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Abstract 

We explore two aspects of exovergence: we test whether smaller binocular fixation 

disparities accompany the shorter saccades and longer fixations observed in reading 

Chinese; we test whether potentially advantageous psychophysical effects of 

exovergence (cf. Arnold & Schindel, 2010; Kersten & Murray, 2010) transfer to text 

reading. We report differential exovergence in reading Chinese and English: Chinese 

readers begin fixations with more binocular disparity, but end fixations with a 

disparity closely similar to that of the English readers. We conclude that greater 

fixation-initial binocular fixation disparity can be adaptive in the reading of visually 

and cognitively denser text. 

 

Keywords: eye-movements; reading; English; Chinese; fixations; vergence 
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Differential vergence movements in reading Chinese and English: 

Greater fixation-initial binocular disparity is advantageous 

in reading the denser orthography 

Introduction 

 In recent decades, corpus analyses of reading behaviours have complemented 

the classic experimental paradigms pioneered by Rayner and colleagues (Rayner, 

1998; Rayner, Pollatsek, Ashby, & Clifton, 2012). In the current study, we use 

crosslinguistic comparison of Chinese and English to elucidate the role of binocular 

eye-movements within fixations. Chinese is visually more complex than English and 

presents the reader with different ranges of problems within what may be universal 

reading behaviours (cf. Liversedge, Drieghe, Li, Yan, Bai, & Hyönä, 2016). Vision 

has been seen in general terms as a sequence of spatially and temporally conjugate 

movements (saccades) of the two eyes between static fixations. However, researchers 

using non-reading tasks have increasingly found departures from this simple picture, 

discovering asynchronies between the two eyes (e.g. Cornell, Macdougall, Predebon, 

& Curthoys, 2003; Enright, 1998) and movement within fixations (e.g. Engbert & 

Kliegl, 2004; Martinez-Conde, Macknik, & Hubel, 2000, 2004; Martinez-Conde, 

2007; Simon, Schulz, Rassow, & Haase, 1984; Spauschus, Marsden, Halliday, 

Rosenberg, & Brown, 1999; Thiel, Romano, Kurths, Rolfs, & Kliegl, 2008). Our 

approach has been to explore normal (i.e. binocular) reading to try to understand 

disjugacy—how it might be adaptive for the two eyes to behave differently rather than 

strictly duplicating each other’s efforts. Below we look at the role of the two eyes in 

vergence during reading. 

 The eyes converge to look at nearer objects and diverge to look at more distant 

objects; thus, degree of vergence is a robust source of depth information. When the 
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eyes are converging, the intersection of the lines of sight from the two eyes draws 

closer to the reader (Fig. 1). When the eyes are diverging, that point moves farther 

away from the reader. The intersection of the two lines of sight defines a point on the 

(ideal) geometric horopter, a sphere that includes the optical centres of the two eyes 

(Fig. 2); points on the (psychologically real) ‘empirical horopter’ define 

corresponding points projecting on the two retinas. An object farther away from the 

viewer than the horopter has an uncrossed retinal disparity: the viewer has to uncross 

(diverge) their eyes to fixate on it; it lies further to the right from the right eye’s line 

of sight than from the left eye’s line of sight. An object closer than the horopter has a 

crossed retinal disparity: the viewer has to cross (converge) their eyes to fixate on it; 

it lies further to the left from the right eye’s line of sight. 

 These optometric terms need to be distinguished from an unfortunately similar 

terminology in eye-movements-in-reading research, in which a crossed fixation 

disparity has the right eye (RE) fixating on the text to the left of the left eye’s (LE) 

fixation, and an uncrossed fixation disparity has the RE fixating on the text to the 

right of the LE’s fixation (Liversedge, White, Findlay, & Rayner, 2006). Retinal 

disparity is typically discussed in qualitative terms with respect to binocular fusion; 

fixation disparity (FD) describes the size and direction of any offset between the 

concurrent fixation points of the two eyes on the text—any departure from conjugate 

fixations by the two eyes. Both disparities concern the departure from hypothetical 

‘corresponding points’ on the retinas. 

 Divergence causes the point at which the two lines of sight intersect (i.e. on the 

horopter) to move away from the reader. Note that this relationship holds for both 

crossed (right eye’s fixation to the left of the left eye’s) and uncrossed (right eye 

fixation to the right of the left eye’s) FDs. Divergence of the eyes reduces a crossed 
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FD and increases an uncrossed FD, and sometimes turn a crossed FD into an 

uncrossed FD. Convergence of the eyes reduces an uncrossed FD and increases a 

crossed FD, and sometimes turns an uncrossed FD into a crossed FD. 

 The plane of the text can be in front of the horopter (i.e. nearer the reader), on 

the horopter, or behind the horopter; these positions correspond to uncrossed FDs, 

conjoint fixations, and crossed FDs, respectively. 

 Over the last decade and more, researchers have observed that crossed FDs are 

elicited more by Eyelink technology, and uncrossed FDs by Dual Purkinje 

technology. Shillcock, Roberts, Kreiner and Obregón (2010) theorize that this 

difference is explained by the visually more challenging viewing conditions required 

by Dual Purkinje technology (light text on a dark screen, in a dark room) compared 

with Eyelink technology (dark text on a light screen, in normal room lighting). The 

best way to improve the incoming visual information is to fuse the input to the two 

eyes (Jones & Lee, 1981) and this fusion is facilitated by diverging the eyes so that 

the intersection between their two lines of sight falls (virtually) behind the plane of 

fixation, placing the text inside the horopter. (This theoretical position is based on 

developmental, neurophysiological and behavioural differences between processing 

the two types of FD; for further details, see Shillcock, et al. 2010. Kirkby, Blythe, 

Drieghe, Benson and Liversedge, 2013, suggest, on the basis of an empirical 

comparison of the two technologies, that variability in reports of crossed/-uncrossed 

FDs is attributable to viewing conditions such as luminance and viewing distance.) 

This ease-of-fusion explanation for directional differences in FDs in reading is 

relevant to the qualitatively (crossed vs. uncrossed) relatively stable spatial 

relationship between the two eyes’ fixation points during any one particular text-

reading event. A further claimed advantage of crossed FDs is the overlapping of a 
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privileged contralateral projection from text to cortex for each eye (see Obregón & 

Shillcock, 2012; Shillcock et al., 2010). 

 Can we extend this theorizing about the nature of vergence movements? We 

explore two lines of inquiry. 

 The first begins with the conventional view that vergence is centrally concerned 

with precision of binocular fixation. Early studies of reading were conflicting as to 

whether the eyes converge (Schmidt, 1917) or diverge (Clark, 1935; Taylor, 1966), 

but later studies show reduction of FD (e.g. Blythe et al., 2006; Hendriks, 1996; 

Kirkby et al., 2013; Liversedge, White, Findlay, & Rayner, 2006; Nuthmann & 

Kliegl, 2009), although such studies also all report a full range of convergent and 

divergent eye movements in fixations, with variation between participants (e.g. 

Hendriks, 1996; Jainta & Jaschinski, 2010) and with substantial variation in 

proportions of crossed and uncrossed FDs. Note that divergence in a crossed FD 

reduces the disparity. Reduction of FD during fixation has generally been seen as 

adaptive in avoiding diplopia (Holmqvist et al., 2011, p. 24), and most studies reveal 

overall absolute reduction of FD during fixations. Note that there can be substantial 

tolerance for absolute disparity between the two retinal images (Erkelens & 

Collewijn, 1985; see, also Cornell et al., 2003, for the absence of diplopia 

accompanying FDs in natural viewing conditions). 

 What vergence behaviours might we see in the two orthographies we study? 

Although there are difficulties in comparing Chinese and English—the two 

orthographies are pervasively different—saccades are reported to be shorter in 

Chinese and fixations longer (Liversedge et al., 2016). The logographic content of 

Chinese means denser visual variety and cognitive content compared with English. 

We may assume that reading Chinese elicits more precise targeting, with slower 
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vergence and more co-contraction of muscles (Hendriks, 1996), and we might predict 

correspondingly smaller FDs at the start of fixation. Juhasz, Liversedge, White and 

Rayner (2006) report no effect of the visual property of AlTeRnAtInG cAsE on the 

size of the FD. However, Jainta, Jaschinski and Wilkins (2010) report smaller 

minimum FD during fixation of text in which similarity in shape between the 

neighbouring strokes of component letters, as measured by the first peak in the 

horizontal auto-correlation of the images of the words (i.e. ‘stripey’ words are more 

demanding to process); they do not distinguish between the crossed (36%) and 

uncrossed (12%) FDs. In summary, some aspects of visual complexity of the 

orthography may well affect size of FD. The default assumption is that Chinese 

readers will produce smaller FDs from the beginning to the end of fixation. 

 Our second line of investigation concerns the fact that the eyes diverge to fixate 

more distant objects. Whether the FD is crossed or uncrossed on the plane of fixation, 

the eyes still diverge to fixate a yet more distant object. (For clarity, we will only refer 

to the FD as increasing or reducing, not to it “converging” or “diverging”.) What 

behaviours are associated with perceiving distant objects compared with proximal 

objects? 

 Images of objects that appear to be farther away are (surprisingly) processed 

more accurately (Arnold & Schindel, 2010; see Kersten & Murray, 2010, for a history 

of the ‘Aubert–Förster phenomenon’): given two optician’s charts, a small one in 

one’s hands and a large one on the wall, both subtending the same retinal angle, we 

are better at reading the one on the wall. The brain seems to invoke constancy: it uses 

contextual distance cues so as to scale perception, such that distant large things do not 

seem so small as their optical images might suggest. As Wheatstone originally 

showed, using prisms, the vergence angle of the eyes is a powerful cue to distance. 
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Arnold and Schindel (2010) manipulated this angle to vary illusory size and found 

that visual sensitivity (specifically orientation discrimination, not low contrast 

discrimination) improved for apparently larger stimuli. As Kersten and Murray (2010) 

point out, recent imaging research demonstrates V1 mediation of illusory size 

perception (Murray, Boyaci, & Kersten, 2006; Fang, Boyaci, Kersten, & Murray, 

2008): the spatial extent of activity in V1 increases with perceived, illusory size. 

 In summary, the visual system is able to ‘zoom in’ and devote more cortical 

resources to particular entities in the visual field; the stimulus for such ‘magnification’ 

is apparent size, as indicated by apparent distance, and a prime cue is vergence angle. 

 We now apply this established research to reading. Perhaps divergence during 

reading means that the oculomotor system indicates to the rest of the visual system 

that a more distant object is being inspected and that more cortical resource should be 

employed. Employing more cortical resource cannot improve the quality of the visual 

information entering the lenses, but it can improve the granularity of the cortical 

substrate of the relevant visual processing. It can provide more neurons for the task. 

 It is harder for readers to distinguish between the basic elements of Chinese 

orthography compared with English orthography. The ‘basic units’ of Chinese 

orthography have been claimed to be radicals (Chen, Allport, & Marshall, 1996), 

those of English have been claimed to be letters (Pelli, Burns, Farell & Moore-Page, 

2006). Pelli et al. conclude that participants’ ‘efficiency’ (compared with ideal 

observers) in recognizing orthographic stimuli (Chinese among them) is inversely 

proportional to the perimetric complexity (perimeter squared over ‘ink’ area) of its 

basic units and nearly independent of everything else. 

 Chinese orthography involves visually discriminating between informationally 

denser entities than does English orthography (Pelli et al., 2006)––just the sort of 
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orientation processing that Arnold and Schindel (2010) found was improved by an 

increase in illusory size. Perhaps we should find more divergence (or exovergence) 

when the reading task would benefit from an increase in visual sensitivity, such that 

the oculomotor system signals to the rest of the visual system (in a situation—reading 

from the screen—with no good monocular cues to depth) that the fixated text is 

farther away, that it is bigger-in-the-real-world and that it is appropriate to invoke 

constancy, thereby providing more cortical processing resources. 

 We studied divergence in terms of the crossed and uncrossed FDs at the 

beginning and end of fixation. We tested two hypotheses. First, that the visual 

demands of Chinese, leading to smaller saccades and longer fixations, would see 

smaller FDs at the start and end of fixation. Second, that we would find more 

divergence in the reading of Chinese than in the reading of English, simulating 

increased depth to invoke size constancy.  

EXPERIMENT 

Method 

Participants 

Participants were 45 English and 46 Chinese native speakers, tested as part of the 

Edinburgh 5-Language Corpus. All reported having normal or corrected-to-normal 

vision and were paid for their participation. 

Apparatus 

Participants were seated in a quiet room with diffused lighting, at a viewing  

distance of 75 w from a 22" Iiyama Vision Master Pro 514 display. A chin-rest  

with forehead support kept head position stable. The height of the chair was adjusted 

so that the eyes were positioned centrally in front of the screen (i.e., the supporting 
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chin-rest was not moved). Screen resolution was 1024 x 768 pixels. We used an SR 

Research EyeLink II head-mounted video-based tracker (S-R Research Inc). 

Stimulus Materials and Procedure 

Eye movements were recorded binocularly, using pupil-only tracking mode, with eye 

position sampled at 500 Hz, in the reading of English (24 pt monospaced Monaco 

font) and Chinese (PMingLiU, standard print) texts consisting of 21 newspaper stories 

in each language, containing about 5000 words, presented on consecutive pages of up 

to five lines, over some 500 lines. Text was displayed as black characters on a light 

background. Maximum line length was 64 English characters. Reading direction for 

both languages was left to right, down the page. Each monospaced English letter was 

14.4 pixels (0.43 degrees of visual angle), each Chinese character 28 pixels. 

A grid of nine fixation targets was used for calibration. Each eye was 

calibrated independently by occluding the other eye with a black paper shade. After 

calibration, participants read two pages of on-screen instructions and then a practice 

article of four pages in length. 

Before each page of text was displayed, a black fixation disc 23 pixels in front 

of the first word of the first line was displayed for 1500 ms; participants fixated this 

disc until the page of text appeared. After reading the page, participants fixated on a 

11 Í 19-pixel rectangle below the end of the last line before pressing the keyboard to 

continue. 

Participants responded on the keyboard to one untimed yes/no comprehension 

question displayed after each story; half of the questions had ‘yes’ as the correct 

answer. Before proceeding with the next article, the grid of nine fixation targets was 

displayed for the experimenter to check that calibration accuracy was good, and if 
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necessary re-calibrate the instrument. The recording session was divided into three 

blocks with intervening rest-breaks, and lasted approximately 90 minutes. 

In each corpus, we analysed precisely temporally synchronized binocular 

fixations, RE and LE fixations starting and ending at exactly the same time. This large 

subset (approximately half of all individual fixations) allows us to address 

binocularity with the two eyes contributing equally. It excludes most of the data that 

were outside the area of the text (approximately 3%). No other exclusions were made 

from this very large dataset. 

These data address binocular movement within a fixation, for a large, 

representative corpus of reading-for-meaning behaviours with multiline text in 

relatively typical reading conditions (normal room lighting; dark text on light 

background), with no other pre-processing of the data. 

Eye-movement researchers have typically defined a ‘conjoint’ binocular fixation 

as the eyes fixating points within one character’s width (Liversedge et al., 2006). 

Much Chinese text typically consists of two-part (‘phonetic complex’) characters, 

with one (typically ‘semantic’) radical on the left and one (typically ‘phonetic’) on the 

right, the whole character fitting within a square. Even though the functional units of 

our orthographic stimuli (English letters of 14.4 pixels and average Chinese radical 

size of 14 pixels) were fortuitously quite comparable, these orthographies naturally 

differ in almost every other respect. Thus, we defined ‘conjoint’ objectively as only 

the very small proportion of binocular fixations on the same pixel. 

We did not require to know anything about the accuracy of the registration 

between the recorded fixations and the particular words of the text, in this study. We 

needed only to know that a particular fixation occurred during reading. Inaccuracy in 

binocular calibration or in tracking multi-line text might affect how well we can 
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distinguish between crossed and uncrossed fixations, however; it might cause a 

crossed fixation to be incorrectly classified as an uncrossed fixation, for instance. 

Note, though, that we predict divergence in both the crossed fixations and the less 

numerous uncrossed fixations. 

Results 

English had 90,766 (48.4% of the data) temporally synchronized binocular fixations 

(i.e. pairs of fixations) out of a total of 373,700 individual fixations; in the rest, one 

eye’s fixation began or ended slightly earlier. Chinese had 98,367 (50.8%) out of 

387,350. Only these data were analysed (although preliminary analyses suggest a 

similar picture in the inexactly synchronized binocular fixations). 

Table 1 shows substantial majorities of crossed FDs in both orthographies at the 

beginning of fixation. By the end of fixation, these majorities fall slightly in both 

languages, adding to the uncrossed FDs; this category change requires divergence of 

the eyes, and it is greater in the Chinese data. (N.B. The small numbers of conjoint 

fixations involve identical pixel fixations by both eyes. For comparison with other 

studies, conjoint fixations defined as FD £ 1 English letter-width or 1 Chinese radical-

width constituted 15.1% in both languages, and 32.7% for FD £ 1 Chinese character-

width.) 

Table 2 shows the presence of divergence in greater detail than Table 1’s 

crossed/uncrossed categories. In both crossed and uncrossed FDs, and in the binocular 

fixations that changed category, the percentage of fixations involving divergence of 

the eyes is greater in the Chinese data. Convergence shows the converse pattern. 

We ran linear-mixed effects models with FD as the dependent variable, four 

random predictors, a separate intercept fitted for participants, a separate intercept 

fitted for story, a separate intercept fitted for screen (i.e. page of the text), and a 
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separate intercept fitted for reading line (on the screen) using the lmer programme in 

the lme4 (Bates, et al., 2013) package for R (R Core Team, 2012). In our linear mixed 

effects models, we added a new variable when creating a new model and compared 

models with and without the new variable. The variable was retained in the new 

model if the comparison between the two models was significant in a chi-squared test. 

Table 3 shows that both language (English vs. Chinese) and fixation 

(Beginning of Fixation [BoF] vs. End of Fixation [EoF]) are significant in predicting 

binocular disparity. The interaction between language and fixation is also significant. 

Disparity is smaller by 3.62 pixels at the end of binocular fixations for English 

readers. That is, the two eyes tend to diverge, reducing the crossed FD. Also, Chinese 

readers tend to have larger crossed-fixation disparities than English readers at the 

beginning of fixations by 3.06 pixels. Most importantly, the disparity at the end of 

fixation for Chinese readers is smaller than expected (given English vs. Chinese and 

BoF vs. EoF) by 2.27 pixels. That is, for Chinese readers, the eyes diverge more than 

for English readers. This movement can be seen in the overall change in disparities 

(predicted disparities) in Table 3 where English readers have disparities that start at    

-40.66 pixels and reduce to -37.04 pixels, but Chinese readers start with disparities of 

-43.74 pixels and end with disparities of -37.84 pixels. 

Discussion 

We assumed that fixation disparity (FD) is an adaptive aspect of the totality of eye-

movement behaviour, as opposed to being simply errorful. We predicted differential 

exovergence in the reading of Chinese and English, from two different experimental 

literatures. First, we tested the hypothesis that the smaller saccades known to 

accompany relatively dense Chinese orthography would lead to smaller fixation-

initial and -final FDs, reflecting more precise fixation targeting. Second, we 
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extrapolated from research on vergence, illusory size and perceptual sensitivity, to the 

domain of reading, and predicted more exovergence in Chinese. Neither prediction 

was fully supported by the data. Instead the data suggest a deeper adaptive role for 

fixation disparity. 

 First, we consider overall aspects of the data. The similarity in overall 

proportions of temporally synchronized binocular fixations (about 50% of all 

individual monocular fixations) suggests a quantitative generalization across reading 

even these very different orthographies. The precisely temporally synchronized 

binocular fixations provided us with specific, convenient subsets of the two corpora; 

these subsets were still core, representative samples of the corpora. Further 

exploration is required to see what is going on in the remainng slightly 

unsynchronized binocular fixations, which range from 2 msec offsets through to 

monocular blinks. 

Overall, the simple proportions of crossed and uncrossed FDs we report reflect 

the general fixation behaviours observed with the viewing conditions allowed by 

Eyelink technology (normal room lighting and dark-on-light text) (cf. Kirkby et al., 

2008; Shillcock et al., 2010). 

The FDs observed were relatively large, even by end of fixation, allowing for 

RE and LE fixations to be frequently on different words/characters. Binocular fixation 

of different words has been reported by Liversedge et al., 2006, and Nuthmann and 

Kliegl, 2009; note that the functional status of word segmentation in Chinese text is 

still debated. It may be that natural viewing conditions and the added visual and 

cognitive context of multiline text support relatively flexible fusion and/or less precise 

visual ‘sampling’ of the text by our skilled readers (cf. Cornell et al., 2003; see Jainta 

and Jaschinski, 2010, for a discussion of effects on Panum’s fusional area). 
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We turn now to the two hypotheses tested. Readers of Chinese orthography 

did produce significantly more divergence within fixations, in both crossed and 

uncrossed fixation disparities (FDs) and in FDs that changed from one to the other 

during fixation. Chinese readers also changed FDs from crossed to uncrossed more 

than the readers of English orthography. 

However, the size and distribution of exovergence was unexpected. In our best 

statistical model of the data, we found that FD in Chinese was larger than FD in 

English at the beginning of fixation and that FD was a closely similar size in both 

languages by the end of fixation. Fixation duration in Chinese tended to be longer 

than in English (density plots not shown), as other researchers have found. 

 First, then, we did not find the smaller FDs at the beginning or end of fixation 

that we considered might accompany the smaller, more precisely targeted saccades 

and the longer fixations of Chinese reading. Our understanding of fixation disparity in 

reading Chinese should not be based simply and directly around accuracy of fixation 

targeting. 

FDs in both languages were very closely similar in absolute size by the end of 

fixation. We conclude that this similarity reflects the physical constraints of the 

reading task in our experiment, which were the same across the two languages, apart 

from the actual orthographies themselves. The smaller minimum FDs observed by 

Jainta et al. (2010) did not have counterparts in the fixation-initial or fixation-final 

FDs in Chinese relative to English; we conclude that the visual density of Chinese 

does not have a global effect resembling the effect of horizontal autocorrelation 

discovered by Jainta et al. in the two fonts of the Roman alphabet they used with their 

German sentences. It is likely that cultural evolution would have militated against 

undue ‘stripiness’ in Chinese orthography; however, the prediction remains that 
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relatively high horizontal-autocorrelation within Chinese orthography leads to smaller 

minimum FDs, probably in the middle region of the fixation duration (cf. Vernet & 

Kapoula, 2009). 

Second, our hypothesis that exovergence elicits greater visual sensitivity by 

signalling apparent depth, predicted that exovergence should cue the Chinese text to 

be at substantially greater depth at some point during fixation. However, the data 

show a larger (mostly crossed) FD in Chinese from the beginning of fixation. The 

larger FD means that the lines of sight of the two eyes cross closer to the reader in 

Chinese than in English. The reduction of the FD by the end of fixation leads to a very 

similar FD (and cue to depth) in both languages; there is less than a pixel difference, 

and even then the Chinese FD is the larger of the two. Thus, there is more 

exovergence in Chinese reading, but ‘at the wrong end of the processing’ for the 

depth/sensitivity hypothesis; the exovergence acts to reduce the larger Chinese FD at 

the beginning of fixation, rather than making it smaller than the English FD by the 

end of fixation. 

Reading behaviours are sensitive to multiple factors, which can only be partly 

controlled in choice of participants and stimuli (cf. Feng, Miller, Shu, & Zhang, 2009) 

or partly offset by the size of the dataset. With that caveat, we now theorize about 

how this statistically robust pattern of vergence behaviour across the two 

orthographies is adaptive. 

We claim that movement is at the centre of the explanation of the data. 

Fixational eye movements—microsaccades, drift and tremor—within fixations are 

critical to reading, as to the rest of vision (Martinez-Conde, Otero-Millan, & Macknik, 

2013). Fixations tend to be longer in reading Chinese than in reading English, 

(Liversedge et al., 2016), reflecting the greater density of cognitive information in 
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Chinese. We claim that the larger fixation disparity at the beginning of fixation in 

Chinese is calculated to accommodate/facilitate this longer fixation. 

The expanded fixation-initial FD in Chinese reading, relative to English, 

guarantees that movement can occur throughout the fixation, allowing continuous 

activation over the retina. In this way, we see that precision of conjugate binocular 

fixation per se is not the dominant factor determining fixation disparity. The fixations 

of the two eyes are precisely targeted, but rather to set the appropriate FD for the 

subsequent processing within the fixation, not exclusively to ensure conjugate 

binocular fixation within Panum’s fusional area. 

To the extent that informational density of an orthography is relatively stable 

across text—for instance, Chinese is consistently denser than English—it is possible 

for the reader to ‘set’ the FD for that particular reading task, given the prevailing 

physical conditions (illumination, dark-on-light text, etc). In our English reading data 

FD on one fixation is highly correlated (r = .99) with FD on the next fixation. 

What is the final status of the hypothesis that exovergence in reading may be 

adaptive by signalling increased depth, thereby eliciting size constancy and allocating 

more cortical resources to the processing? First, we do not suggest that any size 

illusion should be consciously perceptible. Second, our data show that the typical 

changes in vergence angle are small, potentially corresponding to only a few cms in 

‘extra distance’ from the viewer in our experiment. However, the visual system is 

exquisitely sensitive to vergence change; note, also, that as vergence angle decreases, 

approaching zero, the added apparent depth increases more and more, approaching 

infinity. We suggest that the decrease in vergence angle seen in crossed FDs during 

fixation, although relatively small, is at least in the predicted direction and may 

contribute to the seeming preference for crossed FDs in naturalistic reading 



Running head: Vergence Movements in Reading 

 

18 

conditions, in that reduction of the FD happens by exovergence in crossed FDs. We 

thereby tentatively extend the theory of FDs in Shillcock et al. (2010). 

In summary, the fixation disparity is computed by the reader so as to allow a 

binocular fixation in which the two eyes typically converge overall, with a minimum 

disparity reached at some point between beginning and end (Vernet & Kapula, 2009; 

Jainta, Jaschinski & Wilkins, 2010) and then on to an appropriate fixation-final 

disparity. Our data show that it is at the initial fixation disparity that an 

accommodation is made as to how long the expected fixation will last; for the longer 

fixation durations of Chinese, a larger initial fixation disparity is planned. The logic of 

the reading task dictates that the size of the fixation disparity is relatively predictable 

from the global nature of the orthography, but as Jainta, Wilkins and Jaschinski 

(2010) show, continuous regulation of vergence during the fixation is required to deal 

with certain visual aspects of the text. We conclude that adding fixation disparity at 

the beginning of fixation is adaptive: it may provide horizontal space for the longer 

(constantly moving) binocular fixation necessitated by the informational density of 

Chinese and/or it may facilitate the convergence onto a minimum disparity. The data 

do not support the conclusion that increased disparity at the beginning of fixation (at 

least, of the order seen in our data) is disadvantageous to reading because it militates 

against fusion. We suggest that the word recognition procedures of the earlier part of 

the fixation are not inconvenienced by this disparity and that the convergence in the 

later part of fixation reflects the needs of binocular saccade planning and execution. 

Our approach has been to explore the implications of disjugacy—the departure 

from the assumption that the eyes work simply in tandem, particularly spatially (cf. 

Cornell et al., 2003; Enright, 1998; Hendriks, 1996; Tyler, 2004). This issue has a 

long history (e.g. Helmholtz, 1910; Hering, 1977; Mays, 1998; Zhou & King, 1998). 
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We are led increasingly to an understanding of the eyes as collaborating in complex, 

complementary ways to generate optimal behaviour for the task in hand. 

In conclusion, corpus studies can complement the ingenious, carefully 

designed and controlled factorial studies using eye-tracking technology, with which 

Rayner and colleagues created the field of eye-movement studies of reading. This 

twin-track, interacting approach is converging on rich, interesting phenomena in 

reading behaviour, and on similarities and differences across readers, across eye-

tracking technologies, across tasks, across languages and across orthographies. 
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Table 2. Horizontal vergence of the two eyes in English and Chinese fixations. 

(conjoint fixations are excluded) 

Table 3. Results of the Linear Mixed Effects model predicting binocular disparity by 

language (Chinese, English), and by the beginning and the end of the 
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TABLE 1 

 

 Language 
Beginning 
of Fixation 

End of 
Fixation 

Crossed Chinese 88164 85754 
 English 85634 85000 

Conjoint Chinese 56 61 
 English 34 45 

Uncrossed Chinese 10147 12552 
 English 5098 5721 

 

  



Running head: Vergence Movements in Reading 

 

27 

TABLE 2 

		 Crossed	

	 Diverging	 Converging	 No	Movement	
	 Count	 %	 Count	 %	 Count	 %	

English	 56391	 67.3%	 27029	 32.3%	 348	 0.4%	
Chinese	 61574	 72.5%	 22973	 27.0%	 420	 0.5%	

 
 
		 Uncrossed	

	 Diverging	 Converging	 No	Movement	
	 Count	 %	 Count	 %	 Count	 %	

English	 2045	 52.8%	 1810	 46.7%	 17	 0.4%	
Chinese	 6281	 67.1%	 3039	 32.5%	 43	 0.5%	

 

 

		 Crossed→Uncross	 Uncrossed→Cross	
	 Diverging	 Converging	

	 Count	 %	 Count	 %	
English	 1833	 60.2%	 1214	 39.8%	
Chinese	 3153	 80.4%	 768	 19.6%	
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TABLE 3 
 
 

Fixed effects:   

  

Parameter Model 
estimate SE t value 

Predicted 
disparity 
(px.) 

Predicted 
disparity 
(deg.) 

Intercept (BoF-English) -40.66 3.224 -12.61 -40.66 -1.233 
EoF (EoF-English)    3.62 0.134 26.95 -37.04 -1.123 
Chinese (BoF-Chinese)  -3.07 0.143 -21.42 -43.73 -1.326 
EoF:Chinese (EoF-Chinese)   2.27 0.185 12.23 -37.84 -1.147 

BoF is Beginning of Fixation; Eof is End of Fixation 
 
 
 

Random effects:   

  

Groups Variance Standard 
deviance 

Participant 300.420 17.333 
Article   10.532   3.245 
Screen     5.177   2.275 
Line   13.978   3.739 
Residual 732.759 27.070 

 
Number of observations: 342098 
Participants: 46 
Articles: 22 
Screens: 9 
Lines: 5 
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Figure 1. Divergence is a source of depth information. Divergence causes the horopter (the 

intersection of the two lines of sight) to move away from the reader. 

 

Figure 2. Crossed and uncrossed retinal disparities. 
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Figure 2. 
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Footnotes 
1. We are indebted to the anonymous reviewers and to Simon Liversedge for extensive 
discussion regarding this paper. 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      


