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Linear Interference Alignment in Full-Duplex
MIMO Networks with Imperfect CSI

Paula Aquilina, Student Member, IEEE and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In this paper we consider a system where full-duplex
(FD) base-stations (BSs) communicate with half-duplex (HD)
downlink (DL) and uplink (UL) users in a multi-user multi-cell
network, where all nodes are equipped with multiple antennas.
The introduction of FD BSs offers potential to increase spectral
efficiency, however it also causes a surge in the number of inter-
ference links compared to the HD network counterpart. Here, we
apply linear interference alignment (IA) to manage interference
in this network under imperfect channel state information (CSI).
Firstly, we characterize the performance losses incurred with
respect to the achievable sum rate and degrees of freedom (DoF).
Results show that the general trend in performance loss is mainly
determined by how the error scales with the signal-to-noise ratio
(SNR). In particular, full UL and DL DoF can be achieved
even under imperfect CSI when the channel error is at least
inversely proportional to SNR. Moreover, in such cases the sum
rate loss is always finite, and either goes to zero or is upper
bounded by a derived value. Secondly, we design two linear
IA algorithms applicable to the system under consideration.
These are based on minimizing the mean square error (MMSE)
and maximizing the signal-to-interference-plus-noise ratio (Max-
SINR), and take into account statistical knowledge of the CSI
error for added robustness. The proposed algorithms follow
specific design principles that distribute the different interference
components amongst the various beamformers and result in
unitary receivers and precoders. Additionally, we show that under
certain conditions both designs result in identical beamforming
solutions, even though the MMSE algorithm has lower compu-
tational complexity. Thirdly, we also derive the proper condition
for IA feasibility in the multi-cell system under consideration.

Index Terms—Beamformer design, degrees of freedom, full-
duplex, imperfect CSI, interference alignment, Max-SINR,
MMSE, sum rate.

I. INTRODUCTION

THE demand for wireless network resources is constantly
on the rise, pushing for the design of new technologies

that are able to handle unprecedented rates. One such tech-
nology is full-duplex (FD) communication. Whilst traditional
half-duplex (HD) networks require separate time or frequency
resources for downlink (DL) and uplink (UL) communication,
FD caters for simultaneous DL and UL transmission, making
it an attractive candidate solution to the ever growing spectrum
demand problem.

FD operation was traditionally considered to be infeasible
due to self-interference (SI) where power from DL trans-
mission interferes with UL received signals at FD nodes.
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However, recent years have seen numerous breakthroughs in
hardware design. By combining three types of SI cancellation
techniques, namely, (a) propagation domain SI suppression,
(b) analog circuit domain SI cancellation, and (c) digital
circuit domain SI cancellation, it is now possible to suppress
significant levels of SI. For example, [2] combines signal
inversion and digital domain techniques to achieve 73 dB of
SI suppression for a 10 MHz orthogonal frequency division
multiplexed signal. In [3] all three classes of SI suppression
methods are combined to achieve an average cancellation of
85 dB over a 20 MHz signal. Additionally, [4] proposes a
single-antenna design that cancels up to 110 dB of SI over an
80 MHz bandwidth.

The promise of increased spectral efficiency has motivated a
wide range of research into FD communication and its possible
uses. Moreover, the new found ability to mitigate SI up to
acceptable levels has brought to light new challenges that need
to be addressed for the practical realization of FD networks.
The most significant one is the issue of efficient interference
management [5], [6], since the application of FD nodes brings
along a huge surge in the amount of interference present in
the network.

Consider for example the G-cell system in Fig. 1, where
each cell has an FD BS serving one DL and one UL user
per cell. In this network, for UL communication base-stations
(BSs) have additional SI and BS-to-BS interference, while DL
users have additional co-channel interference (CCI) from UL
users both from the same cell and from other cells.

There have been a number of information-theoretic studies
with the aim of understanding the fundamental capacity limits
of FD systems, particularly the characterization of achievable
degrees of freedom (DoF), as a first order characterization
of the achievable rate. These DoF studies exploit interference
alignment (IA) [7] in order to maximize capacity. Within this
context, [8] studies the DoF region for single-cell systems with
one multi-antenna FD BS and K single antenna FD users,
and proposes an achievable scheme based on ergodic IA. The
DoF region for an FD BS communicating with HD users
[9], [10] and a point-to-point multiple-input multiple-output
(MIMO) link [10] have also been studied, with the authors
proposing achievable schemes based on asymptotic IA in each
case. Additionally, in [11] the authors consider systems where
an FD BS communicates with either FD or HD users; for
each scenario the sum DoF are characterized and achievable
schemes based on a combination of interference nulling and
asymptotic IA are proposed.

While the ergodic and asymptotic IA techniques exploited
in the literature mentioned so far are highly beneficial from a
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Fig. 1: G-cell network with an FD BS, and one DL and one UL user per cell.
Solid lines represent desired links, dashed ones represent interference links.

theoretical standpoint, they are rather difficult to implement in
practice. Ergodic IA requires the occurrence of complementary
channels to cancel interference, whilst asymptotic IA requires
an infinitely large amount of time extensions. Therefore, other
works focus on different types of IA which can be realized
more easily. For example, [12] considers the application of
blind IA in a single-cell single-input single-output (SISO)
system with an FD BS and HD users, and reconfigurable
antennas that are able to generate a pre-determined set of
radiation patterns. Additionally, [13] studies the feasibility
of linear IA in single-cell MIMO systems with an FD BS
and HD users. Linear IA creates a set of beamformers that
simultaneously cancel all unwanted signals and leave the
desired signals untouched, and is particularly attractive from
a practical perspective because it provides a one-shot solution
to the interference management problem and does not require
the use of special equipment [7].

The merging of FD operation along with IA offers a highly
promising dual approach solution to cope with the increasing
spectrum demand problem, making it a very relevant research
direction. However, the aforementioned literature assumes that
the available channel state information (CSI) is perfect and
considers only a single-cell context. In practice, CSI is likely to
be imperfect, and real world implementation involves multiple
cells. Motivated by these two challenges, and the appealing
qualities of linear IA, here we consider a multi-cell system
with an FD BS in each cell serving multiple legacy HD users,
and apply linear IA to manage interference under imperfect
CSI conditions. The combined FD BS / HD user system
is chosen as opposed to a fully FD enabled one, because
the shift from HD to FD is expected to involve significant
expenditure, making it more practically relevant to initially
consider scenarios where only the infrastructure elements (i.e.
BSs) are upgraded to FD with user devices still operating in
HD. The use of IA in such multi-cell FD systems has so
far only been considered in [14], where the authors derive
a scaling law for the multiplexing gain of FD over HD under
a perfect CSI assumption, and with network MIMO capability
between the BSs (i.e. assuming no BS-to-BS interference).

Our work aims to characterize the performance of IA in FD
systems with imperfect CSI. Such an effect has already been
considered for HD networks, see for example [15]–[18] and
references therein, but is yet unexplored for FD ones. The CSI
error model applied allows us to represent the CSI both as a
function of the signal-to-noise ratio (SNR) or as completely in-

dependent of it and can represent different channels scenarios,
including both reciprocal and non-reciprocal channels. Based
on this error model, we characterize the mean asymptotic
sum rate loss and the loss in achievable DoF. Results show
that the general performance trend is highly dependent on
how the error scales with SNR. Both losses go to zero under
certain conditions, implying that the effect of the CSI error is
negligible in such cases, and are otherwise quantified in terms
of the system configuration and the CSI error parameters.

Next, we shift our focus to linear IA algorithms. No such
methods are available for FD systems in literature so far,
here we propose two novel techniques applicable to the FD
network under consideration. Our algorithms are inspired by
methods initially proposed for HD interference channels (ICs),
namely, the minimum mean square error (MMSE) method
from [19] and the maximum signal-to-interference-plus-noise
ratio (Max-SINR) technique from [20]. These algorithms are
not straightforward extensions of the original HD ones; (a)
they separate the various interference components amongst
the different available beamformers, (b) they exploit statistical
knowlege of the CSI error resulting in a more robust design,
and (c) they produce unitary beamformers. The algorithms are
first derived for the single-cell case, since the feasibility of
linear IA in such networks is already known [13], and later
extended to the multi-cell case. For the multi-cell case, we also
derive the proper condition for IA feasibility. This condition,
along with the multi-cell version of the algorithms, can serve
as tools to help future efforts into the determination of a full
set of linear IA feasibility conditions for multi-cell FD enabled
systems.

The remaining sections of the paper are organized as
follows. Section II presents some preliminaries, namely, the
system model, the CSI error model applied and the IA condi-
tions. Section III presents two theorems that characterize the
performance loss due to imperfect CSI. Next, in Section IV,
we derive the MMSE and Max-SINR based algorithms for the
single-cell context, and establish an equivalence between the
two. Section V deals with multiple cell considerations, here
we derive a proper condition for multi-cell systems and also
present the multi-cell extensions for the IA algorithms. Section
VI presents simulation results, and finally conclusions are
provided in Section VII. Moreover, there are three appendices;
the first two contain proofs for the derived theorems, while the
last one provides some useful lemmas.

Notation: Scalars are represented using lower case standard
font, vectors are represented using lower case bold font and
matrices are represented using upper case bold font. | · |, ‖ · ‖
and Tr(·) denote the absolute value, the Euclidean norm and
the trace respectively. E{A} represents the expected value of
A. QR(A) takes the unitary part of the QR-decomposition of
A.

II. PRELIMINARIES

A. System model

We consider a scenario having G cells, where each cell g
has one FD BS, Kd DL users requiring bd streams each and
Ku UL users requiring bu streams each. BSs are equipped
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with MB FD antennas, DL users are equipped with Md HD
antennas and UL users are equipped with Mu HD antennas.
The received signal at the kth DL user in cell g and at BS g
are given by (1) and (2) respectively.

ykdg =

G∑
j=1

Kd∑
i=1

κkdg ,jHkdg ,j
Vidj

sidj +

G∑
j=1

Ku∑
i=1

κkdg ,iuj Hkdg ,i
u
j
Viuj

siuj +nkdg

(1)

yg =
G∑
j=1

Ku∑
i=1

κg,iuj Hg,iuj
Viuj

siuj +
G∑
j=1

Kd∑
i=1

κg,jHg,jVidj
sidj + ng

(2)

Here, Hkdg ,j
∈ CMd×MB represents the channel going from

BS j to DL user kdg , Hkdg ,i
u
j
∈ CMd×Mu is the channel going

from UL user iuj to DL user kdg , Hg,j ∈ CMB×MB is the
channel going from BS j to BS g and Hg,iuj

∈ CMB×Mu

is the channel going from UL user iuj to BS g. All channel
elements are distributed as CN (0, 1). Vidj

∈ CMB×bd is the
precoder for sidj , with sidj ∈ Cbd×1 being the data intended
for the ith DL user in cell j, such that E{sidj sH

idj
} = P I.

Viuj
∈ CMu×bu is the precoder for siuj ∈ Cbu×1, with siuj

being the data transmitted by the ith UL user in cell j, such
that E{siuj sHiuj } = P I. Moreover, nkdg and ng represent the
noise with elements drawn from CN (0, σ2). Additionally, κx,y
represents the pathloss. We adopt the generic pathloss model
from [21] such that κx,y = ψrµx,y , where ψ is the pathloss at
unit distance, rx,y is the distance between nodes x and y, and
µ is the pathloss exponent.

The estimated DL and UL received signals are given by

ŝkdg =

G∑
j=1

Kd∑
i=1

κkdg ,jU
H
kdg

Hkdg ,j
Vidj

sidj + UH
kdg

nkdg

+

G∑
j=1

Ku∑
i=1

κkdg ,iuj UH
kdg

Hkdg ,i
u
j
Viuj

siuj (3)

ŝkug =
G∑
j=1

Ku∑
i=1

κg,iuj UH
kug

Hg,iuj
Viuj

siuj +
G∑

j=1
j 6=g

Kd∑
i=1

κg,jU
H
kug

Hg,jVidj
sidj

+ UH
kug

ng + Θ

Kd∑
i=1

κg,gU
H
kug

Υg,gVidg
sidg︸ ︷︷ ︸

residual SI for imperfect
SI cancellation scenarios

(4)

where Ukdg
∈ CMd×bd is the receive beamformer applied

at DL user kdg , Ukug
∈ CMB×bu is the receive beamformer

applied at BS g to extract the data transmitted by UL user
kug and Υ represents the auxiliary error matrix which will be
discussed in further detail later in Section II-B. Here (3) is
obtained as UH

kdg
ykdg . Additionally, for the perfect CSI case

Hg,g

∑Kd

i=1 Vidg
sidg is known at BS g, thus we obtain (4)

with Θ = 0 as UH
kug

(yg −Hg,g

∑Kd

i=1 Vidg
sidg ). The parameter

Θ is a binary term used to differentiate between perfect SI
cancellation and imperfect SI cancellation. For perfect CSI,
similar to other FD DoF studies [8]–[14], we assume that SI
is always perfectly canceled, therefore Θ = 0. For imperfect
CSI, perfect SI cancellation is not guaranteed leading to a

residual SI term, further details are provided in Section II-B.
Similar to prior literature dealing with interference man-

agement we require knowledge of the CSI. While going into
the actual details of the CSI acquirement process is not within
our scope, it is important to note that all the required channels
can indeed be learned. Channels between users and BSs and
between the BSs themselves can be estimated through standard
3GPP LTE channel estimation protocols applied in current
HD systems. Additionally, channels between users can be
learned via neighbour discovery methods applicable to device-
to-device (D2D) communication, such as sounding reference
signals (SRS) in 3GPP LTE. (See for example [22]–[24].)

B. Imperfect CSI considerations

The imperfect CSI is modeled as

Ĥ = H + E (5)

where Ĥ is the available CSI, H is the perfect channel, and
E is the channel estimation error. Here, E is independent of
H and modeled as E ∼ CN (0, ηI), where η = βρ−α with
ρ = P

σ2 representing the nominal SNR.
The introduction of parameters α and β renders our CSI

error model highly versatile, allowing us to represent the error
as either dependent on or independent of SNR as required.
Thus, for any α ≥ 0 and β > 0, η can be used to capture a
variety of CSI acquisition scenarios. Of particular interest are
the following instances.
• Perfect CSI: As α → ∞, perfect CSI is obtained for
ρ ≥ 1.

• Reciprocal channels: In reciprocal systems, channels are
assumed to be identical regardless of the direction of
communication. Thus, the CSI error is dependent on the
ratio of the pilot power to the noise level at the pilot
receiving node, i.e. it is inversely proportional to SNR.
Therefore, the CSI error can be modeled by setting α = 1.

• Non-reciprocal channels: In non-reciprocal systems, the
channel information is different for different directions of
communication. Thus, acquired CSI needs to be fedback
over a dedicated feedback link. Transmissions over this
link are subject to quantization errors, resulting in CSI
error that is independent of SNR. This can therefore be
modeled by setting α = 0.

Further details on how to set α and β to represent different
scenarios can be found in [18], [25] and references therein.

Alternatively, η as a whole can be interpreted as a single
parameter that encapsulates the CSI quality. Its value may
be assumed to be known a priori, and can be determined
depending on the channel dynamics and the CSI estimation
schemes applied. For additional details refer to [26] and
reference within.

For our analysis we need the statistical properties of H
conditioned Ĥ. Knowing that E and H are independent, then
Ĥ and H are jointly Gaussian. Thus we can express the perfect
channel, H, as a function of the available CSI, Ĥ, and an
auxiliary error matrix, Υ, as [27]

H =
1

1 + η
Ĥ + Υ (6)
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Ĵkdg =

G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m) 6=(g,k,n)

κ2kdg ,jP |u
n H
kdg

Hkdg ,j
vmidj
|2 +

G∑
j=1

Ku∑
i=1

bu∑
m=1

κ2kdg ,iuj
P |un Hkdg Hkdg ,i

u
j
vmiuj |

2 (8)

Ĵkug =

G∑
j=1

Ku∑
i=1

bu∑
m=1

(j,i,m)6=(g,k,n)

κ2g,iuj P |u
n H
kug

Hg,iuj
vmiuj |

2 +

G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

κ2g,jP |un Hkug Hg,jv
m
idj
|2 + Θ

Kd∑
i=1

bd∑
m=1

κ2g,gP |un Hkug Υg,gv
m
idg
|2 (9)

∆R FD ≤
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

1 +
P

σ2

η

1 + η

(
G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m)6=(g,k,n)

κ2kdg ,j +

G∑
j=1

Ku∑
i=1

bu∑
m=1

κ2kdg ,iuj

)

+

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

1 +
P

σ2

η

1 + η

(
G∑
j=1

Ku∑
i=1

bu∑
m=1

(j,i,m)6=(g,k,n)

κ2g,iuj +

G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

κ2g,j + Θ

Kd∑
i=1

bd∑
m=1

κ2g,g

) (11)

where vec(Υ) ∼ CN
(

0, η
1+η I

)
and is independent of Ĥ.

Generally for theoretical studies perfect SI cancellation is
assumed [8]–[14]. This can also be applied to our scenario,
where one can assume that each BS has perfect knowledge of
its SI channel and imperfect CSI for the remaining channels.
However, one may also consider the case where the SI channel
is also known imperfectly. For such situations Ĥg,g is available
at BS g instead of Hg,g , thus only 1

1+η Ĥg,g

∑Kd

i=1 Vidg
sidg can

be subtracted from (2). This results in the estimated UL data,
ŝkug , being given by (4) with Θ = 1.

C. IA conditions
Provided that the system configuration (i.e. the combination

of the number of cells, users, streams and antennas at the
various nodes) is such that IA is feasible under perfect CSI,
then the following IA conditions are observed

|un Hkdg Ĥkdg ,g
vnkdg | > 0 ∀ n, k, g

|un Hkug Ĥg,kug
vnkug | > 0 ∀ n, k, g

un Hkdg Ĥkdg ,j
vmidj

= 0 ∀ n,m, k, i, g, j, (n, k, g 6= m, i, j)

un Hkug Ĥg,jv
m
idj

= 0 ∀ n,m, k, i, g, j, (g 6= j)

un Hkdg Ĥkdg ,i
u
j
vmiuj = 0 ∀ n,m, k, i, g, j

un Hkug Ĥg,iuj
vmiuj = 0 ∀ n,m, k, i, g, j, (n, k, g 6= m, i, j)

(7)

where unkdg
, unkug , vnkdg

and vnkug refer to the nth column of
beamformers Ukdg

, Ukug
, Vkdg

and Vkug
respectively.

Note that we use the term Ĥ in (7) since this represents the
CSI available for beamformer calculation. For perfect CSI the
IA conditions observed are (7) with Ĥ replaced by H.

III. PERFORMANCE LOSSES DUE TO IMPERFECT CSI
With perfect CSI, η = 0 and Ĥ = H, thus satisfying the

IA conditions in (7) results in perfect interference cancella-

tion. However, when the available CSI is imperfect, not all
interference is canceled leading to a significant amount of
interference leakage, given by (8) for the DL and (9) for the
UL. Residual leakage has an adverse effect on achievable sum
rate and DoF, understanding its extent is a fundamental aspect
towards obtaining a more realistic characterization of practical
system performance. Here, we focus on the losses incurred in
terms of achievable sum rate and DoF.

A. Sum rate loss

For i.i.d. Gaussian inputs, the network achievable rate under
imperfect CSI is given by

R̂ FD TOT

= R̂ FD DL + R̂ FD UL

=

G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

κ2kdg ,g
P |un Hkdg Hkdg ,g

vnkdg
|2

Ĵkdg + σ2

)

+

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

κ2g,kugP |u
n H
kug

κ2g,kug vnkug |
2

Ĵkug + σ2

)
.

(10)

For perfect CSI there is no interference leakage, thus the
achievable rate is equal to R FD TOT = R FD DL+R FD UL, given
by (10) with Ĵkdg = Ĵkug = 0.

The sum rate loss due to imperfect CSI, ∆R FD, is defined
as the expected value of the difference between R FD TOT
and R̂ FD TOT, and is characterized as shown in the following
theorem.

Theorem 1. Consider a G-cell system where each cell has
one FD BS, Kd DL users requiring bd streams each and
Ku UL users requiring bu streams each. For this system,
under imperfect CSI with zero mean and error variance
η = βρ−α, the rate loss can be characterized as in (11).
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Under a homogeneous pathloss assumption, this can be further
expressed as:

lim
SNR→∞

∆R̆ FD

 = 0 α > 1
≤ Ω α = 1
→∞ 0 ≤ α < 1

(12)

where

Ω = GKdbd

(
log2

(
1 + β(GKdbd +GKubu − 1)

))
+GKubu

(
log2

(
1 + β(GKubu − 1 + (G− 1 + Θ)Kdbd)

))
.

Proof. See Appendix A.

B. DoF loss
The DoF achievable under imperfect CSI are given by

D̂ FD TOT = lim
P→∞

EĤ{EH|Ĥ{R̂ FD DL}}
log2P

+ lim
P→∞

EĤ{EH|Ĥ{R̂ FD UL}}
log2P

.

(13)

For perfect CSI there is no interference leakage (i.e. Ĵkdg =

Ĵkug = 0), thus the achievable DOF, D FD TOT, is defined
as (13) with R̂ FD DL and R̂ FD UL replaced by R FD DL and
R FD UL respectively. Additionally, for feasible IA, D FD TOT
can be further represented as

D FD TOT = G(Kdbd +Kubu) . (14)

The DoF loss, ∆D FD, is the difference between D FD TOT
and D̂ FD TOT, and is characterized as shown in the following
theorem.

Theorem 2. Consider a G-cell system where each cell has
one FD BS, Kd DL users requiring bd streams each and Ku

UL users requiring bu streams each. For this system, under
imperfect CSI with zero mean and error variance η = βρ−α:

∆D FD =

{
0 α ≥ 1
(1− α)G (Kdbd +Kubu) 0 ≤ α < 1 .

(15)

Proof. See Appendix B.

Remark 1. The results of Theorems 1 and 2 show that the way
the error scales with SNR, as reflected by the α parameter, is
highly important in determining the general performance trend
of IA, both from a rate and DoF perspective. The implications
of the two theorems are intrinsically related. For example, in
the range of α ≥ 1 Theorem 1 states that the sum rate loss
is either zero or finite. This is also reflected in Theorem 2,
where no DoF loss is expected within the same α range. The
fact that the rate loss is zero only for α > 1, while the DoF
loss is zero for α ≥ 1, shows that while α = 1 corresponds
to perfect CSI from a DoF perspective, it does not correspond
to perfect CSI from a more practical rate perspective. In the
range of 0 ≤ α < 1, Theorem 2 shows that a DoF loss is
inevitable. This is also reflected in Theorem 1, where for the
same α range the rate loss increases unboundedly with SNR.

IV. LINEAR IA ALGORITHMS

While the bounds derived so far provide an understanding
of the expected behavior of linear IA within the system model
considered, it is also necessary to have algorithms that work
within this context. Such algorithms are not yet available in
literature for systems with FD BSs and HD users, therefore
here we propose two different approaches: (a) an MMSE based
solution, and (b) a Max-SINR based one.

These proposed algorithms are not straightforward exten-
sions of the original HD ones from [19] and [20]; (a) they sepa-
rate the various interference components amongst the different
available beamformers rather than treating all interference
equivalently, i.e. they are based on design principles that are
specifically catered to the new system model, (b) they exploit
statistical knowledge of the CSI error to provide added robust-
ness, and (c) they result in unitary beamformers. The use of
unitary beamformers has gained significant attention in recent
years due to its role in codebook design for limited feedback
scenarios. It has been selected for both single-user and multi-
user mode operation for evolved universal terrestrial radio
access [28], with advantages that include added simplicity of
application and improved robustness to channel estimation er-
rors [29]. Additionally, it has been shown to lower complexity
for MMSE based algorithms [30] by avoiding the need for an
extra linear search to enforce transmit power constraints when
generating precoders, and also improve performance for Max-
SINR based ones in multi-stream applications [31]. Note that
linear IA aims to cancel out interference by ensuring that the
desired signal subspace is separate from the subspace occupied
by the interference and noise. Applying a QR decomposition to
make the beamformers unitary has no effect on their subspace,
thus the signal and interference-plus-noise are separable using
both the unitary and non-unitary versions; implying that both
versions observe the conditions in (7) and achieve IA.

The interference that needs to be handled by our IA solu-
tions can be classified into four main categories:

(i) Intra-DL interference - interference caused by undesired
DL data for other users in the same cell;

(ii) Intra-UL interference - interference caused by undesired
UL data for other users in the same cell;

(iii) CCI-OC - co-channel interference caused by nodes lo-
cated in other cells (includes both DL and UL data);

(iv) R-SI - residual self-interference at the BSs due to imper-
fect CSI knowledge.

While it is possible to create beamformers that handle all
the interference jointly, prior results for HD systems [33],
[34] indicate that this approach is not suited to interference
scenarios that are more complex than the initially studied HD
IC. Similar behavior has also been noted for our FD system,
thus we base our IA algorithms on specific design principles
(see Design Principle 1 and Design Principle 2 outlined later
on).

Focus in this section will be on the derivation of the
algorithms for a single-cell system, since the feasibility of
such configurations has already been explored in current
literature [13], and also due to the relevant compactness of the
corresponding expressions in comparison to multi-cell ones.
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Fku = E
{
‖fku − sku‖2

}
= E

{
Tr

((
UH

Ku∑
i=1

κg,iuHg,iuViusiu + ΘUH
ku

Kd∑
i=1

κg,gΥg,gVidsid + UH
kung − sku

)
(

UH
ku

Ku∑
i=1

κg,iuHg,iuViusiu + ΘUH
ku

Kd∑
i=1

κg,gΥg,gVidsid + UH
kung − sku

)H)}
(a)
= Tr

(
PUH

ku

Ku∑
i=1

κ2g,iuHg,iuViuVH
iuHH

g,iuUku + σ2UH
kuUku − Pκg,kuUH

kuHg,kuVku

− Pκg,kuVH
kuHH

g,kuUku + ΘPUH
ku

Kd∑
i=1

κ2g,gΥg,gVidVH
idΥH

g,gUku

)
+ Pbu (16)

∂Fku

∂Uku
= PUH

ku

Ku∑
i=1

κ2g,iu

(
1

1 + η
Ĥg,iu + Υg,iu

)
ViuVH

iu

(
1

1 + η
Ĥg,iu + Υg,iu

)H

+ σ2UH
ku − Pκg,kuVH

ku

(
1

1 + η
Ĥg,ku + Υg,ku

)H
+ ΘPUH

ku

Kd∑
i=1

κ2g,gΥg,gVidVH
idΥH

g,g . (17)

The results for the multi-cell extensions are presented later in
Section V-B. Note that when considering the single-cell case,
where by definition G = 1, we drop the index g to indicate
which cell a user belongs to, i.e. we use ku to indicate the
kth UL user in the cell and kd to represent the kth DL user.
However, the notation g is still used in channel and pathloss
related indices to represent the BS.

The single-cell versions of the algorithms follow Design
Principle 1 outlined below.

Design Principle 1. Intra-UL interference is only handled by
the receivers. Intra-DL interference is only handled by the
precoders. R-SI is handled by both the transmit and receive
beamformers at the BS.

A. MMSE based design for single-cell systems

This algorithm focuses on minimizing the mean squared
error, and designs beamformers which aim to find a balance
between aligning the interference and ensuring that the signal
level is suitably above noise. It was originally proposed for the
IC with perfect CSI and a single-stream per user in [19], and
later generalized to the multi-stream case in [32]. The designs
in [19], [32] carry out a separate linear search (using tech-
niques such as for example the bisection method) to enforce
transmit power constraints for each of the precoders generated.
The added computational costs incurred by such numerical
searches can be avoided by ensuring that the beamformers
produced are unitary [30]. Our MMSE design incorporates this
lower complexity feature, and produces unitary beamformers
via the inclusion of QR decomposition stages (see Steps 4 and
6 in Algorithm 1).

Starting with UL communication in the intended direction,
with fixed V and in accordance to Design Principle 1, the
optimization problem to find the BS receivers, Uku , is given
by

min
Uku

E
{
‖fku − sku‖2

}
∀ k

where

fku =UH
ku

Ku∑
i=1

κg,iuHg,iuViusiu +ΘUH
ku

Kd∑
i=1

κg,gΥg,gVidsid +UH
kung.

The optimization function can be defined as in (16) where (a)
follows since the transmitted data consists of i.i.d symbols,
allowing us to use E

{
skusHiu

}
= E

{
skdsHid

}
= 0 ∀ k, i, (k 6=

i), E
{
skusHid

}
= E

{
skdsHiu

}
= 0 ∀ k, i and E

{
skusHku

}
=

E
{
skdsHkd

}
= P I ∀ k. Differentiating with respect to Uku

and replacing H by (6) results in (17).

This can be made dependent on the imperfect CSI Ĥ only
by using the statistical information we have on the error. Thus,
taking expectations with respect to Υ, and using Lemmas 1
and 2 from Appendix C we obtain

EΥ

{
∂Fku

∂Uku

}
= σ2UH

ku−
P

(1+η)
κg,kuVH

kuĤH
g,ku

+
P

(1 + η)2
UH
ku

Ku∑
i=1

κ2g,iuĤg,iuViuViuHĤH
g,iu

+
Pη

(1+η)
UH
ku

(
bu

Ku∑
i=1

κ2g,iu + Θbd

Kd∑
i=1

κ2g,g

)
. (18)

The receiver which minimizes the UL mean square error is
obtained by setting (18) equal to zero, resulting in

Uku =

(
Ku∑
i=1

κ2g,iuĤg,iuViuVH
iuĤH

g,iu + γkuI

)−1
(1 + η)κg,kuĤg,kuVku

(19)

with

γku =
σ2(1 + η)2

P
+ η(1 + η)

(
bu

Ku∑
i=1

κ2g,iu + Θbd

Kd∑
i=1

κ2g,g

)
.

(20)

Using a similar process for DL communication in the
intended direction, with fixed V and in accordance to Design
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Principle 1, we solve

min
U

kd

E
{
‖fkd − skd‖2

}
∀ k

where

fkd = κ2kd,gUkdHkd,gVkdskd + Ukd

Ku∑
i=1

κ2kd,iuHkd,iuViusiu + Ukdnkd .

This results in

Ukd=

(
κ2kd,gĤkd,gVkdV

H
kdĤH

kd,g+

Ku∑
i=1

κ2kd,iuĤkd,iuViuV
H
iuĤH

kd,iu

+ γkdI

)−1
(1 + η) κkd,g Ĥkd,gVkd (21)

with

γkd =
σ2(1 + η)2

P
+η(1+η)

(
bdκ

2
kd,g+bu

Ku∑
i=1

κ2kd,iu

)
. (22)

Next, considering the reciprocal network we can also apply
a similar method to solve for V given fixed U. In this network
we assume that all directions of communication are reversed,
i.e. UL users are receiving information from the BS, while DL
users are transmitting information to the BS. Accordingly, V
now act as receive beamformers and U act as precoders. We
use
←−
Ha,b = HH

b,a to represent the channel going from node
b to node a in the reciprocal network. For communication by
UL users in the reciprocal network, we solve

min
Vku

E{‖
←−
f ku − sku‖2} ∀ k

where

←−
f ku =κku,gVku

←−
Hku,gUkusku +Vku

Kd∑
i=1

κkd,iu
←−
Hkd,iuUidsid +Vku

←−n ku

to obtain

Vku=

(
κ2ku,g

←−
Ĥku,gUkuU

H
ku

←−
ĤH
ku,g+

Kd∑
i=1

κ2ku,id
←−
Ĥku,idUidU

H
id

←−
ĤH
ku,id

+←−γ kuI

)−1
(1 + η) κku,g

←−
Ĥku,gUku (23)

with

←−γ ku =
σ2(1+η)2

P
+η(1+η)

(
buκ

2
ku,g+bd

Kd∑
i=1

κ2ku,id

)
. (24)

For communication by DL users in the reciprocal network, we
solve

min
V

kd

E{‖
←−
f kd − skd‖2} ∀ k

where

←−
f kd =

Kd∑
i=1

κg,idVkd
←−
Hg,idUidsid +ΘVkd

Ku∑
i=1

κg,g
←−
Υg,gUiusiu +Vkd

←−n g

to obtain

Vkd =

(
Kd∑
i=1

κ2g,id
←−
Ĥg,idUidUH

id

←−
ĤH
g,id +←−γ kdI

)−1
× (1 + η)κg,kd

←−
Ĥg,kdUkd (25)

with

←−γ kd =
σ2(1+η)2

P
+η(1+η)

(
bd

Kd∑
i=1

κ2g,id +Θbu

Ku∑
i=1

κ2g,g

)
.

(26)

The resulting MMSE algorithm which exploits statistical
knowledge of the CSI error (MMSE-SKCE) is as outlined in
Algorithm 1.

Algorithm 1: MMSE-SKCE algorithm

1 Set γku , γkd , ←−γ ku and ←−γ kd as (20), (22), (24) and (26)
respectively.

2 Initialize Vku and Vkd as random unitary matrices ∀ k.
3 Obtain the receivers Ukug

and Ukdg
using (19) and (21)

∀ k.
4 Set Uku = QR(Uku) and Ukd = QR(Ukd) ∀ k.
5 Obtain the precoders Vkug

and Vkdg
using (23) and (25)

∀ k.
6 Set Vku = QR(Vku) and Vkd = QR(Vkd) ∀ k.
7 Repeat from Step 3 until convergence or for a fixed number

of iterates.

B. Max-SINR based design for single-cell systems

This algorithm maximizes the signal-to-interference-plus-
noise ratio on a per-stream basis. It was originally proposed
as an IA algorithm in [20] for the MIMO IC under perfect
CSI and later adapted for a variety of objectives in HD
networks (see for example [18], [31], [33], [34] and references
therein). In contrast to a naive approach, which would simply
use the CSI provided assuming it is perfect, our algorithm
exploits knowledge of η to compute more accurate beam-
formers. Moreover, apart from following Design Principle 1,
our interference-plus-noise covariance matrices also take into
account inter-stream interference for the data required at each
node.

Starting with UL communication in the intended direction,
the interference-plus-noise covariance matrix is given by (27),
where (a) follows by replacing H with (6). Using knowledge
of η, we can simplify (27) further by replacing all the elements
that contain Υ by their expected values. Applying Lemmas
1 and 2 from Appendix C, EĤ,Υ{A} = 0 and EΥ{B} =
EΥ{C} = η/(1 + η)I. Thus instead of (27), we can use

Q̂n
ku =

Ku∑
i=1

bu∑
m=1

(i,m) 6=(k,n)

τκ2g,iuĤg,iuvmiuvmH
iu ĤH

g,iu + ξkuI (28)

where

τ =
P

(1 + η)2
(29)
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Qn
ku =

Ku∑
i=1

bu∑
m=1

(i,m) 6=(k,n)

Pκ2g,iuHg,iuvmiuvmH
iu HH

g,iu + Θ

Kd∑
i=1

bd∑
m=1

Pκ2g,gΥg,gv
m
idvmH

id ΥH
g,g + σ2I

(a)
=

Ku∑
i=1

bu∑
m=1

(i,m) 6=(k,n)

Pκ2g,iu

[
1

(1+η)2
Ĥg,iuvmiuvmH

iu ĤH
g,iu +

1

(1+η)

(
Ĥg,iuvmiuvmH

iu ΥH
g,iu + ΥH

g,iuvmiuvmH
iu Ĥg,iu

)
︸ ︷︷ ︸

A

+

Ku∑
i=1

bu∑
m=1

(i,m)6=(k,n)

Υg,iuvmiuvmH
iu ΥH

g,iu︸ ︷︷ ︸
B

]
+ Θ

Kd∑
i=1

bd∑
m=1

Pκ2g,g Υg,gv
m
idvmH

id ΥH
g,g︸ ︷︷ ︸

C

+σ2I (27)

and

ξku = σ2 +
Pη

(1 + η)

(
bu

Ku∑
i=1

κ2g,iu − κ2g,ku + Θbd

Kd∑
i=1

κ2g,g

)
.

(30)

Similarly for DL communication in the intended direction
we obtain

Q̂n
kd =

Ku∑
i=1

bu∑
m=1

τκ2kd,iuĤkd,iuvmiuvmH
iu ĤH

kd,iu

+

bd∑
m=1
m 6=n

τκ2kd,gĤkd,gv
m
kdvmH

kd ĤH
kd,g + ξdI (31)

where

ξd = σ2 +
Pη

(1 + η)

(
bu

Ku∑
i=1

κ2kd,iu + (bd − 1)κ2kd,g

)
. (32)

Next, reversing the direction of communication, for UL
users in the reciprocal network, we obtain

←−
Q̂n
ku =

Kd∑
i=1

bd∑
m=1

τκ2ku,id
←−
Ĥku,idumidumH

id

←−
ĤH
ku,id

+

bu∑
m=1
m6=n

τκ2ku,g
←−
Ĥku,gu

m
kuumH

ku

←−
Ĥku,g +

←−
ξ uI (33)

where

←−
ξ u = σ2 +

Pη

(1 + η)

(
bd

Kd∑
i=1

κ2ku,id + (bu − 1)κ2ku,g

)
. (34)

Additionally for DL users in the reciprocal network, we
have

←−
Q̂n
kd =

Kd∑
i=1

bd∑
m=1

(i,m)6=(k,n)

τκ2g,id
←−
Ĥg,idumidumH

id

←−
ĤH
g,id +

←−
ξ kdI (35)

where

←−
ξ kd = σ2 +

Pη

(1 + η)
(bd

Kd∑
i=1

κ2g,id − κ
2
g,kd + Θbu

Ku∑
i=1

κ2g,g

)
.

(36)

The resulting Max-SINR algorithm which exploits statistical

knowledge of the CSI error (Max-SINR-SKCE) is as outlined
in Algorithm 2. Note that the original Max-SINR IA based
algorithm from [20] does not contain a QR decomposition
stage, but instead normalizes the per-stream beamformers.
Having unitary beamformers was later shown to improve
performance for multi-stream applications [31]. By including
a QR decomposition stage in Steps 5 and 8 of Algorithm 2
we produce unitary beamformers, thereby ensuring we obtain
the multi-stream advantages, and also eliminating the need for
separate normalization steps since the resultant beamformers
inherently consist of unit-norm vectors.

Algorithm 2: Max-SINR-SKCE algorithm

1 Set τ , ξku , ξd,
←−
ξ u and

←−
ξ kd as (30), (29), (32), (34) and

(36) respectively.
2 Calculate Q̂n

ku and Q̂n
kd using (28) and (31) ∀ n, k.

3 Obtain the receive filters as unku =κg,ku(Q̂n
ku)−1Ĥg,kuvnku

and unkd = κkd,g(κkd,gQ̂
n
kd)−1Ĥkd,gv

n
kd ∀ n, k.

4 Set Uku = QR(Uku) and Ukd = QR(Ukd) ∀ k.

5 Compute
←−
Q̂n
ku and

←−
Q̂n
kd using (33) and (35) ∀ n, k.

6 Obtain the precoders as vnku = κku,g(
←−
Q̂n
ku)−1

←−
Ĥku,gu

n
ku

and vnkd = κg,kd(
←−
Q̂n
kd)−1

←−
Ĥg,kdunkd ∀ n, k.

7 Set Vku = QR(Vku) and Vkd = QR(Vkd) ∀ k.
8 Repeat from Step 3 until convergence or for a fixed number

of iterates.

Remark 2. For perfect CSI or for imperfect CSI scenarios
where statistical knowledge of the CSI error is unavailable,
a naive version of Algorithms 1 and 2 can be implemented.
For such situations we have η = 0 in the expressions for
beamformer calculation. Thus, for MMSE-Naive we set γu =
γd =←−γ u =←−γ d = σ2

P in Step 1. While, for Max-SINR-Naive
we set τ = P and ξu = ξd =

←−
ξ u =

←−
ξ d = σ2 in Step 1.

Additionally, for the perfect CSI case H is used in place of
Ĥ throughout. Note that the naive versions of the algorithms
have the same computational complexity as those originally
presented in Algorithms 1 and 2.

C. Equivalence between MMSE and Max-SINR designs

Under certain conditions the beamformers obtained by the
proposed MMSE and Max-SINR algorithms are equivalent,
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implying that at each iteration both result in identical precoders
and receivers.

Consider the definition for unku from Step 4 of Algorithm
2. Defining Q̂n

ku , An
ku

P
(1+η)2 , we can express

unku = κg,ku(An
ku)−1Ĥg,kuvnku

(1 + η)2

P
.

Additionally An
ku may be represented as

An
ku = Bku − κ2g,kuĤg,kuvnkuvnHku ĤH

g,ku

where

Bku =

Ku∑
i=1

κg,iuĤg,iuViuVH
iuĤH

g,iu + ξku
(1 + η)2

P
I .

Applying Lemma 4 to (An
ku)−1Ĥg,kuvnku we obtain

(An
ku)−1Ĥg,kuvng,ku =

(Bku)−1Ĥg,kuvnku

1− vnHku ĤH
g,ku(Bku)−1Ĥg,kuvnku

.

Letting λnku = 1 − vnHku ĤH
g,ku(Bku)−1Ĥg,kuvnku , we can

represent the receiver as

unku = κg,ku(Bku)−1Ĥg,kuvnku
(1 + η)2

P

1

λnku
.

Next, unku ∀ n = 1 . . . bu can be horizontally concatenated to
obtain the receiver across all streams as

Uku = κg,ku(Bku)−1Ĥg,kuVkuΛku (37)

where

Λku =
(1 + η)2

P


1

λ1ku
. . . 0

...
. . .

...

0 . . .
1

λbuku

 .

Comparing (37) with the MMSE derived expression in (19),
it can be noticed that they are very similar. For the naive
and perfect CSI versions of the algorithms where η = 0, the
term inside the inverse for (37) and (19) is equivalent. The
only difference is an additional post-multiplication by Λku

in (37); this matrix essentially multiplies each column vector
with a scalar and thus has no effect on the resultant unitary
part after the QR decomposition, therefore both algorithms
obtain the same Uku . A similar argument can be made for
each of Ukd , Vku and Vkd . Thus in cases where η is actually
0, or unknown and assumed to be 0, (i.e. Max-SINR-Naive
and MMSE-Naive) the two algorithms are equivalent.

Remark 3. Note that even in cases where the Max-
SINR/MMSE equivalence holds, the MMSE algorithm is less
computationally complex than the Max-SINR algorithm, since
the former operates on a per-user basis whilst the latter
operates on a per-stream basis. Consider for example the
number of matrix inverses involved; the MMSE algorithm
requires a total of 2(Ku + Kd) inverses per iteration to
compute the beamformers in Steps 3 and 5, while the Max-
SINR algorithm requires a total of 2(Kubu +Kdbd) inverses

in Steps 3 and 5.

D. Convergence of the proposed algorithms

Firstly, it is important to note that the convergence of
Max-SINR based algorithms to achieve IA cannot be proven
analytically, not even for the simplest case of the HD interfer-
ence channel [20]. Considering that the Max-SINR algorithm
proposed in this paper is based in principle on the original one
from [20], but with increased complexity in the resultant ex-
pressions (due to the more complex system model), it follows
by extension that the convergence of our algorithm cannot
be analytically proven. However, the overall consensus in
literature is that Max-SINR based algorithms for IA generally
seem to converge to a constant value, as shown numerically in
[35], and proven for sufficiently high SNR in [36]. Finally, it
is also important to note that these convergence remarks also
apply to our MMSE based algorithm, due to the equivalence
established in Section IV-C. (For further information on the
convergence behavior please refer to the simulations in Section
VI-D.)

V. MULTI-CELL CONSIDERATIONS

A significant body of literature related to linear IA fo-
cuses on the analytic derivation of feasibility conditions,
for example, [37], [38] study this issue for the interference
channel, [33], [39] consider interference broadcast channels
and [13] derives feasibility conditions for linear IA in single-
cell systems with an FD BS communicating with both UL
and DL users. However, no feasibility conditions are available
in literature so far for multi-cell multi-user systems with
FB BSs and HD users. Here, we look into this issue by
deriving the proper condition for this network type and also
by extending the linear IA algorithms proposed in Section IV
to the multi-cell case. The derivation of this condition and the
algorithms can aid future work in this direction by serving
as a starting point that provides insight into the theoretical
feasibility of linear IA for different antenna configurations and
DoF requirements.

A. Proper condition

The proper condition relates the feasibility of IA to the issue
of determining the resolvability of a system represented by
multivariate polynomial equations. A system of equations is
classified as proper if the number of equations, Ne, does not
exceed the number of variables, Nv , i.e. if Nv ≥ Ne. Prior
studies [37]–[39] show that for systems classified as improper,
IA is surely infeasible. However, classifying a system as
proper is not a sufficient condition to prove IA feasibility,
i.e. systems that are proper but for which IA is infeasible may
also exist.

We follow the method from [37] to derive expressions for
Nv and Ne, and obtain the proper condition for the FD enabled
multi-cell scenario considered in this work. Focusing on a
symmetric system where Kd = Ku = K, bd = bu = b and
Md = Mu = N to simplify notation, we obtain

Nv = 2GKb(MB +N − 2b)
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Ukdg
=

(
G∑
j=1

Ku∑
i=1

Ĥkdg ,i
u
j
Viuj

VH
iuj

ĤH
kdg ,i

u
j

+

G∑
j=1

j 6=g

Kd∑
i=1

Ĥkdg ,j
Vidj

VH
idj

ĤH
kdg ,j

+ Ĥkdg ,g
Vkdg

VH
kdg

ĤH
kdg ,g

+ γdI

)−1
(1+η)Ĥkdg ,g

Vkdg
(39)

Ukug
=

(
G∑
j=1

Ku∑
i=1

Ĥg,iuj
Viuj

VH
iuj

ĤH
g,iuj

+

G∑
j=1

j 6=g

Kd∑
i=1

Ĥg,jVidj
VH
idj

ĤH
g,j + γuI

)−1
(1+η) Ĥg,kug

Vkug
(40)

Vkug
=

(
G∑
j=1

Kd∑
i=1

←−
Ĥidj ,k

u
g
Uidj

UH
idj

←−
ĤH
idj ,k

u
g

+

G∑
j=1

j 6=g

Ku∑
i=1

←−
Ĥj,kug

Uiuj
UH
iuj

←−
ĤH
j,kug

+
←−
Ĥg,kug

Ukug
UH
kug

←−
ĤH
g,kug

+←−γ uI

)−1
(1+η)

←−
Ĥkug ,g

Ukug
(41)

Vkdg
=

(
G∑
j=1

Kd∑
i=1

←−
Ĥg,idj

Uidj
UH
idj

←−
ĤH
g,idj

+

G∑
j=1

j 6=g

Ku∑
i=1

←−
Ĥg,jUiuj

UH
iuj

←−
ĤH
g,j +←−γ dI

)−1
(1+η)

←−
Ĥg,kdg

Ukdg
(42)

and

Ne = (Kb)2(4G2 − 2−G) .

This allows us to express the proper condition as

2G(MB +N)

4G+K(4G2 − 2−G)
≥ b . (38)

B. Multi-cell algorithm extension

Here we extend our IA algorithms to the multi-cell case.
Since as outlined earlier in this section, the goal of the multi-
cell version of the algorithms is to aid future work into
understanding the theoretical feasibility of IA in multi-cell
FD systems, the algorithms presented here are obtained by
considering a homogeneous pathloss scenario, i.e. setting all
κ terms to be equal to 1. This approach allows for equations
that are clearer in terms of presentation, and is suited to IA
feasibility studies since pathloss has no effect in the DoF
domain where power →∞.

The design of the multi-cell algorithms is largely analogous
to the single-cell ones, thus derivation details are omitted. The
major difference in the derivation process is that instead of
following Design Principle 1, we follow Design Principle 2
which includes additional considerations for CCI-OC which
is now present.

Design Principle 2. Intra-UL interference is only handled
by the receivers. Intra-DL interference is only handled by
the precoders. R-SI is handled by both the transmit and
receive beamformers at the BSs. CCI-OC is handled by all
beamformers.

1) Multi-cell version of MMSE algorithm: The multi-cell
version of MMSE-SKCE follows the general steps outlined
for the single-cell version in Algorithm 1, with the following
differences.
• In Step 1 set γd, γu, ←−γ d and ←−γ u as follows.

γd =
σ2(1+η)2

P
+ η(1+η)(GKubu+(G−1)Kdbd+bd−1)

γu =
σ2(1+η)2

P
+ η(1+η)(GKubu−1+(G−1+Θ)Kdbd)

←−γ d =
σ2(1+η)2

P
+ η(1+η)(GKdbd−1+(G−1+Θ)Kubu)

←−γ u =
σ2(1+η)2

P
+ η(1+η)(GKdbd+(G−1)Kubu+bu−1)

• In Step 3 calculate Ukdg
and Ukug

using (39) and (40).
• In Step 5 find Vkdg

and Vkug
using (41) and (42).

2) Multi-cell version of Max-SINR algorithm: The multi-
cell version of Max-SINR-SKCE follows the general steps
outlined for the single-cell version in Algorithm 2, with the
following differences.

• In Step 1 set ξd, ξu,
←−
ξ d and

←−
ξ u as follows.

ξd = σ2 +
Pη

(1 + η)
(GKubu + (G− 1)Kdbd + bd)

ξu = σ2 +
Pη

(1 + η)
(GKubu + (G− 1 + Θ)Kdbd)

←−
ξ d = σ2 +

Pη

(1 + η)
(GKdbd + (G− 1 + Θ)Kubu)

←−
ξ u = σ2 +

Pη

(1 + η)
(GKdbd + (G− 1)Kubu + bu)

• In Step 3 the forward interference-plus-noise covariances
matrices Q̂n

kdg
and Q̂n

kug
are calculated using (43) and (44).

• In Step 4 use unkug = (Q̂n
kug

)−1Ĥg,kug
vnkug and unkdg

=

(Q̂n
kdg

)−1Ĥkdg ,g
vnkdg
∀ n, k, g.

• In Step 6 the backward interference-plus-noise covariance

matrices
←−
Qn
kdg

and
←−
Q̂n
kug

are calculated using (45) and
(46).

• In Step 7 use vnkug = (
←−
Q̂n
kug

)−1
←−
Ĥkug ,g

unkug and vnkdg
=

(
←−
Q̂n
kdg

)−1
←−
Ĥg,kdg

unkdg
∀ n, k, g.

VI. SIMULATIONS

For the purpose of our simulations we set σ2 = 1, making
the SNR equivalent to the transmit power, and we consider a
homogeneous pathloss scenario by setting κkdg ,j = κkdg ,iuj =
κg,j = κg,iuj = 1 ∀ k, g, i, j. Additionally, all results are
averaged in a Monte-Carlo fashion over a number of dif-
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Q̂n
kdg

=

G∑
j=1

Ku∑
i=1

bu∑
m=1

τĤkdg ,i
u
j
vmiuj vmH

iuj
ĤH
kdg ,i

u
j

+

G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

τĤkdg ,j
vmidj

vmH
idj

ĤH
kdg ,j

+

bd∑
m=1
m6=n

τĤkdg ,g
vmkdgvmH

kdg
ĤH
kdg ,g

+ ξdI (43)

Q̂n
kug

=

G∑
j=1

Ku∑
i=1

bu∑
m=1

(j,i,m)6=(g,k,n)

τĤg,iuj
vmiuj vmH

iuj
ĤH
g,iuj

+

G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

τĤg,jv
m
idj

vmH
idj

ĤH
g,j + ξuI (44)

←−
Q̂n
kdg

=

G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m)6=(g,k,n)

τ
←−
Ĥg,idj

umidj
umH
idj

←−
ĤH
g,idj

+

G∑
j=1

j 6=g

Ku∑
i=1

bu∑
m=1

τ
←−
Ĥg,ju

m
idj

umH
idj

←−
ĤH
g,j +

←−
ξ dI (45)

←−
Q̂n
kug

=

G∑
j=1

Kd∑
i=1

bd∑
m=1

τ
←−
Ĥkug ,i

d
j
umidj

umH
idj

←−
ĤH
kug ,i

d
j

+

G∑
j=1

j 6=g

Ku∑
i=1

bu∑
m=1

τ
←−
Ĥkug ,j

umiuj umH
iuj

←−
ĤH
kug ,j

+

bu∑
m=1
m6=n

τ
←−
Ĥkug ,g

umkug umH
kug

←−
Ĥkug ,g

+
←−
ξ uI (46)

ferent channel realizations. Treating all interference as noise,
throughout the simulations we calculate the sum rate as

R =

G∑
g=1

Kd∑
k=1

log2 det
(
I + (Xkdg

+ σ2I)−1Skdg

)
+

G∑
g=1

Ku∑
k=1

log2 det
(
I + (Xkug

+ σ2I)−1Skug

)
where the signal covariance matrices are

Skdg = PUH
kdg

Hkdg ,g
Vkdg

VH
kdg

HH
kdg ,g

Ukdg
and

Skug = PUH
kug

Hg,kug
Vkug

VH
kug

HH
g,kug

Ukug
.

Additionally, Xkdg
and Xkug

represent the DL and UL inter-
ference covariance matrices and are respectively given by

Xkdg
=

G∑
j=1

Kd∑
i=1

(j,i)6=(g,k)

PUH
kdg

Hkdg ,j
Vidj

VH
idj

HH
kdg ,j

Ukdg

+

G∑
j=1

Ku∑
i=1

PUH
kdg

Hkdg ,i
u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
Ukdg

and

Xkug
=

G∑
j=1

Ku∑
i=1

(j,i)6=(g,k)

PUH
kug

Hg,iuj
Viuj

VH
iuj

HH
g,iuj

Ukug

+

G∑
j=1

j 6=g

Kd∑
i=1

PUH
kug

Hg,jVidj
VH
idj

HH
g,jUkug

+ Θ

Kd∑
i=1

PUH
kug

Υg,gVkdg
VH
kdg

ΥH
g,gUkug

.

Note that for imperfect CSI scenarios, throughout this sec-
tion we fix Θ = 1 (i.e. we assume imperfect SI cancellation).

A. Results for theoretically derived bounds
We simulate a system having G = 1, Kd = Ku = 4,

bd = bu = 1, MB = 4 and Md = Mu = 3 to obtain Fig.

2 and Fig. 3. For this system IA is known to be feasible
[13] and the achievable DoF for perfect CSI are given by
G(Kdbd + Kubu) = 8. Its HD counterpart has MB = 4,
N = Md = Mu = 3 antennas at the users, and serves all
K TOT/cell = Kd + Ku = 8 in the same direction simultane-
ously. The total achievable DoF using an HD BS are given
by min{MB , NK TOT/cell} = 4, which corresponds to exactly
half those achieved when using an FD BS.

From Theorem 2 we know that full DoF are achievable for
values of α ≥ 1. This can be verified by focusing on the results
for α = 1.75 and α = 1 in Fig. 2, which have slopes that are
equivalent to that of the perfect CSI case. However, while the
α = 1.75 result overlaps completely with the perfect CSI one
at high SNR, the α = 1 result demonstrates a constant gap
for SNR > 30 dB. This behavior follows from Theorem 1,
which predicts a finite loss upper bounded by Ω for α = 1.
For the system under consideration with β = 10, Ω is equates
to 49.20 bits per channel use. Measuring the actual difference
between the perfect CSI and the α = 1 results from Fig. 2,
we obtain a value of 47.9 bits per channel use, proving that
the derived upper bound is not excessively loose.

Focusing on the range of α < 1, Theorem 1 indicates that
the sum rate loss is unbounded. This can be easily verified
by considering the results for α = 0.75 and α = 0 in Fig.
2, all of which deviate from the perfect CSI result. From a
DoF perspective, in the range of α < 1 Theorem 2 indicates
a loss equal to (1− α) of the full Dof. For example for α =
0.75, Theorem 2 predicts that only 75% of the full DoF are
achievable. This can be confirmed by comparing the high SNR
slopes for the perfect CSI curve, which achieves 8 DoF, and the
one for α = 0.75, which achieves 6 DoF. For α = 0 the same
theorem predicts 0 DoF achievable, and indeed both α = 0
curves lie flat in the high SNR region. Additionally comparing
the result for α = 0, β = 0.01 and α = 0, β = 0.1, it is clear
that while the β value does not affect DoF behavior, it has a
strong effect on the overall achievable rate. The curve for the
smallest β settles at the higher value, which is expected since
this indicates the smallest error. Note that for any β, α = 0
represents the worst-case scenario with the CSI error variance
being equal to β itself; this causes a significant amount of
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interference leakage, making the system interference limited
and eventually causing sum rate saturation.

For α < 1, Theorem 2 also shows how the DoF loss is
distributed amongst the DL and UL users. In Fig. 3 we plot
the corresponding rates separately to verify this behavior. As
can be seen for α = 1, β = 10 total of 8 DoF are achieved;
due to the symmetry of the simulated system where Ku = Kd

and bd = bu, this amounts to 4 DoF each for UL and DL.
Focusing on α = 0.75, β = 10 it can noticed that both DL and
UL results have a high SNR slope that corresponds to 3 DoF,
while for α = 0, β = 0.1 the slopes corresponds to 0 DoF. In
both cases the achieved DoF are equivalent to αGKdbd for the
DL and αGKubu for the UL, which confirms our expectations
from Theorem 2.
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Fig. 2: Sum rate performance obtained using both Max-SINR-Naive and
MMSE-Naive algorithms for scenario with G = 1, Kd = Ku = 4,
bd = bu = 1, MB = 4 and Md = Mu = 3 under different imperfect
CSI error conditions.
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Fig. 3: Total, DL and UL rate performance obtained by using Max-SINR-
Naive and MMSE-Naive algorithms for scenario with G = 1, Kd = Ku = 4,
bd = bu = 1, MB = 4 and Md = Mu = 3 under different imperfect CSI
error conditions.

Remark 4. The imperfect CSI scenarios modeled in this sec-
tion can be directly related to the CSI acquisition techniques
outlined in Section II-B. For example, α = 0 corresponds
to the non-reciprocal channel scenario. Looking at the corre-
sponding results in Fig. 2 it is clear that within this context IA
works better in the lower SNR region. The overall performance
depends on the quality of the CSI, which for the case of α = 0

−10 −5 0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

SNR (dB)

S
um

 r
at

e 
(b

its
 p

er
 c

ha
nn

el
 u

se
)

 

 

MMSE−SKCE
Max−SINR−SKCE
MMSE−Naive & Max−SINR−Naive α=1, β=10  
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Fig. 4: Sum rate performance for scenario with G = 1, Kd = Ku = 3,
bd = bu = 2 and MB = Md = Mu = 6 under different imperfect CSI
error conditions.
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Fig. 5: BER performance for scenario with G = 1, Kd = Ku = 3, bd =
bu = 2 and MB = Md = Mu = 6 under different imperfect CSI error
conditions using QPSK modulation.

is a function of the amount of quantization. The lower the β,
the smaller is the error due to quantization and the better IA
performs. On the other hand for reciprocal channels, modeled
by α = 1, IA fares better in the higher SNR region. In this
case the CSI error is inversely proportional to SNR, therefore
its effect decreases with increasing SNR, leading to a better
performance of the IA techniques.

B. Results for SKCE algorithms

We use a system having G = 1, Kd = Ku = 3, bd =
bu = 2 and MB = Md = Mu = 6, which is known to be
feasible [13], to obtain Fig. 4 and Fig. 5. As can be seen
from both figures while the SKCE versions of the algorithms
produce results that are very close, the curves don’t overlap
completely in the manner that results for the naive versions
do. Such behavior is expected since the Max-SINR and MMSE
equivalence established in Section IV-C holds only for cases
where η is set to 0 for beamformer calculation.

As seen from Fig. 4 and Fig. 5, the SKCE versions of the
algorithms outperform the naive versions both in terms of sum
rate and BER. For example for α = 1, β = 10 at an SNR of
40 dB, MMSE-SKCE has a sum rate improvement of 12.3
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bits per channel use, while Max-SINR-SKCE has a gain of
12.1 bits per channel. For the same α and β combination,
MMMSE-SKCE achieves a BER of 1× 10−2 at around 21.9
dB and Max-SINR-SKCE achieves it at 22.1 dB, while the
naive version requires approximately 23.6 dB to obtain the
same performance. Analogously, for α = 0.75, β = 10 we
have a rate gain of 14.2 bits per channel use for MMSE-
SKCE and 14.1 bits per channel use for Max-SINR-SKCE. In
term of BER for α = 0.75, β = 10, MMSE-SKCE requires
approximately 8.8 dB less than the naive version to reach
a BER level of 1 × 10−2, whilst Max-SINR-SKCE requires
around 8.5 dB less than Max-SINR-Naive.

Considering the results for MMSE-Naive and Max-SINR-
Naive with α = 0, β = 0.1 in Fig. 4 and Fig. 5 it can be
noticed that performance initially improves in the region of
−10 dB up to around 10 dB, and then starts to degrade until it
eventually settles to a steady state value for SNR ≥ 45 dB. For
this specification of α and β, the CSI error is quite significant
and independent of SNR. In the range of −10 db to 10 dB
the power of the leakage is reasonably small, since the power
levels we are dealing with are low; this allows for performance
improvement across the region. However, once SNR increases
beyond 10 dB the interference leakage starts to become more
significant, resulting in an interference limited system; this
leads to a degradation in performance that eventually settles
to a steady state value. Such behavior is avoided by the SKCE
version of the algorithms, which also improve the overall
performance. In fact for α = 0, β = 0.1 the SKCE algorithms
settle at approximately 13.0 bits per channel use above their
naive counterparts. Additionally, in terms of BER, MMSE-
SKCE and Max-SINR-SKCE both settle at around 2.3×10−2,
while the naive versions settle at 1.3× 10−1.

C. Determining IA feasibility in multi-cell systems

Next we focus on how the proposed algorithms can be used
to give an indication of IA feasibility for FD multi-cell systems
with HD users. For example, consider a system having G = 2
and Kd = Ku = 2 with each user requiring 2 streams, i.e.
bd = bu = 2. We want to determine the antennas required at
the BS, MB , and at the users, N = Md = Mu, to ensure that
full DoF equal to G(Kdbd +Kubu) = 16 are achievable.

If all nodes have 16 antennas, i.e. {MB = N = 16}, the
desired number of streams can easily be delivered, however
from an achievable DoF perspective this leads to an unneces-
sarily large number of antennas; with IA we should achieve
the same DoF with less antennas. For a HD system, with MB

BS antennas and N user antennas, to deliver 2 streams each to
K TOT/cell = 4 across two cells (i.e achieve total DoF of 16), we
need MB ≥ 2(4+p) and N ≥ 2(5−p) where p ∈ {1, 2, 3, 4}
[39]. With p = 1 this evaluates to MB ≥ 10 and N ≥ 8,
implying that {MB = 10, N = 8} is the minimum number of
antennas required to achieve 16 DoF in the HD system.

Moving on to our FD system, we use the proposed multi-
cell algorithms from Section V with perfect CSI to obtain the
results in Fig. 6. As can be seen results for {MB = N = 16},
{MB = 10, N = 8}, {MB = 10, N = 7} and {MB = 9, N =
8} have the same slope and achieve full DoF. However for
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Fig. 6: Sum rate performance obtained by using both Max-SINR-Naive and
MMSE-Naive algorithms under perfect CSI conditions for system with G = 2,
Kd = Ku = 2, bd = bu = 2 and varying antenna numbers.

{MB = 9, N = 7}, {MB = 10, N = 6}, {MB = 9, N =
6}, {MB = 10, N = 5}, the sum rate flattens out as SNR
increases, indicating that IA is infeasible. Table I relates the
feasibility of the various system configurations simulated in
Fig. 6 with the properness of the system according to (38). As
can be seen systems marked as improper are always infeasible,
however systems marked as proper are not necessarily feasible.
In fact for {MB = 9, N = 7} and {MB = 10, N = 6}, where
the properness condition is met with equality, the resulting
scenario is proper but infeasible.

TABLE I: Properness and IA feasibility for systems simulated in Fig. 6.

MB N Properness of system IA Feasibility
16 16 Proper with Nv > Ne Feasible
10 8 Proper with Nv > Ne Feasible
10 7 Proper with Nv > Ne Feasible
9 8 Proper with Nv > Ne Feasible
9 7 Proper with Nv = Ne Infeasible
10 6 Proper with Nv = Ne Infeasible
9 6 Improper with Nv < Ne Infeasible
10 5 Improper with Nv < Ne Infeasible

Moreover, it can be noticed that results for {MB = 10, N =
8}, {MB = 10, N = 7} and {MB = 9, N = 8} obtain very
similar rates with a marginal increase for an increasing number
of antennas. The rate for {MB = N = 16} is the highest
across the whole SNR range; however this rate advantage
comes from having a significantly larger number of antennas
compared to the other configurations where IA is also feasible.

D. Convergence results

Fig. 7 shows the convergence behavior of the designed IA
algorithms. For each scenario plotted we consider an SNR of
10 dB and average the results over 200 channel realizations
under perfect CSI. As can be seen for all scenarios the
proposed algorithms do indeed converge to a constant value.

VII. CONCLUSION

The combination of FD technology and IA provides a
promising solution to tackle the ever increasing resource
demand problem in wireless networks. While the advantages
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∆RFD = EH{R FD TOT} − EĤ{EH|Ĥ{{R̂ FD TOT}}

= EH

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1+

κ2kdg ,g
P |un Hkdg Hkdg ,g

vnkdg
|2

σ2

)}
−EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1+

κ2kdg ,g
P |ûn Hkdg Hkdg ,g

v̂nkdg
|2

Ĵkdg +σ2

)}}

+EH

{
G∑
g=1

Ku∑
k=1
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log2

(
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n H
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vnkug |
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)}
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{
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k=1
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n=1

log2

(
1+

κ2g,kugP |û
n H
kug

Hg,kug
v̂nkug |

2

Ĵkug +σ2

)}}
(47)

= EH

{
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Kd∑
k=1

bd∑
n=1

log2

(
1 +

κ2kdg ,g
P |un Hkdg Hkdg ,g

vnkdg
|2

σ2
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+ EH

{
G∑
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Ku∑
k=1
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n H
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bd∑
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log2
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n H
kug

Hg,kug
v̂nkug |

2

σ2

)}}
+ EĤ
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(48)
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Fig. 7: Sum rate convergence trend averaged over 200 channel realizations
for both Max-SINR and MMSE based algorithm designs at an SNR of 10
db, under perfect CSI. ddddd dddd ddd ddddd ddddddddddddddddddddd

are clear for perfect CSI, it is important to consider imperfect
CSI scenarios to obtain a more practical characterization of
the system’s behavior. Here we apply linear IA in a multi-
user multi-cell system with FD BSs and legacy HD users. We
start by characterizing the performance losses incurred due to
imperfect CSI with respect to the achievable sum rate and DoF.
Results show that the way the CSI error behaves with SNR is
highly important in determining the overall performance loss
trend. When the two parameters are inversely proportional,
the rate loss is upper bounded by a derived value and full
DoF can be achieved. When the error variance scales with
SNR to the power of a negative proper fraction, DoF loss
proportional to α is experienced and rate loss is unbounded.
We also propose two novel IA algorithms based on MMSE
and Max-SINR that are applicable to an FD multi-cell system
with HD users. Our designs exploit statistical knowledge of the
CSI error and produce unitary beamformers. Moreover, they
are shown to be equivalent for cases where η is set to 0, and

provide significant performance improvements over the naive
designs under imperfect CSI. Additionally, we also derive the
proper condition for IA feasibility in the multi-cell system
under consideration.

APPENDIX A
PROOF OF THEOREM 1

Using the sum rate loss definition provided in Section
III-A and taking expectations, the mean sum rate loss can be
expressed as (47), where for the purpose of this proof we use
notation û and v̂ to distinguish the imperfect CSI beamformers
from the perfect CSI ones which we will continue to represent
as u and v. After a number of algebraic manipulations (47)
can be further represented as (48). Additionally, since the
interference leakage is by definition greater or equal to zero for
both DL and UL communication, i.e. Ĵkdg ≥ 0 and Ĵkug ≥ 0,
we can establish the following inequalities.

EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1+

Ĵkdg +κ2kdg ,g
P |ûn Hkdg Hkdg ,g

v̂nkdg
|2

σ2

)}}

≥EH

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1+

κ2kdg ,g
P |un Hkdg Hkdg ,g

vnkdg
|2

σ2

)}
(49)

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1+

Ĵkug +κ2g,kugP |û
n H
kug

Hg,kug
v̂nkug |

2

σ2

)}}

≥EH

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1+

κ2g,kugP |u
n H
kug

Hg,kug
vnkug |

2

σ2

)}
(50)

Using (49) and (50) into (48), and applying Jensen’s inequality,
results in

∆R FD ≤
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

EĤ{EH|Ĥ{Ĵkdg}}
σ2

)
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+

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1 +

EĤ{EH|Ĥ{Ĵkug }}
σ2

)
. (51)

Therefore to quantify ∆R FD we need to find expressions
for EĤ{EH|Ĥ{Ĵkdg}} and EĤ{EH|Ĥ{Ĵkug }}. Starting with
EĤ{EH|Ĥ{Ĵkdg}}, having already defined Ĵkdg in (9), we can
combine it with the channel model from (6) to obtain

EĤ{EH|Ĥ{Ĵkdg}}

=

G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m) 6=(g,k,n)

κ2kdg ,jPEĤ,Υ

{∣∣∣∣ûn Hkdg
(

1

1+η
Ĥkdg ,j

+Υkdg ,j

)
v̂midj

∣∣∣∣2
}

+

G∑
j=1

Ku∑
i=1

bu∑
m=1

κ2kdg ,iuj
PEĤ,Υ

{∣∣∣∣ûn Hkdg
(

1

1+η
Ĥkdg ,i

u
j

+Υkdg ,i
u
j

)
v̂miuj

∣∣∣∣2
}
.

Using the IA conditions in (7), particularly
[

un Hkdg
Ĥkdg ,j

vm
idj

=

0 ∀ n,m, k, i, g, j (n, k, g 6= m, i, j)
]

and
[
un Hkdg

Ĥkdg ,i
u
j
vmiuj =

0 ∀ n,m, k, i, g, j
]
, this can be further simplified to

EĤ{EH|Ĥ{Ĵkdg}} =

G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m) 6=(g,k,n)

κ2kdg ,jPEΥ

{ ∣∣∣ûn Hkdg Υkdg ,j
v̂midj

∣∣∣2 }

+
G∑
j=1

Ku∑
i=1

bu∑
m=1

κ2kdg ,iuj
PEΥ

{ ∣∣∣ûn Hkdg Υkdg ,i
u
j
v̂miuj

∣∣∣2 }
(a)
= P

η

1 + η

(
G∑
j=1

Kd∑
i=1

bd∑
m=1

(j,i,m)6=(g,k,n)

κ2kdg ,j +

G∑
j=1

Ku∑
i=1

bu∑
m=1

κ2kdg ,iuj

)
.

(52)

where (a) follows by applying Lemma 3 from Appendix C.

Following a similar process, for the UL we obtain

EĤ{EH|Ĥ{Ĵkug }} = P
η

1 + η

(
G∑
j=1

Ku∑
i=1

bu∑
m=1

(j,i,m) 6=(g,k,n)

κ2g,iuj

+

G∑
j=1

j 6=g

Kd∑
i=1

bd∑
m=1

κ2g,j + Θ

Kd∑
i=1

bd∑
m=1

κ2g,g

)
. (53)

Applying (52) and (53) into (51) results in (11) proving the
first equation in Theorem 1.

Next, to obtain a more tractable equation for the rate loss
we consider a homogeneous pathloss assumption where κ = 1
∀k, g, i, j. Under this assumption the interference leakage for
DL and UL is given by (54) and (55) respectively.

EĤ{EH|Ĥ{J̆kdg}} = P
η

1 + η
(GKdbd − 1 +GKubu) . (54)

EĤ{EH|Ĥ{J̆kug }}=P
η

1+η
(GKubu−1+(G−1+Θ)Kdbd) .

(55)

Applying the results from (54) and (55) into (51), results in

∆R̆ FD

≤
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
1 +

P

σ2

η

1 + η
(GKdbd − 1 +GKubu)

)

+

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
1+

P

σ2

η

1+η
(GKubu−1+(G−1+Θ)Kdbd)

)
which using η = βρ−α, can be represented as

∆R̆ FD

≤ GKdbd

[
log2

(
1 + (GKdbd +GKubu − 1)

βρ1−α

1 + βρ−α

)]
+GKubu

[
log2

(
1+GKubu−1 +(G−1+Θ)Kdbd)

βρ1−α

1+βρ−α

)]
.

Finally, letting P → ∞ the asymptotic sum rate loss under
homogenous pathloss can be expressed as in (12), proving the
second and final equation of Theorem 1.

APPENDIX B
PROOF OF THEROEM 2

Starting with (13) and replacing R̂ FD DL and R̂ FD UL with
the corresponding expressions from (10), after some further
algebraic manipulations we obtain (56), where for the purpose
of this proof we use notation û and v̂ to distinguish the
imperfect CSI beamformers from the perfect CSI ones which
we will continue to represent as u and v. Next, discarding the
interference-plus-noise noise terms in A and B and applying
Jensen’s inequality to C and D results in (57). Additionally,
(57) can be expressed as (58). This follows, (a) since for
unitary beamformers, analogous to [40, Lemma 2] it can
be shown that |un Hkdg Hkdg ,g

vnkdg
|2 and |ûn Hkug Hg,kug

v̂nkug |
2 are

exponentially distributed with both mean and variance one,
and (b) by replacing EĤ{EH|Ĥ{Ĵkdg}} and EĤ{EH|Ĥ{Ĵkug }}
with (52) and (53) respectively, and considering the fact that
since for the DoF metric P → ∞, then pathloss effects have
no implications in the DoF domain.

D̂ FD = GKdbd +GKubu

− lim
P→∞

G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
P η

1+η (GKdbd−1+GKubu)+σ2
)

log2P

− lim
P→∞

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
P η

1+η(GKubu−1+(G−1+Θ)Kdbd)+σ2
)

log2P
(58)

Substituting η = βρ−α = βP−ασ2α in (58) and letting
P →∞, we obtain

D̂ FD =

{
G(Kdbd +Kubu) α ≥ 1
αG(Kdbd +Kubu) 0 ≤ α < 1.

(59)

Finally, using (59) and noting that D FD = G(Kdbd+Kubu)
from (14), we can compute the DoF loss as ∆D FD = D FD−
D̂ FD to obtain (15).

APPENDIX C
USEFUL LEMMAS

Lemma 1. [18] Consider A ∈ CM×N to be a Gaussian
matrix with entries that are i.i.d. with mean zero and variance
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D̂ FD

= lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
Ĵkdg +σ2+κ2kdg ,g

P
∣∣∣ûn Hkdg Hkdg ,g

v̂nkdg

∣∣∣2)}}
log2P︸ ︷︷ ︸

A

− lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
Ĵkdg +σ2

)}}
log2P︸ ︷︷ ︸

C

+ lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
Ĵkug +σ2+κ2g,kugP

∣∣∣ûn Hkug Hg,kug
v̂nkug

∣∣∣2)}}
log2P︸ ︷︷ ︸

B

− lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
Ĵkug +σ2

)}}
log2P︸ ︷︷ ︸

D
(56)

≥ lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
κ2kdg ,g

P
∣∣∣ûn Hkdg Hkdg ,g

v̂nkdg

∣∣∣2)}}
log2P

− lim
P→∞

G∑
g=1

Kd∑
k=1

bd∑
n=1

log2

(
EĤ

{
EH|Ĥ

{
Ĵkdg

}}
+ σ2

)
log2P

+ lim
P→∞

EĤ

{
EH|Ĥ

{
G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
κ2g,kugP

∣∣∣ûn Hkug Hg,kug
v̂nkug

∣∣∣2)}}
log2P

− lim
P→∞

G∑
g=1

Ku∑
k=1

bu∑
n=1

log2

(
EĤ

{
EH|Ĥ

{
Ĵkug

}}
+ σ2

)
log2P

(57)

ω, and b∈CN×1 to be a unit-norm vector independent of A,
then EA{AbbHAH}=ωI .

Lemma 2. EĤ,Υ{Ĥg,iuvmiuvmH
iu ΥH

g,iu} =

EĤ,Υ{Υg,iuvmiuvmH
iu ĤH

g,iu} = 0 ∀ m, i.

Proof. The precoders are computed based on Ĥ, therefore
from the CSI error definition in Section II-B, they are directly
independent of Υ.

Lemma 3. EΥ{|un Hkdg Υkdg ,j
vm
idj
|2} =

EΥ{|un Hkdg Υkdg ,i
u
j
vmiuj |

2} = η/(1 + η) ∀ k, g, n, i, j,m.

Proof. Let us first focus on EΥ{|un Hkdg Υkdg ,j
vm
idj
|2}. From the

CSI error model definition in Section II-B, Ĥ and Υ are
independent. Moreover, unkdg

and vm
idj

are computed based on

Ĥ, implying they are independent of Υ. Since Υ is Gaussian
and bi-unitarily invariant [41], un Hkdg

Υkdg ,j
vm
idj
∀ k, g, n, i,

j,m is a Gaussian random variable with mean zero and
variance η/(1 + η), thus EΥ{|un Hkdg Υkdg ,j

vm
idj
|2} = η/(1 +

η). Applying a similar argument based on unkdg
and vmiuj ,

EΥ{|un Hkdg Υkdg ,i
u
j
vmiuj |

2} = η/(1 + η).

Lemma 4. [42] For matrix A ∈ CM×M and vector b ∈
CM×1

(A− bbH)−1b =
A−1b

1− bHA−1b
.
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