
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fifty Shades of White: Understanding Heterogeneity in White
Adipose Stem Cells

Citation for published version:
Cleal, L, Aldea, T & Chau, Y-Y 2017, 'Fifty Shades of White: Understanding Heterogeneity in White Adipose
Stem Cells', Adipocyte. https://doi.org/10.1080/21623945.2017.1372871

Digital Object Identifier (DOI):
10.1080/21623945.2017.1372871

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Adipocyte

Publisher Rights Statement:
This is an Open Access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-
commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited,
and is not altered, transformed, or built upon in any way.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322480053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/21623945.2017.1372871
https://doi.org/10.1080/21623945.2017.1372871
https://www.research.ed.ac.uk/portal/en/publications/fifty-shades-of-white-understanding-heterogeneity-in-white-adipose-stem-cells(66e4a064-5d87-4ffd-a57b-032584b742e7).html


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=kadi20

Download by: [The University of Edinburgh] Date: 13 October 2017, At: 02:35

Adipocyte

ISSN: 2162-3945 (Print) 2162-397X (Online) Journal homepage: http://www.tandfonline.com/loi/kadi20

Fifty shades of white: Understanding
heterogeneity in white adipose stem cells

Louise Cleal, Teodora Aldea & You-Ying Chau

To cite this article: Louise Cleal, Teodora Aldea & You-Ying Chau (2017) Fifty shades of
white: Understanding heterogeneity in white adipose stem cells, Adipocyte, 6:3, 205-216, DOI:
10.1080/21623945.2017.1372871

To link to this article:  http://dx.doi.org/10.1080/21623945.2017.1372871

© 2017 The Author(s). Published with
license by Taylor & Francis© Louise Cleal,
Teodora Aldea, and You-Ying Chau

Accepted author version posted online: 12
Sep 2017.
Published online: 12 Sep 2017.

Submit your article to this journal 

Article views: 128

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=kadi20
http://www.tandfonline.com/loi/kadi20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/21623945.2017.1372871
http://dx.doi.org/10.1080/21623945.2017.1372871
http://www.tandfonline.com/action/authorSubmission?journalCode=kadi20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=kadi20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/21623945.2017.1372871
http://www.tandfonline.com/doi/mlt/10.1080/21623945.2017.1372871
http://crossmark.crossref.org/dialog/?doi=10.1080/21623945.2017.1372871&domain=pdf&date_stamp=2017-09-12
http://crossmark.crossref.org/dialog/?doi=10.1080/21623945.2017.1372871&domain=pdf&date_stamp=2017-09-12


REVIEW

Fifty shades of white: Understanding heterogeneity in white adipose stem cells

Louise Cleala, Teodora Aldeab, and You-Ying Chaub

aMRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; bUniversity/BHF Centre for
Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

ARTICLE HISTORY
Received 13 June 2017
Revised 21 August 2017
Accepted 23 August 2017

ABSTRACT
The excessive expansion of white adipose tissue underlies the global obesity epidemic. However, not all
fat is equal, and the impact of heterogeneity on the development and expansion of different adipose
depots is becoming increasingly apparent. Two mechanisms are responsible for the growth of adipose
tissue: hyperplasia (increasing adipocyte number) and hypertrophy (increasing adipocyte size). The
former relies on the differentiation of adipocyte stem cells, which reside within the adipose stromal
vascular fraction. Many differences in gene expression, adipogenesis, and the response to obesogenic
stimuli have been described when comparing adipose stem cells from different depots. Considering
that there is disparity in the pathogenicity of the depots, understanding this heterogeneity has
clinically relevant implications. Here we review the current knowledge surrounding such differences, in
the context of development, expansion and therapeutics. Moreover, given the importance of these
differences, we suggest that careful consideration for the precise methodologies used, is essential if we
are to truly understand the physiologically relevant consequences of this heterogeneity.

KEYWORDS
adipogenesis; adipose
progenitor/stem cell; adipose
heterogeneity; gene
expression; white adipose
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Introduction

Owing to the current worldwide obesity epidemic,
research into adipose tissue biology has increased sub-
stantially over the last few decades. Mammalian adipose
tissue is generally divided into two types: white adipose
tissue (WAT) and brown adipose tissue (BAT). Both
function in the maintenance of energy balance, how-
ever, WAT stores energy in the form of triglycerides,
whereas BAT utilizes lipids to burn energy through
adaptive thermogenesis.1 Importantly, WAT is remark-
ably capable of significant expansion, and it is this
property which can lead to the accumulation of excess
adipose tissue, associated with obesity and related
pathologies.2

Recently, a third form of adipose tissue has also been
identified in rodents. “Beige” or “brite” adipocytes reside
in WAT, but morphologically and functionally they
more closely resemble brown adipocytes. Crucially, they
express uncoupling protein-1 (UCP-1); the master regu-
lator of thermogenesis.3-5 Since the beiging of WAT has
been demonstrated to protect against obesity, this is an
area of much interest.6 Recent excellent reviews have
discussed, in detail, what is currently known about
brown and beige adipose tissue, therefore this will not be
the focus of this review.7-10

WAT is divided into two types: subcutaneous (SWAT),
which is located beneath the skin, and visceral (VWAT)
which is distributed within the body cavity, around the
organs. Excess VWAT, or “bad fat”, is associated with
metabolic disease and the pathologies linked to obesity,
whilst SWAT, or “good fat”, is thought to be protective.11

Both SWAT and VWAT are further subdivided into dis-
tinct depots around the body. To some extent these
depots, or fat pads, differ in location and size between
humans and rodents, and are illustrated in Figure 1.

Increasing evidence demonstrates the vast heteroge-
neity that exists between different adipose depots, and
more specifically, the adipose stem cells (ASCs) isolated
from them.8 Moreover, our recent work has shown that
ASCs isolated from a single VWAT depot, are not a
homogeneous population.12 Given that the different
depots contrast in their pathogenicity, understanding
such differences is clinically relevant. The emphasis of
this review shall be on what is currently known regarding
inter-depot differences between WAT depots, with a
specific focus on the ASCs.

Within the field of adipose tissue biology there are a
multitude of terms that have been used to describe ASCs,
which, when comparing various studies, can become con-
fusing. Examples include “preadipocytes”, “adipocyte
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precursor cells” and “adipose mesenchymal stem cells”,
amongst others.13 Considering the ever-increasing hetero-
geneity that is being uncovered between and within ASC
populations, defining clearly the cell type being utilized
will become increasingly important. In recent years there
has been an effort to standardize terminology.13 Neverthe-
less, different terms are still used and with on-going
research, cell surface marker profiles are ever changing
and newly defined populations are being isolated.
Throughout this review the terms ASC, preadipocyte and
adipocyte progenitor will be used interchangeably, accord-
ing to the study being described. Table 1 outlines the dif-
ferent studies that are discussed, including information on
the species, gender, fat depot, health status of the subjects,
and cell type utilized, as well as how the cells were isolated.

Another major area of research in the ASC field focuses
on investigating their potential in regenerative medicine.
There is a growing body of work which aims to compare
subcutaneous ASCs with bone marrow stem cells (BMSCs)
to understand their suitability for therapeutics, which is an
area we shall also discuss. Bone marrow also contains
marrow adipose tissue (MAT) which, unlike visceral and
subcutaneous depots, consists of scattered adipocytes, the
progenitors of which are different from those of WAT/
BAT.14 However, the BMSCs that we henceforth refer to
are the total mesenchymal stem cell (MSC) population as
isolated from bone marrow aspirate.

Variation in gene expression profiles between
white adipose depots

Numerous studies, both human and rodent, have
described differences in gene expression between

subcutaneous and visceral adipose tissue depots when
looking at total fat.15-18 It is hypothesized that differences
between depots influence adipose development as well as
response to environmental cues, such as diet, and are
therefore important in understanding obesity.8 Typically,
such studies in rodents compare inguinal SWAT with
perigonadal VWAT, and in humans, abdominal SWAT
and omental or mesenteric VWAT are compared
(Fig. 1). ASCs reside in the stromal vascular fraction
(SVF) of each depot and in addition to investigating
differences between whole adipose tissue depots, many
groups have specifically examined the isolated SVF, thus
excluding the mature adipocytes from their analysis.19-25

Differential expression of genes implicated
in developmental processes

Gesta et al (2006) compared the gene expression profiles
of the SVF from murine inguinal SWAT and perigonadal
VWAT adipose tissues and showed an enrichment of
genes implicated in developmental processes. When the
SVF was cultured for six days, this differential gene
expression was retained, indicating that the differences
were inherent to the preadipocytes, and not an effect of
the microenvironment in which they exist in vivo. More-
over, when analyzing differences in gene expression
between human abdominal subcutaneous and visceral
adipose tissue, they demonstrated that many of the dif-
ferences observed in the mice were recapitulated in the
human study, and that for certain genes there was a cor-
relation with obesity.26

Much attention has been paid to differences that exist
between subcutaneous and visceral WAT, however,
emerging evidence shows that there is significant varia-
tion between different visceral depots. One of the first
studies to compare gene expression profiles of ASCs
from different human visceral depots revealed that, in
addition to the expected differences between subcutane-
ous and visceral preadipocytes, distinct differences were
observed between mesenteric and omental depots (which
make up the majority of the visceral fat in humans).20 As
with studies that have focused on subcutaneous versus
visceral fat, one major class of genes identified in this
study were those involved in developmental processes,
revealing that surprisingly, mesenteric preadipocytes
clustered with subcutaneous, rather than omental, with
regards to developmental gene expression.20 Similarly,
when gene expression was compared between rat perire-
nal and perigonadal preadipocytes, developmental genes
were one of the main categories identified.21

There is clear evidence that distinct differences in the
expression profiles of developmental genes exist between
all WAT depots in humans and rodents.15,17,20-23,26

Figure 1. Location of human and murine adipose tissue depots.
Depots 1-6 illustrate the visceral white adipose tissue (VWAT).
Depot 7 indicates the subcutaneous white adipose tissue (SWAT):
inguinal in mouse and abdominal, gluteal and femoral in human.
Depot 8 shows the interscapular brown adipose tissue (BAT).
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Yamamoto et al (2010) performed a comprehensive
study investigating differences in the expression of key
developmental genes between total fat from six murine
adipose depots. Having compared the expression of
Tbx15, Shox2, En1, Hoxc9, Hoxc5 and Hoxa5, across
inguinal and interscapular SWAT, as well as perigonadal,
perirenal and mesenteric VWAT and interscapular BAT,
they showed that each depot is distinct, with each one
harboring a unique pattern of developmental gene
expression.27 For example, whilst Shox2 was shown to be
highly expressed in the inguinal SWAT, and not in any
of the VWAT, En1 and Tbx15 were highly expressed in
both subcutaneous fat pads, and additionally in the peri-
renal VWAT, but not in the perigonadal or mesenteric.
Therefore, this study provides supporting evidence for
the discovery that major differences in expression exist
between all depots, thus advocating the idea that adipose
depots exist as individual “mini-organs”.19-21

Differential expression of genes implicated in
adipogenesis, metabolism, inflammation and
angiogenesis

Whilst developmental genes are one of the most com-
monly occurring groups identified through differential
expression analysis, other interesting categories have also
been highlighted. Genes implicated in adipogenesis and
lipid metabolism have been shown to be differentially
expressed among human subcutaneous, mesenteric,
omental and retroperitoneal preadipocytes.20,24,28 For
example, it has been shown that when induced to differ-
entiate in vitro, human subcutaneous preadipocytes
express higher levels of key adipogenic transcription fac-
tors such as PPAR-g and C/EBP-a than omental and
mesenteric preadipocytes.28 Moreover, gene ontology
analysis of microarray data obtained from human
subcutaneous and retroperitoneal ASCs has revealed that
genes involved in cholesterol biosynthesis, lipid metabo-
lism and negative regulation of MAPK activity (which
regulates ASC differentiation) were overexpressed in the
retroperitoneal ASCs.24

Furthermore, genes involved in cellular processes
such as replication and apoptosis, as well as those impli-
cated in transcription, angiogenesis and inflammation
have been highlighted in studies on rodents and
humans.21,24 For example, in rats, proinflammatory
genes were found to be more highly expressed in
perirenal preadipocytes than in perigonadal preadipo-
cytes, a difference which is also more obvious with age.21

This finding is in line with other evidence suggesting
that aging leads to detrimental changes in the function of
adipose tissue.29 Moreover, in terms of secreted adipo-
kines, VWAT is generally considered to secrete more

inflammatory cytokines than SWAT.30 However, differ-
ences also exist between different visceral depots, for
example, the mesenteric depot has been observed to
express higher levels of TNF-a than the omental in insu-
lin resistant individuals.31

In humans, isolated VWAT and SWAT progenitor
cells have also been shown to exhibit different expression
profiles for genes involved in angiogenesis, with retroper-
itoneal VWAT progenitors expressing higher levels of
angiogenic genes than abdominal SWAT progenitors.24

Similarly, VWAT isolated from obese individuals has
been shown to secrete higher levels of VEGF compared
to SWAT from the same subjects, although these studies
examined the whole adipose tissue, rather than the
isolated progenitor cells.32,33 Conversely, in a study uti-
lizing isolated adipose progenitors from human omental
and subcutaneous depots, no significant differences were
observed in the expression of pro-angiogenic or pro-
inflammatory genes such as VEGF, TNF-a and IL-6.34

Comparing differentiation potential in vitro

Evidently, results from gene expression studies indicate
that ASCs from different WAT depots are inherently
different. As discussed in this section, many groups have
used in vitromethods to assess differences in ASC behav-
ior, predominantly proliferation and adipogenic differen-
tiation. We shall discuss whether using the same culture
conditions for ASCs isolated from different depots is
appropriate, for example; perhaps conditions that are
optimal for subcutaneous cells are sub-optimal for vis-
ceral cells, due to their innate differences.

Evidence from human studies

Numerous studies have shown that human SWAT prea-
dipocytes replicate faster and differentiate into adipo-
cytes more efficiently than VWAT preadipocytes
isolated from the same subjects.24,28,34-37 As discussed in
the previous section, SWAT preadipocytes express
higher levels of adipogenic transcription factors, during
differentiation in vitro, than omental and mesenteric.28

A difference has also been observed between omental
and mesenteric depots, with a higher percentage of repli-
cating and differentiating cells in the mesenteric preadi-
pocyte cultures.19,28 Therefore, differences exist between
VWAT depots as well as between SWAT and VWAT.

The key question is why do such differences occur?
From what we have heard so far, an obvious explanation
is that the cells from different depots are inherently dif-
ferent. In addition to this, several other possible reasons
have been addressed. When VWAT and SWAT preadi-
pocytes were co-cultured using transwell inserts, the
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replication of the SWAT cells was not slowed by the
presence of the VWAT, indicating that the difference is
not due to the secretion of anti-replicative factors.19 In
addition to preadipocytes, the SVF contains multiple
non-adipogenic cell types, the percentages of which dif-
fer between depots.38 Nevertheless, the differentiation
capability of colonies derived from single adherent SVF
cells still differs between depots, therefore this disparate
behavior cannot be explained by differences in the pro-
portion of non-adipogenic cells.28 However, it has been
noted that results from studies that analyze colonies
derived from adherent cells should be interpreted with
caution. This method naturally enriches for cells of a
particular immunophenotype, and so is not truly
representative of the heterogeneous population, thus
highlighting the point that analyzing the properties of
adherent SVF cells in vitro is not overly reflective of the
situation in vivo.7,39

As discussed, various studies show that not only do
human SWAT preadipocytes differentiate better than
VWAT, they are also more replicative.24,36 Rodent pre-
adipocytes and pre-adipose cells lines, such as 3T3-L1
cells, should be confluent before they can effectively
differentiate, due to the requirement for growth
arrest.40,41 Therefore, it is logical that more replicative
cells will become confluent more easily and thus differ-
entiate more efficiently. However, this does not appear
to be the case for human preadipocytes, as it has been
shown that they will differentiate without requiring
confluency.41 Consequently, although differences in in
vitro replication and differentiation exist between cells
from different human depots, the later cannot be fully
attributed to the former. Therefore, the differences in
differentiation cannot be fully explained by the differ-
ences in replication.

Contrasting results from human studies

Not all studies performed using human SWAT and
VWAT preadipocytes show the same trend. For example,
work performed by Shahparaki et al (2002), in which
they measured cytosolic glycerol phosphate dehydroge-
nase (GPDH) activity as a determinant of in vitro
terminal adipocyte differentiation,42,43 did not show a
difference in differentiation between cultured omental
and subcutaneous preadipocytes.44 Similarly, another
study which assessed the differentiation of omental and
subcutaneous preadipocytes, by measuring GPDH activ-
ity and counting the number of lipid-filled cells, also
failed to show a difference in differentiation between the
two depots.45 However, proliferation was also assessed,
revealing that subcutaneous cells proliferated at a higher
rate than the omental cells.45

There are several plausible explanations as to why
such inter-experiment differences exist. For example, the
subjects from which the adipose tissue was taken vary
considerably in age, weight, disease status, gender; all fac-
tors which could feasibly influence the condition of the
isolated preadipocytes. Additionally, different groups use
different methods to isolate the preadipocytes. Tradition-
ally, the entire SVF is plated and non-adherent cells are
removed through washing and subsequent passaging,
however as has already been alluded to, there are several
problems with this method ultimately meaning that the
cells used in assays do not well reflect the heterogeneous
nature of the in vivo precursor cell population.39

Moreover, there is much variation between cells used at
different passages, which may account for differences
observed between studies.39 More recent studies use cell
sorting techniques to remove non-adipogenic cells,
rather than relying on adherence/non-adherence;24 how-
ever a panel of suitable markers to permit further enrich-
ment of ASCs from human adipose tissue has not been
established.7 Additionally, there is disparity in how the
cells are differentiated, with different groups using varia-
tions of an adipogenic induction cocktail. Finally, various
methods of determining differentiation are used in
different experiments, including Oil Red O staining,
measuring GPDH activity, quantification of lipid droplet
accumulation and measuring the expression of adipo-
genic genes. With this inter-experiment variation in
mind, it is unsurprising that different studies report
different results, and importantly highlights the require-
ment for more standardized procedures and methods for
the isolation, growth and differentiation of human ASCs.

Evidence from rodent studies

For many years, rodent cell cultures have also been used
to examine differences between SWAT and VWAT, and
between the different visceral depots. In contrast to the
current situation in the human ASC field, panels of
markers that permit the isolation of cells harboring the
properties of adipocyte progenitors and preadipocytes
from the SVF of mice have been identified.46,47 CD45¡;
CD31¡;Ter119¡;CD29C;CD34C;Sca-1C;CD24C SVF
cells, or adipocyte progenitor cells, can form functional
fat depots when transplanted into lypodystrophic mice,
as well as being adipogenic in vitro. CD45¡;CD31¡;
Ter119¡;CD29C;CD34C;Sca-1C;CD24¡ SVF cells (prea-
dipocytes) are derived from the CD24C progenitor cells
and are committed to the adipocyte lineage. Therefore
they are capable of adipogenesis in vitro, but are unable
to form WAT depots in vivo.46,47 Many groups now use
these markers, or a subset of them, to isolate adipocyte
progenitor cells and preadipocytes from mice using flow
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cytometry. Nevertheless, there is still variability within
the field in terms of experimental protocol.

Many studies have shown that, as with human cells,
murine subcutaneous preadipocytes replicate faster and
have greater adipogenic potential than visceral.22,25,48

Additionally, it has been demonstrated that rat perirenal
adipocyte precursor cell cultures have a higher frequency
of replicating and differentiating cells than perigonadal,
therefore highlighting differences between visceral
depots.49-52 Moreover, there is evidence to support that
these differences in the behavior of the precursor cells in
vitro is reflected in the mature adipocytes in vivo, with
the perirenal depot exhibiting a greater increase in fat
cell number over 70 days than the perigonadal depot.51

A recent study that utilized murine subcutaneous and
perigonadal adipocyte precursor cells (isolated based on
the cell-surface marker profile: CD31¡;CD45¡;Ter119¡;
CD34C;Sca-1C) revealed that the addition of BMP4
affects subcutaneous and perigonadal cultures differ-
ently.22 As described previously, the subcutaneous adipo-
cyte precursor cells differentiated very efficiently, with
greater than 90% of the cells forming large lipid droplets,
compared to less than 20% of the perigonadal cells. How-
ever, when the cells were pre-treated with BMP4 before
the addition of the differentiation media, approximately
90% of the perigonadal cells formed lipid droplets, but
no further differentiation in the subcutaneous cultures
was observed. A similar result was seen when BMP2 was
used. Moreover, the expression of genes associated with
differentiated adipocytes, such as Fabp4 and AdipoQ,
increased to levels similar to those recorded for the dif-
ferentiated subcutaneous cells.22 It is well documented
that BMPs can promote the differentiation of mesenchy-
mal stem cells into osteoblasts, chondrocytes and adipo-
cytes.53-55 Further gene expression analysis revealed that,
in the visceral precursor cells, the block in differentiation
occurs because standard differentiation media is unable
to induce the expression of the key adipogenesis gene:
Ppar-g, but that induction of BMP signaling releases this
block. Interestingly, microarray analysis showed that
BMP2 and 4 are expressed at higher levels in the subcu-
taneous precursor cells, compared with the perigonadal,
possibly helping to explain why the subcutaneous cul-
tures did not require the addition of BMP2/4.22 This
study provides an excellent example of how differences
in gene expression between adipocyte precursor cells
from different depots can influence their ability to differ-
entiate into mature adipocytes, and thus how heteroge-
neity between the depots can influence function.
Moreover, this relates to our suggestion that perhaps the
“one-size fits all” approach to culturing ASCs in vitro is
not the best approach, given the inherent differences
between cells from different depots.

Recent work performed by Grandl et al (2016) indi-
cates that the extracellular matrix (ECM) of the adipose
precursor cells influences their differentiation potential.
Having decellularized mouse subcutaneous and perigo-
nadal SVF cultures, and re-seeded them with freshly iso-
lated adipocyte precursor cells, they found that when
perigonadal precursor cells were cultured in the decellu-
larized ECM from the subcutaneous cells, they differenti-
ated better than when cultured in the ECM from the
perigonadal SVF.56 Moreover, it has also been demon-
strated that several proteins which are preferentially
secreted by the perigonadal SVF are capable of inhibiting
adipogenesis, and thus may help to explain why perigo-
nadal adipocyte precursor cells have a lower capacity to
differentiate than subcutaneous.25 Both studies therefore
show strong support for the hypothesis that extracellular
factors impact the differentiation potential of adipocyte
precursor cells. The results from the later study
contradict what has been reported previously, whereby
co-culturing human omental and subcutaneous preadi-
pocytes had no detrimental effect on the replication of
the subcutaneous cells.19 Of course, there are many dif-
ferences between the two studies, not least that one used
murine cells, and the other, human. Furthermore, the
co-culture experiment looked only at whether replication
was affected, not differentiation.

Expansion of adipose tissue in vivo

Many studies that aim to investigate differences in adipo-
genic potential between adipocyte precursor cells from
different depots, and the cellular and molecular mecha-
nisms underlying these differences, have been carried
out in vitro. Nevertheless, the benefits of understanding
such differences in vivo are clear, and recent work has
begun to shift in this direction. In vivo, WAT can expand
through two mechanisms; hypertrophy (an increase in
adipocyte size) and hyperplasia (an increase in adipocyte
number), and it is thought that the mechanism of expan-
sion could influence the depot’s role in the occurrence
and progression of metabolic disease.48 Recent reviews
have described much of the in vivo work in some detail,
including the contrasting results from several studies
that investigated the contributions of hypertrophy and
hyperplasia to the expansion of WAT.7,8 For this reason,
we shall not discuss this area in too much detail, however
it is evident that multiple factors influence the relative
contributions of these two mechanisms to WAT expan-
sion in different depots.

During normal homeostasis there is not much
requirement for hyperplasia or hypertrophy, as the
adipose tissue is not expanding, therefore the majority of
studies are performed under obesogenic conditions. A
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number of studies have demonstrated that hyperplasia
contributes to obesity in rodents,22,48,57,58 and recent
work in humans has revealed that obese individuals have
more adipocytes than lean individuals, which are not lost
following substantial weight loss, indicating that
hyperplasia must play a role in WAT expansion during
obesity.59,60 Regarding differences between adipose
depots recently it has been demonstrated that, following
high-fat feeding, mice exhibit a significant increase in the
formation of new adipocytes in perigonadal VWAT, but
not in SWAT.61,62 This indicates that the visceral depot
expands by hyperplasia in the high-fat diet state, whilst
the subcutaneous depot does not. Moreover, this result
was coupled with data that showed an increase in prolif-
eration of the visceral adipocyte precursor cells in vivo
(but not subcutaneous), within the first week of high-fat
feeding, thus rapidly expanding the pool of precursor
cells available for differentiation into adipocytes. Addi-
tionally, AKT2 signaling in the adipocyte precursor cells
was demonstrated to be required for their activation in
response to the high-fat diet.62 Importantly, it was shown
that these newly formed adipocyte precursor cells in the
VWAT do go on to differentiate into adipocytes after
prolonged high-fat feeding.62 It has also recently been
shown that hyperplasia, rather than hypertrophy, is the
major contributor to the expansion of omental VWAT
in human obesity.60 This data does somewhat contrast to
that from other studies, which have indicated that upon
high-fat feeding, hyperplasia contributes to the expan-
sion of SWAT more so than to the expansion of
VWAT,48 and the number of adipocyte precursor cells is
increased in both visceral and subcutaneous depots.22

There are many potential reasons as to why these studies
obtained contrasting results given that multiple factors
can impact on adipose tissue expansion, such as the age,
strain and sex of the mice, as well as the methods used to
assess adipogenesis (the differentiation of adipocyte pre-
cursor cells into adipocytes). One major difference
between these studies is the length of HFD feeding, with
one focusing on the initial short-term response, and the
other on the long-term response.48,62 Nevertheless, there
is a growing body of evidence that reveals differences in
in vivo adipogenesis between different depots and in dif-
ferent states.

Further work has shown that differences in adipogen-
esis between SWAT and VWAT depots in vivo, depend
on sex.63 Whilst in male mice it appears that adipogene-
sis is increased in VWAT in high-fat diet states, but not
in SWAT, this is not the case in female mice, which
exhibit increased adipogenesis in both the SWAT and
VWAT depots upon high-fat feeding. This result is
thought to be due to the influence of sex-hormones on
adipogenesis, which aligns with the fact that in humans,

men commonly gain visceral adipose tissue, giving the
typical “apple-shaped” figure and premenopausal women
gain subcutaneous adipose tissue, giving the “pear-
shaped” figure, whilst in postmenopausal women there is
a transition to a more male-like adipose distribution.63-65

Moreover, another study which focused on human
SWAT showed that, in women, the contribution of
hyperplasia and hypertrophy to abdominal adipose tissue
gain is dependent on the size of the existing adipocytes.66

If the existing adipocytes were smaller than average,
hypertrophy was the predominant mechanism of expan-
sion, whilst if the existing adipocytes were of average
size, new adipocytes were recruited. However, this was
not the case in men, for whom hypertrophy was the pre-
vailing method of expansion in abdominal SWAT.66

It has also been shown, perhaps surprisingly, that the
proliferation of murine adipocyte precursor cells in
response to high-fat feeding is controlled by cell-extrinsic
factors present in the microenvironment.63 When tdTo-
mato-labelled adipocyte precursor cells isolated from
male SWAT were transplanted into the VWAT of male
mice, both the subcutaneous and visceral cells were
shown to proliferate upon high-fat feeding. Whilst in the
converse experiment, where male VWAT precursor cells
were transplanted into male SWAT, no proliferation was
observed for either cell population upon high-fat stimu-
lation.63 Therefore, in both situations the adipocyte pre-
cursor cells took on the behavior typical of the depot
into which they had been transplanted. Understanding
the regulatory signals governing the activation of the adi-
pocyte precursor cells in obesity is an essential next step,
with evidence already suggesting that sex-hormones may
play a role.63 To some extent this result conflicts with
that from an earlier study, which showed that the trans-
plantation of SWAT into the VWAT region resulted in
decreased weight and fat mass as well as improved glu-
cose metabolism. Therefore indicating that inherent dif-
ferences between the depots, rather than their location,
were responsible for such improvements.67 Obviously
these two studies differ significantly in their approach,
with one transplanting just the precursor cells, and the
other transplanting the total fat tissue. Moreover, the
focus of the precursor cell study was on the proliferative
response to HFD feeding, whereas the total fat transplan-
tation study assessed the consequences for metabolism in
mice fed normal chow.63,67 Nevertheless, both studies are
a powerful reminder of the necessity for in vivo studies.

Regenerative potential of subcutaneous ASCs

The use of mesenchymal stem cells (MSCs) in tissue
repair and immune disorder therapy has increased in
recent years, with many clinical trials currently taking
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place.68 Some of these therapies show promise; for
instance, one MSC based drug, Prochymal, has already
been approved in Canada for the treatment of graft-
versus-host disease and is currently in FDA-approved
Phase III trials for the treatment of Crohn’s disease.69

Historically, the most widely investigated MSCs have
been those isolated from the bone marrow (BMSCs).
However, like BMSCs, subcutaneous ASCs have the poten-
tial to differentiate into many cell types and thus are also
being investigated for use in regenerative therapies. More-
over, subcutaneous ASCs are more readily available as
they can be isolated after lipoaspiration, a procedure which
is both less painful than bone marrow aspiration (which
involves extraction from the hip) and more efficient in
terms of the quantity of stem cells obtained. Stem cells
make up approximately 3% of the adipose tissue SVF in
humans, whereas this figure is just 0.002% for the bone
marrow.70 Multiple studies have compared the differentia-
tion potential of subcutaneous ASCs with that of BMSCs,
in order to assess their suitability for specific therapies. In
this section BMSCs refers to the total MSC population as
isolated from bone marrow aspirate.

Comparing the differentiation potential of BMSCs
and subcutaneous ASCs in a regenerative setting

Much of the work in this area has concentrated on the
potential of these cells to differentiate into lineages
appropriate for application in a regenerative setting.
Although several studies show that subcutaneous ASCs
and BMSCs have similar differentiation potentials, some
differences are noted. Contrasting results have been
obtained from a number of studies that have investigated
the ability of the two populations to differentiate into the
traditional mesenchymal lineages (chondrocytes, adipo-
cytes, osteoblasts).71 Such disparity in the results could
be explained by several factors, including differences in
the sex and age of the patients/model animals and
variation in the methods used by different groups.

The microenvironment influences the ability of BMSCs
and ASCs to differentiate, and in some cases the two cell
types respond differently to the same conditions. The oste-
ogenic potential of BMSCs has been investigated to assess
their suitability for bone-fracture repair. Platelet-derived
growth factor BB (PDGF-BB) is over-secreted in fracture
microenvironments and has previously been found to
inhibit mineralization in BMSC cultures. Surprisingly, a
recent study has shown that PDGF-BB has the opposite
effect in subcutaneous ASC cultures, causing them to pro-
duce more calcium.72 Changes in gene expression in
response to the administration of PDGF-BB were also
found to differ between the two cell types, with the subcu-
taneous ASCs upregulating the expression of osteogenic

genes, whilst in the BMSCs these were downregulated.72

Therefore these results suggest that, in combination with
PDGF-BB, subcutaneous ASCs may be a more suitable
cell type for bone regeneration than BMSCs.

Moreover, subcutaneous ASCs appear to increase
their replicative and osteogenic potential when cultured
on bone marrow-derived extracellular matrix produced
by bone marrow stromal cells.73 Additionally, the two
cell types exhibit contrasting differentiation capabilities
when cultured on 3D bioactive glass-based scaffolds.
Whilst subcutaneous ASCs showed a propensity towards
osteo-differentiation even in the absence of osteogenic
medium, BMSCs failed to differentiate down the osteo-
genic lineage in the absence of osteo-inducing medium.74

Conversely, ASCs cultured in the presence of adipose tis-
sue extracellular matrix tend to undergo adipogenesis
but also do so when no particular cues are present, sug-
gesting that the intrinsic properties of the cells are
important for lineage commitment.75

Some studies have also focused on differentiation into
other therapeutically relevant lineages. For example, human
subcutaneous ASCs and BMSCs have been compared in
terms of their potential to differentiate into pancreatic islet
cells, for the purpose of autologous transplants in the treat-
ment of diabetes. In this case, BMSCs showed an increased
level of insulin secretion, suggesting that they might be bet-
ter suited for the treatment of diabetes.76 On the contrary,
when compared for their muscle regeneration potential in
an in vivo rat abdominal wall reconstruction model, ASCs
showed better proliferation capacity, better angiogenic
potential, as well as good viability even in hypoxic condi-
tions.77 Differences in the secretory phenotype of the two
cell populations have also attracted much attention. For
example, subcutaneous ASCs have been found to be more
suitable than BMSCs for improving left ventricular function
in a mouse myocardial infarction model, through their
paracrine secretion and angiogenic potential.78 On the
other hand, human BMSCs were found to be better than
subcutaneous ASCs at maintaining neuronal function after
cerebral ischemia through the secretion of brain-derived
neurotrophic factor (BDNF).79 Clearly, these two popula-
tions of stem cells differ in their suitability for different ther-
apies, and to a large extent this is likely due to their intrinsic
differences. Nevertheless, multiple studies suggest that sub-
cutaneous ASCs offer a promising alternative to BMSCs in
a therapeutic setting.

Conclusions

Evidently, WAT depots and the ASCs derived from them
are remarkably heterogeneous. Whilst classically the dif-
ferences between SWAT and VWAT have been studied,
there is mounting evidence to show that individual
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VWAT depots are quite different. As we have described,
gene expression profiles differ significantly between the
ASCs from different depots, as well as their differentia-
tion capabilities both in vitro and in vivo.19-21,27,28,49-52

Understanding this heterogeneity and its consequences
in a physiological setting is an essential step in under-
standing why different adipose depots respond differ-
ently to external cues, such as diet.

Much progress has been made over the past decade in
this field, however, it is clear that our knowledge still only
touches the surface of the complexities of this heterogene-
ity. As has been made obvious in this review, there are
many studies that contrast in their results regarding differ-
ences in proliferation, differentiation and interaction with
the microenvironment. It is likely that these differences are
at least partially due to disparity in experimental protocols
and origin of the tissue. We believe that standardization of
protocols, where possible, is necessary if we are to gain an
accurate understanding of the true heterogeneity and the
consequences of it. Moreover, with recent work highlight-
ing that heterogeneity also exists within the ASC population
of a single adipose depot, and that this may have functional
consequences for the adipocytes derived from the ASCs,
the situation is only gettingmore complex.12

Another major field in which ASCs have been investi-
gated is in regenerative medicine. SWAT is an attractive
source of MSCs, due to their abundance and ease of isola-
tion. Many studies have compared subcutaneous ASCs to
BMSCs, which is the traditional source of MSCs for thera-
peutics. As discussed, there are contrasting results in terms
of differentiation potential and therapeutic suitability of
ASCs and BMSCs, depending on the required lineage.
Factors such as the influence of the microenvironment,
and the addition of growth factors affect the behaviors of
the two cell types.72-75,80 Here too, results may be affected
by differences in the isolation, culture and analysis proto-
cols used by different groups, so standardizing the proce-
dures employed may help in reaching a consensus.

The reasons for further studying and characterizing
the different WAT depots, and specifically the ASCs, are
thus twofold. Firstly, the properties of various progenitor
populations may give insight into the pathological
aspects of obesity and obesity-associated diseases. Sec-
ondly, the same properties might prove useful in the
treatment of other unrelated conditions.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank C. Nicol for graphics assistance.

Funding

This work is funded by the Medical Research Council HGU
core grant and a University of Edinburgh and British Heart
Foundation Fellowship.

References

[1] Billon N, Dani C. Developmental origins of the adipocyte
lineage: new insights from genetics and genomics studies.
Stem Cell Rev Reports. 2012;8:55-66. doi:10.1007/
s12015-011-9242-x.

[2] Tang QQ, Lane MD. Adipogenesis : from stem cell to adi-
pocyte. Annu Rev Biochem. 2012;81:715-36. doi:10.1146/
annurev-biochem-052110-115718. PMID:22463691

[3] Petrovic N, Walden TB, Shabalina IG, Timmons JA,
Cannon B, Nedergaard J. Chronic peroxisome prolifera-
tor-activated receptor g (PPARg) activation of
epididymally derived white adipocyte cultures reveals a
population of thermogenically competent, UCP1-con-
taining adipocytes molecularly distinct from classic
brown adipocytes. J Biol Chem. 2010;285:7153-64.
doi:10.1074/jbc.M109.053942. PMID:20028987

[4] Wald�en TB, Hansen IR, Timmons JA, Cannon B, Neder-
gaard J. Recruited vs. nonrecruited molecular signatures
of brown, “brite,” and white adipose tissues. Am J Physiol
Endocrinol Metab. 2012;302:E19-31. doi:10.1152/
ajpendo.00249.2011. PMID:21828341

[5] Wu J, Bostr€om P, Sparks LM, Ye L, Choi JH, Giang AH,
Khandekar M, Virtanen KA, Nuutila P, Schaart G, et al.
Beige adipocytes are a distinct type of thermogenic fat
cell in mouse and human. Cell. 2012;150:366-76.
doi:10.1016/j.cell.2012.05.016. PMID:22796012

[6] Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ish-
ibashi J, Cohen P, Cinti S, Spiegelman BM. Prdm16
determines the thermogenic program of subcutaneous
white adipose tissue in mice. J Clin Invest. 2011;121:96-
105. doi:10.1172/JCI44271. PMID:21123942

[7] Berry R, Jeffery E, Rodeheffer MS. Weighing in on adipo-
cyte precursors. Cell Metab. 2014;19:8-20. doi:10.1016/j.
cmet.2013.10.003. PMID:24239569

[8] Kwok KHM, Lam KSL, Xu A. Heterogeneity of white adi-
pose tissue : molecular basis and clinical implications. Exp
Mol Med. 2016;48:e215-12. doi:10.1038/emm.2016.5.
PMID:26964831

[9] Wang W, Seale P. Control of brown and beige fat devel-
opment. Nat Rev Mol Cell Biol. 2016;17:691-702.
doi:10.1038/nrm.2016.96. PMID:27552974

[10] Wang S, Yang X. Inter-organ regulation of adipose tissue
browning. Cell Mol Life Sci. 2017;74:1765-76.
doi:10.1007/s00018-016-2420-x. PMID:27866221

[11] Wajchenburg BL. Subcutaneous and visceral adipose tis-
sue : their relation to the metabolic syndrome. Endocr
Rev. 2014;21:697-738. doi:10.1210/edrv.21.6.0415.

[12] Chau YY, Bandiera R, Serrels A, Mart�ınez-Estrada OM,
Qing W, Lee M, Slight J, Thornburn A, Berry R, McHaf-
fie S, et al. Visceral and subcutaneous fat have different
origins and evidence supports a mesothelial source. Nat
Cell Biol. 2014;16:367-75. doi:10.1038/ncb2922.
PMID:24609269

[13] Baer PC. Adipose-derived mesenchymal stromal/stem
cells: An update on their phenotype in vivo and in vitro.

ADIPOCYTE 213

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
E

di
nb

ur
gh

] 
at

 0
2:

35
 1

3 
O

ct
ob

er
 2

01
7 

https://doi.org/10.1007/s12015-011-9242-x
https://doi.org/10.1007/s12015-011-9242-x
https://doi.org/10.1146/annurev-biochem-052110-115718
https://doi.org/22463691
https://doi.org/20028987
https://doi.org/10.1152/ajpendo.00249.2011
https://doi.org/21828341
https://doi.org/22796012
https://doi.org/21123942
https://doi.org/10.1016/j.cmet.2013.10.003
https://doi.org/24239569
https://doi.org/10.1038/emm.2016.5
https://doi.org/26964831
https://doi.org/27552974
https://doi.org/27866221
https://doi.org/10.1210/edrv.21.6.0415
https://doi.org/10.1038/ncb2922
https://doi.org/24609269


World J Stem Cells. 2014;6:256-65. doi:10.4252/wjsc.v6.
i3.256. PMID:25126376

[14] Scheller EL, Cawthorn WP, Burr AA, Horowitz MC,
MacDougald OA. Marrow adipose tissue: Trimming the
fat. Trends Endocrinol Metab. 2016;27:392-403.
doi:10.1016/j.tem.2016.03.016. PMID:27094502

[15] Cantile M, Procino A, D’Armiento M, Cindolo L, Cillo C.
HOX gene network is involved in the transcriptional reg-
ulation of in vivo human adipogenesis. J Cell Physiol.
2003;194:225-36. doi:10.1002/jcp.10210. PMID:12494461

[16] Linder K, Arner P, Flores-Morales A, Tollet-Egnell P,
Norstedt G. Differentially expressed genes in visceral or
subcutaneous adipose tissue of obese men and women. J
Lipid Res. 2004;45:148-54. doi:10.1194/jlr.M300256-
JLR200. PMID:14563828

[17] Vohl M, Sladek R, Robitaille J, Gurd S, Marceau P,
Richard D, Hudson TJ, Sladek ROB. A survey of Genes
differentially expressed in subcutaneous and visceral adi-
pose tissue in men. Obes Res. 2004;12:1217-22.
doi:10.1038/oby.2004.153. PMID:15340102

[18] Wu Y, Kim JY, Zhou S, Smas CM. Differential screening
identifies transcripts with depot-dependent expression in
white adipose tissues. BMC Genomics. 2008;9:397.
doi:10.1186/1471-2164-9-397. PMID:18721461

[19] Tchkonia T, Tchoukalova YD, Giorgadze N, Pirtskhalava
T, Karagiannides I, Forse RA, Koo A, Stevenson M, Chin-
nappan D, Cartwright A, et al. Abundance of two human
preadipocyte subtypes with distinct capacities for replica-
tion, adipogenesis, and apoptosis varies among fat
depots. Am J Physiol Endocrinol Metab. 2005;288:E267-
77. doi:10.1152/ajpendo.00265.2004. PMID:15383371

[20] Tchkonia T, Lenburg M, Thomou T, Giorgadze N,
Frampton G, Pirtskhalava T, Cartwright A, Cartwright
M, Flanagan J, Karagiannides I, et al. Identification of
depot-specific human fat cell progenitors through dis-
tinct expression profiles and developmental gene pat-
terns. Am J Physiol Endocrinol Metab. 2007;292:E298-
307. doi:10.1152/ajpendo.00202.2006. PMID:16985259

[21] Cartwright MJ, Schlauch K, Lenburg ME, Tchkonia T,
Pirtskhalava T, Cartwright A, Thomou T, Kirkland JL.
Aging, depot origin, and preadipocyte gene expression. J
Gerontol - Ser A Biol Sci Med Sci. 2010;65:242-51.
doi:10.1093/gerona/glp213.

[22] Macotela Y, Emanuelli B, Mori MA, Gesta S, Schulz TJ,
Tseng YH, Kahn CR. Intrinsic differences in adipocyte
precursor cells from different white fat depots. Diabetes.
2012;61:1691-9. doi:10.2337/db11-1753. PMID:22596050

[23] Perrini S, Ficarella R, Picardi E, Cignarelli A, Barbaro M,
Nigro P, Peschechera A, Palumbo O, Carella M, De Fazio
M, et al. Differences in gene expression and cytokine
release profiles highlight the heterogeneity of distinct
subsets of adipose tissue-derived stem cells in the subcu-
taneous and visceral adipose tissue in humans. PLoS
One. 2013;8:e57892. doi:10.1371/journal.pone.0057892.
PMID:23526958

[24] Kim B, Lee B, Kyung M, Seung K, Gong P, Hyun N,
Hyun P, Seung H, Jae K, No H, et al. Gene expression
profiles of human subcutaneous and visceral adipose �
derived stem cells. Cell Biochem Funct. 2016;34:563-71.
doi:10.1002/cbf.3228. PMID:27859461

[25] Meissburger B, Perdikari A, Moest H, M€uller S, Geiger
M, Wolfrum C. Regulation of adipogenesis by paracrine

factors from adipose stromal-vascular fraction - a link to
fat depot-specific differences. Biochim Biophys Acta -
Mol Cell Biol Lipids. 2016;1861:1121-31. doi:10.1016/j.
bbalip.2016.06.010.

[26] Gesta S, Bl€uher M, Yamamoto Y, Norris AW, Berndt
J, Kralisch S, Boucher J, Lewis C, Kahn CR. Evidence
for a role of developmental genes in the origin of obe-
sity and body fat distribution. Proc Natl Acad Sci U S
A. 2006;103:6676-81. doi:10.1073/pnas.0601752103.
PMID:16617105

[27] Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P,
Kahn CR. Adipose depots possess unique developmental
gene signatures. Obesity (Silver Spring). 2010;18:872-8.
doi:10.1038/oby.2009.512. PMID:20111017

[28] Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova
Y, Karagiannides I, Forse RA, Deponte M, Stevenson M,
Guo W, Han J, et al. Fat depot origin affects adipogenesis
in primary cultured and clone human preadipocytes. Am
J Physiol Regul Integr Comp Physiol. 2002;282:R1286-
96. doi:10.1152/ajpregu.00653.2001. PMID:11959668

[29] Palmer AK, Kirkland JL. Aging and adipose tissue:
Potential interventions for diabetes and regenerative
medicine. Exp Gerontol. 2016;86:97-105. doi:10.1016/j.
exger.2016.02.013. PMID:26924669

[30] Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothou-
lakis C, Jensen MD, Kirkland JL. Mechanisms and meta-
bolic implications of regional differences among fat
depots. Cell Metab. 2013;17:644-56. doi:10.1016/j.
cmet.2013.03.008. PMID:23583168

[31] Xu XJ, Gauthier M-S, Hess DT, Apovian CM, Cacicedo
JM, Gokce N, Farb M, Valentine RJ, Ruderman NB. Insulin
sensitive and resistant obesity in humans: AMPK activity,
oxidative stress, and depot-specific changes in gene expres-
sion in adipose tissue. J Lipid Res. 2012;53:792-801.
doi:10.1194/jlr.P022905. PMID:22323564

[32] Lysaght J, van der Stok EP, Allott EH, Casey R,
Donohoe CL, Howard JM, McGarrigle SA, Ravi N,
Reynolds JV, Pidgeon GP. Pro-inflammatory and
tumour proliferative properties of excess visceral adi-
pose tissue. Cancer Lett. 2011;312:62-72. doi:10.1016/j.
canlet.2011.07.034. PMID:21890265

[33] Schlich R, Willems M, Greulich S, Ruppe F, Knoefel
WT, Ouwens DM, Maxhera B, Lichtenberg A, Eckel J,
Sell H. VEGF in the crosstalk between human adipo-
cytes and smooth muscle cells: Depot-specific release
from visceral and perivascular adipose tissue. Media-
tors Inflamm. 2013;2013:982458. doi:10.1155/2013/
982458. PMID:23935253

[34] Baglioni S, Francalanci M, Squecco R, Lombardi A, Can-
tini G, Angeli R, Gelmini S, Guasti D, Benvenuti S,
Annunziato F, et al. Characterization of human adult
stem-cell populations isolated from visceral and subcuta-
neous adipose tissue. FASEB J. 2009;23:3494-505.
doi:10.1096/fj.08-126946. PMID:19584303

[35] Hutley LJ, Newell FM, Joyner JM, Suchting SJ, Herington
AC, Cameron DP, Prins JB. Effects of rosiglitazone and
linoleic acid on human preadipocyte differentiation. Eur
J Clin Invest. 2003;33:574-81. doi:10.1046/j.1365-
2362.2003.01178.x. PMID:12814394

[36] Tchkonia T, Giorgadze N, Pirtskhalava T, Thomou T,
DePonte M, Koo A, Forse RA, Chinnappan D, Martin-
Ruiz C, Von Zglinicki T, et al. Fat depot-specific

214 L. CLEAL ET AL.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
E

di
nb

ur
gh

] 
at

 0
2:

35
 1

3 
O

ct
ob

er
 2

01
7 

https://doi.org/10.4252/wjsc.v6.i3.256
https://doi.org/25126376
https://doi.org/27094502
https://doi.org/12494461
https://doi.org/10.1194/jlr.M300256-JLR200
https://doi.org/14563828
https://doi.org/15340102
https://doi.org/18721461
https://doi.org/15383371
https://doi.org/16985259
https://doi.org/10.1093/gerona/glp213
https://doi.org/22596050
https://doi.org/10.1371/journal.pone.0057892
https://doi.org/23526958
https://doi.org/27859461
https://doi.org/10.1016/j.bbalip.2016.06.010
https://doi.org/10.1016/j.bbalip.2016.06.010
https://doi.org/10.1073/pnas.0601752103
https://doi.org/16617105
https://doi.org/20111017
https://doi.org/11959668
https://doi.org/10.1016/j.exger.2016.02.013
https://doi.org/26924669
https://doi.org/10.1016/j.cmet.2013.03.008
https://doi.org/23583168
https://doi.org/22323564
https://doi.org/10.1016/j.canlet.2011.07.034
https://doi.org/21890265
https://doi.org/10.1155/2013/982458
https://doi.org/23935253
https://doi.org/19584303
https://doi.org/10.1046/j.1365-2362.2003.01178.x
https://doi.org/12814394


characteristics are retained in strains derived from single
human preadipocytes. Diabetes. 2006;55:2571-8.
doi:10.2337/db06-0540. PMID:16936206

[37] Toyoda M, Matsubara Y, Lin K, Sugimachi K, Furue M.
Characterization and comparison of adipose tissue-
derived cells from human subcutaneous and omental adi-
pose tissues. Cell Biochem Funct. 2009;27:440-7.
doi:10.1002/cbf.1591. PMID:19691084

[38] Church CD, Berry R, Rodeheffer MS. Isolation and study
of adipocyte precursors. In: Macdougald OA, editor.
Methods in Enzymology. San Diego, CA: Elsevier Inc.;
2014. p:31-46.

[39] Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE,
Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G,
et al. Immunophenotype of human adipose-derived cells:
temporal changes in stromal-associated and stem
cell-associated markers. Stem Cells. 2006;24:376-85.
doi:10.1634/stemcells.2005-0234. PMID:16322640

[40] Ailhaud G, Dani C, Amri EZ, Djian P, Vannier C, Doglio
A, Forest C, Gaillard D, Negrel R, Grimaldi P. Coupling
growth arrest and adipocyte differentiation. Environ
Health Perspect. 1989;80:17-23. doi:10.1289/ehp.898017.
PMID:2647477

[41] Entenmann G, Hauner H. Relationship between replication
and differentiation in cultured human adipocyte precursor
cells. Am J Physiol. 1996;270:C1011-6. PMID:8928727

[42] Wise LS, Green H. Participation of one isozyme of cyto-
solic glycerophosphate dehydrogenase in the adipose
conversion of 3T3 cells. J Biol Chem. 1979;254:273-5.
PMID:762059

[43] Bell A, Grunder L, Sorisky A. Rapamycin inhibits human
adipocyte differentiation in primary culture. Obes Res.
2000;8:249-54. doi:10.1038/oby.2000.29. PMID:10832768

[44] Shahparaki A, Grunder L, Sorisky A. Comparison of
human abdominal subcutaneous versus omental prea-
dipocyte differentiation in primary culture. Metabo-
lism. 2002;51:1211-5. doi:10.1053/meta.2002.34037.
PMID:12200769

[45] Van Harmelen V, R€ohrig K, Hauner H. Comparison of pro-
liferation and differentiation capacity of human adipocyte
precursor cells from the omental and subcutaneous adipose
tissue depot of obese subjects. Metabolism. 2004;53:632-7.
doi:10.1016/j.metabol.2003.11.012. PMID:15131769

[46] Berry R, Rodeheffer MS. Characterization of the adipo-
cyte cellular lineage in vivo. Nat Cell Biol. 2013;15:302-8.
doi:10.1038/ncb2696. PMID:23434825

[47] Rodeheffer MS, Birsoy K, Friedman JM. Identification
of white adipocyte progenitor cells in vivo. Cell.
2008;135:240-9. doi:10.1016/j.cell.2008.09.036.
PMID:18835024

[48] Joe AWB, Lin Y, Even Y, Vogl AW, Rossi FM V. Depot-
specific differences in adipogenic progenitor abundance
and proliferative response to high-fat diet. Stem Cells.
2009;27:2563-70. doi:10.1002/stem.190. PMID:19658193

[49] Djian P, Roncari DAK, Hollenberg CH. Influence of ana-
tomic site and age on the replication and differentiation
of rat adipocyte precursors in culture. J Clin Invest.
1983;72:1200-8. doi:10.1172/JCI111075. PMID:6630508

[50] Djian P, Roncari DAK, Hollenberg CH. Adipocyte pre-
cursor clones vary in capacity for differentiation. Metabo-
lism. 1985;34:880-3. doi:10.1016/0026-0495(85)90114-3.
PMID:4033429

[51] Wang H, Kirkland JL, Hollenberg CH. Varying capacities
for replication of rat adipocyte precursor clones and adi-
pose tissue growth. J Clin Invest. 1989;83:1741-6.
doi:10.1172/JCI114075. PMID:2708530

[52] Kirkland JL, Hollenberg CH, GillonWS. Age, anatomic site,
and the replication and differentiation of adipocyte precur-
sors. Am J Physiol. 1990;258:C206-10. PMID:2305864

[53] Ahrens M, Ankenbauer T, Schr€oder D, Hollnagel A,
Mayer H, Gross G. Expression of human bone morpho-
genetic proteins-2 or -4 in murine mesenchymal progeni-
tor C3H10T1/2 cells induces differentiation into distinct
mesenchymal cell lineages. DNA Cell Biol. 1993;12:871-
80. PMID:8274220

[54] Bowers RR, Lane MD. A role for bone morphogenetic
protein-4 in adipocyte development. Cell Cycle.
2007;6:385-9. doi:10.4161/cc.6.4.3804. PMID:17314508

[55] Schulz TJ, Tseng Y. Emerging role of bone morphoge-
netic proteins in angiogenesis and energy metabolism.
Cytokine Growth Factor Rev. 2009;20:523-31.
doi:10.1016/j.cytogfr.2009.10.019. PMID:19896888

[56] Grandl G, M€uller S, Moest H, Moser C, Wollscheid B,
Wolfrum C. Depot specific differences in the adipogenic
potential of precursors are mediated by collagenous extra-
cellular matrix and Flotillin 2 dependent signaling. Mol
Metab. 2016;5:937-47. doi:10.1016/j.molmet.2016.07.008.
PMID:27689006

[57] Faust IM, Johnson PR, Stern JS, Hirsch J. Diet-induced
adipocyte number increase in adult rats: a new model of
obesity. Am J Physiol. 1978;235:E279-86. PMID:696822

[58] Lemonnier D. Effect of age, sex, and sites on the cellular-
ity of the adipose tissue in mice and rats rendered obese
by a high-fat diet. J Clin Invest. 1972;51:2907-15.
doi:10.1172/JCI107115. PMID:5080416

[59] Spalding KL, Arner E, Westermark PO, Bernard S, Buch-
holz BA, Bergmann O, Blomqvist L, Hoffstedt J, N€aslund
E, Britton T, et al. Dynamics of fat cell turnover in
humans. Nature. 2008;453:783-7. doi:10.1038/
nature06902. PMID:18454136

[60] Arner P, Andersson DP, Th€orne A, Wir�en M, Hoffstedt J,
N€aslund E, Thorell A, Ryd�en M. Variations in the size of
the major omentum are primarily determined by fat cell
number. J Clin Endocrinol Metab. 2013;98:897-901.
doi:10.1210/jc.2012-4106.

[61] Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adi-
pogenesis during white adipose tissue development,
expansion and regeneration. Nat Med. 2013;19:1338-44.
doi:10.1038/nm.3324. PMID:23995282

[62] Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer
MS. Rapid depot-specific activation of adipocyte precur-
sor cells at the onset of obesity. Nat Cell Biol.
2015;17:376-85. doi:10.1038/ncb3122. PMID:25730471

[63] Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-
Pe~na R, Church CD, Colman L, Berry R, Rodeheffer MS.
The adipose tissue microenvironment regulates depot-spe-
cific adipogenesis in obesity. Cell Metab. 2016;24:1-9.
doi:10.1016/j.cmet.2016.05.012. PMID:27411001

[64] Gesta S, Tseng YH, Kahn CR. Developmental origin
of fat: tracking obesity to its source. Cell.
2007;131:242-56. doi:10.1016/j.cell.2007.10.004. PMID:
17956727

[65] Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex
differences in human adipose tissues - the biology of pear

ADIPOCYTE 215

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
E

di
nb

ur
gh

] 
at

 0
2:

35
 1

3 
O

ct
ob

er
 2

01
7 

https://doi.org/16936206
https://doi.org/19691084
https://doi.org/16322640
https://doi.org/10.1289/ehp.898017
https://doi.org/2647477
https://doi.org/8928727
https://doi.org/762059
https://doi.org/10832768
https://doi.org/10.1053/meta.2002.34037
https://doi.org/12200769
https://doi.org/15131769
https://doi.org/23434825
https://doi.org/10.1016/j.cell.2008.09.036
https://doi.org/18835024
https://doi.org/19658193
https://doi.org/6630508
https://doi.org/10.1016/0026-0495(85)90114-3
https://doi.org/4033429
https://doi.org/2708530
https://doi.org/2305864
https://doi.org/8274220
https://doi.org/17314508
https://doi.org/19896888
https://doi.org/10.1016/j.molmet.2016.07.008
https://doi.org/27689006
https://doi.org/696822
https://doi.org/5080416
https://doi.org/10.1038/nature06902
https://doi.org/18454136
https://doi.org/10.1210/jc.2012-4106
https://doi.org/23995282
https://doi.org/25730471
https://doi.org/27411001
https://doi.org/10.1016/j.cell.2007.10.004
https://doi.org/17956727


shape. Biol Sex Differ. 2012;3:13. doi:10.1186/2042-6410-
3-13. PMID:22651247

[66] Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N,
Kirkland JL, Jensen MD. Regional differences in cellular
mechanisms of adipose tissue gain with overfeeding.
Proc Natl Acad Sci U S A. 2010;107:18226-31.
doi:10.1073/pnas.1005259107. PMID:20921416

[67] Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial
effects of subcutaneous fat transplantation on metabo-
lism. Cell Metab. 2008;7:410-20. doi:10.1016/j.
cmet.2008.04.004. PMID:18460332

[68] Wei X, Yang X, Han Z, Qu F, Shao L, Shi Y. Mesenchymal
stem cells: a new trend for cell therapy. Acta Pharmacol Sin.
2013;34:747-54. doi:10.1038/aps.2013.50. PMID:23736003

[69] Mannon PJ. Remestemcel-L: human mesenchymal stem
cells as an emerging therapy for Crohn’s disease. Expert
Opin Biol Ther. 2011;11:1249-56. doi:10.1517/
14712598.2011.602967. PMID:21787241

[70] Fraser JK, Zhu M, Wulur I, Alfonso Z. Adipose-derived
stem cells. In: Prockop DJ, Bunnell BA, Phinney DG, edi-
tors. Mesenchymal Stem Cells: Methods and Protocols.
Totowa, NJ: Humana Press; 2008. p:59-67.

[71] Strioga M, Viswanathan S, Darinskas A, Slaby O, Micha-
lek J. Same or not the same? Comparison of adipose tis-
sue-derived versus bone marrow-derived mesenchymal
stem and stromal cells. Stem Cells Dev. 2012;21:2724-52.
doi:10.1089/scd.2011.0722. PMID:22468918

[72] Hung BP, Hutton DL, Kozielski KL, Bishop CJ, Naved B,
Green JJ, Caplan AI, Gimble JM, Dorafshar AH, Grayson
WL. Platelet-derived growth factor BB enhances osteogene-
sis of adipose-derived but not bone marrow-derived mes-
enchymal stromal/stem cells. Stem Cells. 2015;33:2773-84.
doi:10.1002/stem.2060. PMID:26013357

[73] Zhang Z, Luo X, Xu H, Wang L, Jin X, Chen R, Ren X, Lu
Y, Fu M, Huang Y, et al. Bone marrow stromal cell-
derived extracellular matrix promotes osteogenesis of
adipose-derived stem cells. Cell Biol Int. 2015;39:291-9.
doi:10.1002/cbin.10385. PMID:25264269

[74] Rath SN, Nooeaid P, Arkudas A, Beier JP, Strobel LA,
Brandl A, Roether JA, Horch RE, Boccaccini AR, Kneser

U. Adipose- and bone marrow-derived mesenchymal
stem cells display different osteogenic differentiation pat-
terns in 3D bioactive glass-based scaffolds. J Tissue Eng
Regen Med. 2016;10:E497-509. doi:10.1002/term.1849.
PMID:24357645

[75] Guneta V, Tan NS, Chan SKJ, Tanavde V, Lim TC,
Wong TCM, Choong C. Comparative study of adi-
pose-derived stem cells and bone marrow-derived
stem cells in similar microenvironmental conditions.
Exp Cell Res. 2016;348:155-64. doi:10.1016/j.
yexcr.2016.09.012. PMID:27658569

[76] Marappagounder D, Somasundaram I, Dorairaj S, San-
karan RJ. Differentiation of mesenchymal stem cells
derived from human bone marrow and subcutaneous
adipose tissue into pancreatic islet-like clusters in vitro.
Cell Mol Biol Lett. 2013;18:75-88. doi:10.2478/s11658-
012-0040-5. PMID:23271432

[77] van Steenberghe M, Schubert T, Guiot Y, Goebbels RM,
Gianello P. Improvement of mesh recolonization in
abdominal wall reconstruction with adipose vs. bone
marrow mesenchymal stem cells in a rodent model. J
Pediatr Surg. 2017;52:1355-62.

[78] Rasmussen JG, Frøbert O, Holst-hansen C, Kastrup J,
Baandrup U, Zachar V, Fink T, Simonsen U. Compar-
ison of human adipose-derived stem cells and bone
marrow-derived stem cells in a myocardial infarction
model. Cell Transplant. 2014;23:195-206. doi:10.3727/
096368912X659871. PMID:23211469

[79] Razavi S, Razavi MR, Zarkesh Esfahani H, Kazemi M,
Mostafavi FS. Comparing brain-derived neurotrophic
factor and ciliary neurotrophic factor secretion of
induced neurotrophic factor secreting cells from human
adipose and bone marrow-derived stem cells. Dev
Growth Differ. 2013;55:648-55. doi:10.1111/dgd.12072.
PMID:23944834

[80] Li C, Wu X, Tong J, Yang X, Zhao J, Zheng Q, Zhao G, Ma
Z. Comparative analysis of human mesenchymal stem cells
from bone marrow and adipose tissue under xeno-free
conditions for cell therapy. Stem Cell Res Ther. 2015;6:55.
doi:10.1186/s13287-015-0066-5. PMID:25884704

216 L. CLEAL ET AL.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
E

di
nb

ur
gh

] 
at

 0
2:

35
 1

3 
O

ct
ob

er
 2

01
7 

https://doi.org/10.1186/2042-6410-3-13
https://doi.org/22651247
https://doi.org/20921416
https://doi.org/10.1016/j.cmet.2008.04.004
https://doi.org/18460332
https://doi.org/23736003
https://doi.org/10.1517/14712598.2011.602967
https://doi.org/21787241
https://doi.org/22468918
https://doi.org/26013357
https://doi.org/25264269
https://doi.org/10.1002/term.1849
https://doi.org/24357645
https://doi.org/10.1016/j.yexcr.2016.09.012
https://doi.org/27658569
https://doi.org/10.2478/s11658-012-0040-5
https://doi.org/23271432
https://doi.org/10.3727/096368912X659871
https://doi.org/23211469
https://doi.org/10.1111/dgd.12072
https://doi.org/23944834
https://doi.org/25884704

	Abstract
	Introduction
	Variation in gene expression profiles between white adipose depots
	Differential expression of genes implicated in developmental processes
	Differential expression of genes implicated in adipogenesis, metabolism, inflammation and angiogenesis

	Comparing differentiation potential in vitro
	Evidence from human studies
	Contrasting results from human studies
	Evidence from rodent studies

	Expansion of adipose tissue in vivo
	Regenerative potential of subcutaneous ASCs
	Comparing the differentiation potential of BMSCs and subcutaneous ASCs in a regenerative setting

	Conclusions
	Disclosure of potential conflicts of interest
	Acknowledgments
	Funding
	References

