5). There were
no significant gene-based associations with MDD, rMDD
or fMDD.
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Pathway and functional genomic analyses
Gene set enrichment analysis of SNPs with meta-

analysis P ≤ 1× 10−5, as implemented in DEPICT,

indicated a role for two gene sets at FDR< 0.05 in mMDD
(Supplementary Table 13): GO terms carboxylic acid
binding and CNTN1 PPI subnetwork. No other

Fig. 1 Manhattan plot of P-values from SNP-based association meta-analysis of all depression cases and controls (MDD, n = 43 062), recurrent only
cases and all controls (rMDD, n = 39 556), females only cases and controls (fMDD, n = 23 169) and males only cases and controls (mMDD, n = 19 886).
The blue line indicates the threshold for genome-wide significance (P < 5 × 10-8), the red line indicates the threshold for suggestive significance (P <
1 × 10-5)

Hall et al. Translational Psychiatry  (2018) 8:9 Page 6 of 12



Table 1 Summary statistics for SNPs with association P-value≤ 1 × 10−6 for depression (MDD), recurrent depression
(rMDD), depression in females only (fMDD) and depression in males only (mMDD), sorted within phenotype by genomic
positions according to UCSC hg19/NCBI Build 37

Trait SNP CHR POS A1/A2 Freq β(se) P Direction Genes

MDD rs56390503 4 187552576 T/C 0.11 0.13 (0.03) 9.08E–07 ++ FAT1

rs2964802 5 10820843 T/C 0.28 0.09 (0.02) 6.73E–07 ++ -

rs11033303 11 35871266 A/G 0.37 0.09 (0.02) 2.37E–07 ++ -

rMDD rs2291479 3 178174944 A/C 0.4 −0.10 (0.02) 9.65E–07 -- -

rs10959631 9 11220986 T/C 0.2 −0.12 (0.02) 8.34E-07 -- -

rs11033303 11 35871266 A/G 0.37 0.11 (0.02) 6.02E–07 ++ -

rs4438172 13 111448658 A/T 0.25 0.11 (0.02) 8.72E–07 ++ -

fMDD rs9648182 7 13794849 A/T 0.12 −0.17 (0.03) 9.14E–08 -- -

rs17176546 7 81880914 A/G 0.04 0.26 (0.05) 7.93E–07 ++ CACNA2D1

mMDD rs115736167 1 155266609 C/G 0.02 −0.46 (0.09) 1.54E–07 -- PKLR

rs4478037 3 33160407 A/G 0.08 0.29 (0.05) 2.29E–08 ++ CRTAP

rs113485090 11 73572495 A/G 0.04 -0.32 (0.06) 2.05E-07 -- MRPL48

rs1380551 15 24124704 A/G 0.15 -0.18 (0.04) 3.96E-07 -- -

Column A1/A2 contains the reference and alternate alleles for the index SNP, respectively. The meta-analysis minor allele frequency (Freq) and regression coefficient
(β) columns pertain to the reference allele (A1). Chr and Position denote the location of the index SNP. SE is the standard error for β. The direction of effect of the
index SNP in GS:SFHS and UKB is shown in the Direction column. The final column, Genes, indicates protein-coding reference sequence genes within 10 kb of the
associated loci

Fig. 2 Regional association plot for rs4478037, an intronic SNP in CRTAP, and the top ranking SNP (rs4478037, P = 2.37 × 10-8) in GWAS of depression
in males only
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significant results were observed for tissue enrichment or
gene prioritization across MDD definitions.
Using the GTEx database (http://www.broadinstitute.

org/gtex/), 25 multi-tissue cis-eQTL associations were
identified for 16 independent lead SNPs with meta-
analysis P< 1× 10−5 (Supplementary Tables 4, 6, 8, 10,
and 14). The 5 genome-wide significant SNPs identified
for mMDD show eQTL evidence for the genes GLB1 and
CRTAP. Random effect meta-analysis of multi-tissues for
the most significant mMDD SNP, rs447803, yielded P=
3.58× 10−9 and 8.45× 10−29 for GLB1 and CRTAP,
respectively. For this study, data mining of regulatory
elements was restricted to normal cell lines/tissues. There
was evidence of regulatory elements (Regulome DB score
< 4) for 6 of the lead SNPs with meta-analysis P ≤ 1×
10−5 (MDD: rs10736455, rs73249855, rs8050755; rMDD:
rs60716536; fMDD: rs11613048; mMDD: rs74002781). Of
the six SNPs which achieved genome-wide significance in
the meta-analysis of mMDD, 2 SNPs (rs11558338 and
rs6809511) showed evidence of transcription factor
binding, position weight matrix, histone modification,
DNase hypersensitivity, and FAIRE regulatory elements.
Evidence of regulatory evidence for all independent SNPs
with meta-analysis P ≤ 1× 10−5 are shown in Supple-
mentary Table 14.

Estimating SNP-based heritability and polygenicity
Using GCTA-GREML methods46, the SNP-based her-

itability (h2SNP) estimates in UKB were consistent and
significant across MDD subtypes, with h2SNP(SE) esti-
mates of MDD= 0.20(0.04); rMDD= 0.20(0.03); fMDD
= 0.22(0.06) and mMDD= 0.18(0.06). Due to the unre-
lated subset of individuals in GS:SFHS being markedly
smaller than the full sample (nmax= 7 795), the herit-
ability estimates were non-significant across all MDD
definitions. Results from GCTA-GREML are shown for
MDD subtypes in Supplementary Table 15. LDSR yielded
lower h2SNP estimates than GCTA-GREML methods
(Supplementary Table 16). This is to be expected as LDSR
utilizes summary scores, which have usually been sub-
jected to genomic control, as opposed to full SNP data.

Genetic correlation with health-related traits
Bivariate LDSR showed nominally significant (P< 0.05)

genetic correlations (rG) between meta-analyzed MDD
and 28 of the 200 health-related traits assessed. Of these, 8
traits survived multiple testing correction: neuroticism
(rG(SE)= 0.67(0.07); P= 7.06× 10−21), depressive symp-
toms (rG(SE)= 0.81(0.09); P= 1.72× 10−19), subjective
wellbeing (rG(SE)=−0.56(0.08); P= 9.12× 10−13), age at
first birth (rG(SE)=−0.35(0.05); P= 1.92× 10−10), major
depressive disorder (rG(SE)= 0.67(0.12); P= 4.57×
10−8), PGC cross-disorder analysis (rG(SE)= 0.46(0.09);
P= 8.60× 10−8), bipolar disorder (rG(SE)= 0.32(0.08); P

= 4.35× 10−5) and systemic lupus erythematosus (rG
(SE)= 0.28(0.08); P= 8.00× 10−4). These findings are
consistent with previously reported, well-established
relationships between MDD and neuroticism63–65, bipo-
lar disorder51,66, PGC cross-disorder66, depressive symp-
toms7,67 and subjective well-being68. Relationships
between MDD and age at first birth, and SLE have been
previously reported although these have been based on
phenotypic correlations69–71. The majority of these traits
(with the exception of age at first birth and systemic lupus
erythematosus) demonstrated rG of a similar magnitude,
direction and significance with recurrent and female
MDD. In contrast to these results, bivariate genetic cor-
relations between mMDD and health-related traits were
all non-significant after adjustment for multiple testing
(Supplementary Table 17). Summary statistics from uni-
variate and bivariate LDSR (Supplementary Tables 14 and
17) indicate that the lack of association between mMDD
and other health-related traits is due to reduced statistical
power, rather than a genuine sex difference. Univariate
LDSR of mMDD returned a mean χ2= 1.018, indicating
low power (as a minimum mean χ2= 1.02 is deemed
appropriate for LDSR72). In addition, the univariate LDSR
h2SNP(SE)= 0.05(0.03) for mMDD. The LDSR rG is cal-
culated as rG= ρg/

ffiffiffiffiffiffiffiffiffi

h2i h
2
j

q

where ρg is the genetic covar-
iance between traits, h2i is the heritability of trait i and h2j
is the heritability of trait j36. Near-zero h2 estimates can
therefore cause the rG estimate to become out of bounds
(rG> 1), as observed in three out of five nominally sig-
nificant traits, with large standard errors72, as observed in
all nominally associated traits. Fig. 3 shows the genetic
correlation of meta-analyzed depression subtypes with
significantly correlated health traits.

Polygenic profiling analysis
The GWAS results from the MDD phenotype in 3

discovery samples (PGC MDD29, UKB and GS:SFHS)
were used to build polygenic profile scores (PGS) in GS:
SFHS and UKB, incorporating SNPs with a discovery
sample association P-value cut-off of PT ≤ 0.01, PT ≤ 0.05,
PT ≤ 0.1, PT ≤ 0.5, and all SNPs (PT ≤ 1). Results from
PT ≤ 0.05 are shown in Fig. 4, as this PT explained the
most variance in the target datasets. Results from all PT
are shown in Supplementary Tables 18-21. PGS derived
using information from the PGC MDD29 GWAS yielded
significant associations between depression phenotype
and PGS across almost all thresholds in both GS:SFHS
and UKB (with the exception of mMDD at PT ≤ 0.01 in
GS:SFHS). PGS derived using information from the UKB
MDD GWAS yielded significant associations with MDD,
rMDD, and mMDD phenotypes in GS:SFHS at all
thresholds, however fMDD did not survive multiple
testing correction at any PT. PGS derived using informa-
tion from the GS:SFHS MDD GWAS yielded significant
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associations with MDD, rMDD, and fMDD phenotypes in
UKB at all thresholds, except PT ≤ 0.01—presumably due
to the low number of SNPs contributing to the score.
However, mMDD did not survive multiple testing cor-
rection at any PT. Across all associations, the largest

proportion of variance explained in GS:SFHS was 0.66%
for fMDD using the MDD polygenic score derived using
SNPs at PT ≤ 0.5 using weights from the PGC MDD29
GWAS. The largest proportion of variance explained in
UKB was 0.72% for fMDD, again using SNPs at PT ≤ 0.5
using weights from the PGC MDD29 GWAS.

Discussion
For many years, the depressed phenotype has been

refractory to genetic inquiry due to issues regarding sta-
tistical power. Recently, studies have successfully identi-
fied loci associated with depression by either substantially
increasing the sample size7,8 or by refining the phenotype
by illness course9, recurrence and sex6. In this study we
used techniques designed to interrogate complex traits to
ascertain whether maximizing the sample size (nmax=
43,062) or phenotypic stratification by recurrence or sex
was more advantageous for investigating the genetic
architecture of MDD, using data from two large UK
cohorts. Each MDD definition was evaluated using several
metrics: the successful identification of variants reaching
genome-wide significance in GWAS meta-analysis, an
increased SNP-based heritability estimate, identification
of significant genetic correlations with other traits using
LD score regression, and increased variance explained by
polygenic profile scores for MDD derived from three
independent cohorts.
For all analyses, MDD, recurrent MDD and MDD in

females returned similar results: overlapping SNP-based
heritability estimates; genetic correlations with consistent
magnitude of effect, direction, and significance with six
health-related traits; low trait variance explained (<1%)
and overlapping effect size estimates in polygenic profiling
analysis, and no genome-wide significant findings from

Fig. 3 Genetic correlation (rG) between meta-analyzed MDD subsets
and other health-related traits, derived using GWAS summary statistics
and LD score regression. Traits presented showed a significant rG with
MDD subsets after multiple testing correction (FDR p≤ 0.05) and are
coloured by category (personality, psychiatric, reproductive and
autoimmune). No rG between mMDD and other health-related traits
survived multiple testing correction

Fig. 4 Heat map of associations between the polygenic profiles scores
(PGS) for major depressive disorder (MDD), derived from Psychiatric
Genomics Consortium (PGC) MDD29, UK Biobank (UKB) and
Generation Scotland: The Scottish Family Health Study (GS:SFHS), and
MDD subsets in UKB and GS:SFHS. Stronger associations are indicated
by darker shades. The amount of variance (%) explained by PGS is
indicated for each association. Further information can be found in
Supplementary Tables 15-18
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GWAS meta-analysis (akin to similarly sized published
GWAS of these phenotypes2,9).
With the exception of polygenic profiling analysis,

MDD in males generally did not conform to the pattern of
results demonstrated by other MDD definitions. Some of
these differences, such near-zero SNP-based heritability
estimate and subsequently no genetic correlations with
other traits surviving multiple testing correction, can be
attributed to reduced statistical power in this MDD
definition. Interestingly, genome-wide meta-analysis yiel-
ded a single genome-wide significant locus in depression
in males. The locus at chromosome 3p22.3 includes
TMPPE, CRTAP, and GLB1 genes; all of which were
significant in gene-based testing. Conditional GWAS on
the lead signal demonstrated that the signal which span-
ned these three genes was due to high LD in the region.
However, functional genomic analysis of the lead SNP
returned eQTL evidence for GLB1 and CRTAP, suggest-
ing that the causal variant is more likely to affect the
expression of these genes rather than TMPPE. The lack of
replication of this signal in other published GWAS is
unfortunate, but unsurprising given that the current study
is the largest GWAS of depression in males to date
(relative to published GWAS). Ever-increasing sample
sizes from international consortia will provide much-
needed larger replication datasets for corroborating or
dispelling this finding. The lack of replication also high-
lights the importance of moving towards linking results at
the functional level.
There are several limitations to this study. Firstly, the

sample size for MDD and rMDD groups are very similar
(n= 43,062 and n= 39,556, respectively), therefore per-
haps rMDD is not the best stratifier in this sample. The
sample size of all depressed cases could have been
increased by including individuals with mild depressive/
manic symptoms (n= 26,847), however as case classifi-
cation was based on very few items (two symptoms and
help-seeking behavior), it wasn’t possible to determine
whether mild symptoms should be classified as cases or
controls17, therefore including these individuals could
introduce further phenotypic heterogeneity. Whilst the
differential model selection in GS:SFHS and UKB used to
adequately account for differential family and population
structure introduces analytical heterogeneity, the genetic
correlation of MDD GWAS summary statistics from the
two samples was rG(SE)= 0.997(0.26). Lastly, the higher
prevalence of females in GS:SFHS caused a gender
imbalance in the sample sizes, resulting in lower statistical
power for the male only analysis.
Overall our results suggest that there was little benefit

to stratifying depression by either sex or recurrence for
currently available data sizes. Extreme differences
between sexes, such as opposite directions of effect in the
two sexes, would have to exist to necessitate their analysis

separately. The power implications of stratifying on these
traits is likely to out-weigh the identification of such loci.
In situations where the effect of a SNP is only found in
one sex and zero effect in the other, such as rs4778037 in
this study, it is still better to analyze sexes together to
reduce the multiple testing burden of separate analyses.
The increased trait variance explained demonstrated by
using the largest available training and discovery datasets
(PGC MDD29 and UKB MDD, respectively) in polygenic
profiling supports increasing the sample size over phe-
notypic refinement. Similarly, the lack of discernible dif-
ference between h2SNP and rG estimates between
depression subtypes suggests that the best approach,
currently, is to maximize the sample size in order to
reduce sampling error and obtain more accurate point
estimates. However, addressing recurrence, sex and
ancestral heterogeneity in a large ascertained cohort does
have intrinsic merit, as demonstrated previously by
CONVERGE6, with the implication that addressing sev-
eral sources of heterogeneity has more utility than
implementing recurrence and sex separately6.
Phenotypic stratification still has plenty of scope for

aiding the tractability of genetic analysis in depression.
There are many traits which could be used to create
subgroups, including treatment response and physical
comorbidities, and perhaps these will be more successful
than sex and recurrence. However, it is worth noting that
due to the limitations of statistical power with current
sample sizes, the performance of the stratified phenotypes
presented here is a lower bound of the stratification
strategy. Recently, age-at onset9 and use of polygenic risk
scores derived from health-related traits73 have been
shown to result in subsets of depression with improved
heritability. Our study suggests that, until a better
understanding of the determinants of genetic hetero-
geneity in depression exist—increasing sample number
remains the optimal strategy.
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