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In this work we set out to evaluate the computational performance of several popular Monte Carlo sim-
ulation programs, namely Cassandra, DL Monte, Music, Raspa and Towhee, in modelling gas adsorption
in crystalline materials. We focus on the reference case of CO2 adsorption in IRMOF-1 at 208K.

To critically assess their performance, we first establish some criteria which allow us to make this
assessment on a consistent basis. Specifically, the total computational time required for a program to
complete a simulation of an adsorption point, consists of the time required for equilibration plus time
required to generate a specific number of uncorrelated samples of the property of interest.

Our analysis shows that across different programs there is a wide difference in the statistical value of
a single MC step, however their computational performance is quite comparable. We further explore the
use of energy grids and energy bias techniques, as well as the efficiency of the parallel execution of the
simulations. The test cases developed are made openly available as a resource for the community, and
can be used for validation and as a template for further studies.

Keywords: benchmarking; Grand Canonical Monte Carlo; adsorption; computational performance;
sampling

1. Introduction

Recent advances in synthesis of novel porous materials, such as Metal-Organic Frameworks (MOFs),
Zeolitic Imidazolate Frameworks (ZIFs) and polymers with intrinsic microporosity (PIMs) have a
profound impact on the way we now approach design of technologies and applications based on
these materials. Indeed, it is not possible to test the thousands of already discovered MOFs, ZIFs,
PIMs and related materials in the context of each potential application, while the best material
for a particular purpose may exist among those not yet synthesised, but hypothetically possible
structures within these classes. Hence the idea of computational screening of materials, the new
starting point of process design and optimisation, which aims to identify the best material or group
of materials for a particular application before the actual experimental effort is committed.

Broadly speaking, computational screening can be separated into two phases. The first phase
involves building a database of possible structures, both real and hypothetical. The modular nature
of these new materials allows one to guess the structure of not yet synthesised materials, using
a systematic variation and assembly of the building blocks through what can be best described
as molecular Lego approaches. In the second phase, computational methods are used to assess
the key characteristics of the materials within the database, based on the performance metrics
associated with a particular application. Although in principle this strategy can be employed in
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the context of any application, the tunable porosity and surface area of MOFs and ZIFs makes them
particularly interesting for adsorption applications, such as methane storage and carbon capture,
and this is what most of the recent screening studies have been focused on. Prominent examples
of this approach include studies from Snurr and co-workers [1], Smit and co-workers [2] and Sholl
and co-workers [3]. For comprehensive reviews in the field of molecular simulation of adsorption
processes in MOFs see Refs [4–8].

Application of these virtual screening strategies is associated with several challenges. Firstly,
the screening algorithms must be computationally efficient to be able to sieve through potentially
millions of structures under a number of conditions of interest; secondly, the accuracy of the
molecular simulation methods crucially depends on the availability of accurate forcefields. Although
several groups have made substantial contributions to the development of the parameters for several
important classes of materials [9–13], a fully comprehensive and transferrable forcefield for MOFs,
ZIFs and related materials remains elusive. Finally, the third challenge is associated with the
transition from the predictions of the virtual screening to the actual processes and applications [14,
15]. At this stage a number of additional factors, such as stability of the materials and cost, become
important. This article deals with the first challenge, related to the computational efficiency.

Unless one is interested in adsorption at very low pressures (in other words, in the low load-
ing, Henry’s law regime), calculation of loading in a material at a specific pressure requires a
grand canonical Monte Carlo (GCMC) simulation and its variants, such as the configurational bias
GCMC (CB-GCMC) for flexible molecules. A recent special issue of Molecular Simulation reviewed
several of the currently existing Monte Carlo programs, presented by their developers [16]. It is
quite clear that different academic groups adopted different philosophies, programming techniques,
algorithms, and target problems in the development of their computational tools. The special issue
also highlighted an important problem. In the field of molecular dynamics healthy competition
between several programs and the appetite of the biological community for ever longer trajectories
and larger systems led to systematic assessment of the computational efficiency of the programs,
their propensity to parallelism on different platforms [17] as well as the development of documented
case studies that can be used as benchmarks [18].

No such effort has been undertaken in the community using Monte Carlo programs in the
context of adsorption problems. Typically, the efficiency of the new programs is tested against the
existing in-house programs of a specific group, but the efficiency and the accuracy of the programs
from across different groups has not been systematically assessed or explored. We believe this is
an important undertaking in order to establish the best starting point and algorithms for the
development of the next generation of programs, to share best practices and methodologies, and to
establish references cases which can be used by the developers around the world to validate their
results.

This defines the remit of the current article. Our original idea was quite simple: to survey
the existing, freely available programs for GCMC simulations; explore how accurate they are in
reproducing reference data and how fast they are in a sense of the computational resources required
to get to the reference data within a certain accuracy. This proved to be a challenging task.

Firstly, it is important to explore how and why different programs can deviate in their predictions
and also the possible extent of these deviations. Consider the adsorption of carbon dioxide in a
MOF, such as IRMOF-1 [19] which will be our main case study as justified below. Of course for the
comparison of two programs we need to set all the parameters for the two runs to identical values.
This includes forcefield parameters, mixing rules, distances for the potential cut-off and rules for
handling the potential beyond the cut-off distance, number of trial Monte Carlo moves and the
distribution of the weights among the available moves, coordinates for the input crystal structure
and so on. This nevertheless leaves a substantial amount of technical details outside of what a user
of the program can control or may be aware of. This includes conventions on the precision of the
irrational numbers and constants, such as Boltzmann constant and π; internal procedures for the
control of a trial move acceptance ratio (which may or may not be automatically adjusted to be
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at the optimum value). Although two programs may use the Ewald summation to calculate the
interactions involving partial charges, the way parameters are set for this calculation may vary
between the programs (i.e. there is some automatic adjustment depending on the structure or
the program uses some fixed, pre-set values based on the experience with similar systems). The
actual access and control of these aspects of the Monte Carlo simulation naturally depends on
the specific program. From the end user point of view, the understanding of these parameters
and methodology space, of what can and cannot be controlled, heavily depends on high quality
documentation associated with the program and a decent collection of case studies illustrating the
role of different parameters.

Secondly, performance of a program depends on a substantial number of factors that make
consistent comparison quite difficult. This include using (or not) pre-calculated potential grids or
maps as oppose to the on-the-fly calculation of all interactions; using (or not) some additional
biasing techniques; using (or not) cell and neighbour lists; methods for calculation of electrostatic
interactions (Ewald and its variants vs cut-off based methods) and, of course, compilers, algorithms,
in other words aspects of the program that we actually want to assess.

Finally, one has to define some meaningful criteria for two simulations performed by two differ-
ent programs to converge to a result of the same statistical uncertainty. In general, this analysis
involves two steps. Firstly, it is important to establish the duration of the equilibration stage of
the simulations, within which there is a systematic drift of the running average of the property of
interest. Secondly, within the sampling stage, a sufficient number of uncorrelated samples of the
property of interest should be accumulated. Here, the main property of interest is the amount of
CO2 adsorbed.

The time required for a simulation to equilibrate and the rate at which uncorrelated data is
produced is in fact a function of the program, and this will be the basis of our assessment. There
is a substantial amount of research on convergence of the Monte Carlo methods [20]. However, the
idea to explore statistically independent samples of the system properties, surprisingly, is still not
a common practice in the adsorption simulation community.

1.1. Grand Canonical Monte Carlo Simulations

The problem of interest here is the adsorption of small molecules (CO2, methane, hydrogen) in
crystalline porous materials, prompted by the recent surge of interest in computational screening
approaches to carbon capture, methane storage and other applications. Within the scope of this
study both the adsorbate molecules and the porous material are treated as rigid structures. The
volume, V , and temperature, T , of the system are fixed, and the specified value of the chemical
potential, µ, establishes thermodynamic equilibrium between the system and the bulk reservoir,
serving as a source and sink of adsorbate molecules. From the statistical-mechanical point of view,
the system corresponds to the grand-canonical ensemble (µV T ), for which Metropolis Monte Carlo
method serves as a conventional simulation technique of choice.

Within this method, configurations of the system are generated via a set of standard trial moves;
translation, rotation (in case of rigid molecular species), insertion and deletion, with the following
acceptance probability applied to ensure the Boltzmann distribution of the generated states:

a) Translation: PACC(S → S′)

PACC(S → S′) = min {1, exp (−β∆U)} (1)

b) Rotation: PACC(S → S′)

PACC(S → S′) = min

{
1, exp (−β∆U)

sin θS
sin θS′

}
(2)
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c) Insertion: PACC(Na → Na + 1)

PACC(Na → Na + 1) = min

{
1,

βfV

Na + 1
exp (−β∆U)

}
(3)

d) Deletion: PACC(Na → Na − 1)

PACC(Na → Na − 1) = min

{
1,

Na

βfV
exp(−β∆U)

}
(4)

where U represents the potential energy, Na, and V are the number of molecules and volume
respectively, β is the reciprocal thermodynamic temperature, 1/kBT , with kB being the Boltzmann
constant; θ is an Euler angle of the rigid body rotation as defined in Ref [21], f is the fugacity of
the adsorbing species, which is related to the chemical potential as:

f =
qrot
βΛ3

exp (βµ) (5)

where qrot is the rotational partition function for a single rigid molecule, equal to 1 for a single
particle molecule, and Λ is the thermal de Broglie wavelength:

Λ =

(
βh2

2πm

) 1

2

(6)

where h is Planck’s constant and m is the molecule mass [21].

2. Methodology

2.1. Case study: CO2 adsorption in IRMOF-1

As has been already discussed in the introduction, computational screening and optimisation of
MOFs and ZIFs for carbon capture applications has been a rapidly developing area of research,
driven by both the new opportunities emerging in the material science and the societal importance
of the problem. For this reason, the adsorption of CO2 in IRMOF-1 was selected as the case study.
IRMOF-1 is one of the earliest reported MOFs, with a substantial amount of experimental and
simulation data accumulated on its structural and adsorptive properties [22–24].

The study of Walton et al. [24] provides one of the first examples of both experimental and
simulation studies of CO2 adsorption in a MOF (specifically, IRMOF-1). Six adsorption isotherms
were reported at 195K, 208K, 218K, 233K, 273K and 298K. Two isotherms at lower temperatures
(195K and 208K) feature a sharp transition of the adsorbed density associated with the capillary
condensation of CO2 within the pores of IRMOF-1. The authors argued that it was the Coulombic
term of the fluid-fluid interactions responsible for the shape of the isotherms.

Following this original study, CO2 adsorption in IRMOF-1 at 208K has been used as a tuto-
rial case study in Sarkisov’s group for incoming research students and staff. The location of the
transition, as well as the other features of the isotherm, proved to be sensitive to the parameters
of the model, cut-off distances, and interaction terms included. For example, in the original study
by Walton et al. [24] the Coulombic interactions between CO2 and IRMOF-1 were not consid-
ered, and yet, if included, they shift the isotherm toward lower pressure values. In fact, one of
the motivations for this study was the significant amount of effort and attention to detail required
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Table 1.: Summary of the GCMC programs studied.

Program Version License Citation Energy Grid Parallel capability

Cassandra 1.2 GPL v3 Shah and Maginn [26] × OpenMP
DL Monte 2.0.1 Custom Purton et al. [27] × MPI
Music 4.0 GPL v2 Gupta et al. [28] X ×
Raspa 2.0 GPL v3 Dubbeldam et al. [29] X ×
Towhee 7.1.0 GPL v2 Martin [30] × MPI

for different programs to generate exactly the same result. This highlighted the importance of the
consistency between the parameters and methods used, and prompted us to produce and document
this comparison for other available programs. Hence, in the case study we will focus specifically on
CO2 adsorption at 208K.

2.2. Programs under consideration

The special issue of the Molecular Simulation [16], in particular the review by Dubbeldam et al. [25]
and our own experience helped us to identify five commonly used, free programs for molecular
simulation of adsorption. All programs are distributed under a GNU GPL license, except DL Monte
which is distributed under a custom academic license which enables it to be used freely for academic
and other non-commercial work. The license for DL Monte does not allow distribution of the source
code to third parties. This may lead to obstacles in the future in reproducing scientific data which
requires consistency in both the simulation setups as well as in the program used to execute these
setups.

The programs studied and their relevent capabilities are summarised in Table 1, while for the
complete description of all capabilities within each program we refer the reader to the respective
original publications. It should be emphasised that at no point have we made any alterations to
the source code of the programs under study. We have downloaded each program as it is made
available to users and treated it strictly as a black box.

All simulations were ran on identical hardware, using single cores of Intel Xeon E5 2360 v3 nodes,
running Scientific Linux version 7.2. Each program was compiled using version 16.0 of the Intel
compilers with the compilation flags ‘-O3 -xcore-AVX2 -ip -ipo’. This combination of software
and hardware is typical of most modern high performance CPU based supercomputers.

2.2.1. Energy grids and energy-bias GCMC

The calculation of pairwise energies between atoms is by far the single most time consuming step
in the process of GCMC simulation. For a single fluid atom i the contribution to potential energy
can be expressed as:

U(ri) =
∑

j∈fluid
U(rij) +

∑
j∈solid

U(rij) (7)

where U represents the potential energy, r the position of an atom, i and j are indices of the
atoms, and the two summations are performed over fluid atoms and solid atoms respectively.
Since the porous material considered in this study is treated as a rigid structure, it is possible to
precalculate and store solid–fluid interactions. As described elsewhere [31], the simulation volume
can be divided into a regular grid and for each atom type in the adsorbate the corresponding
potential grid is calculated by placing the probe atom onto each grid point and calculating its
interaction with the solid framework. In case of Coulombic interactions the probe placed in the grid

5
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is a single +1 charge. Although it requires a set of additional ‘upfront’ calculations, this procedure
is needed only once for all pressure points and temperatures. The potential energy contribution of
a single fluid atom can then be given as:

U(ri) ≈
∑

j∈fluid
U(rij) + Ugrid(ri) (8)

where the summation is now only performed over other fluid atoms, while the solid–fluid interac-
tion is approximated by interpolating within the potential grid, alleviating the need for on-the-fly
calculations of the solid–fluid interactions. We will refer to this element of the simulation setup as
an energy grid, however it is also known as a potential map [28]. Of the programs examined in this
work, only Raspa and Music are capable of using this technique.

Using energy grids also opens a possibility for the improvement of sampling efficiency via so-
called energy-biasing techniques [32]. Here it is recognised that the solid structure of the framework
(zeolite or MOF) may occupy a substantial portion of the simulation cell and choosing a position
for the potential molecule insertion at random will likely lead to a large number of rejections (due to
the positions overlapping with the structure of the material). Furthermore, certain positions within
the available porous space will be preferred for the insertion (at an optimal distance from the atoms
of the framework), compared to other locations, such as in the center of a large cavity where the
interactions with the framework structure can be quite weak. Hence the idea of the energy-biasing
method: bias selection of the trial locations for the molecule insertion towards regions of favourable
interaction with the framework structure. For this the location of the insertion is selected from w
cubelets according to a weight assigned to each cubelet. Specifically, this weight is based on the
energy of interaction Ugrid(rz) of the probe atom placed in the center of cubelet z within the
framework:

ηz =
exp (−βUgrid (rz))∑

y=1,w exp (−βUgrid (ry))
(9)

where the sum in the denominator is over all grids. This method requires a single energy grid
for a probe atom of choice and naturally, if the program uses energy grids in general, it should also
invoke energy biasing as described above since it does not require any additional calculation. In
particular, this approach is used by Music [28].

2.2.2. Parallelism

Two of the programs investigated have the ability to accelerate simulations through using multiple
CPU cores. Cassandra uses OpenMP to distribute the calculation of contributions to the total
energy, both Lennard-Jones and electrostatics. For the Lennard-Jones contribution within the
summation of Equation 7, it is possible to assign cores to different j indices and calculate each
contribution simultaneously. For electrostatics an Ewald summation is used, and it is possible to
calculate different k-vectors independently across different cores. OpenMP is a shared memory
protocol, which limits the extent to which the problem can be split to the number of cores on
a single node, typically around 12–24. DL Monte uses a similar strategy, however it parallelises
calculation of the electrostatic interactions only and uses MPI, rather than OpenMP. Towhee also
uses MPI, but instead of parallel execution of a single simulation, it runs several parallel simulations
for each point on the adsorption isotherm in a so-called jobfarm or task-based parallelism fashion.
MPI is a distributed memory paradigm, and so there is no upper limit on the number of cores which
can be included, although there will be inevitably diminishing returns in terms of computational
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efficiency.

2.3. Forcefield and simulation setup details

For the selected system of CO2 in IRMOF-1 at 208K we consider three different forcefield setups.
In the first setup only Lennard-Jones interactions between CO2 molecules and between CO2 and
IRMOF-1 are considered. In the second setup, we further include Coulombic interactions between
the molecules of CO2. The final setup has all interaction terms considered, including the Coulombic
CO2–IRMOF-1 contribution. This three-level approach allows us to revisit the issue of the role of
the different terms in the adsorption behavior of CO2 in IRMOF-1 and individually benchmark
the computational cost associated with the different terms of the interaction energy.

Pressures of 5, 10, 20, 30, 40, 50, 60, and 70 kPa are modelled, with the Peng-Robinson equation
of state [33] used to calculate the fugacity and chemical potential of the fluid phase across all
programs. The solid framework consists of 2×2×2 replicas of the crystal unit cell for IRMOF-1,
resulting in 3392 atoms of the framework, and up to 1600 CO2 molecules at the highest loadings.
Here we use DREIDING [34] parameters for the atoms of IRMOF-1, charges for IRMOF-1 from
Yazaydın et al. [35] and TraPPE [36] parameters for CO2.

While the exact implementation of the MC moves is beyond our control, we have attempted
to make the simulation setups as consistent as possible across all programs. All analysis in this
work is based on the number of MC steps. Raspa instead defines simulation length as a number
of cycles, where a cycle is min(20, N) attempted MC moves, where N is the number of molecules
in the system. Throughout this work we have translated cycles to steps through knowing the
number of adsorbed molecules. Each MC step has an equal probability of performing an insertion,
deletion, rotation or translation move. All the parameters and the details of the simulation setups
are provided as case studies in the Supplementary Material.

3. Defining computational performance

For any meaningful comparison of the performance of different simulation programs, we first need
to precisely define how it is measured. In benchmarks of molecular dynamics (MD) simulations it
is typical to express performance as a measure of the number of time steps that a program can
complete in a given time [37]. Two different programs using the time step of the same size and
simulate the same number of time steps should in principle explore the same volume of the phase
space and arrive at the same statistical averages of the properties of interest. From this point of
view, the number of MD steps peformed per unit time can be seen as a direct measurement of data
generated per unit time.

The situation is different in Monte Carlo simulations, where each step represents an attempted
change in the system which may or may not be accepted. Equations 1 to 4 provide the foundation
for the most basic Metropolis algorithm, however different programs may have more advanced
acceptance criteria which aim to increase the sampling efficiency through various type of biasing.
Although, more complex biasing moves may come with an additional computational cost, the
resulting simulation scheme may be much more efficient in sampling the phase space.

Therefore depending on the exact implementation of MC moves within a program a fixed number
of steps may traverse a differing volume of the phase space. This means that a direct comparison of
the rate with which an MC program performs a fixed number of steps, similarly to MD simulations,
is an incomplete metric of performance. Instead, we must measure both the rate with which steps
are performed as well as the rate with which these steps traverse the phase space to arrive to the
expected statistical averages. As we will further argue later in this section, it is a product of these
two rates which quantifies the performance of the program.

Each GCMC simulation consists of two stages. In the first, so-called equilibration stage, the
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Figure 1.: Illustration of the procedure for the location of the equilibration stage in an MC sim-
ulation. Data taken from a simulation at 70 kPa, forcefield setup 1, performed using Music. The
blue line represents the rolling mean of the number of adsorbed molecules (over 20,000 steps) as
a function of the number of MC steps. Instantaneous values of the number of adsorbed molecules
are not shown for clarity. The vertical dotted line indicates the final half of the data set, the hor-
izontal black dashed line represents the value of the mean from this region while the red dashed
line underneath corresponds to two standard deviations below the mean. The red dot delineates
the equilibration and sampling stages, according to the procedure described in the text.

properties of the system drift from the initial conditions until they stabilise around some average
values. Once the system reached this point, we can commence the second, sampling stage, where
statistical averages of the properties of interest are accumuluated. To assess computational pefor-
mance of the program we need to measure how long it takes for the program to reach the sampling
stage and then apply our definition of the performance of a Monte Carlo simulation in terms of
data generated per MC step in the second stage of the simulation.

In the following three sections we will describe our methodology for measuring computational
performance, from defining the equilibration and sampling stages of a simulation, defining the rate
at which sampling occurs and the method by which we timed these processes. We have endeavoured
to make this analysis as automated as possible, both to make the results as impartial as possible and
to ensure that this analysis can be reproduced independently by other researchers. All preparation
of inputs and implementation of the analysis was achieved using a combination of the Python
packages datreant [38], matplotlib [39], MDAnalysis [40, 41], numpy [42] and pandas [43]. Examples
of the analysis performed are also made available in the Supplementary Material.

3.1. Equilibration stage

In this section we explain how we determine the duration of the equilibration stage in a GCMC
simulation. Figure 1 shows a typical evolution of the number of adsorbed molecules in the system
as a function of the number of MC steps. Initially the system is empty, and as the simulation
progresses the number of molecules rapidly increases to about 135 molecules. For the remaining
part of the run, the instantaneous values of the number of molecules in the system fluctuate around
some average value. The visual inspection of Figure 1 gives us a fairly good understanding of the
boundary between the equilibration and sampling stages. In fact, in the MC community such a
visual inspection is still commonly used to identify the number of steps required for equilibration.
However, we are interested in having an automated procedure to identify this boundary.

This procedure works as follows. We first run a very long simulation, typically around 250×106

MC steps. The results of the second half of the long simulation are used to estimate the mean and
standard deviation of the number of molecules at this pressure. At this stage it is important to

8



July 3, 2017 Molecular Simulation main

emphasise that calculating the standard deviation in this fashion significantly underestimates the
true value, as there will be correlation between data points, as we will discuss later in the article.
However, for the purposes of the algorithm that simply intends to locate the equilibration stage
this crude approach suffices. As an additional test to ensure that the sampling stage is reached, a
straight line of best fit is constucted through the data in the second half of the simulation and the
difference between the starting point of this line and final point of this line must be less than 5%
of the mean value.

We then consider a rolling mean average of the number of molecules in the system using a
window width of 20,000 MC steps. Again, this number may seem rather arbitrary and the statistical
quality of this mean for different programs will be different, but extensive testing of the approach
on a number of systems shows that it works well in practice. We then move this rolling average
backwards from the halfway point until it falls below two standard deviations from the estimated
mean (Figure 1). According to our protocol, this point delineates equilibrium and sampling stages.
All MC steps before this point belong to the equilibration stage, while all subsequent points are
considered to be within the sampling stage.

This process gives us, for each simulation condition in each program, a measure of the number
of MC steps required to reach the sampling stage. We acknowlege that the criteria for defining the
two stages are fairly arbitrary and alternative algorithms could have been used [44]. However it
provided consistent and sensible results across the data we examined. Moreover it could be used
in a fully automised fashion, removing any human interaction in interpreting the results.

3.2. Sampling stage

As has been discussed, comparison of the computational performance of GCMC programs cannot
be based on a fixed number of MC steps, since it will produce averages of different statistical quality
and uncertainty. Instead we base this analysis on the number of steps required for a program to
generate a certain number of independent, uncorrelated configurations.

For this we consider the normalised autocorrelation function (ACF) of the number of molecules
adsorbed, C(n), shown in Equation 10.

C(n) =
〈Na(n0)Na(n0 + n)〉 − 〈Na〉2

〈N2
a 〉 − 〈Na〉2

(10)

where angular brackets denote an average over the ensemble, n is the number of the MC steps
and n0 denotes the starting step.

The ACF can then be fitted using a least squares regression to an exponential decay with a
constant τ , Equation 11. As the ACF is inherently noisy for low values of C(n), we identify the
first point at which it falls below a value of 0.1 and only the initial portion of the function is used
for fitting. An example of this procedure is illustrated in Figure 2.

C(n) ≈ exp
(
−n
τ

)
(11)

This then allows us to define the so-called statistical inefficiency, g [45, 46]:

g = 1 + 2τ (12)

The value g is a measure of the number of MC steps required to move to a statistically novel
point in the simulation, with any measurement inbetween being correlated and therefore yielding
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Figure 2.: Illustration of the fitting of the ACF to an exponential decay, using the same data
shown in Figure 1. The blue section indicates the portion used for the fitting, while the red section
indicates the discarded portion of the function. The truncation point is shown as black dashed
lines. Black dotted line indicates the function estimated by the fitting procedure.
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Figure 3.: Example of the BSE approach applied to the same data shown in Figures 1 and 2.

no new information. If each step in the data was completely decorrelated from the previous step, τ
would be zero yielding g = 1, ie that each step is statistically novel. With the increasing correlation
between subsequent data points, τ will also increase, meaning that one must look further ahead in
the data for a novel, uncorrelated sample.

Another approach to estimating autocorrelation in data is the block standard error (BSE)
method [47, 48]. In this approach the simulation trajectory of n MC steps is split into M blocks
of m steps, and the standard deviation of the block averages is calculated (σm). This is repeated
many times to measure BSE (B) as a function of m.

B(m) =
σm√
M

(13)

For small values of m the standard error will be underestimated due to significant correlatation
between the blocks. As m is increased to larger values than the memory in the data series (τ), the
estimate of B will converge to the true value of the standard error. An example of this function is
shown in Figure 3.

Through comparing Figures 2 and 3, which operate on the same data, we can see that both
approaches yield approximately the same value for g of around 1 × 106. However, we chose not
to use the BSE approach in our analysis for the following reasons. In principle, for the BSE as
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a function of m, gradual increase in B is to be followed by a plateau region. At higher values
of m a significant scattering in B is observed due to the small number of blocks available. This
makes it difficult, especially in a fully automated procedure, to accurately locate the start of the
plateau region. We also observe that in the systems under consideration much longer simulations are
required to arrive at the same estimate of τ compared to the direct calculation of the ACF. Finally,
one of the original arguments advocating the use of BSE was the high computational cost associated
with directly calculating the ACF [47]. However, through the Wiener–Khinchin theorem [49] it is
possible to calculate this function in a much faster way using the Fourier transformations and on
a modern desktop workstation it is now possible to do this in a negligible amount of time. Overall,
we find the approach based on the ACF analysis easy to implement in a fully atomatic fashion,
and this convenience provides the final decisive arguement in its favour.

3.3. Standard simulation length

Building on the ideas presented in the previous sections, we can now define standard simulation
length of a program:

n0 = neq + 20g (14)

where neq is the number of MC steps required for equilibration. Both neq and g depend on the
GCMC program and conditions of the system. We arbitrarily adopt 20 as a factor for how many
statistically independent samples an MC program should generate [48]. Other values could be used
to achieve a different level of certainty in the result, however this would affect the timing of all
programs equally. This definition of n0 makes it possible to measure how long it takes for an MC
program to reach a result with a consistent statistical quality between the programs, which in turn
allows us to compare MC programs on the same basis.

For the reasons advocated throughout the article, we deliberately avoid any discussion or pre-
senting any results on the acceptance ratio of the Monte Carlo moves. This property is specific for
each program implementation and bears no information on the actual sampling efficiency of the
simulation [50].

3.4. Benchmarking of the programs

With the properties introduced in the previous sections, we can now describe the rules and formulae
for the benchmarking tests. In general we split benchmarking into measuring the time required for
the program to complete the equilibration stage and the time required to generate a certain number
(20 as a convention here) of uncorrelated samples of the properties of interest. The time required
for equilibration is the CPU time, teq, needed by a program to perform neq steps, as defined in the
previous sections. Furthermore, within the sampling stage we can define the average CPU time per
MC step:

t̄step =
tntotal

− teq
ntotal − neq

(15)

In this case, the time required to generate a single uncorrelated sample of the property of interest
is:

tg = g × t̄step (16)

11
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And therefore the total CPU time associated to perform a standard length simulation for a given
point on the adsorption isotherm is:

tn0 = teq + 20tg (17)

All these benchmarks depend on the conditions within the system, and particularly on the
adsorbed density. For these reasons the benchmarking tests are performed individually for each
point on the adsorption isotherm for each program for each setup of the forcefields, and repeated
three times to exclude any possibility of transient abnormal performance variation of the CPU.
It is also important to note that while for the estimation of g and other aspects of the protocol,
the data was saved very frequently, in the benchmarking tests the data was saved at much lower
frequencies (but consistent among the programs) to avoid heavy computational overheads of the
I/O operations.

Two programs also have the option of using energy grids. Additional benchmarking tests were
performed for these two programs. In these tests we do not account for the time required to generate
the grids, as in a long term where they are reused many times for many simulations, this additional
penalty is not important anymore.

4. Results

4.1. Adsorption isotherms

Table 2 provides a complete summary of adsorption data for all programs for each pressure point
and forcefield setup considered. Given a small number of samples, all five programs show a high
degree of consistency with each other across all conditions. This a very reassuring result as it
provides an independent validation for the existing programs and builds confidence in their appli-
cation. This also provides a valuable set of reference data for further development and validation
of new programs.

Adsorption isotherms for different forcefield setups are plotted in Figure 4 along with the original
experimental result from Walton et al. [24] for completeness. Here we use the results from Raspa, as
on the scale of the graph the isotherms for all five programs would be essentially indistinguishable.
The most complete forcefield (setup 3) includes both fluid-fluid and solid-fluid electrostatic inter-
action terms, in addition to the ubiquitous default Lennard-Jones interaction between all species.
This isotherm features a sharp step in the adsorbed amount, occurring between 10 and 20 kPa,
which corresponds to the capillary condensation of CO2 in the pores. In the absence of the solid-
fluid electrostatic term (setup 2) the isotherm maintains its shape but is shifted by 10 kPa to the
right of the graph. The experimental isotherm also features a sharp transition, but compared to
the result from the forcefield setup 2 it is further shifted to higher pressures. The fluid-fluid electro-
static interactions are indeed crucial for the capillary condensation step and in the absence of this
term (setup 1), the resulting adsorption isotherm exhibits gradual increase in the adsorbed amount
without any transitions. From the confined phase behaviour perspective, this is likely because the
quasi-CO2 fluid (CO2 molecules without electrostatic interactions) is either very close or above the
confined critical point at 208K.

4.2. Analysis of neq and g

The top two panels of Figure 5 show the behaviour of neq and g for different programs as a
function of pressure across all forcefield setups. For denser systems at higher pressures it takes
a larger number of steps to equilibrate and also to accumulate sufficient number of uncorrelated
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Table 2.: Adsorption isotherm data for each program, reported as molecules per unit cell together
with the standard error (σ/

√
n, where σ is the standard deviation and n the sample size). All results

were generated using data from a standard length simulation (n0).

Setup 1 (Only LJ interactions)
Pressure Cassandra DL Monte Music Raspa Towhee
(kPa) with grid with grid

5 3.96 ± 0.16 4.49 ± 0.18 4.18 ± 0.11 4.10 ± 0.18 3.84 ± 0.14 3.77 ± 0.15 4.21 ± 0.20
10 8.44 ± 0.23 9.04 ± 0.32 8.63 ± 0.29 8.37 ± 0.25 8.43 ± 0.16 8.44 ± 0.16 9.06 ± 0.28
20 18.49 ± 0.36 19.06 ± 0.55 17.93 ± 0.37 18.82 ± 0.33 18.51 ± 0.45 18.54 ± 0.46 19.35 ± 0.32
30 31.84 ± 0.60 31.85 ± 0.61 30.54 ± 0.65 31.09 ± 0.53 30.80 ± 0.55 30.82 ± 0.55 31.09 ± 0.49
40 46.74 ± 0.82 47.21 ± 0.89 49.10 ± 0.76 49.09 ± 0.61 48.88 ± 0.80 49.28 ± 0.84 48.87 ± 0.62
50 81.84 ± 1.05 80.76 ± 1.30 78.41 ± 1.05 80.60 ± 1.18 81.51 ± 1.17 82.46 ± 1.08 86.76 ± 1.15
60 115.54 ± 0.94 118.33 ± 0.83 115.42 ± 1.21 117.91 ± 1.30 116.56 ± 0.86 117.19 ± 0.77 120.41 ± 0.94
70 132.96 ± 0.78 135.88 ± 0.88 132.38 ± 0.71 133.92 ± 0.62 133.03 ± 0.70 133.26 ± 0.65 135.81 ± 0.75

Setup 2 (As Setup 1 with fluid–fluid electrostatics)
Pressure Cassandra DL Monte Music Raspa Towhee
(kPa) with grid with grid

5 4.47 ± 0.12 4.24 ± 0.18 4.26 ± 0.17 4.30 ± 0.11 4.29 ± 0.14 4.26 ± 0.14 4.47 ± 0.23
10 9.86 ± 0.26 9.45 ± 0.24 8.86 ± 0.26 9.12 ± 0.28 8.64 ± 0.23 8.66 ± 0.23 9.65 ± 0.33
20 26.77 ± 0.64 27.32 ± 0.70 25.33 ± 0.58 25.60 ± 0.57 26.48 ± 0.63 26.74 ± 0.65 26.47 ± 0.67
30 179.99 ± 0.40 178.37 ± 0.32 180.93 ± 0.44 178.74 ± 0.31 178.82 ± 0.47 179.15 ± 0.49 179.88 ± 0.52
40 185.79 ± 0.36 186.86 ± 0.32 185.28 ± 0.30 185.91 ± 0.25 185.35 ± 0.44 185.60 ± 0.40 185.98 ± 0.33
50 189.43 ± 0.27 190.19 ± 0.48 189.24 ± 0.19 190.90 ± 0.33 189.56 ± 0.36 189.69 ± 0.34 189.74 ± 0.36
60 192.29 ± 0.37 192.84 ± 0.31 192.89 ± 0.40 193.25 ± 0.35 192.28 ± 0.37 192.40 ± 0.35 192.51 ± 0.25
70 194.34 ± 0.37 194.62 ± 0.40 194.66 ± 0.34 195.03 ± 0.28 194.78 ± 0.38 194.76 ± 0.39 195.29 ± 0.32

Setup 3 (As Setup 2 with solid–fluid electrostatics)
Pressure Cassandra DL Monte Music Raspa Towhee
(kPa) with grid with grid

5 7.69 ± 0.18 7.21 ± 0.23 7.81 ± 0.16 8.07 ± 0.20 7.33 ± 0.27 7.37 ± 0.26 8.11 ± 0.22
10 16.84 ± 0.42 15.91 ± 0.28 15.05 ± 0.27 16.71 ± 0.29 16.79 ± 0.30 16.74 ± 0.31 16.72 ± 0.36
20 167.04 ± 0.70 167.12 ± 0.65 166.89 ± 0.63 167.54 ± 0.82 168.86 ± 0.69 168.98 ± 0.66 168.82 ± 0.71
30 182.73 ± 0.39 183.19 ± 0.31 183.11 ± 0.46 183.74 ± 0.46 182.96 ± 0.41 183.14 ± 0.40 185.19 ± 0.47
40 189.76 ± 0.43 189.98 ± 0.43 189.13 ± 0.30 189.43 ± 0.36 189.41 ± 0.30 189.67 ± 0.28 189.44 ± 0.52
50 193.21 ± 0.28 193.59 ± 0.30 193.11 ± 0.41 193.51 ± 0.29 193.84 ± 0.35 194.10 ± 0.28 193.04 ± 0.28
60 195.72 ± 0.30 196.59 ± 0.29 196.43 ± 0.38 196.25 ± 0.33 196.33 ± 0.39 196.52 ± 0.39 195.62 ± 0.35
70 198.53 ± 0.35 199.86 ± 0.42 198.37 ± 0.36 198.12 ± 0.30 198.71 ± 0.42 198.80 ± 0.41 198.70 ± 0.32
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Figure 4.: Adsorption isotherms for CO2 in IRMOF-1 at 208 K, simulation data taken from the
Raspa results. Solid black: experimental isotherm [24], Dash dotted red: Forcefield setup 1, Dashed
blue: Forcefield setup 2 and Dotted green: Forcefield setup 3.
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Figure 5.: Comparison of the number of steps to reach equilibrium (neq), statistical inefficiency (g)
and standard simulation length (n0) for all programs. Lower values indicate fewer steps required to
equilibrate and sample. Circles: Setup 1; Diamonds: Setup 2; Triangles: Setup 3. Unfilled markers
indicate the use of energy biasing through energy grids. Results for two pressures are shown, with
the full results given in the Supplementary Material.

samples. This is not surprising, as in this regime acceptance ratios for all types of MC moves tend
to drop and the system remains in the same configuration for longer periods of sampling. It is also
clear from Figure 5 that the addition of electrostatics in general have a significant impact on the
sampling metrics of the programs. It is interesting to note that for Cassandra and DL Monte at
high pressure the order in the trend for g values of setups 2 and 3 is reversed, however the values
are very close to each other (the difference is comparable to the size of the symbol). Given some
uncertainty of the ACF fitting procedure (Equation 11), we believe this is most likely the source
of this effect.

The standard simulation length, n0, is summarised for all programs in the bottom panel of
Figure 5. From this Figure it becomes apparent that Raspa and Towhee both require relatively
fewer MC steps to produce the required amount of data. Both from Figure 5 and the analysis
of statistical inefficiency g, it is clear that different programs require different number of steps to
produce the comparable amount of useful data. This highlights the importance of performing a
proper statistical analysis of the data, based for example on autocorrelation functions as is done
here, to define the characteristic correlations within a simulation. From this perspective, reporting
simulation length in terms of the total number of MC steps is ineffective and misleading, as this is
not a transferable metric. Instead, a much better metric is the multiple of the statistical inefficiency
(g) of the property of interest, for example 20g as in this study.

We also note a clear relationship across all programs between neq and g especially at higher
pressures. For example in Figure 5 the programs with equilibration length of around 10 M MC
steps also have a similar g length, while the programs with shorter equilibration lengths also perform
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Figure 6.: Top panel: time required to reach equilibrium, teq. Middle panel: time required to perform
1 M sampling steps. Bottom panel: time required to produce g sampling steps. Legend as in Figure 5,
unfilled markers indicate the use of energy grids. Results for two pressures are shown, with the full
results given in the Supplementary Material.

a statistical decorrelation faster. This prompts us to speculate that the sampling rate in MC steps
of a program can be roughly assessed from neq alone.

4.3. Program timing

Now that we have defined the required number of MC steps to perform equivalent simulations, we
can proceed to measuring the time this will take to calculate, this is shown in Figure 6. Immediately
apparent is that simulations at higher loadings take longer to complete. This is not surprising as
at higher loadings larger number of intermolecular interactions must be calculated with each MC
move.

The time to produce sampling MC steps is shown in Figure 6 and from this we see again a large
difference between programs to perform a seemingly similar task. This time however the order of
programs is reversed compared to Figure 5, which clearly indicates that whilst programs such as
Raspa and Towhee are able to produce more data with a fixed number of steps, it also takes longer to
calculate such steps. Conversely we can see that the two programs with the longest decorrelation
times, Music and DL Monte, are also the two fastest programs to complete a fixed number of
sampling steps. Clearly there is a difference between the various programs in the definition of what
constitutes a single MC step, as without any biasing neq should be identical between programs as
it relies on random insertions. This again underlines the importance of the steps to decorrelation
(g) as previously measured, by naively benchmarking the time to perform a fixed number of MC
steps we might arrive at the wrong conclusion.
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Figure 7.: The total time required to run an entire isotherm of eight pressure points using standard
simulation length. Legend as in Figure 5, with unfilled markers showing the results for simulations
using energy grids.

5. Final benchmarks

The total time required to obtain a complete adsorption isotherm is presented in Figure 7. We
note that simulations take much longer than what would typically be expected from our expe-
rience, particularly for setup 3 that includes a complete set of electrostatic interactions. Overall
the combination of sampling rate and CPU time per step has brought the programs remarkably
close together compared to the differences seen in Figures 5 and 6. For example the relatively high
computational cost per step (t̄step) in Raspa has been balanced by the lower value of g which gives
each MC step performed a higher statistical value. Between the programs, DL Monte, Music and
Raspa (when using an energy grid) all have comparable performance, with Cassandra and Towhee
performing slower.

5.1. Effect of using energy grids on the computational performance

Based on the results shown in Figure 7 it is clear that the use of energy grids provides a signifi-
cant performance boost in all cases. Calculating the required energy grids, two for Lennard-Jones
interactions and one for the electrostatic interactions, takes 3.6 and 1.6 hours in Raspa and Music
respectively, which is an insignificant amount of time when compared to the total time of even a
single simulation.

Overall Raspa simulations run approximately 1.6 times faster when using energy grids across all
forcefield setups. Music on the other hand is about 4.0, 2.0 and 2.4 times faster when using energy
grids in forcefield setups 1, 2 and 3 respectively.

6. Computational performance from parallel execution

As has previously been described, two of the programs investigated can use multiple cores for
parallel execution. Whilst using additional cores will almost always decrease the time needed to
perform a simulation, it is important to consider how efficiently additional computational resources
are being used. The strong scaling efficiency, η, of a program running in parallel is defined as [51]:

16



July 3, 2017 Molecular Simulation main

η (c) =
ideal run time

actual run time

=
trun(1)/c

trun(c)

(18)

where c is the number of cores and trun the runtime of a program as a function of the number
of computer cores used.

As an alternative to running a single simulation in parallel, we can consider running different
portions of the total number of MC steps of a long run using different instances of a program.
In the context of adsorption simulation using GCMC methods, we also need to be aware that in
the system which is always initiated from an empty unit cell, a certain portion of a single run
will be spent on the equilibration stage. For example a simulation of 106 equilibration steps and
107 sampling steps could be split into two simulations, consisting of 106 equilibration steps and
5×106 sampling steps each. As long as the smaller parallel runs and one long run produce the same
number of uncorrelated samples, these two modes of execution are equivalent and this approach
is a common practice in the MD community [52]. In the previous example of splitting a long run
into two runs, this doubles the number of steps and computational effort spent on equilibration.

This is implemented in Towhee, however this can also be done outside of the program by simply
setting up and running multiple simulations as independent tasks. Mathematically, assuming trun
is simply proportional to the number of MC steps, the efficiency of these parallel tasks can be
estimated as

η(c) =
trun(1)/c

trun(c)

≈
(neq + nsamp)/c

neq + nsamp/c
=

1 + nsamp

neq

c+ nsamp

neq

(19)

where neq refers to the number of equilibration steps, and nsamp the number of sampling steps.
The efficiency at a given number of cores can be seen to rely on the ratio of sampling steps to
equilibration steps, with relatively longer equilibration periods leading to less efficient usage of
parallel cores. Splitting single simulations into separate tasks has previously been dismissed due
to the long equilibration times [27]. Our previous results however show that typically neq and g
are of the same order of magnitude, therefore long equilibration stages simply indicate that long
sampling stages are also required. In these circumstances, task based parallelism is a valid route to
accelerate simulations. Based on our previously discussed observations and our defined standard
simulation length (n0), we have used a nsamp/neq ratio of 20 to estimate the efficiency of task based
parallelism.

From Figure 8 it can be seen that both Cassandra and DL Monte do not efficiently use parallel
cores, and these results are in agreement with the previously published results for DL Monte [27].
Under these circumstances, for the simulation of a single pressure point, computational resources
would be much better used by running many serial tasks and collating the results at the end of
the simulations. This is shown in the results for Towhee, where the efficiency is much greater than
the other two programs.

In the case of DL Monte, where only the electrostatic interactions are parallelised, the poor
efficiency can be explained by considering Amdahl’s Law [53] which states that the limit of speedup
(s) for a program is given as:
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Figure 8.: Comparison of the efficiency of parallel computation in different programs, measured for
forcefield Setup 3 at 70 kPa. Task based efficiency (as defined in Equation 19) is shown in solid
black for a nsamp/neq ratio of 20. Cassandra: red dashed line; DL Monte: blue dotted line; Towhee:
orange dash-dotted line.

s(c) =
trun(1)

trun(c)

=
p+ (1− p)
p/c + (1− p)

lim
c→∞

s(c) =
1

1− p

(20)

where p represents the fraction of the program’s runtime which can be parallelised. If for instance
the electrostatics took up 75% of the programs run time [27], this would limit the potential speed
up to only 4, in the limit of infinite cores.

In the case of Cassandra, which parallelises all force calculations with OpenMP, the same ar-
gument cannot be made. Previous attempts at a similar parallelisation scheme in MD simulations
have shown similar lacklustre results for systems of a similar size, where it was observed that
efficiency depended heavily on system size [54].

7. Conclusion

The fact that all the programs tested produced the same results for all conditions with a high
level of consistency may seem trivial, yet we believe it is very important, as such a comprehensive
comparison has not been attempted earlier and it is not done routinely by the MC program users.
Furthermore, this study provides a set of well documented program setups and case studies, that
can be used for further development and validation. Finally, it creates certain confidence in the
programs currently employed by the MC community.

The benchmarking process did reveal some differences in the overall performance of different
programs, however this variation was relatively small when considering the broader picture of
making a choice of which program to use. Whilst in this work each program performed an identical
simulation, they also each have a multitude of different other capabilities and compatibility with
other programs within the wider simulation ecosystem. Also not assessed here was the entirely
subjective topic of how easy a given program is to correctly set up and use. Equally as research
projects get more mature, it is important to consider how difficult a program will be to modify to
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allow it to meet future, more specific needs. When selecting a MC program to use all these various
factors must also be taken into consideration alongside considering the computational performance.

Whilst it is common to report the lengths of MC simulations as a number of steps, we have shown
that this metric is not transferable between different programs, and therefore between research
groups who have built an intuition for a given program. Instead, we argue it would be much more
useful and important for reproducibility of the results to report simulation length as a multiple of
g, along with the value of g for each specific simulation, which reflects the quantity of sampling that
has been performed. When analysing a MC simulation, calculating the length of the simulation in
terms of g allows us to define if enough data has been gathered and for the level of confidence in
the result to be quantified. We have found that for systems of this type that g can be estimated as
approximately the same order of magnitude as neq, and this can be used to estimate the required
length of additional simulation required once a simulation has reached equilibrium.

The varying relative value in data of an MC step simply reflects the fact that there are different
strategies to implement an MC move. From a program development point of view it would be
very misleading to concentrate on the required walltime for a single move in order to optimise
the performance of a program. Instead, the larger picture of the entire sampling process must
be considered. The choice of which MC moves to use and the proportion of each move to use
remains open for investigation, however using the metrics developed in this work it should now be
possible to accurately quantify the effects these moves make. This will become especially true when
considering more complicated MC moves, such as configuration bias moves for flexible molecules.

Our further recommendations can be summarised as follows. Energy grids must definitely be
used when possible as they clearly provide a quick and efficient way to substantially increase
computational performance of the MC programs in the context of adsorption problems. The scope
for increasing performance through parallelism within a program seems limited, due mostly to the
inherently small system sizes, and measured performances of existing implementations show poor
efficiency. In fact, we argue that in the context of adsorption problems and computational screening
of materials, parallel execution of multiple instances of the process offers much better efficiency
and overall speed up for a fixed amount of computational resources.
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