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Key points: 12 

 When standing and holding an earth-fixed object, galvanic vestibular stimulation (GVS) can 13 

evoke upper limb responses to maintain balance. 14 

 Here we determine how these responses are affected by grip context (no contact, light grip, 15 

and firm grip), and how they are coordinated with the lower limbs to maintain balance. 16 

  When GVS was applied during firm grip, hand and ground reaction forces were generated. 17 

 The directions of these force vectors were coordinated such that the overall body sway 18 

response was always aligned with the inter-aural axis, i.e. craniocentric. 19 

 When GVS was applied during light grip (< 1N), hand forces were secondary to body 20 

movement, suggesting the arm performed a mostly passive role.  21 

 These results demonstrate that a minimum level of grip is required before the upper limb 22 

becomes active in balance control, and that the upper and lower-limbs coordinate for an 23 

appropriate whole-body sway response. 24 

 25 

 26 

 27 

 28 
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Abstract 29 

Vestibular stimulation can evoke responses in the arm when it is used for balance. Here we 30 

determine how these responses are affected by grip context, and how they are coordinated with the 31 

rest of the body. Galvanic vestibular stimulation (GVS) was used to evoke balance responses under 32 

three conditions of manual contact with an earth-fixed object: no contact (NC), light grip (< 1N) (LG), 33 

and firm grip (FG). As grip progressed along this continuum, we observed an increase in GVS-evoked 34 

hand force, with a simultaneous reduction in ground reaction force (GRF) through the feet. During 35 

LG, hand force was secondary to the GVS-evoked body sway response, indicating that the arm 36 

performed a mostly passive role. In contrast, during FG the arm became actively involved in driving 37 

body sway, as revealed by an early force impulse in the opposite direction to that seen in LG. We 38 

then examined how the direction of this active hand vector was coordinated with the lower limbs. 39 

Consistent with previous findings on sway anisotropy, FG skewed the direction of the GVS-evoked 40 

GRF vector towards the axis of baseline postural instability. However, this was effectively cancelled 41 

by the hand force vector, such that the whole-body sway response remained aligned with the inter-42 

aural axis, maintaining the craniocentric principle. These results show that a minimum level of grip is 43 

necessary before the upper limb plays an active role in vestibular-evoked balance responses. 44 

Furthermore, they demonstrate that upper and lower-limb forces are coordinated to produce an 45 

appropriate whole-body sway response. 46 

 47 

Abbreviations: GVS, galvanic vestibular stimulation; GRF, ground reaction force; NC, no contact; LG, 48 

light grip, FG, firm grip. 49 

 50 

Introduction 51 

Holding onto a solid object improves standing balance. This can be due to improved sensory 52 

information and/or mechanical support, depending upon the nature of the manual contact. For 53 

example, light touch with an earth-fixed object can reduce sway even when forces are too low to 54 

offer significant mechanical support (< 1N) (Jeka & Lackner, 1994; Kouzaki & Masani, 2008). This has 55 

also been shown for light touch with another standing person (Reynolds & Osler, 2014). In both 56 

cases the upper limb provides proprioceptive feedback of body sway. Firmer grip can additionally 57 

provide mechanical support in the case of a loss of balance, exerting larger forces through the hand 58 

to keep the body upright (Maki & McIlroy, 2006). Hence the arm plays a dual role for balance, as 59 

both sensor and motor.   60 
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Upper limb motor output for balance has previously been demonstrated using vestibular 61 

perturbations. For example, galvanic vestibular stimulation (GVS) has been shown to evoke upper 62 

limb responses when forced to use the arm for balance (Britton et al., 1993). GVS involves small 63 

electrical currents passed across the skin between the mastoid processes. This modulates the 64 

activity of the vestibular nerve, producing a false sensation of body position from vertical towards 65 

the cathodal electrode when standing (Fitzpatrick & Day, 2004; Reynolds & Osler, 2012). This, in 66 

turn, evokes a compensatory body movement response towards the anode electrode. Britton et al. 67 

(1993) used this stimulus to evoke triceps muscle responses in standing subjects who were firmly 68 

grasping a handrail. These responses were only observed in the arm that was actively engaged in the 69 

balance task. However, subjects stood on a freely rotating pivot which prevented them from 70 

generating ankle torque. Hence they were forced to use the hand to maintain balance. Whether 71 

such responses would be seen during normal stance remains open to question. Furthermore, 72 

whether the response would be altered by changes in hand grip is unknown. During light grip (< 1N), 73 

the arm acts mainly as a sensory organ (Jeka & Lackner, 1994), which suggests that a firmer grip may 74 

be required to generate active responses to a vestibular perturbation. 75 

Another aspect of the GVS-evoked balance response is its dependence on head orientation. When 76 

standing normally, the whole-body sway response to GVS is always directed towards the anodal ear. 77 

If the head is turned, the direction of the evoked sway response turns by an equal amount. This 78 

‘craniocentric’ behaviour demonstrates the conversion of vestibular information from a head- to 79 

body-centred reference frame. Craniocentric sway responses to GVS have been demonstrated for 80 

whole-body sway and ground reaction forces (GRF) when standing unsupported (Lund & Broberg, 81 

1983; Pastor et al., 1993; Mian & Day, 2009; Reynolds, 2011). However, the hand force vector 82 

evoked by GVS when holding a fixed object has not been studied. Recent evidence suggests that the 83 

direction of GVS responses may not behave in a simple craniocentric fashion. Mian & Day (2014) 84 

showed that the direction of the evoked GRF vector is biased towards the direction of least postural 85 

stability. For example, touching an earth-fixed object directly to the right preferentially stabilised 86 

baseline sway in the medio-lateral axis. Under these circumstances, the GVS response direction 87 

became biased towards the antero-posterior axis. Such deviations from the craniocentric principle 88 

may also apply to the upper limb force vector. 89 

Here we address these issues by studying force responses evoked by GVS in the upper limb when 90 

holding onto a fixed object. We ask the following questions. Firstly, does the magnitude and 91 

direction of GVS-evoked upper limb force depend upon grip context? Secondly, is the direction of 92 

this force vector systematically altered by head orientation in a craniocentric fashion? Finally, how 93 

well is upper limb force integrated with the GRF vector, and how does this affect whole-body sway? 94 
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To answer these questions we asked volunteers to adopt different grip strengths and head 95 

orientations while we measured force and body sway responses to GVS. 96 

 97 

Methods 98 

Ethical approval 99 

Ethical approval was obtained from the University of Birmingham Ethics Committee and was in 100 

compliance with the Declaration of Helsinki. Informed written consent was obtained from all 101 

participants.   102 

Subjects 103 

Ten subjects completed experiment 1 (27.2 ± 5.2yrs; seven males, three females) and twelve 104 

subjects completed experiment 2 (27.3 ± 6.7yrs; ten males, two female). Subjects were healthy, with 105 

no known history of vestibular or neurological disorders.  106 

Apparatus 107 

The experimental setup is illustrated in Fig. 1. Subjects stood barefoot with feet together on a force 108 

plate (Kistler 9286AA; Kistler Instrumente AG, Winterhur, ZH, CH). The end effector of an earth-fixed 109 

support with an embedded tri-axial force sensor (HapticMaster; Moog FCS, Nieuw-Vennep, NH, NL) 110 

was positioned forward/right (35cm forward of the ankle, 35cm right of body mid-line) 45o of the 111 

subject, at a height of 110cm. A motion tracking sensor was used to record sway and head 112 

orientation (Fastrak; Polhemus Inc., Colchester, VT, USA), and was attached to the top of a welding 113 

helmet frame worn by the subject. All signals were recorded at 100Hz. Note that forces always refer 114 

to forces acting on the body. Fastrak Euler angles were used to derive head yaw (see Reynolds, 2011 115 

for further details). GVS stimuli were delivered by an isolated constant-current stimulator (Model 116 

2200; A-M Systems, Sequim, WA, USA) to gel-coated carbon rubber electrodes (46 x 37mm) placed 117 

over the mastoid processes in a binaural bipolar configuration.  118 
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 119 

Figure 1. Experimental setup. A) Subjects stood barefoot on a force plate with eyes closed, grasping 120 
a fixed support. GVS was applied via electrodes placed over the mastoid processes. B) Setup from 121 
above. The end effector of the support was positioned forward/right 45o to the subject. Hand force 122 
was measured by a force sensor embedded in the support. Head-on-body orientation and whole-body 123 
movement were derived by a motion capture sensor positioned on top of the head. C) Light grip 124 
(from above): thumb and forefinger gently grasp a grip force sensor below 1N. D) Firm grip (from 125 
above): a sphere is firmly grasped in the palm of the hand.  126 

 127 

General Protocol 128 

Each trial consisted of 15s of quiet standing, before a series of 20 GVS stimuli (2mA, 2s duration) 129 

were delivered, with a gap of 5s between each stimulus. An equal number of anode-right and left 130 

stimuli were delivered in a random order.  131 

To measure GVS-evoked responses, signals were aligned to the time point of GVS onset, and 132 

averaged for each condition. Responses to anode-left and right currents were found to be equal and 133 

opposite (see results, experiment 1). Therefore, for all further analysis both polarities were 134 

combined after inverting anode-right data. 135 

Experiment 1 136 
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In experiment 1 we determined how the GVS-evoked upper limb response is altered by changes in 137 

grip.  138 

Subjects either stood freely (no contact), lightly grasping the support with thumb and forefinger 139 

(light grip, Fig. 1C), or firmly grasping the support with their right hand (firm grip, Fig. 1D). In Light 140 

grip (LG) conditions, a force sensor (50 x 50 x 8mm; F306 Disc Loadcell; Novatech Measurements 141 

Ltd., Hastings, E Sussex, UK) was used as the end effector, allowing measurement of grip force. 142 

Subjects were instructed to lightly grip the effector with their right thumb and forefinger. Before 143 

data recording, they were shown real-time feedback of the force signal, which allowed them to 144 

practice maintaining grip < 1N for the LG condition. In the firm grip (FG) condition, a solid sphere 145 

(diameter = 40mm) was used as the effector. Subjects were instructed to firmly grip the sphere in 146 

the palm of their right hand. In the no contact (NC) conditions, the arms were positioned in front of 147 

the subject with hands clasped together. The head was always facing forward and eyes were closed 148 

throughout. A trial (15s of quiet standing, before a series of 20 GVS stimuli) was repeated twice for 149 

each of the three grip conditions (NC, LG, and FG). 150 

The GVS-evoked ground reaction force (GRF) response consists of a small early component directed 151 

towards the cathodal ear (~250ms post-stimulus onset), and a much larger late component directed 152 

towards the anodal ear (~450ms). The late component is responsible for producing whole-body 153 

movement in compensation for a sense of self-motion (Marsden et al., 2002). To quantify the GRF 154 

response magnitude we measured the peak of this late response. To compare hand force between 155 

LG and FG, peak lateral hand forces were measured for FG, and the time this occurred was used to 156 

measure the response magnitude for LG. Times of peak change in GRF and hand force (derivative) 157 

after stimulus onset were used as measures of response latency (Marsden et al., 2005). Body 158 

position and velocity were derived from the Fastrak head sensor. Peak lateral body position and 159 

velocity during GVS were used as measures of whole-body movement magnitude.  160 

Experiment 2 161 

After establishing that an active GVS-evoked upper limb response only occurred during firm grip (FG) 162 

in experiment 1 (see results, experiment 1), we then sought to determine how the upper limb 163 

contributes to the direction of the whole-body sway response. Head-on-body orientation was 164 

altered to see how the craniocentric properties of GVS-evoked postural responses would affect the 165 

upper limb response direction. The directions of the GRF and hand force vectors, and the whole-166 

body sway response, were calculated for each head posture. 167 
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Three targets (30 x 30cm) were positioned ahead of the subject (70cm). One target was aligned with 168 

the subjects’ mid-line (0o), and the other two positioned 45o to the left and right. Subjects were 169 

instructed to orientate their head such that their nose was aligned to one of the targets (head 170 

forward, left, or right). Two grip conditions were tested; NC and FG (same hand positions as 171 

experiment 1). Once the head was positioned correctly, the subjects closed their eyes and the trial 172 

began. Two repeats for each of the six conditions were recorded, as follows: 3 head orientations 173 

(forward, left, right) X 2 grip conditions (NC and FG), providing a total of 12 trials.  174 

In experiment 1, subjects produced hand forces directed towards the anode electrode during firm 175 

grip (FG) (see results, experiment 1). Before analysing the direction of this active response in 176 

experiment 2, it was first necessary to confirm its existence in each subject. We determined an 177 

upper limb response as being present if medio-lateral (ML) force was directed towards the anode 178 

and exceeded 2 SD of baseline force (500ms before GVS) for at least 250ms. Three of twelve subjects 179 

did not meet this criterion and were removed from subsequent directional analysis.   180 

Quiet standing body sway: 15s of quiet standing was recorded at the start of each trial without GVS. 181 

Whole-body sway direction was determined by fitting a 95% confidence ellipse to body position data 182 

(Sparto & Redfern, 2001) (Fig. 4A, large (𝑎) and small (𝑏) ellipse vectors are shown). The angle 183 

between the largest ellipse vector and the ML axis was taken as the direction of sway, constrained 184 

between 0o to +180o. Ellipse eccentricity [𝑎 𝑎2⁄ × 𝑏2] was used as a measure of baseline sway 185 

asymmetry. If eccentricity is equal to 0 (i.e., a perfect circle), this would indicate that the ellipse was 186 

not skewed in any particular direction. As eccentricity becomes closer to 1 (i.e., a straight line), the 187 

ellipse becomes more skewed in a specific direction. Ellipse area [𝜋 𝑎𝑏] provided a measure of sway 188 

variability. The directions of GRF and hand force during quiet standing were determined in the same 189 

was as whole-body sway. GRF and hand force were also summed before determining summed force 190 

baseline direction.  191 

GVS response directions: Response directions were measured from the antero-posterior (AP) and ML 192 

components of the response at 0.4s (GRF and hand forces) and 2s (body position) post GVS onset 193 

(Fig. 5) (Mian & Day, 2014). Response direction was calculated as tan−1 𝑀𝐿 𝐴𝑃⁄ . Separately we also 194 

summed the GRF and hand forces to measure the combined force vector direction. 195 

Statistical analysis 196 

All data were analysed using Matlab (Mathworks Inc., Natick, MA, USA). 197 
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Linear data (experiment 1 & 2): Repeated-measures analysis of variance (ANOVA) was used to test 198 

for main effects of conditions. To test for significant hand force responses in experiment 1, one-199 

sample t-tests were used to compare peak hand forces to zero. SPSS Statistics Version 19 (IBM, 200 

Armonk, NY, USA) was used for statistical testing and significance was set a P < 0.05.  201 

Directional data (experiment 2): Descriptive statistics specific to circular data, i.e. circular mean and 202 

angular deviation (± AD) (Zar, 2010), were used to analyse angular direction of body sway during 203 

quiet standing and GVS response directions. The mean direction is only meaningful when the sample 204 

of angles is not a uniform circular distribution. Therefore mean direction was only calculated after 205 

the Rayleigh test for uniformity rejected a uniform distribution (P < 0.05) (Zar, 2010). To determine 206 

the difference between more than two conditions (e.g. three head orientations), ideally a repeated-207 

measures ANOVA designed for circular data would be used. However, to our knowledge, no such 208 

test exists. We therefore used the Moore’s test for paired circular data (Moore, 1980), the 209 

equivalent of a paired samples t-test used for linear data, to test for differences in response 210 

direction between conditions. Means, angular deviations, and Rayleigh test for circular data were 211 

analysed using CircStat toolbox for Matlab (Berens, 2009). 212 

 213 

Results 214 

Experiment 1 215 

There was no effect of stimulus polarity (anode-right vs. left) on the magnitude of the ground 216 

reaction force (GRF) (F(1,9) = 1.60, P = 0.23) or hand force response (F(1,9) ≤ 0.001, P = 1.00). Therefore, 217 

both polarities were combined after inverting anode-right data.   218 

Ground reaction force (GRF) 219 

Figure 2 shows medio-lateral GRF, hand force, and body sway responses to GVS for a representative 220 

subject. GVS evoked a GRF response directed towards the anode during no contact (NC), peaking at 221 

~600ms (Fig. 2A). This is consistent with the late component of the GRF response previously 222 

described. Analysis was focused on this component since it is responsible for generating the whole-223 

body movement (Marsden et al., 2002). Average responses are shown in Fig. 3. Light grip (LG) (mean 224 

(±SD) grip force was 0.6 ± 0.5N) caused a reduction in the peak GRF, which was further reduced 225 

during firm grip (FG) (Fig. 3A; peak GRF force NC: 1.97 ± 1.32N; LG: 0.83 ± 0.56N; FG: 0.64 ± 0.55N), 226 

with a significant main effect of grip condition (F(2,18) = 14.33, P < 0.001).   227 

Hand force 228 
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Hand forces largely mirrored whole-body movement during the LG condition (compare blue traces in 229 

Fig. 2B & C). As the body swayed towards the anode electrode, this corresponded to a change in 230 

hand force tending to resist that motion. This suggests the arm is acting like a passive spring. 231 

Although a tiny positive deflection can be seen on the mean trace (blue trace, Fig. 3B), peak force 232 

was not significantly greater than zero (0.02 ± 0.07N; t(9) = 1.09, P = 0.30). In contrast, during FG (red 233 

trace; Fig. 2B, 3B) the upper limb initially generated a significant force impulse directed towards the 234 

anode (0.17 ± 0.13N; t(9) = 4.18, P = 0.002). This early response was in the same direction as the GRF 235 

(red trace; Fig. 2A, 3A), corresponding to an impulse which actively pushes the body towards the 236 

anode electrode. The differences in the hand force response between grips was confirmed by a 237 

significant main effect of grip condition on peak hand force (F(2,18) = 10.68, P = 0.001). The onset 238 

latency was 256 ± 84ms, not significantly different from the GRF latency (267 ± 45 ms; t(9) = 0.36, P = 239 

0.73).  240 

Whole-body sway 241 

GVS also evoked a whole-body movement that was directed towards the anode electrode for all 242 

conditions (Fig. 2C, 3C). Body velocity responses became smaller during LG compared to NC, and 243 

smaller again for the FG condition (Fig. 3C; NC: 1.8 ± 0.9cm/s; LG: 1.2 ± 0.6cm/s; FG: 1.1 ± 1.1cm/s), 244 

with a significant main effect of grip condition (F(2,18) = 5.82, P = 0.01). Although the same trend can 245 

be observed for body position, this did not reach significance (NC: 1.2 ± 1.0cm; LG: 0.8 ± 0.6cm; FG: 246 

0.8 ± 0.8cm; F(2,18) = 2.83, P = 0.09). 247 
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 248 

Figure 2. Representative ground reaction force, hand force, and body movement. A) Medio-lateral 249 
(ML) ground reaction force response (GRF) during 2s GVS (GVS onset is at 0s) in the three grip 250 
conditions, for an individual subject. A positive force indicates one that would move the body towards 251 
the anode. B) ML hand force response during light and firm grip. C) ML body position (thick traces) 252 
and velocity (thin traces). Positive body position/velocity indicates body movement towards the 253 
anode.  254 
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 255 

Figure 3. Mean ground reaction force, hand force, and body movement. A) Mean medio-lateral 256 
(ML) ground reaction force (GRF) response during GVS in the three grip conditions and corresponding 257 
peak (±SE) GRF response towards the anode. There was a significant main effect of grip condition on 258 
peak GRF (P < 0.001) B) ML hand force response during light and firm grip, and corresponding peak 259 
upper limb response. There was a significant main effect of grip condition on peak hand force (P = 260 
0.001), and peak hand force was only significantly greater than zero in the firm grip condition (P = 261 
0.002). C) ML body position (thick traces) and velocity (thin traces), and corresponding peak body 262 
position (dark bars) and velocity (light bars). There was a significant main effect of grip on peak body 263 
velocity (P = 0.01), but not position (P = 0.09).   264 

 265 

Experiment 2 266 

In experiment 1, the upper limb produced an active response to GVS only when firmly grasping the 267 

support. In experiment 2 we investigated the directional nature of this response under three 268 
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different head orientations (+45, 0, -45o). Three of the twelve subjects demonstrated no significant 269 

GVS-evoked increase in hand force above baseline and so were excluded from this analysis (see 270 

methods for response criteria). 271 

Head orientation 272 

There was no significant effect of grip condition (NC vs. FG) upon head orientation (Moore’s test; 273 

R*(9) ≤ 0.70, P > 0.05). As expected, head yaw angle was significantly different between head 274 

orientation conditions (R*(9) ≥ 2.21, P < 0.05). Mean (± AD) head yaw angles were; head forward: 1 ± 275 

5o, head left: -40 ± 9o, and head right: 36 ± 13o.  276 

Baseline forces and body sway 277 

Previous research has shown that the direction of GVS-evoked sway is biased towards the axis of 278 

instability when finger contact causes baseline sway to be more stable in one particular axis (Mian & 279 

Day, 2014). We therefore analysed baseline body sway and forces to see if FG produced such 280 

anisotropic effects.  281 

An example of how baseline directions were measured is shown in Fig. 4A. To determine the 282 

direction of baseline forces and body position, ellipses were fitted to 15s of data during NC and FG 283 

before any GVS was delivered. The angle of the ellipse vector was then used as a measure of 284 

baseline direction. Ellipse eccentricity was used as a measure of the strength of the ellipse direction 285 

and ellipse area as a measure of variability. To compare baseline directions between grip conditions 286 

(NC vs. FG) head orientations (forward, left, right) were combined within grip conditions.  287 

Baseline force and body sway vectors during quiet standing are shown in Fig. 4B-E. Baseline GRF 288 

vectors (Fig. 4B) were non-uniformly distributed in both grip conditions (Rayleigh test; P ≤ 0.016), 289 

with mean (± AD) vector direction of 109 ± 45o and 119 ± 58o in the NC and FG condition, 290 

respectively. However, these GRF vectors were not significantly different (R*(27) = 0.78, P > 0.05). 291 

Ellipse eccentricity was significantly reduced in the NC condition compared to FG (NC: 0.64 ± 0.1, FG: 292 

0.75 ± 0.1; t(26) = 4.21, P < 0.001). Therefore, although the GRF baseline force vectors were 293 

significantly directed during NC, the strength of this directedness was less than the FG condition. 294 

There was also a significant effect of grip condition on baseline GRF variability (ellipse area), with 295 

reduced variability during FG compared to NC (NC: 32.8 ± 15.N2, FG: 13.7 ± 8.3N2; t(26) = 6.10, P < 296 

0.001). 297 

During FG, the baseline hand force vector (Fig. 4C) was significantly directed towards 59 ± 19o 298 

(Rayleigh test; P < 0.001, eccentricity = 0.85 ± 0.1, area = 9.9 ± 9.4N2), approximately aligned with the 299 
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position of the handle (~45o). When GRF and hand forces were summed (Fig. 4D), the force vector 300 

was significantly directed at 137 ± 25o (P = < 0.001, eccentricity = 0.74 ± 0.1, area = 12.2 ± 6.5N2), 301 

approximately orthogonal to the handle position. 302 

The whole-body sway direction (Fig. 4E) reflects the summed GRF and hand force vectors during FG, 303 

with body sway significantly directed towards a mean angle of 126 ± 33o (P < 0.001). In contrast, 304 

during NC baseline body sway was uniformly distributed in all directions (P = 0.29). Ellipse 305 

eccentricity was significantly larger during FG compared to NC (NC: 0.77 ± 0.1, FG: 0.86 ± 0.1; t(26) = 306 

3.94, P = 0.001), and ellipse area was significantly smaller during FG (NC: 11.7 ± 6.3cm2, FG: 3.7 ± 307 

2.7cm2; t (26) = 6.86, P < 0.001). Hence, firm grip did produce anisotropic effects upon baseline body 308 

sway that we take into account when considering the GVS-evoked response direction below. 309 

 310 

 311 

Figure 4. Force and body sway directions during quiet standing. A) An example of a 95% confidence 312 
ellipse fitted to a representative subject’s body sway (derived from motion capture sensor fixed to 313 
subject’s head) in medio-lateral (ML) and antero-posterior (AP) axis during 15s of quiet standing with 314 
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head forward (0o), during no contact and firm grip, respectively. Large and small ellipse vectors are 315 
shown. Baseline directions were measured as the angle between the large ellipse vector and the ML 316 
axis. B-E) Baseline vectors for all subjects during quiet standing (thin lines) (note head orientation 317 
conditions are not separated) for B) ground reaction force (GRF), C) hand force, D) GRF and hand 318 
force summed, and E) whole-body movement. Mean force/position vectors (thick solid lines) are only 319 
shown for conditions were the vectors were non-uniformly distributed as determined by a Rayleigh 320 
test.  321 

 322 

GVS responses during no contact 323 

Figure 5 summarises the GRF (A) and body position (B) response to GVS in the NC condition with the 324 

head forward for a representative subject. The main GRF response was in the medio-lateral (ML) 325 

direction. This consisted of an initial slight dip, followed by a much larger positive deflection in ML 326 

force. These two components constitute the short and medium-latency response to GVS, with the 327 

latter being responsible for the evoked body sway (Marsden et al., 2002). The direction of the force 328 

vector was calculated from the antero-posterior (AP) and ML traces at 0.4s. This resulted in a 329 

response direction of 96o, which is approximately aligned with the subject’s inter-aural axis (~90o). 330 

The body sway vector (measured at 2s) reflected the force, being directed towards the anode at 87o 331 

(Fig. 5B). 332 

 333 
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Figure 5. Representative response with the head forward during no contact. Ground reaction force 334 
(GRF) (A) and body position (B) in the antero-posterior (AP) (dashed trace) and medio-lateral (ML) 335 
(solid trace) axis during GVS. AP and ML force and body position responses were measured at 0.4s 336 
and 2s, respectively (vertical dashed lines), and plotted against each other (grey dot, response 337 
direction). These values also indicate the magnitude of the response.  338 

 339 

Mean response directions for the three head orientation conditions are shown in Fig. 6. All GVS 340 

responses were significantly directional, as determined by a Rayleigh test (P ≤ 0.001). With the head 341 

facing forward, mean (± AD) GRF response direction was 93 ± 17o, being aligned with the inter-aural 342 

axis (91o). Whole-body movement reflected the GRF response, and was directed at 89 ± 34o. Turning 343 

the head left or right caused the GRF vector to be significantly rotated by a similar amount (left: 34 ± 344 

19o, R*(9) = 1.61, P < 0.05; right: 135 ± 9o, R*(9) = 1.65, P < 0.05). This was the same for whole-body 345 

movement direction (left: 33 ± 14o, R*(9) = 1.50, P < 0.05; right: 143 ± 13o, R*(9) = 1.57, P < 0.05). 346 

Hence, during the NC condition the GVS response behaved in a craniocentric fashion, staying fixed in 347 

head coordinates. 348 

 349 

Figure 6. Mean response directions for different head orientations during no contact. Mean GRF (A) 350 
and whole-body movement (B) response directions during GVS with the head orientated to the left 351 
(blue), forward (green), and right (red). Shaded areas indicate ± angular deviation. Axes shown on 352 
head indicate the line of the inter-aural axis (orthogonal to head angle), in order to show head angle.  353 

 354 

GVS response during firm grip 355 

Figure 7 displays a representative response to GVS from a subject engaging in FG with their head 356 

forward. The GRF response was directed backward (AP) and towards the anode (ML), with an angle 357 

of 124o (Fig. 7A). This is clearly no longer aligned with the inter-aural axis. In contrast, the hand 358 

generated force towards the anode, but also forward (50o; Fig. 7B). When the GRF and hand forces 359 
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were summed together, the direction of the overall force vector was 89o (Fig. 7C). This was similar to 360 

the direction of whole-body movement (101o; Fig. 7D). The overall force and sway response was 361 

therefore aligned approximately with the inter-aural axis, as seen during the NC condition (Fig. 6).   362 

 363 
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Figure 7. Representative response with the head forward during firm grip. Ground reaction force 364 
(GRF) (A), hand force (B), GRF and hand forces summed (C), and body position (D) response in the 365 
medio-lateral (ML) (solid trace) and antero-posterior (AP) (dashed trace) axis during GVS. Response 366 
directions were derived as described in the legend for Fig. 5.  367 

 368 

Mean GVS response directions for the three head orientations during FG are shown in Fig. 8. All 369 

responses were significantly directional (P ≤ 0.048). With the head forward, the mean (± AD) GRF 370 

vector was 139 ± 33o (Fig. 8A). Compared to the NC condition, this was significantly rotated by 46o 371 

clockwise (R*(9) = 1.45, P < 0.05), and was aligned towards the direction of baseline summed forces 372 

(GRF + hand force = 137o; Fig. 4C). With the head left or right, the difference in GRF response 373 

direction between the FG and NC condition was smaller, and only significant when facing to the right 374 

(left: 25 ± 53o, R*(9) = 0.79, P > 0.05; right: 148 ± 6o, R*(9) = 1.51, P < 0.05).  375 

With the head forward, the hand force vector was 60 ± 13o (Fig. 8B). This was approximately 376 

orthogonal (-79o) to the GRF vector. Turning the head left or right significantly altered the upper limb 377 

response direction, causing it to become aligned towards the inter-aural axis (left: 37 ± 18o, R*(9) = 378 

1.21, P < 0.05; right: 99 ± 32o, R*(9) = 1.44, P < 0.05).  379 

As seen in the representative subject, summing the GRF and hand forces caused the combined 380 

vector to become aligned closer towards the inter-aural axis (Fig. 8C). With the head forward, the 381 

summed force direction was 102 ± 28o. When the head was turned to left or right, the summed force 382 

vector was significantly altered (compared to the head forward condition) towards the inter-aural 383 

axis (left: 34 ± 34o, R*(9) = 1.35, P < 0.05; right: 128 ± 20o, R*(9) = 1.21, P < 0.05).  384 

Although the direction of the GRF response was skewed with the head forward during FG compared 385 

to NC, the direction of whole-body movement was unaffected (Fig. 8D). With the head forward, 386 

body movement was directed at 102 ± 17o, reflecting the summed GRF and hand force vector. This 387 

was not significantly different to the direction of body movement seen in the NC condition (R*(9) = 388 

0.89, P > 0.05). This was also the case when the head was orientated to the left (25 ± 42o, R*(9) = 389 

0.74, P > 0.05). However, as shown for GRF, sway direction was slightly but significantly altered by 390 

grip when facing to the right (135 ± 9o, R*(9) = 1.58, P < 0.05).  391 

 392 

 393 

 394 
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 395 

Figure 8. Mean response directions for different head orientations during firm grip. Direction of 396 
GVS-evoked responses for ground reaction force (GRF) (A), hand force (B), GRF and hand forces 397 
summed (C), and whole-body movement (D), for the three head orientations during firm grip (thick 398 
lines). Shaded areas indicate ± angular deviation. Response directions during no contact (dashed 399 
lines) are shown for comparison between grip conditions. Note, for hand force (B) and GRF + hand 400 
force (C), only the firm grip condition is shown as no hand response was recorded in the no-contact 401 
condition. Axes shown on head indicate the line of the inter-aural axis, in order to show head angle. 402 

 403 

Discussion 404 

With the exception of Britton et al. (1993), previous demonstrations of vestibular influence on the 405 

upper limb have been restricted mainly to the study of reaching movements, when the arm is not 406 

actively engaged in balance (Bresciani et al., 2002; Mars et al., 2003; Blouin et al., 2015; Smith & 407 

Reynolds, 2016). Here we applied GVS to subjects who were standing normally while holding onto a 408 

fixed object. We observed stimulus-related forces generated by the upper limb. These forces were 409 

systematically altered by grip type and head orientation, and were coordinated with ground reaction 410 

forces (GRF) to move the body in a direction intended to compensate for the vestibular 411 

perturbation. 412 

We posed three questions in the introduction which we now answer. Firstly, does the magnitude 413 

and direction of the GVS-evoked upper limb force depend upon grip context? We found that 414 

changes in hand grip altered the upper limb response both qualitatively and quantitatively. The light 415 

grip (LG) condition involved a very light finger and thumb grip, with pinch force within 1N. Such 416 

levels of force can provide abundant sensory information with minimal mechanical stabilisation 417 

(Holden et al., 1994). In this situation, GVS evoked a relatively slow, continuous and uni-directional 418 

build-up of lateral hand force for the duration of the stimulus (blue trace, Fig. 3B). This force was 419 

directed towards the cathodal ear (acting on the body). Given that GVS evokes sway towards the 420 

anodal ear, this upper limb force would act to resist the whole-body response to the vestibular 421 

perturbation. Therefore, during LG the arm did not drive the GVS sway response, but reflected it. In 422 
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other words, the arm seemed to behave like a passive spring, simply registering cutaneous forces 423 

due to body motion. Such cutaneous input could provide additional balance-related sensory 424 

information which would conflict with that of GVS (Day et al., 2002). This would act to limit the sway 425 

response to GVS, and may explain why the sway response was smaller during LG compared to the 426 

no-contact (NC) condition (also shown by Britton et al., 1993). During firm grip (FG) subjects used 427 

their whole hand to firmly grip a ball and handle. This changed the nature of the upper limb 428 

response, with the appearance of an early force impulse in the opposite direction to that of LG (red 429 

trace, Fig. 3B). This impulse is the same direction as the GRF, acting to drive the body towards the 430 

anodal ear. Hence, a simple change in grip is enough to convert the arm from being a passive 431 

responder, to being an active generator of body movement. However, 25% of subjects did not 432 

generate this impulse (experiment two), precluding calculation of a response direction. Although we 433 

did not measure grip force during the FG condition, it may be that these subjects did not grip 434 

sufficiently strongly to engage the hand in balance. Subsequent to the early impulse, the force 435 

reversed direction and began to resemble the pattern observed during LG, albeit larger. The absence 436 

of the early force impulse during LG could simply be due to a lack of strength associated with that 437 

particular grip. Overall peak hand forces produced during FG were approximately double those of LG 438 

(approx. -0.25N vs -0.5N; Fig. 3B). However, the early active force impulse observed during FG was 439 

only ~ 0.1N, suggesting that strength limitations were not a factor in its absence during LG. Instead, 440 

the change in grip context is a cue for the nervous system to transform the arm from a passive 441 

listener to an active participant in the balance process.  442 

The second question concerned the direction of the GVS-evoked hand force vector, and whether it is 443 

systematically altered by head orientation in a craniocentric fashion. To answer this, we focussed on 444 

the early force impulse seen during FG and observed the effect of head yaw upon this active 445 

response. But to confirm previous findings, we started by measuring the GRF vector in the absence 446 

of hand contact. With the head forward, this vector was oriented orthogonally to head direction 447 

(93°). Turning the head to the left or right caused the GRF vector to rotate by a very similar amount, 448 

consistent with the craniocentric principle (Fig. 6A; Lund & Broberg, 1983; Pastor et al., 1993; Mian 449 

& Day, 2009). Then we measured the direction of the hand force vector during the FG condition. As 450 

for the GRF vector, this was significantly affected by head orientation, but the relationship was not 451 

systematic. In particular, the head-forward and head-right vectors were skewed in a counter-452 

clockwise direction (Fig. 8B). To understand the cause and consequences of this skew, we must 453 

consider the direction of the simultaneous GRF vectors, which brings us to our third question: How 454 

well is upper limb force integrated with the GRF vector, and how does this affect whole-body sway?  455 
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Firm grip significantly skewed the GRF vector. This is most apparent during the head-forward 456 

condition, where it is oriented at 139° (vs. 93° during NC; Fig. 8A). Recent research has described a 457 

similar violation of craniocentricity when baseline sway becomes more stable in one axis (i.e. 458 

anisotropic) (Mian & Day, 2014). To determine if this was the case we compared baseline forces and 459 

body sway between conditions. Although baseline GRF directions were similar between conditions, 460 

whole-body sway became preferentially destabilised towards a 126° axis during FG, compared to no 461 

skew during NC (Fig. 4E). The anisotropic effect of FG on body sway reflected the baseline summed 462 

GRF and hand force vector, which was directed towards 137o (Fig. 4D). This would explain why the 463 

GVS response was biased towards that direction during the head-forward condition. In comparison, 464 

minimal skew was observed with the head right or left, presumably because the evoked sway 465 

direction was either aligned with, or orthogonal to, the axis of instability, respectively. Hence, FG 466 

appeared to cause a large deviation in the GRF vector only during the head-forward condition, 467 

caused by changes in baseline sway. To discover the consequences of these deviations for the 468 

overall response to GVS, we summed the GRF and hand force and computed the resulting vector. 469 

The summed vectors bear a stronger resemblance to the GRF vector during NC. This suggests that 470 

the skewed deviations observed in the upper and lower limbs cancel each other to some extent. The 471 

ultimate effect of such a cancelation process would be to preserve the direction of body sway. 472 

Indeed, with the head forward the GVS sway response was similarly craniocentric for both the NC 473 

and FG conditions, with a difference of only 13o (Fig. 8D; green traces), compared to 46o for the GRF 474 

response (Fig. 8A; green traces). When the head was turned to left or right, there were only small 475 

deviations in body sway directions during FG, as seen in the GRF response. One potential limitation is 476 

our use of a motion capture sensor fixed to the head to derive whole-body movement. However, 477 

GVS has been shown to produce very similar sway responses when measured either at the head or 478 

trunk (Day et al., 1997).  479 

Figure 8D clearly shows that the GVS sway response was similarly craniocentric for both the NC and 480 

FG conditions. Such cancellation was not apparent in the findings of Mian & Day (2014), who 481 

examined the GVS-evoked summed force response during light touch. However, our observations 482 

during LG show that the arm does not generate active forces in response to GVS during such low-483 

force contact. This suggests that the cancellation of skewed forces between hand and foot only 484 

occurs if the hand is an active participant in driving the response to the vestibular perturbation. 485 

Under these circumstances the principle of craniocentricity is preserved. 486 

In summary, we have demonstrated vestibular-evoked forces in the upper limb which are designed 487 

to counteract a false sense of body motion. Under conditions of light grip, the observed hand forces 488 
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did not cause the body sway response, but were consequential to it. For the hand to generate forces 489 

which drive the body sway response to GVS required a sufficiently firm grip. Under these conditions, 490 

the hand forces were coordinated with the ground reaction forces to move the body in the same 491 

direction as seen when the upper limb was not engaged in balance.  492 

 493 
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