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ABSTRACT 

Fifty years have passed since the foundation of organometallic neptunium chemistry, and yet only a handful of complexes have 

been reported, and even fewer fully characterised. Yet increasingly, combined synthetic/spectroscopic/computational studies are 

demonstrating how covalently binding, soft, carbocyclic organometallic ligands provide an excellent platform for advancing the 

fundamental understanding of the differences in orbital contributions and covalency in f-block metal – ligand bonding. Understanding 

the subtleties are key to the safe handling and separations of the highly radioactive nuclei. This review describes the complexes that 

have been synthesised to date, presents a critical assessment on the successes and difficulties in their analysis, and the bonding 

information they have provided. Because of increasing recent efforts to start new Np-capable air-sensitive inorganic chemistry 

laboratories, the importance of radioactivity, the basics of Np decay and its ramifications (including the radiochemical synthesis of one 

organometallic) and the available anhydrous starting materials are also surveyed. The review also highlights a range of instances in 

which important differences in the chemical behaviour between Np and its closest neighbours, uranium and plutonium, are found. 
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1. Introduction 

The first reported organometallic neptunium complexes are the cyclopentadienyl complexes Np(Cp)3Cl and Np(Cp)4 (Cp = η-

C5H5),1-3 and were made just a few years after the discovery of ferrocene, yet only a handful of complexes have been reported since, 

and even fewer fully characterised. The high radiotoxicity of Np compounds (which demands work on a small-scale) combined with 

restrictions on the availability of the metal (which is the most convenient preccursor to NpIII starting materials)4 all compound the 

traditional difficulties associated with handling air-sensitive, highly paramagnetic organometallic early actinide complexes. The large 

number of valence orbitals and the effects of relativity mean that quantitative descriptions of the electronic structures for complexes of 

these large, relativistic, paramagnetic metals is still a matter of intense discussion. An understanding of the subtleties is key to the safe 

handling and separations of the highly radioactive nuclei, and will be crucial for the low cost, long-term management of the civil 

nuclear waste legacy and the development of geological repositories.5-7 

 

Combined synthetic/spectroscopic/computational reports are demonstrating with increasing frequency how in the absence of protic 

and hydrolysable ligands and solvents, discrete molecular complexes in a variety of formal oxidation states, with covalently binding, 

organometallic ligands that form actinide-ligand σ-, π-, δ- and even ϕ-(back)bonding interactions provide an excellent platform for 

advancing the fundamental understanding of the differences in orbital contributions and covalency in f-block metal – ligand bonding.8,9 

For example, recent quantitative carbon K-edge X-ray absorption spectroscopy (XAS) analyses on the organometallic actinocenes 

An(COT)2 (An = Th, U; COT = η-C8H8), provided the first experimental evidence for extensive ϕ-orbital interactions in thorocene 

(observation of a C1s to Th-C antibonding 2e3u (5f–)), and remarkably little in the U analogue (where the interaction is more closely 

with the 2e2u)10 providing an important caveat that different orbitals will not necessarily show the same trends in orbital mixing across 

the actinide series. 11 Different behaviour is seen again for the electronic structure of the recently published plutonocene derivative 

Pu(1,3-COT'')(1,4-COT'') (COT'' = η-C8H6(SiMe3)2).12 Neptunium is also a very sensitive nucleus for Mössbauer spectroscopic studies 

of the electronic influences of ligand bonding on a Np cation.  

Progress in anaerobic transuranic chemistry trails far behind that of uranium and thorium due to the limited number of appropriate 

radiological research facilities worldwide, scarcity of pure transuranic elements and a skills shortage, and the relative lack of Np studies 

compared to the other early actinides has been highlighted.4 An excellent indicator for the progress of modern molecular chemistry are 

structurally characterized complexes added into the Cambridge Structural Database (CSD), as originally pointed out for single crystal 

structural determinations of plutonium complexes.13 Figure 1 shows the small number of transuranic compounds (a), and even smaller 

number of organometallic derivatives (b) listed in the database, but includes some incomplete datasets so the real numbers are actually 

lower than presented.  

This review sets out what is already known of neptunium’s organometallic chemistry, highlighting how surprisingly different it 

can be from that of its neighbours, uranium and plutonium, and suggests what might be possible in the future from this metal cation 

that can exhibit so many oxidation states, such variable and high coordination numbers, and yet about which so little reaction chemistry 

is known yet. 
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(a) (b)  

Figure 1. Pie-charts showing the fraction and number of structurally characterised actinide complexes in the Cambridge Structural 

Database (WebCSD, update 9th February 2017) ordered by: (a) element, (b) element entries that contain an An-C bond. 

  

1.1 Synthetically important isotopes of neptunium 

The only neptunium (93Np) available on Earth is man-made since any primordial neptunium is no longer present. The element has 

twenty four radioisotopes;14 the most stable are 237Np (t1/2 = 2.144(7) × 106 y), 236Np (t1/2 = 1.54(6) × 105 y) and 235Np 

(t1/2 = 396.1(12) d), whilst all the remaining have half-lives of under 4.5 days, with a majority below 50 min.15 The longest-lived 

nuclide, 237Np, has a half-life of 2117(24) times shorter than the age of the Earth thus no primordial neptunium is present today. This 

notwithstanding, accurate -ray measurements of concentrated uranium ores allowed the direct detection of natural 237Np at the 

maximum mass ratio to 238U of 1.8 × 10-12; the result of the neutron activation and decay products.16 The isotope 237Np is typically 

produced from the  decay of 237U (t1/2 = 6.749(16) d); spent commercial uranium fuel rods in about 0.03 % of the total material, and 

about 5 % of that of plutonium. Around 50 000 kg of the element is produced annually, in essentially pure from spent fuel via the 

PUREX (Plutonium Uranium Redox Extraction) waste separation process.17 The long half-life of 237Np make it a major contributor to 

the total radiation dose remaining after spent civil nuclear waste has been stored for tens of thousands to millions of years. Additionally, 

if plutonium has not been recovered prior to disposal of waste then additional 237Np will form from 241Pu via –decay, prolonging the 

long term radiotoxicity of the waste. 

The complicated behaviour of Np in the PUREX process is a clear demonstration of the importance of the ability to understand 

and control the solution phase chemistry and speciation of neptunium. Neptunium ions cause problems in the PUREX separation 

process as the soluble, non-extractable neptunyl(VI) [NpO2]2+ and neptunyl(V) [NpO2]+ ions are in equilibrium with the extractable 

NpIV resulting in a distribution of Np between the organic and aqueous phases.18 This means that in the early stages of partitioning 

about 75 % of the initial Np content of the feed is co-extracted as [NpO2]2+ with the uranium (as UVI).19 It would be preferable to 

control its oxidation state to NpIV so that it can be co-extracted with Pu(IV). The so-called ‘pentavalent’ form, [NpO2]+, is also more 

environmentally mobile than the other actinide ‘yl’ anions, posing further potential risks.19,20 
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1.2 Radiological concerns with handling neptunium 

Compounds of 237Np are more chemotoxic20 than those of plutonium,16 but significantly less radioactive (specific activities for  

decaying isotopes: a(237Np) = 0.7 mCi · g-1 and a(239Pu) = 62.1mCi · g-1). The 237Np radioisotope shows primarily  emission 

(Q = 4.958 MeV). The accompanying -ray radiation is weak (29 and 86 keV) but 237Np decays to 233Pa (t1/2 = 26.97 days, 

a = 21 kCi · g-1), which in turn is a potent  emitter (Q– = 0.570 MeV) and a strong -ray emitter. After approx. 189 days (7 half-lives) 

the concentration of the 233Pa daughter approaches 34.6 ppb, increasing the equivalent gamma dose rates to almost five times that of 

the parent isotope.21 For 237Np complexes, the radiation toxicity from γ-radiation is negligible, but as for all radionuclides emitting α-

particles any bodily ingestion or injection of the nuclide must be avoided. Accordingly, synthetic neptunium chemistry must be carried 

out with suitable radioprotection, usually in negative pressure gloveboxes under an inert atmosphere to protect from fire. Because the 

negative pressure mode of glove-box use allows higher oxygen and moisture ingress compared to a standard glove box, the handling 

of highly sensitive organometallic complexes can be facilitated by the use of a Schlenk line and Schlenk techniques inside the box. In 

contrast to plutonium and later actinide samples, where radiolysis effects are often visually apparent after days to weeks, the degradation 

of 237Np complexes due to autoradiolysis is insignificant over a timescale of many months, and although the 237Np isotope is fissile, 

the mass required to achieve criticality is 63.6 kg, so is not a practical concern.22  

Thus in the early preparative reports arising from experiments in the original radiological facilities with only limited access to 

simple analytical tools and spectrometers, standard characterisation methods are focused on vibrational spectroscopies such as FIR, 

IR, UVvisible and Raman, and gravimetric methods (titration for metal and halide), with occasional reports of 1H NMR spectroscopic 

analysis. In recent years, more laboratories have gained access to NMR, EPR and single crystal XRD capabilities, but the radiological 

concerns in safe manipulation of transuranium elements that demand double or even triple encapsulation of samples still presents 

problems for data acquisition on more sensitive samples (thermal and air/moisture). Low-temperature analyses remain considerably 

more technically challenging than normal. Between the 1960’s and 80’s two different laboratories also collected Mössbauer spectra of 

a variety of neptunium complexes, in the anticipation of better understanding the M-L bonding from analysis of the metal. More 

recently, variable temperature SQUID magnetometry has become an analytical method of choice to study these high fn complexes. 

1.3 Redox properties 

The redox properties of the element play a pivotal role in neptunium chemistry as it conventionally exhibits five oxidation states 

in compounds, from +3 to +7, with +5 the most common in aqueous media.23 This very wide range means that there is much important 

and relevant chemistry still to explore in a protic, aerobic environment. In the meantime, two recent instances of thermally unstable, 

highly-coloured compounds that suggest that NpII is chemically accessible offer organometallic chemistry a chance to contribute much 

to the fundamental structure and bonding.24 It is now clear that early actinides and to a lesser extent the rare earths, particularly in the 

lower formal oxidation states,25 exhibit strongly ligand-dependent ground electronic configurations,26 and the formal, aqueous redox 

potentials are poor predictors of the accessibility of a particular oxidation state in well-controlled coordination environment.27 However, 

there are hardly any reports of measured redox potentials for transuranic complexes in non-aqueous media, and no studies yet of a set 

of comparable complexes where the AnIV/AnIII couple could be compared for U, Np, and Pu (the two most common oxidation states 

found in organo-neptunium chemistry). The standard potentials (V vs. SHE, I = 0, acidic conditions) are: UIV/III -0.553 (± 0.004); 
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NpIV/III +0.219 (± 0.010); and PuIV/III +1.047 (± 0.003).28,29 The literature available on kinetically inert organometallic complexes agree 

that UIV is more common and stable than UIII, with the redox potentials of Np(Cp)4 and Np(Cp3)Cl around 0.7V below those for the U 

analogues,30 and the stability of the AnIV halides with respect to decomposition into AnIII and elemental halogen decreases in the order 

U > Np > Pu.31 This means that commonly used organometallic ligands may be strongly influential in changing the preferred formal 

oxidation state of organo-neptunium complexes, allowing spontaneous reduction of a NpIV centre during a ligand exchange reaction.32 

1.4 Magnetic properties 

Neptunium has seven valence electrons and the common NpIV oxidation state provides a high spin state Kramers’ ion (5f3, 4I9/2). 

This has the potential to provide more magnetically interesting properties than those of the corresponding UIV (5f2, 3H4) ion in its 

complexes. The propensity of these large metal cations to form clusters with strong and covalent metal oxo bridges also offers routes 

for magnetic exchange and has already led to some coordination complexes with interesting magnetic properties, albeit in higher formal 

oxidation states which provide a lower total spin that is achievable for most organometallics. The most interesting recent example is 

the air-sensitive, oxo-coupled trinuclear NpVI/V neptunyl complex [(NpVIO2Cl2){NpVO2Cl(THF)3}2] that is the first polymetallic 

transuranic complex to exhibit slow relaxation of the magnetisation with a high (140 K) energy barrier and strong magnetic coupling 

between the cations. The superexchange-mediated coupling (10.8 K) is an order of magnitude larger than in related 4f-systems.33 

 

Indeed, the recognition that f-block metal cations have high spin numbers and strong anisotropies has led to much research aimed 

at combining them into single molecule magnets, SMMs, molecules posessing an energetically isolated high-spin ground state that 

exhibit slow relaxation of the magnetic moment, and could have applications in spintronic devices.34-38 Actinides are favored over 

lanthanides as the greater covalency in their bonding offers a greater chance of the control of directionality and stronger magnetic 

communication. The SMM properties of the actinocene sandwich Np(COT)2 is discussed in the section on COT complexes below. 

1.5 Neptunium halide starting materials 

This is a particularly important consideration for the development of organo-neptunium chemistry since only certain forms of Np 

are available to particular radiolabs. Anhydrous actinide(III) halides (AnX3, X = Cl, Br, I) are polymeric and poorly soluble.39,40 This 

nothwithstanding, the in situ reaction of suspended NpCl4 with sodium amalgam in diethyl ether produces a reactive, high-surface area 

form of NpCl3, that warrants further characterisation, or solvation studies as it has already proved its efficacy for metathesis reactions.41 

Unlike the many synthetically useful solvated uranium(III) halides, for neptunium, only [NpI3(THF)4]42 has been reported, and its 

synthesis is from the metal which is generally not available to radiological facilities. Notably, in contrast to the synthesis of the 

isostructural UI3(THF)4 the Np does not require activation prior to the reaction with I2, and forms the thermally-stable product in very 

good yield.43 

For neptunium(IV) the anhydrous NpCl4 continues to play a pivotal role in the synthetic chemistry because of three particular 

properties: 1) good solubility in polar, aprotic organic solvents, 2) excellent ligand salt metathesis and reductive chemistry, and 3) the 

relative ease of conversion of aqueous NpIV chloride solutions into anhydrous solvates such as NpCl4(DME)2, which is a soluble, 

molecular complex and will no doubt become a key entry point for organoneptunium chemistry going forward.44 The neptunate(IV) 
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[NEt4]2[NpCl6],45 has also been used with good effect, and another analogue, [PPh4]2[NpCl6], has been very recently reported.46 Finally, 

unsolvated NpCl4 offers the rather special opportunity to build an essentially closed recycling loop for neptunium within a research 

laboratory since high-temperature vacuum sublimation procedures can yield pure NpCl4 on a gram-scale from mixtures containing less 

volatile Pu and related elements. 

1.6 The qualitative and quantitative study of actinide-ligand bonding and covalency 

The electronic structures of complexes of the actinides are complicated and difficult to predict, and orbital populations do not 

necessarily follow simple trends across the 5f series for a given set of complexes. This is due to relativistic effects, electron correlation, 

and crystal-field effects. There is an ongoing debate as to the nature and extent of covalency in f-block M-L bonds as it is important 

for the safe and efficient separation, manipulation, recovery, and prediction of behaviour of these (in many cases) rare, expensive, and 

important elements.  

Many techniques have been explored in an effort to better quantify the orbital occupation of the metals’ valence electrons. 

Experimental methods have increasingly taken advantage of both reactivity trends and physical techniques, often involving the 

comparisons of sets of isostructural complexes. Analyses of sets of single crystal X-ray diffraction data, and on the degree and strength 

of binding of donor molecules have been studied in depth to reveal trends and breaks in the 5f-series.47,48 Atom-specific analyses have 

focused on NMR and EPR where appropriate spin-active nuclei or unpaired electrons are available,49 XANES (X-ray absorption edge 

spectroscopy) of certain elements in bound ligands,50 XAS (X-ray absorption spectroscopy) on the metal nucleus,51 and crucially here, 

Mössbauer spectroscopy. As 237Np is a Mössbauer- active nucleus this spectroscopy, like NMR spectroscopy, can probe minute changes 

in the Np centre’s energy levels brought about by ligated atoms, and the results of studying many Np complexes are summarised in 

Section 6. Many of these experimental outputs are only interpretable through the use of computational methods, but these have become 

significantly more powerful in the last decade, allowing the discussion to become much more involved and to start to open up even 

more complicated arguments such as how to define covalency.5 

In addition to classical carbon-binding ligands, other sets of compounds with increasingly ‘soft’ or electronegative donor atoms 

have been made and studied to explore the covalency changes in the bonding. The most notable neptunium complexes explored to this 

end are the chacogenide-based diselenophosphinate NpIV(Se2PPh2)4 which was compared with LnIII and AnIII and AnIV congeners,48 and the 

dithiphosphinates NpIV(S2PPh2)4 and NpIV(S2P(tBu2C12H6))4 which were compared with AnIII and AnIV congeners.52 A pair of non-

aqueous halides have been made, with the chloride [(TrenTIPS)NpCl] having been structurally characterised.53 The opportunity to use 

An-L multiple bonding to study covalent bond overlap is offered by the unprecedented bis(imido) Np complex 

[NpV(NDipp)2(tBu2bipy)2Cl]54 which provides a fascinating comparison with the highly unusual U analogues such as 

[UVI(NPh)2(THF)2I2] 55 that are being reported with increasing frequency. 

 

1.7 Previous reviews of actinide and transuranic organometallics 

Three early reviews included organometallic actinide complexes made in the 1960’s and ‘70s,56,57,58 with one written for a more 

generalist audience.59 The last review of organometallic Np compounds appeared in 1986.60 Element-specific surveys have been 
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recently published for non-aqueous uranium61-64 and plutonium65 along with more general discussions of synthetic and structural 

actinide coordination and organometallic chemistry,66-68 and two book chapters in the multi-volume ‘Chemistry of the Actinide and 

Transactinide Elements’ cover the element,69 and organoactinide chemistry.70 A non-element specific listing of the year’s reported 

organometallic actinide complexes reported during each previous year is published annually.71 

 

2. Cyclopentadienyl and substituted cyclopentadienyl ligands 

Np(IV) 

Early organoactinide chemistry relied on the ubiquitous cyclopentadienyl ligand, Cp = (C5H5)-, due to its enormous success in 

transition metal chemistry, and rich structural and electronic diversity. Remarkably, organoneptunium chemistry originated from a 

radiochemical rather than a chemical synthesis: Baumgärtner, Fischer and Laubereau subjected the uranium complex [238U(Cp)3X] to 

thermal neutrons, inducing transmutation to neptunium in the pioneering synthesis of 239Np(Cp)3X (X = Cl, F) (Scheme 1a).1  

Scheme 1. Nuclear and solvent-free syntheses of NpIV cyclopentadienyl complexes. 

 

The activation reaction 238U(n,)239U followed by -decay of the new isotope proceeds cleanly according to 239Np -ray 

spectrometry (ca. 90 % yield conversion of U to Np). It is interesting that the nuclear recoil displacement72 of the radioisotope did not 

destroy the molecule, and the authors were able to demonstrate both the volatility and thermal stability of the new Np(Cp)3X 

complexes. Concurrently, the first chemical preparations of 237Np(Cp)3X (X = Cl, and F) were reported, using molten Be(Cp)2 as a 

reactant and solvent73 in reactions with NpCl3, NpCl4 or NpF3, Scheme 1b. The clean formation of NpIV(Cp)3 -containing products 

contrasts to the analogous uranium chemistry that exclusively forms UCp4. Vibrational spectroscopy was used heavily in the early 

organoneptunium chemistry studies, as in both IR and FIR regions provide assignable bands for the carbocyclic ligands bound to a 

heavy central ion. Both the vibrational spectra in the IR (600-4000 cm-1) and the FIR (40-400 cm-1), where the skeletal vibrations are 

visible, are useful in the characterisation of An-Cp complexes and comparison of their molecular symmetry, and often the bonding in 

these molecules has been shown to contain both -aromatic and -ionic interactions by careful comparison with spectra of the lighter 

congeners (Th, U). 

The chemical properties of Np(Cp)3Cl closely match those of its uranium analogue. Halide exchange reactions proceed most readily 

from the use of ammonium salts,74 affording Np(Cp)3X, X = Br, I, SCN, ½ SO4, NC4H4, AlCl4, OtBu, OiPr, OPh, OiC3F7.75 Although 

it is not clear that the complexes have yet been fully characterised, variable temperature magnetic analyses of a subset, Np(Cp)3X, X 
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= F, Cl, Br, I, ½ SO4, Cp) were also undertaken. They discuss the crystal field splitting of the 4I9/2
 ground state of NpIV in the different 

complexes, and the possibility of a dimeric structure of the fluoride, which has very a different temperature dependance, and much 

higher values, of the magnetic susceptibility than the others.76 For this study, the fluoride Np(Cp)3F was prepared from the iodide in a 

sold state synthesis,by treating the monchloride with an excess of NaF at 300 °C for 40 h, followed by a THF extraction of the product. 

The monochlorido Np(Cp)3Cl forms the hydrated cation [Np(Cp)3]+ in dilute or semi-concentrated aqueous mineral acids under strictly 

oxygen-free conditions,75 or the thiocyanate-solvated anion in the salt [AsPh4][Np(Cp)3(NCS)2].77 (The authors also point out they 

were unable to isolate the neutral Np(Cp)3(NCS)(NCMe) although evidence for its formation in solution was obtained.) Red-brown 

solutions of the cation, or Np(Cp)3Cl react with ferric chloride only very sluggishly to produce ferrocene,78 suggestive of the similar 

bond energy in AnIV-(5-Cp) interaction for An = U, Np, and contrasting with the rapid ligand exchange of the Th analogue.79 The 

single crystal X-ray structure of Np(Cp)3(OPh) was the first, and until very recently the only reported structure of a tris(Cp)-Np 

containing complex.80 It is isostructural with the previously reported uranium analogue [U(Cp)3(OPh)]81 and is best described as a 

flattened tetrahedron, showing approx. C3v symmetry at the metal site with the O donor at the C3 axis. Electrochemical analyses on 

An(Cp)3Cl (An = U, Np) show reversible one-electron reduction at E1/2 = -1.80 V for U and -1.29 V for Np (vs. Fc+/Fc in THF),26 

confirming that the Cp-supported Np(IV) complexes are significantly easier to reduce. 

Baumgärtner et al. reported the first homoleptic organoneptunium complex, tetrakis(5-cyclopentadienyl)neptunium(IV), Np(Cp)4, 

from the reaction of NpCl4 with excess KCp in benzene solvent, Scheme 1c.3 The S4 symmetry with four identical Cp rings around the 

NpIV centre assigned from combined IR3 and FIR(far infra-red)82 spectroscopic and powder X-Ray diffraction83 data for the reddish 

brown crystals, and supported by a computational study,8 has now been confirmed by single-crystal X-ray diffraction.41 The computed 

Np-Cp centroid distance of 2.563 Å compares with the experimentally observed value of 2.551 Å (and values of 2.606 Å for Th, and 

2.588 Å for U), continuing the expected trend of shortening An-Cp bonds with increasing An4+ atomic number. Across the row of the 

isostructural An(Cp)4 (An: Th, U, Np), in line with the actinide contraction, the cell volume decreases from 802 Å3 (Th) to 786 Å3 (U) 

to 775 Å3 (Np). A concomitant shrinking of the entire molecule is evidenced by a decrease in An - Cp ring centroid distances, from 

2.606 Å for Th,84 to 2.588 Å for U,85 and 2.551 Å for the Np complexes described here, again shorter. The shrinking parallels the 

decrease of the ionic radii;86 this implies that the nature of the bonding in the complexes in this row is comparable and even if covalency 

plays a role it does not affect the bond lengths in the complexes significantly. Interestingly, an analysis of the skeletal vibrations in IR 

and FIR regions for the simple series of AnIVCp4 complexes (An = Th, Pa, U, Np) revealed not only the two expected oscillations out 

of total of four normal active oscillations in the IR, but also a weak vibration band at ca. 250 cm-1, suggestive of a lowering of the 

symmetry from the expected parent Td across the whole series. This small deviation could either originate from an actual D2d symmetry, 

or S4,87 and was confirmed by subsequent investigations that found a non-zero electrical dipole moment in solution.82 Further fitting of 

the low temperature magnetic susceptibility data88,89 and also the optical spectra for the uranium analogue also suggested both D2h 

distortion,87 whereas the single crystal X-ray diffraction analysis of UCp4 and photoelectron spectroscopy (using U(CpMe)4 as a 

surrogate, CpMe = C5H4Me)90 indicated S4 symmetry for both. Our recent single crystal X-ray diffraction analysis of NpCp4 confirmed 

the previous findings for the isostructural nature with the uranium analogue.41 

 

Np(III) 
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Many routes to solvated and base-free UIII(Cp)3 complexes exist, but until very recently only the THF solvate of NpIII(Cp)3 had been 

reported, made from treating [Np(Cp)3Cl] with potassium metal and catalytic naphthalene in refluxing THF for a few days. The isolated 

product was assigned as the tris THF solvate Np(Cp)3(THF)3 based on metal analysis,78 but IR, FIR and UV-vis-NIR spectroscopic 

analysis suggested the 1:1 Lewis base adduct Np(Cp)3(THF) constitution, analogous to that of uranium.91 Attempts to desolvate it by 

heating samples in vacuo led to significant decomposition.78 We used a minor modification of Zanella et al.’s strategy92 (sodium 

amalgam instead of sodium hydride as reductant) to make the unsolvated NpIII complex Np(Cp)3 (Scheme 2).41 

Scheme 2. Syntheses of An(Cp)3 complexes, related NpIII derivatives and the thermally unstable putative NpII derivative, including 

a drawing of K[Np(Cp)4] showing the two types of Np coordination geometries labelled (A) and (B).  

 

The NpIV complex Np(Cp)3Cl is cleanly reduced by sodium amalgam in diethyl ether, forming the pale green diethyl ether solvate 

Np(Cp)3(OEt2) that loses solvent readily, affording Np(Cp)3 in excellent yield. This compares with a maximum yield of around 40 % 

achieved so far from the four different synthetic routes used to make UIII(Cp)3 complexes. The unsolvated Np(Cp)3 crystallises in a 

monoclinic cell, and contains polymeric zig-zag chains of the {AnIII(5-Cp)2} units bridged through alternating µ-5,1-bound 

cyclopentadienyl groups.41 This is directly comparable to the structures of the unsolvated LnCp3 (Ln = Ce, Ho, Dy)93 SmCp3,94 and 

LaCp3.95 Another, orthorhombic form of SmCp3 has however also been reported.96 In the polymeric form the neptunium complex is 

only very sparingly soluble in non-coordinating solvents but samples dissolve slowly in Et2O, THF, or MeCN forming solvates.41 

The utility of the Cp anion as a reductant is well documented in preparative inorganic chemistry, as the homolysis of the M-

hydrocarbyl bond provides one reducing electron to the metal and releases the organic radical which can dimerise or be solvent-
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quenched. The recognition of this transformation in transuranic chemistry may be of wider interest as it enables research labs in 

facilities to access lower formal oxidation states of these metals without using pyrophoric Group 1 elements or amalgams that preclude 

the incineration of lab waste. 

Although the neutral complex Np(Cp)4 has been reported several times to form in the reaction between NpCl4 and excess KCp in 

THF,41 benzene,3 or toluene97 solution, the reaction between Np(Cp)3Cl and KCp cleanly affords the NpIII ate product K[Np(Cp)4], the 

first actinide(III) tetrakis-cyclopentadienyl complex, instead of the anticipated Np(Cp)4, Scheme 2. The solid state structure of 

K[Np(Cp)4] is unique in containing two different types of metal-Cp coordination geometries in the same crystal, labelled as Np(A) and 

Np(B) in Scheme 2. This NpIII product could provide an explanation for the disagreements in the Mössbauer studies on covalency. 

Adrian observed that Mössbauer spectra of the Np(Cp)4 targets provided by Bohlander contained two low intensity bands arising from 

the unidentified impurities.98  

Finally, these complexes present an unusual opportunity to observe a metal cation with two different formal oxidation states in an 

identical coordination geometry: In NpIVCp4 and KNpIIICp4 there exists a Np centre that has four 5-coordinated Cp rings around the 

Np cation. In NpCp4 the mean Np-ring centroid distance is with 2.551(1) Å, which is about 0.08 Å shorter than the distance in the 

equivalent Np centre in K[NpCp4] (in which it is 2.635(1) Å). This direct comparison provides an organometallic datapoint showing 

the radius of NpIII being 0.08 Å larger as for NpIV.41  

 

Np(II) 

Reports of the new formal oxidation state for uranium, in the form of the UII ‘ate’ complex [K(2.2.2-cryptand)][U(Cp')3], 

[K(2.2.2-cryptand)][U(Cp'')3] and [K(2.2.2-cryptand)][Th(Cp'')3] (Cp' = C5H4SiMe3; Cp" = C5H3(SiMe3)2) spurred a search for the 

neptunium analogue. Reduction of Np(Cp')3 by KC8 in the presence of 2.2.2-cryptand affords black solutions and unstable crystals at 

-78 °C that were tentatively suggested to be a neptunium(II) complex K(2.2.2-cryptand)[Np(Cp')3], like the UII and ThII complexes 

K(2.2.2-cryptand)[Th/U(Cp')3], Scheme 2, and that is thermally unstable above -10 °C. Unfortunately, radiological concerns precluded 

mounting of the putative NpII crystals on the diffractometer head at low temperatures and the diffraction data from the crystals mounted 

were too poor for a structural determination. However, in line with the presumed increasing stability of lower formal oxidation states 

across the row, the Pu analogue K(2.2.2-cryptand)[Pu(Cp'')3] with additional SiMe3 substituents, was reported around the same time, 

having been found to be sufficiently thermally stable at -35 °C to be structurally characterised by X-ray diffraction.99 All these 

compounds are extremely reactive with standard radiologically protective materials such as teflon-liners required for spectroscopy 

tubes, increasing the technical difficulty of these studies. 
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Heterobimetallic complexes 

A systematic study on the ability of the AnIII(Cp)3 (An = U-Pu) complexes to reductively functionalize the exo-oxo group 

of the uranyl(VI) dication in (UO2)(THF)(H2L), where (H2L)2- is a doubly-deprotonated tetrapyrrolic, Schiff-base macrocycle, 

afforded (Cp)3AnOUO(THF)(H2L) complexes with four structurally characterised analogues afforded with different peripheral 

substituents on L, Scheme 3.91 

Scheme 3. Reductive oxo-metalation of uranyl complexes by AnCp3 (An = U, Np, Pu). 

 

 

 For the more reducing UIII ion, the oxo group provides a capable bridge between the two actinide cations,38 with the Np 

coordination forming the first heterobimetallic transuranic organometallic complex. Although the many techniques used to assign 

formal oxidation states are not all in agreement, in combination, and with support from DFT calculations, they show that the extent of 

electron transfer to the uranyl is U>Np>Pu. There is no clear magnetic communication between the actinide centers, the UIV-UV 

complex (Cp)3UOUO(THF)(H2L) is a single ion magnet (arising from the uranyl(V) f1 centre), with a relaxation barrier of 19 cm-1. A 

strong donor-acceptor interaction, or perhaps even non-integral formal oxidation states for Np and U are probably most appropriate for 

the Cp3Np(UO2) molecule (Cp)3NpOUO(THF)(H2L), and any interaction between the PuIII and UVI is too weak to be observed in the 

presence of coordinating THF solvent. 

 

Bis(cyclopentadienyl) complexes 

To avoid the formation of mixtures of Np(Cp)3Cl and Np(Cp)Cl3(L)2 (L=coordinating solvent),100 two chlorides must be first be 

replaced by a larger polydentate anion such as acetyl acetonate (acac), bis(1-pyrazolyl)borate (H2B(pz)2) or tris(1-pyrazolyl)borate, 

(HB(pz)3) anions. Alternatively, the Grignard reagent of the larger Cp* (C5Me5) ligand can be used to make the purple dichloride 
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Np(Cp*)2Cl2 directly, albeit in low yield (16 %) Scheme 4.101 The authors note the similarity in the PXRD (powder X-ray diffraction) 

pattern with the stable UIV analogue, implying that it has not been reduced to NpIII.. They also note the reversible one-electron reduction 

of Np(Cp*)2Cl2 in MeCN occurs at E1/2 -0.68V vs SCE, which compares with the value of -1.30V for of U(Cp*)2Cl2. These differences 

neatly mirror the difference between the aqueous NpIV/III and UIV/III couples (-0.063 V and -0.849 V respectively). 

Scheme 4. Routes to stable bis(Cp) and mono(Cp) NpIV complexes. 

 

Mono(cyclopentadienyl) complexes 

The synthesis of Np(Cp)Cl3(L)2 (L = O=PMePh2) was reported early in the history of organoneptunium chemistry and included a 

rare single crystal X-ray structural study.102 The Np coordination geometry is crowded but approximately octahedral with mer- chloride 

ligands and cis-phosphine oxide coordination. The Cp(centroid)-Np-Cl/O bonds are closer to 100° than 90°. A facile ligand 

redistribution occurs for larger L, forming mixtures of Np(Cp)3Cl and NpCl4L2 but stable adducts are formed for L = dmf, MeCONPri
2, 

EtCONPri
2, OPMe3 and OPMe2Ph) were isolated and assigned similar structures to Np(Cp)Cl3(O=PMePh2)2 by IR spectroscopy. 

 

 

3. Complexes with -bound hydrocarbyl ligands 

The syntheses of the solvated actinide triiodides AnI3(THF)4 (An = U, Np, Pu) from the metals has been a milestone in synthetic 

uranium chemistry.42 Reports of preliminary investigations of the reactivity of NpI3(THF)4 suggested it reacts with three equivalents 

of LiCH(SiMe3)2 in hexanes to afford the homoleptic alkyl Np[CH(SiMe3)2]3 to be targeted.103 Comparisons with the U and Pu 

analogues make this a fascinating reagent worthy of further investigation.  

Tetraalkylactinides(IV) such as UR4 (R = Me, nBu, 2-cis-2-butenyl, 2-trans-2-butenyl, tBu, iPr, neopentyl)104 containing 

coordinatively unsaturated AnIV centres are generally unstable with respect to - and/or -hydride elimination reactions, the sterically 

protection afforded by Cp ligands has allowed some heteroleptic -bound organometallic complexes to be isolated, albeit in moderate 

yields. Unlike the robust ThIV and UIV analogues, salt metathesis reactions between Np(Cp)3Cl, and carbanionic alkyl- or aryl-lithiums 

LiR (R = Me, Et, nBu, Ph) form the target NpIV(Cp)3R (R = nBu, Ph) in 40-60 % yield and together with some Np(Cp)4, unidentified 



 

 13

NpIII side-products suggest that the NpIV-C alkyl or aryl bond homolysis in the parent complex is a relatively facile process, even for 

Cp-supported NpIV.41,97 It may be that significant amounts of Np(Cp)3 are being formed in these processes,41 and as such might warrant 

re-investigation.  

The alkynide complexes [Np(Cp)3]2(μ-C≡C) and Np(Cp)3(C≡CH) have been reported during Mössbauer studies but without full 

synthetic or characterising data.98,105  

 

Scheme 5. Synthesis of [(Cp)3AnR] complexes. 

  

 

Studies on the thermal decomposition of the solids An(Cp)3Me, An = Th, U, Np, showed the stability trend: Th>> U > Np, in 

accordance with the decreasing trend in AnIV/AnIII reduction potential, i.e. increasing stability of the AnIII state. The thorium complex 

decomposes at 167 C with a half-life of 97 h, while UCp3(nBu) starts to decompose, albeit more slowly (a half life of 1130 h), in 

toluene solution heated to 97 C. Further comparisons are complicated because of the identification of different decomposition 

mechanisms and products.106 Studies on the kinetics of the alcoholysis reaction in which Np(Cp)3Me is dissolved in EtOH show a 

considerable inertness, with the IR bands for both unreacted starting material as well as the alkoxide product Np(Cp)3(OEt) both present 

after 15 h at room temperature. The uranium analogue UCp3Me reacts instantly with methanol.75,107 This reactivity mirrors the 

hydrolysis of the bis([8]annulene) complexes of early actinides (see below).108,109 

 

4. Cyclooctatetraene and substituted cyclooctatetraene complexes 

Np(IV) 

The large, cyclic aromatic cyclooctatetraene dianion, COT = C8H8
2-, has proven ideally suited to stabilising sandwich complexes 

of the f-block, and excellent treatises on the original actinide sandwich, uranocene, have been written.110,111 ‘Neptunocene’ [Np(COT)2], 

is prepared by combining two equivalents of K2COT with one equivalent of NpCl4 in a non-polar solvent, Scheme 6.112 The complex 

is water- but not oxygen- stable, in line with the high-hapticity of the ligand.  



 

 14

Scheme 6. Syntheses of neptunocene and derivatives. 

 

 

On the basis of IR spectroscopy and powder X-ray diffraction data the compound was assigned the same D8h bis(η8-COT) sandwich 

structure as uranocene with confirmation from subsequent single crystal X-ray analyses.113,114 

Table 1 Comparison of calculated An-COT centroid distance (r(An-COT)), An4+ ionic radius and the ratio between the two. An=Th-

Am. (Data from references 113-115.) 

An r(An-COT) (Å) An4+ ionic radius (Å) r(An-COT)/An4+ ionic radius  

Th 2.002 0.94 2.130 

Pa 1.933 0.90 2.148 

U 1.907 0.89 2.143 

Np 1.890 0.87 2.172 

Pu 1.870 0.86 2.174 

Am 1.861 0.85 2.189 

 

The early An sandwich complexes are isostructural and their geometric data can be directly compared with neptunocene. 

Progressing from Th to Np no real pattern appears in the C-C bond lengths on the COT ligand, but the An-ring centroid distance 

decreases from Th (2.0036(5) Å) to U (1.9264(5) Å) and to Np (1.9088(3) Å).64,116 Very recently the structure of Pu(1,3-COT'')(1,4-

COT'') (COT'' = C8H6(SiMe3)2) has been reported;12 the An-ring centroid distances are 1.89 and 1.90 Å. A computational analysis was 

also undertaken in order to suggest the reason for an unanticipated ring-migration of one of the silyl substituents. Alongside the recent 

report on the structures of An(1,4-COT'')2 (An = Th, U; COT'' = C8H6(SiMe3)2),117 and the anticipated corresponding Np complex, this 

will provide another set of complexes An(COT'')2 for comparisons across the series An = Th, U, Np, and Pu. 
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A computational analysis on An(COT)2 (An= Th-Cm), predicts the shortening of the An-COT distance continues through to Am, 

but the trend does not correlate with the decrease in An4+ ion radius (Table 1) and is explained by the variations in the covalent nature 

of the M-COT bonding.118 Further spectroscopic investigations suggested stronger covalent M-L bonding in Np(COT)2 than in either 

U(COT)2 or Th(COT)2, in agreement with the large isomer shift of 19 mm s-1 found in the 237Np Mössbauer spectrum, and which 

corresponds to a formal oxidation state of ca. 3.5 for Np.112 This could indicate a multiconfigurational ground state like Ce(COT)2 

which is a mixture of CeIII(COT1.5-)2 and CeIV(COT2-)2. Cerocene and related organometallics where the f-electron is metal-localised 

but polarises nearby ‘conducting’ electrons on the aromatic ligand, to give an effective magnetic singlet, are discrete models for the 

‘Kondo effect’,119 a key concept in condensed matter physics that can be used to understand metallic systems with strongly interacting 

electrons such as heavy fermion materials, superconductors, quantum dots, and the unusual magnetic delta-phase of plutonium.120 

Analogues with ring substituents have also been made and compared to the parent: a single ethyl or n-butyl substituent in 

Np(η-C8H7Et)2 and Np(η-C8H7
nBu)2 respectively affords increased solubility in benzene and toluene, Scheme 6,121 but no noticeable 

difference to the isomer shift in the Mössbauer spectrum. Powder x-ray diffraction suggests that the crystal structure of the three 

hydrocarbyl derivatives are different to each other but isostructural with the uranium and plutonium sandwich counterparts. The 

hexachloroneptunate(IV) [(NEt4)2(NpCl6)] proved an excellent starting material for the reaction to afford di-tert-butylneptunocene, 

Np(COTtBu)2, whilst silylated substituents impart improved solubility and air-stability to Np(C8H5(SiMe3)3-1,3,5)2 compared to 

neptunocene, Scheme 6.122 

The parent neptunocene, which has rigorous D8h symmetry Np(COT)2, exhibits intriguing magnetic memory effects 

at low temperatures, Figure 2, and provided the first experimental proof that the 5f ions can provide stronger magnetic anisotropy and 

larger coercive fields than 4f ions in SMMs.113 Even at the maximum field of 14 T and the lowest attainable temperature of 1.8 K, the 

resultant magnetic moment (0.8 µB) remains largely unsaturated and corresponds to ca. half of the expected value for Jz = ± 5/2 doublet. 

At temperatures above 10 K and applied fields of below 2 T, the graph of the function ln() = f(1/T) become essentially linear 

and surprisingly low thermal activation barrier of = 41 K and 0 = 1.1 × 10-5 s was obtained. This could be due to a field-induced 

nuclear spin mediated electron crossing, only observable below 2 T. At 1.8 K and applied fields of 5 T and above, the slow relaxation 

of magnetization becomes independent of frequency and butterfly-shaped hysteresis loops develop by 14 T, suggesting that the primary 

mechanism of relaxation at low temperatures is nuclear spin-induced quantum tunneling (Figure 2). Interestingly, the isoelectronic f3 

UIII complex K[U(COT)2] shows no detectable SMM behaviour,123 presumably due to the net difference in crystal field splitting but 

also possibly due to distortions in the molecular symmetry. In fact, it was the magnetic splitting observed in the 237Np Mössbauer 

spectra that inspired the measurement of magnetic susceptibility of Np(COT)2 in an applied magnetic field.  
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Figure 2. Hysteresis of isothermal magnetization of Np(COT)2 at 1.8 K; datapoints for increasing (decreasing) magnetic field are 

depicted with empty (full) circles. The molecular structure is depicted in the inset; neptunium (black), carbon (grey), hydrogen (light-

grey). Reproduced with permission from ref. 113 Copyright 2011, John Wiley and Sons. 

 

 

 

 

Np(III) 

Red-purple K[Np(COT)2].2THF can be made directly from NpBr3 and K2COT in THF, Scheme 6; it is air and moisture sensitive, 

and is readily oxidised to Np(COT)2.124 It is assumed to adopt a sandwich structure with either D8h symmetry (eclipsed rings like 

neptunocene) or D8d symmetry (staggered rings) since the asymmetric parameter of the quadrupole-split Mössbauer spectrum is zero, 

which indicates that the Np3+ ion sits on an n-fold axis with n>3. According to the Mössbauer isomer shift, the bonding is less covalent 

than in Np(COT)2. This was suggested to be due to a poorer ability of the ‘more hidden’ 5f orbitals in the larger NpIII centre to overlap 

favourably with the COT ring orbitals. The piano-stool complex NpIII(COT)I.xTHF (x was undetermined) may be made from combining 

equimolar NpI3 and K2(COT) in THF, although the product decomposes on work-up to an unknown NpIV-containing material, Scheme 

6. A two-step colour change suggests that K[Np(COT)2] is formed first, prior to reacting with the remaining NpI3 to produce the green-

brown NpIII(COT)I(THF)n. Prior to decomposition, which is accelerated by removal of donor solvent, the material was shown to have 

an isomer shift of +3.83 cm s-1 in the Mössbauer spectrum, closer to that of K[Np(COT)2] than NpI3.125 

 

5. Other cyclic aromatic ligands  

Cycloheptatrienyl adducts 
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Although uranium and thorium cycloheptatrienyl (CHT, [C7H7]) complexes are readily accessible, the Np analogue, Np(η-C7H7)2 

has only been computationally investigated.126 The CHT ligand is interesting for two reasons – the D7h point group is very rare, and 

the question of the choice of formal charge for the ligand in a complex is also open to debate, since a planar, Huckel-aromatic ligand 

can be formulated from either a 6e- [C7H7]+ cation or a 10e- [C7H7]3- limiting forms. The comprehensive survey of neutral and charged 

[An(η-C7H7)2]q (An = Th, Pa, U, Np, Pu, Am; q = -2, -1, 0, +1) showed the importance of fδ- as well as dδ-symmetry orbitals in the 

bonding with the pπ-orbitals of the CHT rings, and that most redox reactivity will involve primarily ligand-based electrons. 

 

Arenes 

Np(III) 

Although metal-bis(arene) complexes are widely recognised across the periodic table, including for the rare earth elements,127,128 

and uranium bis(benzene) has been computationally predicted to be isolable,129 no formally An(0) complex has yet been reported. 

Perhaps the closest bonding situation to this motif so far is provided by the two arenes in the small, flexible dianionic trans-calix[2] 

benzene[2]pyrrolide macrocycle, (LAr)2- which can bind in an η6:η6-fashion with a Np to ring centroid distance of 2.601 Å in 

Np(LAr)Cl.20 A coarse comparison of the centroid distances in a series of aromatics is now possible: The neptunium – ring centroid 

distance in NpIV(COT)2 is 1.898 Å,109 that in Np(Cp)4 is 255.1 Å,41 those in K[Np(Cp)4] are 2.527, 2.516, 2.493 2.631, and 2.645 Å 

(ave. 2.562 Å),41 and that in Np(LAr)Cl, 2.601 Å.20 We reported mono- and dinuclear neptunium(III) complexes Np(LAr)Cl and 

Np2(LAr)Cl4(THF)3, Scheme 7; both complexes adopted6:1:6:1 bis(arene) sandwich structural motif (Figure 3 for Np(LAr)Cl) for 

a single NpIII ion, which is similar to the previously reported complexes of SmIII and UIII.130,131 The NpIV analogue Np(LAr)Cl2 was not 

thermally stable, in contrast to the UIV system, attributed again to spontaneous Np-X ligand bond homolysis.  

 Alternatively, or additionally, depending on the metal:ligand ratio and formal oxidation state of the metal, the two pyrrolide groups 

can bind η5:η5- to electronically mimic the bis(cyclopentadienyl) ligand set.132  
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 Scheme 7. Syntheses of NpIII LAr adducts Np(LAr)Cl and Np2(LAr)Cl4(THF)3 and reduction with NaK3 to form a putative NpII 

complex NpII(LAr)(DME) , which gradually decomposes into the NpIII aryl complex [K(DME)Np(LAr-H)(OMe)]2. 

 

 

Figure 3. Displacement ellipsoid drawing of Np(LAr)Cl with hydrogen and lattice solvent atoms omitted for clarity. 

 

Np(II) 

Further redox studies confirmed the ability of this ligand to support low oxidation state metal centres. In particular, the reduction of 

the red complex Np(LAr)Cl with NaK3 in DME produces near-black solutions suggestive of the formation of a formally NpII complex, 

NpII(LAr)(DME), Scheme 7. Unfortunately, the small black crystals of [NpII(LAr)(DME)], diffracted X-rays too weakly to determine 

the solid state structure. In the absence of excess NaK3, solutions of the putative NpII(LAr)(DME) gradually (over ca 90 mins at room 

temperature) reoxidises to the red-brown, metallated (LAr-H)3- neptunium(III) complex, [K(DME)NpIII(LAr-H)(OMe)]2, featuring 



 

 19

a ‘metallocene-type’ 5-bound pyrrolide binding; the first crystallographically characterized ‘metallocene-type’ geometry measured 

for NpIII.  

A variable temperature magnetic analysis of Np(LAr)Cl found a significant slowing down of the magnetization dynamics below 10 

K, signifying that the onset of single molecular magnetism behaviour should occur below 2 K. The trinuclear neptunyl coordination 

complex [{NpVIO2Cl2}{NpVO2Cl(THF)3}] has previously been shown to exhibit slow relaxation of magnetisation and sizeable inter-

Np superexchange,33 so finding this behaviour in a NpIII complex may offer opportunities for high fn systems to be generated.123 A 

combination of experimental and QTAIM computational comparisons of M(LAr)X (M = Sm, U, Np; X = Cl, I) show significant 

differences (up to 17%) in orbital contributions to M-L bonds between the Ln and An analogues. There have been recent discussions 

over the way in which covalent overlap can be defined in the M-L bond; either in terms of spatial orbital overlap, or through the 

existence of metal and ligand orbitals that have the same energy, and are therefore able to mix. In this case, the Np-ligand bonding 

arises from spatial orbital overlap with the more diffuse 5f orbitals.24 The metal content of the metal-arene π bonding orbitals is 

remarkably similar in the Sm, U, and Np model complexes, (6 to 8 %) and is largely d-based, in agreement with that proposed for the 

hypothetical U(C6H6)2.133 For comparison, these values are about half that in the classical d-block W(η6-C6H6)2 (calculate to have 16 

% metal 5d character in the e1g metal-ring π bonding orbitals). 

 

 

 

 

6. Mössbauer studies of the Np nucleus in organometallic complexes 

 

The isomer shift in the 237Np Mössbauer spectrum of a compound depends on the shielding of the 6s orbital by electron density in 

the inner orbitals, including in particular, the 5f, with an increase in the value of the isomer shift observed with either a decrease in Np 

oxidation state or increase in electron donation from the ligands.98 Spectra of a number of organometallic NpIV as well as some NpIII 

complexes have been reported, Table 2.  

The isomer shift for Np(Cp)3Cl recorded by Adrian of 0.6 mm s-1 (the other reported measurement of +14 mm s-1 had a particularly 

large error of ±10 mm s-1 associated) is larger than that of NpCl4 (-3.4 mm s-1) confirming that Cp is a better electron donor for the NpIV 

ion than chloride, and that there is appreciable covalency in the Np-Cp bonding.75,78,134 However, disagreements in the isomer shift 

value for the homoleptic Np(Cp)4 complex; +7.2 mm s-1[78,97] vs 17.9(1) (referenced to NpAl2 at δ = 0; reported originally as +31.8 mm 

s-1 vs Am metal)98,105 stalled further discussions. The latter measurements were made on a spectrometer at the Kernforschungszentrum 

Karlsruhe, GmbH, which was regarded at the time as state-of-the-art in terms of accuracy and resolution, but the samples always 

contained impurities. Our current knowledge of the propensity of organo-NpIV to be reduced to NpIII (see below) therefore suggest the 

sample contained both NpIII and NpIV Cp complexes, and that these compounds warrant re-investigation. We now know that the colour 

and solubility properties of K[Np(Cp)4] and Np(Cp)4
 are almost identical (see below).  
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The effects of incorporating Cp ligand ring-substituents can be explained by reduced overlap of carbon and Np orbitals arising 

from steric crowding: The average Np-C bond length in Np(Cp)3(OPh) of 2.73 Å increases to 2.81 Å in Np(Cp)4, exactly as seen in U 

analogues.81  

 

Orbital overlap is even more restricted in the bis(cyclopentadienyl) complexes Np(CpMe)2(acac)2 (-5.3 mm s-1) (CpMe = C5H4CH3) 

and Np(Cp)2(HB(pz)3)2 (-4.6 mm s-1) for which the isomer shifts are very similar to the parent chlorides (Np(acac)2Cl2; -4.2 mm s-1 

and Np(HB(pz)3)2Cl2; -6.0 mm s-1).4,100 Neptunocene has a very large isomer shift (19.4 mm s-1) as it has short Np-C distances (2.63 

Å, Np-ring centroid 1.899 Å) compared with the average Np- Cp ring centroid distance in Np(Cp)3(OPh) of 2.466(3) Å,114 and that of 

2.551(1) Å in Np(Cp)4,41 exactly as seen in U analogues.81 The The existence of a multiconfigurational ground state that affords some 

NpIII character to neptunocene (see below) was not discussed at the time. 

When the absorbing 237Np nucleus relaxes faster than the 62-ns half-life of the excited state, the spectra become poorly resolved or 

uninterpretable, limiting the utility of the technique. The use of bulkier ligands was shown to reduce the relaxation problem,134 although 

the observation that Np(CpMe)4 has the same isomer shift as its parent Np(Cp)4 within experimental error suggests that perhaps only a 

limited utility for this technique in teasing out subtle differences. 

Even though only limited conclusions can be drawn from the above data due to sample availability and purity, and spectrometer 

technology, Np Mössbauer spectroscopy is clearly a powerful method to determine the 6s electron density at the Np nucleus for 

different compounds. The study of a wider range of organometallic compounds with modern spectrometers should enable a much 

deeper understanding of electronic structure and covalency in the early actinides. 

 

Table 2 Mössbauer isomer shifts for organometallic NpIV and NpIII complexes 

Compound Isomer shifta  

(mm s-1) 

Reference 

NpCl4 -3.4 135 

Np(COT)2 19.1(2) 75 

Np(Cp)4 7.2(2) 78 

Np(Cp)4 17.9(1)b 98 

Np(CpMe)4 7.1(7) 97 

Np(CpMe)3(BH4) 14.5(40) 97 

Np(Cp)3Cl 0.6 100 

Np(Cp)3Cl 14(10) 78 

Np(Cp)3I -3.9 100 

Np(Cp)3Ph 17.4 100 

Np(Cp)3(n-Bu) 2.7(7) 97 

Np(CpMe)3(OiPr) 9.3(7) 97 
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Np(Cp)3(OtBu) 8.6(30) 97 

Np(Cp)3(OiPr) 8.6(20) 97 

Np(Cp)3(OiC3F7) 7.9(20) 97 

Np(Cp)3(p-(C6H4C2H5))  4.2(28) 97 

   

Np(Cp)3C2H 11.0 100 

Np(Cp)3(NCS) 8.1 100 

[Np(Cp)3)2]2C2 20.1 105 

Np(Cp)3(NC4H4) 19.7 105 

[Np(Cp)3]2SO4 1.9 105 

[Np(Cp)2[HB(pz)3]2 -4.6(7) 100 

Np(Cp)2(Cl)2 -2.7(2) 100 

Np(CpMe)Cl3
.2THF -3.1(7) 97 

   

NpCl3 35.4 78 

NpI3 33.3 125 

NpI3
.6THF 33.2 125 

NpCp3
.3THF 36.4 78 

NpCp3(THF) 35.4 78 

Np(C9H7)2
.xTHF 35.5(2) 97 

K[Np(COT)2].2THF 39.2 124 

Np(COT)I. xTHF 38.3 125 

a) NpAl2 standard set at  = 0.136 b) the value reported of 31.75 was referenced 

against Am metal, and has been converted here to enable comparisons. 

 

 

 

7. Concluding remarks 

Contemporary organometallic actinide chemistry is already playing a key role in the fundamental understanding of electronic 

structure and bonding in the actinides, a poorly understood area of the periodic table. Organoneptunium chemistry has had a long, slow 

infancy, but technological advances such as paramagnetic multinuclear NMR spectroscopy and high-resolution single crystal X-ray 

diffraction are enabling an increased take-up as clearly much work has to be done to understand the fundamental properties of this 

important, environmentally mobile, and (radio)toxic element. The most recent advances in miniaturisation of spectrometers such that 
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they can be placed in a glove box (FTIR, Uvvis, NMR spectroscopy), or coupled to a box via fibre-optic or needle (UVvis spectroscopy, 

Mass spectrometry) have the potential to eliminate the double containment requirements for sample analysis. Although keeping the 

spectrometers clean is of paramount importance, these may enable timely analyses of much more reactive and labile complexes, with 

a desirable associated increase in speed. 

The NpIII/IV redox interconversion is more closely balanced than that of UIII/IV which is heavily weighted towards UIV. Spontaneous 

reduction chemistry of organo-NpIV complexes is a more common reaction process that was originally envisaged, but a fine balance in 

redox potentials for cyclopentadienyl ligand – supported complexes should enable many NpIV and NpIII organometallic complexes to 

be isolated. The utility of the Cp anion as a reductant is well documented in preparative inorganic chemistry, but the development of 

this transformation in transuranic chemistry, where the manipulation of Group 1 element reducing agents and amalgams, may place 

additional burdens on safety or disposal procedures, may be of wider interest. Furthermore, the recent efforts to isolate complexes with 

formal oxidation state NpII fall in line with work to isolate ‘ate’ complexes containing formal ThII, UII, and PuII cations. These very 

low oxidation state targets should be more readily accessible for both Np and Pu than the earlier actinides. 

No redox reactivity studies, for example the activation of small molecules such as H2, CO, and N2 by NpIII, have yet been reported 

(c.f. UIII), but academically-interesting reactions that could be made to turnover can be envisaged because of the closer balance of the 

III/IV couple as mentioned above. The homoleptic alkyl complex Np[CH(SiMe3)2]3 that has been mentioned in preliminary studies 

might be an ideal candidate for this, but there are many other strongly binding non-Cp based organometallic ligands that could also 

provide either spectator or reactive ligands, such as benzyl, or amino-benzyl, aryl, N-heterocyclic carbene, or other ylid derivatives 

like [CH=CPPh3]-.  

Single or diatom-bridged ligands that mediate strong metal-metal magnetic coupling are potentially exciting targets for these high 

fn-systems, with the oxo atom and acetylide units being the most obvious well-defined, and therefore simplest, initial candidates for 

study. The combined experimental/computational study of simple molecular magnetic systems is usually extremely helpful for the 

understanding of more complicated phenomena in materials. The alkynide complexes or their analogues may also provide precursors 

for neptunium carbide materials, which could be interesting comparators for the uranium carbide materials that are potential future 

nuclear fuels.  

Perhaps most importantly to the f-block chemist, the extent, and indeed the definition, of covalency in the actinide-ligand bond 

continues to exercise, and these single-ion complexes with soft and derivatisable carbocyclic ligands offer routes to study subtle trends 

and differences between metals and ligand substitution patterns. The series of compounds that were originally made for Mössbauer 

studies warrant further investigation in this respect, particularly if more modern instrumentation is to become available. Combined 

experimental-computational studies offer powerful, mutually helpful, approaches to understand electronic structures and ways in which 

ligands can manipulate them.  

 

The study of high fn-containing discrete molecules has yielded fascinating magnetic properties for the 4f series, such as molecules 

that exhibit very high spin-inversion barriers that generates single molecule magnet behaviour. Early results on neptunium complexes 

suggest there may be even more interesting spin-systems to be discovered from further reduction chemistry or from coupling multiple 
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low oxidation state nuclei. Molecular spintronics is a burgeoning area and there may be many more unusual spin systems to be explored 

and developed in neptunium chemistry.  

In terms of size and one-electron redox couples neptunium fits neatly between uranium and plutonium, its two more famous 

neighbours. However, it is now clear that there are many instances when its organometallic chemistry proceeds differently, and often 

the products have interesting properties. Understanding the subtleties and learning to control its chemistry in an anaerobic environment 

will help the general understanding of structure and bonding, and contribute to understanding speciation in the more complicated protic, 

aerobic, and potentially more hazardous areas of waste and environmental transuranic chemistry. Of the small number of examples 

now made, neptunium is already showing a rich ligand and redox reactivity manifold. We suggest that the fact that neptunium’s 

chemistry has been generally overlooked is reason enough for it to be studied.  

Now is a good time for organometallic Np chemistry to come of age. 
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9. Abbreviations 

Ar aromatic, arene (generic) 

ATR attenuated total reflectance 

CCI cation-cation interactions 

COT cyclooctatetraenediyl dianion 

Cp cyclopentadienyl anion 

Cp' (trimethylsilyl)cyclopentadienyl anion 

Cp'' 1,3-bis(trimethylsilyl)cyclopentadienyl anion 

Cp* pentamethylcyclopentadienyl anion 

Ct centroid, spatial centre between  

DME 1,2-dimethoxyethane 

Py pyridine 

t1/2 half-life 

DFT density functional theory 

TRU transuranic element 
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