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Efficient Delegated Private Set Intersection on
Outsourced Private Datasets

Aydin Abadi, Sotirios Terzis, Roberto Metere, Changyu Dong

Abstract—Private set intersection (PSI) is an essential cryptographic protocol that has many real world applications. As cloud

computing power and popularity have been swiftly growing, it is now desirable to leverage the cloud to store private datasets and

delegate PSI computation to it. Although a set of efficient PSI protocols have been designed, none support outsourcing of the datasets

and the computation. In this paper, we propose two protocols for delegated PSI computation on outsourced private datasets. Our

protocols have a unique combination of properties that make them particularly appealing for a cloud computing setting. Our first

protocol, O-PSI, satisfies these properties by using additive homomorphic encryption and point-value polynomial representation of a

set. Our second protocol, EO-PSI, is mainly based on a hash table and point-value polynomial representation and it does not require

public key encryption; meanwhile, it retains all the desirable properties and is much more efficient than the first one. We also provide a

formal security analysis of the two protocols in the semi-honest model and we analyze their performance utilizing prototype

implementations we have developed. Our performance analysis shows that EO-PSI scales well and is also more efficient than similar

state-of-the-art protocols for large set sizes.

Index Terms—Private Set Intersection, Secure Computation, Cloud Computing

✦

1 INTRODUCTION

P RIVATE set intersection (PSI) is a cryptographic protocol that

allows parties to compute the intersection of their datasets

without revealing anything about the datasets beyond the inter-

section [2]. PSI has a range of real-world applications including

privacy-preserving data mining [3], like scenarios where mutu-

ally distrusting companies can find out common customers for

joint offers without sharing their whole customer data, or ones

where social welfare organizations can identify common benefits

recipients while protecting the privacy of their beneficiaries; or

even homeland security [4], allowing security agencies to find

airline passengers in no-fly lists without having access to the

whole passenger list or revealing their no-fly list. Also, PSI can be

utilized as a sub-routine in larger privacy-preserving computations

such as relationship path discovery in social networks [5], botnet

detection [6], etc. Due to the importance of PSI, researchers have

designed numerous PSI protocols (see section 2). Traditionally,

PSI protocols are designed for scenarios in which data owners

interact directly with each other using locally stored datasets and

jointly compute the set intersection. However, the emergence of

cloud computing calls for a change.

Cloud computing offers flexible and cost effective storage

and computation resources to clients and has been attracting

the attention of individuals and businesses as a vital enabling

technology [7]. A report by the IBM Institute for Business Value in

O-PSI was introduced in a paper that appears in the Proceedings of the 30th

International Conference on ICT Systems Security and Privacy Protections

(SEC 2015), pp. 3 – 17 [1].
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2012 1 found that cloud computing is driving business innovation

along a number of dimensions, with its ability to enable increased

collaboration with external partners and its cost advantages as the

most important objectives for business adoption. Organizations

have been keen to adopt cloud computing in order to reap the

benefits it promises. A 2016 RightScale report 2 found that 95% of

organizations surveyed are running applications or experimenting

with the cloud. In general, “surveys show that more than half of

all enterprises consider the cloud to be an essential part of their

business models and are willing to devote 50% or more of their

IT budget to the cloud” [8], while IDC says that two-thirds of

enterprise IT spending will be cloud based by 2020 3.

Interestingly public cloud adoption rates range between 85%

to 90% depending on the survey [8], while according to the

RightScale report, use of public clouds has increased with 17% of

enterprises surveyed now having more than 1,000 VMs, up from

13% in 2015. At the same time, Forrester analyst Dave Bartoletti

has found that enterprises are now looking at cloud as a viable

place to run core business applications, with several companies

having become more comfortable hosting critical software in the

public cloud, a trend he expects to continue with a heavier reliance

on public cloud providers 4.

Although certain benefits have proved harder to realize, like

reduction of IT costs and IT complexity, improvement of IT team

efficiency, and to a lesser extent increase in business agility [9],

enterprises report as positive outcomes of cloud adoption amongst

others enhancement of the general business model and increased

1. http://www-935.ibm.com/services/us/gbs/thoughtleadership/
ibv-power-of-cloud.html

2. http://assets.rightscale.com/uploads/pdfs/
RightScale-2016-State-of-the-Cloud-Report.pdf

3. http://talkincloud.com/cloud-computing-research/
doyle-report-idc-says-two-thirds-enterprise-it-spending-will-be-cloud-based

4. http://www.cio.com/article/3137946/cloud-computing/
6-trends-that-will-shape-cloud-computing-in-2017.html
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productivity from application users and business user groups [8].

Moreover, in the RightScale report participants identified faster

access to infrastructure (62%), greater scalability (58%), higher

availability (52%), and faster time to market (52%) as significant

cloud benefits that grow with cloud adoption maturity. These

advantages mean that according to the report, participants’ cloud

initiatives involve moving more workloads to the cloud (57%

and 35% for enterprises and small and medium-size businesses

respectively), expanding public cloud use (46% and 38%), and

implementing a cloud first strategy (44% and 29%). In addition

to this, public cloud growth is expected to outpace private cloud

growth 5, with reports showing strong growth in public cloud

workloads while on-premise ones fall, with both business-critical

and non-critical workloads in the public cloud doubling over the

next two years.

In a context where organizations embrace public clouds for

core and mission-critical functions and reap clear business benefits

beyond cost reductions from the exploitation not only of their stor-

age but also their computation capabilities, the interest in taking

advantage of these capabilities securely has been growing (e.g.

[10], [11], [12], [13], [14]). Several research efforts by industry

and academia have been directed towards delegated PSI protocols

to realize organizational objectives [15], [16], [17], [18], [19],

[20]. However, designing a PSI protocol that allows delegation of

storage and computation to the cloud is not an easy task. There are

several significant differences between this delegated PSI scenario

and the traditional PSI case.

The first major difference is in the security model. In tradi-

tional PSI, two parties run an interactive protocol. Although they

do not trust each other, they fully trust their local computational

resources e.g. data storage, hardware and software. In delegated

PSI, data storage and computation are now outsourced to a cloud

server. The server is run and managed by an external party whose

interests may not fully align with those of its clients and it may

violate, intentionally or accidentally, data privacy agreements. So,

it is difficult for the clients to fully trust the cloud with their

sensitive data. Ideally, the untrusted cloud server should be able to

carry out computation over outsourced datasets that belong to the

clients, but should not learn anything about the stored datasets or

the computation result. Designing a protocol for this model is more

challenging because security has to be guaranteed not only against

the other parties, as in the original PSI model, but also against

the additional untrusted cloud server. As we show in section 2,

quite a few protocols designed for the delegated PSI scenario

to date actually have security problems and leak information to

the server. Also, PSI computation involves datasets belonging to

different parties. In traditional PSI, each party has full control over

their own datasets. In delegated PSI, datasets are outsourced, and

clients have to delegate their control to the cloud server. So, it is

necessary to have an enforceable authorization mechanism such

that the computation can only take place if all data owners agree.

The second major difference is in the computation model. At

the center of cloud computing is the concept of outsourcing, as a

result of which several new requirements arise. One requirement

is that clients should not have to maintain a local copy after

outsourcing their datasets. Otherwise, the clients will lose out

on some of the cost benefits that use of cloud resources enables.

Also, in order to facilitate collaboration with others, clients should

5. http://talkincloud.com/cloud-computing-research/
public-cloud-growth-outpace-private-cloud-next-12-months-report

be able to outsource their datasets once and use them for many

PSI computations, rather than downloading and re-encoding the

datasets for each computation. Otherwise, it would be better for

clients to just keep a local copy of the datasets. In reality a cloud

provider may serve many clients who may not know each other.

Thus each client should be able to outsource its datasets inde-

pendently without knowing anything about other parties’ data or

having to negotiate, for example, a shared key, with other parties.

This requirement seems trivial but turns out to be quite challenging

when the server is not fully trusted. To prevent the server from

knowing the outsourced datasets, they have to be encrypted, and

requiring clients to outsource their data independently, the datasets

would be encrypted under independent keys. The server, then,

needs to use ciphertexts encrypted under independent keys when

computing PSI, which is a highly non-trivial task.

In this paper, we present two protocols for delegated PSI on

outsourced private datasets. Our first protocol, O-PSI, is based

on additive homomorphic encryption and point-value set repre-

sentation. The protocol lets clients independently outsource their

datasets by representing them as blinded polynomials. To achieve

delegated PSI computation, homomorphic encryption is used to

“switch” blinding factors so that the outsourced datasets blinded

under different blinding keys can now be combined in the compu-

tation process. The protocol ensures that intersections can only be

computed with the permission of all the clients and that the result

(i.e. the intersection and its cardinality) will be protected from the

cloud. The protocol also allows the datasets to be used securely an

unlimited number of times without the need to secure them again.

Although O-PSI has all the desirable properties, it is somewhat

inefficient, as it requires costly homomorphic encryption (opera-

tions) which has a major impact on its performance. To mitigate

this problem, we propose a more efficient protocol, EO-PSI, that

preserves all O-PSI’s desirable characteristics, while requires no

public key encryption or exponentiation operations. The protocol

also lets clients outsource their datasets by representing them as

blinded polynomials. However, by changing the way the blinding

is done and the interaction between the clients, the protocol no

longer needs to “switch” blinding factors in order to combine

the outsourced datasets in the computation process. We further

improve the protocol performance by leveraging hash tables. As a

result, EO-PSI is 1 - 2 orders of magnitude faster than O-PSI. We

also provide a formal security analysis of the two protocols, and

analyze their performance based on prototype implementations

we have developed. Our performance analysis shows that EO-PSI

scales well and it performs better than not only O-PSI but also

other similar state-of-the-art protocols when the dataset is large.

2 RELATED WORK

Private Set Intersection (PSI) was initially introduced in [2]. Fol-

lowing that many protocols such as [4], [21], [22], [23], [24], [25],

[26], [27] were proposed. Among them, [21] provides a number

of protocols supporting further private set operations based on

additive homomorphic encryption and polynomial representation

of sets. In [4], [22], the first PSI protocols with linear complexity

(in the semi-honest and malicious models respectively) were

proposed. In addition, [23], [24] proposed PSI protocols that allow

result recipients to hide their set size from the other party during

the computation of the intersection, while [24] also proposed

protocols that output only the cardinality of the intersection.

More recently, some efficient protocols, like [25], [26], [27], have
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been proposed. The protocols in [25] use Bloom filters, secret

sharing and oblivious transfer to offer efficient PSI. Later on, [26]

extended [25] by using hash tables and a more efficient oblivious

transfer extension protocol for better efficiency. Recently, [27]

further improved the efficiency of [25] by utilizing permutation-

based hashing. Nevertheless, all these regular PSI protocols are

interactive, which means clients jointly compute the intersection

using locally available datasets. In general, they do not support

outsourcing of the data and the computation to a third party (e.g.

the cloud) without non-trivial modifications. For example in [23],

both parties can send encrypted sets to the cloud and let the cloud

compute the intersection. However, by doing so the cloud learns

the cardinality of the intersection. Also, the parties must re-encrypt

their data if they want to compute another intersection, otherwise

the cloud can learn even more information about the parties’ sets.

On the other hand, a number of PSI protocols that let clients

delegate the computation to a server have been proposed in [15],

[16], [17], [18], [19], [20]. The protocols in [17] allow clients

to outsource their sets to a server by hashing each element and

then adding a random value to it. In this protocol, each time

the computation is delegated, every client needs to download an

encrypted vector whose size is equal to the client’s set size. Also,

each element in the vector has the same size as the elements of

the outsourced set. This is equivalent to the case where every

client first downloads its outsourced set, prepares and uploads

it before the cloud computes the result. Moreover, this protocol

leaks to the server the cardinality of the intersection. Intersection

cardinality is a widely used feature in data mining and could

enable the server to infer a lot of things without knowing the

content of the intersection. Thus from a privacy point of view, it

should not be leaked. Additionally, due to the way the sets are

encoded, if the intersection between the sets of client A and B
is computed, followed by that between the sets of client A and

C, then the server will also find out whether some elements are

common in the sets of client B and C without their permission.

Furthermore, in the protocol, value r is used as a one-time pad

multiple times. However, according to its definition it must be

used only once [28]. This approach is not secure and allows the

cloud to figure out the hash values of each client’s set elements.

So, the protocol is not fully private. In [19], [20] clients also can

delegate the computation to a server. In these protocols, a client

encrypts his data and outsources them to the server. Both protocols

require a trusted third party to initialize the public and private keys

for the clients. Moreover, the schemes in [19], [20] suffer from

the aforementioned problems (i.e. the cloud can learn whether

two sets have common elements without the clients consent and

leaks the intersection cardinality) thus both are not fully private.

The protocol proposed in [16] allows one client, say client A, to

encrypt and outsource its set, and delegate computation to a server.

The server can then engage in a PSI protocol on this client’s

behalf with another client, say client B. But, this delegation is

one-off: if A wants to compute set intersection with C, then

A must encrypt its set with a new key and re-delegate to the

server. In [18] two clients can delegate the PSI computation to

a server. In this protocol, rather than encrypting and outsourcing

their sets, the clients encrypt and outsource bloom filters of their

sets that are then used by the server to privately compute their

intersection. In this case, in order for the clients to get the result of

the intersection, they need to keep a local copy of their sets. So, the

protocol does not support data outsourcing. Another protocol that

delegates computation to a server is proposed in [15]. The protocol

is efficient, and is based on a pseudorandom permutation (PRP)

whose key is generated jointly by the clients at setup. Nonetheless,

the protocol requires the clients to interact with each other before

delegating the computation and also the delegation is one-off.

To sum up, none of the above protocols allows clients to fully

delegate PSI computation to the cloud without the need to either

maintain the sets locally or re-encode and re-upload the sets for

each set intersection computation while protecting the privacy of

both the sets and the intersection. In other words, neither of them

supports secure delegated PSI on outsourced private datasets. As a

result, none of them is particularly suitable for a cloud computing

setting. A comparison of our protocols with existing protocols is

provided in section 7.

3 PRELIMINARIES

3.1 Security Model

We consider a setting in which static semi-honest adversaries are

present. In this setting, the adversary controls one of the parties at

a time and follows the protocol specification exactly. But, it may

try to learn more information about the other party’s input. The

definitions and model are according to [28].

In a delegated PSI protocol, three parties are involved: a cloud

C, and two clients A and B. We assume the cloud does not

collude with A or B. The non-colluding assumption is widely

used in the literature [15], [29], [30]. The three-party protocol π
computes a function that maps the inputs to some outputs. We

define this function as follows: F : Λ× 2U × 2U → Λ×Λ× f∩,

where Λ denotes the empty string, 2U denotes the powerset of

the set universe and f∩ denotes the set intersection function. For

every tuple of inputs Λ, S(A) and S(B) belonging to C,A and B
respectively, the function outputs nothing to C and A, and outputs

f∩(S
(A), S(B)) = S(A) ∩ S(B) to B.

In the semi-honest model, a protocol π is secure if whatever

can be computed by a party in the protocol can be obtained from

its input and output only. This is formalized by the simulation

paradigm. We require a party’s view in a protocol execution to

be simulatable given only its input and output. The view of

the party i during an execution of π on input tuple (x, y, z) is

denoted by Viewπi (x, y, z) and equals (w, ri,mi

1, ...,m
i

t
) where

w ∈ (x, y, z) is the input of i, ri is the outcome of i’s internal

random coin tosses and mi

j
represents the jth message that it

received.

Definition. Let F be a deterministic function as defined above.
We say that the protocol π securely computes F in the pres-
ence of static semi-honest adversaries if there exist probabilistic
polynomial-time algorithms SimC, SimA and SimB that given
the input and output of a party, can simulate a view that is
computationally indistinguishable from the party’s view in the
protocol:

SimC(Λ,Λ)
c

≡ View
π

C(Λ, S
(A)

, S
(B))

SimA(S
(A)

,Λ)
c

≡ View
π

A(Λ, S
(A)

, S
(B))

SimB(S
(B)

, f∩(S
(A)

, S
(B)))

c

≡ View
π

B(Λ, S
(A)

, S
(B))

3.2 Homomorphic Encryption

A semantically secure additively homomorphic public key encryp-

tion scheme has the following properties:

1) Given two ciphertexts Epk(a), Epk(b), Epk(a) · Epk(b) =
Epk(a+ b).



4

2) Given a ciphertext Epk(a) and a constant b, Epk(a)
b =

Epk(a · b).

One such scheme is the Paillier public key cryptosystem [31]. It

works as follows:

Key Generation: Choose two random large primes q1 and q2
according to a given security parameter, and set N = q1 ·q2. Let u
be the Carmichael value of N , i.e. u = lcm(q1−1, q2−1) where

lcm stands for the least common multiple. Choose a random g ∈
Z
∗
N2 , and ensure that s = (L(gu mod N 2))−1 mod N exists

where L(x) = (x−1)
N

. The public key is pk = (N, g) and the

secret key is sk = (u, s).
Encryption: To encrypt a plaintext m ∈ ZN , pick a random value

r ∈ Z
∗
N

, and compute the ciphertext: C = Epk(m) = gm ·
rN mod N 2.

Decryption: To decrypt a ciphertext C, Dsk(C) =
L(Cumod N 2) · s mod N = m.

3.3 Representing Sets by Polynomials

Polynomial representation of sets was introduced in [2] and is

widely used [21], [32]. In this representation, set elements are

represented as elements in a finite field Fp and sets are represented

as polynomials over the field. For the universe of set elements,

U , we define a public finite field Fp that is big enough to

encode all elements in U . For every ui ∈ U , we encode it as

si = ui||G(ui), where G is a cryptographic hash function, so that

given sj ∈ Fp and G’s output size, one can parse sj into a and

b, and check b
?
= G(a). If b = G(a) then we say sj is valid,

otherwise, it is invalid. From now on we will use “set element” or

simply “element” to refer to the encoded form of the element and

“dummy element” to refer to a uniformly random element in Fp.

A set element and a dummy element can be easily distinguished

because the probability that a random element in Fp has the correct

structure and can pass the above check is negligible if G is a

secure cryptographic hash function. A set S can be represented

by a polynomial over Fp: ρ(x) =
|S|
∏

i=1

(x − si), where si is a set

element in S.

For two sets S(A) and S(B) represented by polynomials ρ(A)

and ρ(B) respectively, polynomial ρ(A) · ρ(B) represents the set

union, S(A) ∪ S(B), and gcd(ρ(A), ρ(B)) represents the set inter-

section, S(A) ∩ S(B), where gcd stands for the greatest common

divisor. For two degree d polynomials ρ(A) and ρ(B), and two

degree d random polynomials γ(A) and γ(B) whose coefficients

are picked uniformly at random from Fp, it is proven in [21]

that γ(A) · ρ(A) + γ(B) · ρ(B) = µ · gcd(ρ(A), ρ(B)) where µ is a

uniformly random polynomial. This means that if ρ(A) and ρ(B) are

polynomials representing sets S(A) and S(B), then the polynomial

β = γ(A) · ρ(A) + γ(B) · ρ(B) contains only information about

S(A) ∩ S(B) and no information about other elements in S(A)

or S(B). Given polynomial β, to find the intersection, one can

extract the polynomial’s roots 6, and then consider the set of valid

roots as the intersection. Since the computation which we use to

obtain the intersection could introduce random roots, we need to

encode the elements. In particular, the roots of the polynomial

ρC = µ · gcd(ρ(A), ρ(B)) come from both gcd(ρ(A), ρ(B)) and µ.

While the roots of gcd(ρ(A), ρ(B)) are the intersection we want,

the roots of µ are random elements that should be discarded. Since

6. To find the roots of a polynomial over a finite field, we can first factorize
it to get a set of monic polynomials (see [33] for some algorithms), then find
the monic degree-1 polynomials’ roots.

µ is a uniformly random polynomial, its roots should be uniformly

random elements in Fp, i.e. dummy elements. Thus, the encoding

allows us to effectively eliminate the invalid roots.

3.4 Polynomials in Point-value Form

In section 3.3 we showed that a set can be represented as a

polynomial and set intersection can be computed by polynomial

arithmetic. Previous PSI protocols (e.g. [2], [21], [32]) using

polynomial representation of sets, represent a polynomial as a

vector of the polynomial’s coefficients, i.e. they represent a degree

d polynomial ρ(x) =
d
∑

i=0

aix
i as a vector #»a = [a0, ..., ad].

This representation, while it allows the protocols to correctly

compute the result, has a major disadvantage. The complexity of

multiplying two polynomials of degree d in this form is O(d2). In

PSI protocols, this leads to significant computational overheads,

especially when one polynomial needs to be encrypted and the

polynomial multiplication has to be done homomorphically. Ho-

momorphic multiplication operations are computationally expen-

sive. Thus, those protocols using the coefficient-based polynomial

representation are not scalable.

We solve this problem by representing the polynomials in

another well-known form, point-value. A degree d polynomial

ρ(x) can be represented as a set of n (n > d) point-value

pairs {(x1, y1), ..., (xn, yn)} such that all xi are distinct and

yi = ρ(xi) for 1 ≤ i ≤ n. If xi are fixed, we can omit them and

represent polynomials as a vector #»y = [y1, ..., yn]. A polynomial

in point-value form can be converted into coefficient form by

polynomial interpolation [34], [35]. Given n pairs of (xi, yi),
we can interpolate a regular coefficient-based polynomial ζ(x)
of degree at most n− 1. To this end, we can use the modified (or

improved) Lagrange formula:

ζ(x) = η(x)
n
∑

i=1

ψi

x−xi
· yi

where η(x) =
n
∏

i=1

(x− xi) and ψi =
1

n∏

i=1
i6=k

(xi−xk)
.

We can add or multiply two polynomials by adding or multi-

plying their corresponding y-coordinates; for two degree d polyno-

mials ρ(A) and ρ(B) represented in point-value form by two vectors
#»y (A) and #»y (B), the polynomial ρ(A) + ρ(B) can be computed as

(y(A)
1

+ y(B)
1
, y(A)

2
+ y(B)

2
, ..., y(A)

n
+ y(B)

n
), and the polynomial

ρ(A)·ρ(B) can be computed as (y(A)
1
·y(B)

1
, y(A)

2
·y(B)

2
, ..., y(A)

n
·y(B)

n
).

Note, because the product of ρ(A) · ρ(B) is a polynomial of

degree 2d, ρ(A) and ρ(B) must be represented by at least 2d + 1
points to accommodate the result. The key benefit of point-value

representation is that multiplication complexity is reduced toO(d)
and this makes our protocols much more scalable.

3.5 Hash Tables

In our protocols, polynomial factorization is needed in order

for the result recipient to obtain the intersection at the end of

the computation. The complexity of polynomial factorization is

quadratic in the degree of the polynomial being factorized. To

improve performance, in EO-PSI we use hash tables to divide

a large set into small subsets and represent each subset as a

polynomial. This is a technique that has been used in several

regular PSI protocols, e.g. [2], [27]. Intuitively, for a c-element

set that is represented by a degree-c polynomial, the factorization

cost is O(c2). If we break down the set into h roughly equal-sized
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subsets, then we will need to factor h polynomials of degree c
h

.

So, the total cost is reduced to O( c
2

h
).

In general, hash tables in PSI protocols can be used as follows.

First, the public parameters including a random hash function H,

the number of bins in the hash table and the bin’s maximum size

are picked. The number of bins in the hash table should be set such

that given the maximum set cardinality, with a high probability

each bin receives at most a specific number of elements (we will

explain shortly how this can be done).

For the parties to compute the set intersection, each of them

maps each set element si to the table by computing an address

j = H(si), using the hash function whose output is modeled as a

uniform random number. Then, it inserts si into the corresponding

bin HTj . Because the hash function is deterministic if an element is

in the intersection, both parties map it to the same bin. Therefore,

a large set of elements can be broken down into a collection of

smaller sets (the bins) and a PSI protocol can operate on each bin

separately.

As mentioned above, we need to set parameters appropriately

to ensure that the number of elements in each bin does not exceed a

predefined upper bound. Given the maximum number of elements

c and the bin’s maximum size d, we can determine the number

of bins by analyzing hash tables under the balls into bins model

which has been extensively studied in the literature [36], [37].

Theorem 1. (Upper Tail in Chernoff Bounds) Let Xi be a

random variable defined as Xi =
c
∑

i=1

Yi, where Pr[Yi = 1] = pi,

Pr[Yi = 0] = 1 − pi, and all Yi are independent. Let µ be the

expectation E[Xi] =
h
∑

i=1

pi. Then:

Pr[Xi > d = (1 + σ) · µ] <
( eσ

(1 + σ)(1+σ)

)µ

, ∀σ > 0 (1)

Note that in the balls and bins model the expectation is µ = c
h

.

Inequality 1 provides a bound for the probability that bin i is

overloaded. Since there are h bins, the probability that at least one

of them is overloaded is bounded by the union bound.

Pr[∃i, 1 ≤ i ≤ h : Xi > d] ≤
h

∑

i=1

Pr[Xi > d]

≤ h ·
( eσ

(1 + σ)(1+σ)

) c
h

(2)

Thus, when the probability and bin’s maximum load are fixed,

for any c number of elements (as the maximal number of elements

that may be inserted into the hash table) we can set the number

of bins using inequality 2. In Section 8, some concrete parameters

are calculated for our experiments and are shown in Table 3.

3.6 Notation

We summarize our notation in Table 1.

4 O-PSI: OUR FIRST PROTOCOL

In this section, we present O-PSI our first protocol for delegated

private set intersection on outsourced private datasets.

4.1 An Overview of O-PSI

The interaction between parties in O-PSI is depicted in Fig. 1.

At a high level, the protocol works as follows. First, each client

TABLE 1
Table of notation.

Notation Description

G
en

er
ic

U The universe of set elements.

#»
v Vector v.

| #»
v | = c Vector of size c.

Fp Finite field of order p.

a||b a is concatenated with b.

(vi)
−1 and −vi The multiplicative and additive inverse of value vi

respectively.

e(I) Value e belongs to client I .

PRF(.) Pseudorandom function PRF: {0, 1}m × {0, 1}l →
Fp.

l, m The key bit-length (i.e. security parameter) and message
bit-length respectively.

#»
o

(I) A vector containing client I’s outsourced blinded data.

τ (I)(x) The polynomial representing client I’s set.

ω(I)(x) (Pseudo)random polynomial for client I .

In
O

-P
S

I

#»
e

(B) The vector of encrypted pseudorandom values sent by
client B to A.

#»
e

(A) The vector of encrypted pseudorandom values sent by

client A to the cloud.
#»

t Vector of blinded y-coordinates (i.e. the result) sent by

the cloud to client B.

EpkI
(vi) Value vi is encrypted using client I public key.

DskI
(vi) Value vi is decrypted using client I secret key.

In
E

O
-P

S
I

tk Temporary key.

mk(I) Master key for client I .
#»

t i The vector of blinded y-coordinates (i.e. the result) sent

by the cloud to client B.

H(.) Hash function whose output ranges over [1, h].

h Hash table size or the number of bins.

HT
(I)
j The jth bin in hash table HT

(I) .

s
(I)
i → HT

(I)
j element si is mapped to bin HT

(I)
j .

independently prepares its dataset and then stores it as a blinded

vector in the cloud. Since the vector is blinded the cloud cannot

figure out the client’s set. Later on, when client B gets interested

in the intersection of its own outsourced dataset and client A’s

outsourced dataset, it obtains client A’s permission by sending

a message to it. If A agrees, then they jointly compute a set

of encrypted values and send them to the cloud. The encrypted

values are used by the cloud to “switch” the blinding factors ofA’s

dataset, which then allows the set intersection to be computed cor-

rectly. After that, the cloud uses clientA’s message and the clients’

outsourced datasets to generate an encrypted polynomial encoding

the intersection; and then it sends the encrypted polynomial to

client B. At the end of the protocol, when client B receives the

polynomial, it decrypts it and extracts the polynomial’s roots that

are the set intersection. The protocol is described below. We will

explain the rationale behind the protocol design after the protocol

description.

4.2 O-PSI Protocol

Without loss of generality, first, we consider the two client case,

where client A, client B and a cloud engage in the protocol.

a. Cloud-Side Setup. The cloud picks a public parameter c that

is an upper bound of the set cardinality. The cloud constructs

a finite field Fp, where p is a large prime number. It also
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Fig. 1. The left-hand side figure: party interaction at data outsourcing
phase in O-PSI; the right-hand side figure: party interaction at the
computation delegation phase in O-PSI.

constructs a vector #»x containing n = 2c+1 distinct non-zero

xi values randomly picked from Fp. It picks a pseudorandom

function PRF: {0, 1}m × {0, 1}l → Fp, which takes an l-

bit key and m-bit message, and maps the message to an

element in the field pseudorandomly. The cloud publishes

the description of the field, the value n, the vector #»x and the

pseudorandom function PRF.

b. Client-Side Setup and Data Outsourcing. Let client I ∈
{A,B} have a set S(I), where S(I) ⊂ U for some set

universe U and |S(I)| ≤ c. Each client I performs the

following:

1) Generates a Paillier key pair (pkI , skI) (see section 3.2)

and publishes the public key. It also chooses a random pri-

vate key k(I) for the pseudorandom function PRF. All the

keys are generated according to a given security parameter.

2) Constructs a polynomial τ (I)(x) =
|S(I)|
∏

i=1

(x − s
(I)
i ) that

represents its set S(I). Represent τ (I)(x) as point-value

form, by evaluating it at every element xi in #»x . This yields

a vector containing values τ (I)(xi), 1 ≤ i ≤ n.

3) Blinds every value τ (I)(xi). To do that, it generates a

set of pseudorandom values (or blinding factors) z
(I)
i =

PRF(k(I), i); next, computes o
(I)
i as follows:

1 ≤ i ≤ n: o
(I)
i = τ (I)(xi) · z

(I)
i

At the end of this step, the set elements are represented as

vector #»o (I) = [o(I)
1 , ..., o(I)

n
].

4) Sends vector #»o (I) to the cloud.

c. Set Intersection: Computation Delegation. This phase

starts when client B becomes interested in the intersection

of its set and client A’s set.

1) Client B sends a message to client A. The message

contains client B’s ID, ID(B), and a vector #»e (B), whose

elements are computed as follows:

∀i, 1 ≤ i ≤ n: e
(B)
i = EpkB (z

(B)
i )

where z
(B)
i = PRF(k(B), i) are the values used by client B

to blind its polynomial in step b.3 above.

2) Given client B’s message, client A computes vector #»e (A).

∀i, 1 ≤ i ≤ n:

e
(A)
i = (e(B)

i )(z
(A)
i )−1

= EpkB (z
(B)
i · (z(A)

i )−1)

where z
(I)
i = PRF(k(I), i) for I ∈ {A,B} are the values

from step b.3.

3) Client A sends #»e (A), ID(A), ID(B), and Compute message

to the cloud.

d. Set Intersection: Cloud-Side Result Computation.

1) After receiving the Compute message from A, the cloud

picks two degree c random polynomials ω(A)(x) and

ω(B)(x) (whose coefficients are chosen from Fp).

2) The cloud fetches the clients outsourced datasets #»o (A) and
#»o (B) and then computes vector

#»

t as below.

∀i, 1 ≤ i ≤ n:

ti = (e(A)
i )o

(A)
i ·ω(A)(xi) ·EpkB (ω

(B)(xi) · o
(B)
i )

= EpkB (z
(B)
i ·(ω(A)(xi)·τ

(A)(xi)+ω
(B)(xi)·τ

(B)(xi)))

3) The cloud sends
#»

t to client B.

e. Set Intersection: Client-Side Result Retrieval

1) Client B decrypts the elements in
#»

t and then removes

the blinding factors. This yields vector #»g computed as

follows:

1 ≤ i ≤ n:

gi = DskB (ti) · (z
(B)
i )−1 = z

(B)
i · (ω(A)(xi) · τ

(A)(xi) +
ω(B)(xi) · τ

(B)(xi)) · (z
(B)
i )−1 = ω(A)(xi) · τ

(A)(xi) +
ω(B)(xi) · τ

(B)(xi)

2) It then interpolates the polynomial φ(x) using the point-

value pairs (xi, gi) and considers the valid roots of φ(x)
as the elements in the set intersection (see section 3.3).

Remark 1: In step a, the cloud publishes a vector #»x that has 2c+1
elements, because the polynomial φ(x) in step e.2 is of degree 2c
and at least 2c+1 points are needed to interpolate it. Note that the

elements in #»x are picked at random from Fp so the probability of

xi being a root of a client’s polynomial is negligible.

Remark 2: In step b.3, if the client does not blind the evaluated

polynomial and stores the values τ (I)(xi) directly on the cloud,

then the cloud could use n pairs of (xi, τ
(I)(xi)) to interpolate

the client’s polynomial. As a result, the client’s set would be

revealed to the cloud. Whereas, when they are blinded the cloud

cannot learn anything about the client’s set unless it knows the

pseudorandom function key used by the client. The client blinds

the values by multiplication; while multiplication cannot blind

τ (I)(xi) = 0. This is why we require the probability of xi ∈
#»x

being a root of a client’s polynomial to be negligible.

Remark 3: The data stored in the cloud are independently blinded

by its owner. Also, to compute the set intersection correctly, the

blinding factors (z
(I)
i in the protocol) must be eliminated at the

end of the protocol. In step c.2, client A and B jointly compute

the vector #»e (A) that allows the cloud to obliviously “switch” A’s

blinding factors to B’s. Accordingly, in step d.2, the cloud uses
#»e (A) to eliminate z

(A)
i and replace it with z

(B)
i . The blinding

factors z
(B)
i , later on in step e.1, can be eliminated by client B.

What is more, since the values in #»e (A) are encrypted and only

client B knows the secret key, the cloud learns nothing in this

process.

Remark 4: The client’s original blinded dataset remains un-

changed in the cloud. In fact, in step d.2, the cloud multiplies

a copy of the client’s blinded dataset by the vector of ω(I)(xi).

Remark 5: The only information that the cloud learns about the

clients’ datasets is the upper bound on the datasets cardinality

(i.e. value c) that was initially set by itself. Thus, the cloud

learns nothing about the exact number of the set elements and
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the intersection cardinality.

4.3 Multiple Clients O-PSI

With minor modifications, two-client O-PSI can be turned into m-

client O-PSI, where m > 2. Below we outline how this can be

done. In this case, the client interested in the intersection, client

B, sends the same request (see step c.1 of the protocol) to all other

clients, Az, where 1 ≤ z ≤ y and y = m − 1. The protocol for

each client Az remains unchanged. For each client Az, the cloud

carries out step d.2 and it computes the result vector
#»

t as follows:

∀i, 1 ≤ i ≤ n:

ti = EpkB (ω
(B)(xi) · o

(B)
i ) ·

y
∏

z=1

(e(Az)
i )o

(Az)
i ·ω(Az)(xi)

= EpkB (z
(B)
i · (ω(B)(xi) · τ

(B)(xi) +
y
∑

z=1

ω(Az)(xi) · τ
(Az)(xi)))

Then, the cloud sends
#»

t to client B. Note that in this case,

even if clientB colludes with y−1 clients, it could not infer the set

elements of the non-colluding client, as the random polynomials

ω(Az) and ω(B) are picked by the cloud, and are unknown to the

clients.

5 A MORE EFFICIENT PROTOCOL, EO-PSI: OUR

SECOND PROTOCOL

In this section, we introduce EO-PSI that preserves all O-PSI’s

desirable properties and is more efficient. EO-PSI improves O-

PSI from two perspectives. First, unlike O-PSI, EO-PSI does not

use any public key encryption that is computationally expensive.

In O-PSI, the public key encryption is mainly used to prevent the

cloud from eventually learning any information about the blinding

factors (and set elements) during the cloud-side “switching” of

the blinding factors, especially when the computation is delegated

multiple times. Recall in O-PSI given the vector #»e the cloud can

“switch” one client’s blinding factors to another’s. In contrast, in

EO-PSI no such “switching” is required. Therefore, no public key

encryption is needed. In order to achieve this, we slightly change

the way each client blinds its polynomial. In EO-PSI, instead of

multiplying value τ(xi) by a pseudorandom value, the client sums

the value and the pseudorandom value. Moreover, the interaction

between the clients is changed, in the sense that client A sends

a message to both the cloud and client B when it authorizes the

computation.

Second, EO-PSI allows each client to break down its original

polynomial into smaller degree polynomials. This allows the result

recipient to factorize a set of smaller degree polynomials rather

than one of very large degree. As a result, it can find the roots of

the polynomials (i.e. the set intersection) faster than in O-PSI. To

achieve this, the protocol lets each client insert its elements into

the bins of a (fixed-size) hash table.

5.1 An Overview of EO-PSI

The interaction between parties in EO-PSI is depicted in Fig. 2.

What follows is a high-level description of the protocol. First,

each client inserts its set elements into the hash table. Then, it

represents the set of elements in each bin of the hash table as a

blinded point-value polynomial and sends the polynomials to the

cloud. When client B becomes interested in the intersection of

its own set and client A’s set, it obtains the client’s permission

by sending a message to it. If client A agrees, it generates a set

of vectors and sends them to client B. The vectors help client

#» o
(A

)
=

[#» o
(A

)
1

,
.
.
.
,

#» o
(A

)

h
]

#» o
(B

)
=

[#» o
(B

)
1

,
.
.
.
,

#» o
(B

)

h
]

!"#$%&'( !"#$%&') !"#$%&'( !"#$%&')

*+,
*-,

*+,

*.,

mk
(B)

tk

#»
q = [ #»

q1, ...,
# »
qh]

#»t
=

[
#»

t
1
,
.
.
.
,

#
»

t
h ]

I
D

(B
)

I
D

(A
)

q
1
,
.
.
.
,
q

1
,
.
.
.
,

ID
(B)q1, ...,

Fig. 2. The left-hand side figure: party interaction at data outsourcing
phase in EO-PSI; the right-hand side figure: party interaction at the
computation delegation phase in EO-PSI.

B to unblind the cloud’s response. Client A also sends a key for

a pseudorandom function to the cloud. The key is generated on

the fly and is used only in this execution of the protocol. The

cloud uses the key and the outsourced datasets to compute a set

of blinded polynomials, and sends them to client B. Given these

polynomials and client A’s message, client B unblinds them and

retrieves the intersection of the sets.

5.2 EO-PSI Protocol

Similarly, here first we consider the two client case, where client

A, client B and a cloud engage in the protocol.

a. Cloud-Side Setup. The cloud sets the parameters for a hash

table. It sets c as the upper bound of the set cardinality, d as

the maximum load that a bin in the hash table can have, and

h as the total number of bins in the hash table. Moreover,

it chooses a cryptographic hash function, H. Then, the cloud

constructs a finite field Fp, where p is a large prime number.

It also constructs a vector #»x containing n = 2d+ 1 distinct

non-zero xi values randomly picked from Fp. It picks a

pseudorandom function PRF : {0, 1}m × {0, 1}l → Fp,

which takes an l-bit key and m-bit message, and maps the

message to an element in the field pseudo-randomly. The

cloud publishes the hash table parameters, the description

of the field, the value n, the vector #»x , the pseudorandom

function PRF along with the hash function H.

b. Client-Side Setup and Data Outsourcing. Let client I ∈
{A,B} have a set S(I), where S(I) ⊂ U and |S(I)| ≤ c.
Each client I performs the following:

1) Given the hash table parameters, generates a hash table and

inserts its set elements into it, as below.

∀s(I)i ∈ S(I): H(s(I)i ) = j, then s
(I)
i → HT

(I)
j

where 1 ≤ j ≤ h.

2) Assigns a key (for the pseudorandom function) to each

bin in the hash table by picking a master key mk(I), and

generating h pseudorandom values (or keys):

∀j, 1 ≤ j ≤ h: k
(I)
j = PRF(mk(I), j).

3) For every bin HT
(I)
j

, if it has less than d set elements, pads

it with dummy (or random) elements, rj,i, to d elements.

Then, encodes the bin elements as below.

a) Constructs a polynomial representing the elements in

the bin.
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τ
(I)
j (x) =

d
∏

i=1

(x− e
(I)
i )

where e
(I)
i ∈ HT

(I)
j

, e
(I)
i = s

(I)
i or e

(I)
i = rj,i.

b) Represents τ
(I)
j (x) in point-value form, by evaluating

it at every element xi ∈ #»x . This yields a vector

containing values τ (I)
j (xi), 1 ≤ i ≤ n.

c) Blinds every value τ
(I)
j (xi). To do so first generates

a pseudorandom value z
(I)
j,i = PRF(k(I)

j , i), where key

k
(I)
j was generated in step b.2. After that, computes

o
(I)
j,i as follows.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

o
(I)
j,i = τ

(I)
j (xi) + z

(I)
j,i

At the end of this step, the elements in bin HTj are

represented as the vector #»o
(I)
j = [o(I)

j,1 , ..., o
(I)
j,n].

4) Sends #»o (I) = [ #»o (I)
1 , ..., #»o

(I)

h ] to the cloud.

c. Set Intersection: Computation Delegation. This phase

starts when client B wants the intersection of its set and

client A’s set.

1) Client B sends mk(B) and its id, ID(B), to client A.

2) Givenmk(B) andmk(A) clientA regenerates k
(I)
j (see step

b.2) where 1 ≤ j ≤ h and ∀I, I ∈ {A,B}.

3) Client A assigns three fresh keys to each bin HTj . To do

that, first, it picks a temporary key tk and then carries out

the following.

a) It uses the key, tk, to generate three pseudorandom

values kt.

∀t, 1 ≤ t ≤ 3: kt = PRF(tk, t).

b) It uses each kt to compute h pseudorandom values.

∀j, 1 ≤ j ≤ h: k1,j = PRF(k1, j), k2,j = PRF(k2, j),
k3,j = PRF(k3, j).

4) For each bin HTj client A uses key k1,j to generate a set

of pseudorandom values aj,i.

∀i, 1 ≤ i ≤ n: aj,i = PRF(k1,j , i).

Also, it uses key k2,j and k3,j to generate two degree d
pseudorandom polynomials ω

(A)
j (x) and ω

(B)
j (x) for that

bin.

5) For each bin HTj client A regenerates the pseudorandom

values z
(A)
j,i = PRF(k(A)

j , i) and z
(B)
j,i = PRF(k(B)

j , i) using

the keys it derived in step c.2. Then, it computes vector #»qj

as follows. ∀i, 1 ≤ i ≤ n:

qj,i = z
(A)
j,i · ω(A)

j (xi) + z
(B)
j,i · ω(B)

j (xi) + aj,i

Vectors #»qj allow client B to remove the blinding factors

from the cloud’s response without learning the pseudoran-

dom polynomials.

6) Client A sends #»q = [ #»q1, ...,
# »qh] to client B. Also, client

A sends the key tk (generated in step c.3), ID(A), ID(B),

and Compute message to the cloud.

d. Set Intersection: Cloud-Side Result Computation.

1) Given the key tk, the cloud derives the three keys k1,j , k2,j

and k3,j for each bin HTj , where 1 ≤ j ≤ h (see steps c.3a

and c.3b)

2) Using the keys generated in the previous step, the cloud

regenerates the set of pseudorandom values aj,i (∀i, 1 ≤
i ≤ n) and the two pseudorandom polynomials ω

(A)
j (x)

and ω
(B)
j (x) for each bin HTj , where 1 ≤ j ≤ h (see step

c.4).

3) The cloud computes the result as follows. First, it fetches

the clients’ outsourced datasets #»o
(A)
j and #»o

(B)
j in each bin

HTj . Next, it computes the result vector
#»

tj for that bin as

below.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

tj,i = o(A)
j,i · ω(A)

j (xi) + o(B)
j,i · ω(B)

j (xi) + aj,i

4) The cloud sends
#»

t = [
#»

t1, ...,
#»

th] to client B.

e. Set Intersection: Client-Side Result Retrieval

1) Client B removes the blinding factors from each vector
#»

tj (∀j, 1 ≤ j ≤ h) using the corresponding vector #»qj

(provided by client A in step c.6). The result is the vector
#»gj computed as follows.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

gj,i = tj,i−qj,i = ω
(A)
j (xi)·τ

(A)
j (xi)+ω

(B)
j (xi)·τ

(B)
j (xi)

2) Given each vector #»gj and #»x it interpolates the polynomial

φj(x) (∀j, 1 ≤ j ≤ h).

3) It extracts the roots of each polynomial. It considers the

union of the valid roots as the intersection of the sets.

Remark 1: Client I can always update (or replace) the blinding

factors of its outsourced dataset in the cloud without leaking any

information to it. To do so, it picks a fresh master key mk′(I), and

derives h keys k
′(I)
j from the master key:

∀j, 1 ≤ j ≤ h : k′(I)j = PRF(mk′(I), j)

Next, it uses each key k
′(I)
j to generate n pseudorandom values

z
′(I)
j,i for each bin:

∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i ≤ n : z′(I)j,i = PRF(k′(I)j , i)

Also, it uses its old master key to regenerate the blinding

factors z
(I)
j,i used to blind the outsourced dataset. Then, for every

bin it computes the following values:

∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i ≤ n : u(I)
j,i = −z(I)

j,i + z
′(I)
j,i

It sends all u
(I)
j,i to the cloud and asks it to sum them with the

corresponding blinded values o
(I)
j,i = τ

(I)
j (xi) + z

(I)
j,i . After the

cloud follows its instruction it would get the following blinded

values:

∀j, 1 ≤ j ≤ h, ∀i, 1 ≤ i ≤ n :

o
′(I)
j,i = o

(I)
j,i + u

(I)
j,i = τ

(I)
j (xi) + z

′(I)
j,i

Now, the client can discard its old master key and only needs

to keep mk′(I) locally.

Remark 2: If the number of elements mapped to a bin exceed

its capacity, the polynomial cannot be interpolated correctly after

the computation. To avoid this, the server sets the parameters

including the number of bins, the maximum load of each bin and

the maximum set cardinality in such a way that the probability of

any bin exceeding its capacity is negligible. The parameters can

be derived by the cloud using inequality 2 (provided in section 3.5

with example values shown in Table 3).
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Remark 3: In EO-PSI, the client needs to find the roots of h

polynomials of degree 2d, where d is a fixed value picked by

the cloud and it is much smaller than the maximum number of

elements, c. In contrast, in O-PSI the client receives only one

polynomial of degree 2c. Clearly, finding roots of h polynomials

of small degree 2d is much faster than finding the roots of

one polynomial of very large degree 2c and our performance

evaluation in section 8 also supports this (see Fig. 4).

Remark 4: In both EO-PSI and O-PSI, the cloud-side setup is

performed only once, when the cloud comes online. Afterward,

it does not need to do any computation in this step. Furthermore,

none of our protocols requires the participation of a trusted third

party.

Remark 5: Bloom filters can be used in PSI Protocols to improve

their efficiency [25]. A Bloom filter encodes a set and allows

membership queries. In traditional PSI, the parties have a local

copy of their own sets, so they can query the filters using the sets

to get the intersection. In delegated PSI, clients outsource their

data and do not keep a local copy. A delegated PSI protocol based

on Bloom filters would require clients to enumerate the universe

of the set elements in order to get the intersection. For this reason,

we do not use Bloom filters in our protocol.

Remark 6: Public key cryptography preserves certain algebraic

properties, therefore protocols based on it can be simpler and more

intuitive than those based on symmetric key cryptography. For this

reason, we first design the O-PSI protocol to show feasibility, then

the EO-PSI protocol to improve efficiency.

5.3 Multiple Clients EO-PSI

With minor adjustments, the protocol can support m > 2 number

of clients. Here, we denote the result recipient by client B and the

other clients by Az , ∀z, 1 ≤ z ≤ y and y = m− 1.

Similar to the two clients case, here each client Az sends to

the cloud a temporary key tk(Az) that lets the cloud generate

for each bin HTj a set of pseudorandom values a
(Az)
j,i and two

pseudorandom polynomials ω
(Az)
j (x) and ω

(Bz)
j (x). However, as

it is shown below, the cloud-side computation in step d.3 is slightly

changed. ∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

tj,i = o
(B)
j,i · ω(B)

j (xi) +
y
∑

z=1

a
(Az)
j,i +

y
∑

z=1

o
(Az)
j,i · ω(Az)

j (xi)

where ω
(B)
j (x) =

y
∑

z=1

ω
(Bz)
j (x)

Note, in the above step the cloud first adds all the polynomials

ω
(Bz)
j (x) together, then it evaluates the result polynomial at every

element in #»x , and next multiplies the result by client B’s blinded

values for that bin (i.e. bin HTj).

Consequently, clientB in step e.1 removes the blinding factors

from vector
#»

tj as follows:

gj,i = tj,i −
y
∑

z=1

q
(Az)
j,i

= ω
(B)
j (xi) · τ

(B)
j (xi) +

y
∑

z=1

ω
(Az)
j (xi) · τ

(Az )
j (xi)

In multiple clients EO-PSI, even if clientB colludes with y−1
clients, it cannot learn any information about the non-colluding

client’s set elements. The reason is that, as it is shown in [21],

the polynomial ω
(B)
j (x) is always a uniformly random polynomial

even if only one of the polynomials ω
(Bz)
j (x) is uniformly random

and unknown to client B.

Remark 1: In multiple client EO-PSI, the communication and

computation complexities for those clients who authorize the com-

putation (i.e. clients Az) are independent of the number of clients

participating in the protocol. In other words, the computation and

communication complexities for client A in the two client case

are similar to client Aj’s in the multiple clients case. Note that the

same holds for multiple client O-PSI.

Remark 2: In multiple client EO-PSI, each client Aj indepen-

dently authorizes the computation, without the need to interact

with the other authorizing clients. The same is true for multiple

client O-PSI.

6 PROOF OF SECURITY

Now we present the proof of EO-PSI security in the semi-honest

model. The security proof of O-PSI can be found in [1]. O-

PSI and EO-PSI are both proved using the ideal-real paradigm.

However, there are some differences between the proofs: (1) the

security relies on different assumptions, in O-PSI it relies on

the assumption of the existence of a semantically secure additive

homomorphic encryption scheme, while in EO-PSI it relies on the

assumption of the existence of a secure pseudorandom function;

(2) in O-PSI the clients’ blinded input sets are represented as a

single polynomial, while in EO-PSI, the sets are split into bins

and each bin is represented as a polynomial.

Theorem 2. If PRF is a pseudorandom function, then EO-PSI

protocol is secure in the presence of a semi-honest adversary.

Proof. We will prove the theorem by considering, in turn, the

case where each of the parties has been corrupted. In each case,

we invoke a simulator with the corresponding party’s input and

output. Our focus is in the case where party A wants to engage in

the computation of the intersection. If party A does not want to

proceed with the protocol, the views can be simulated in the same

way up to the point where the execution stops.

Case 1: Corrupted Cloud. In this case, we show that we can

construct a simulator SimC that can produce a computationally

indistinguishable view. In the real execution, the cloud’s view,

Viewπ
C
(Λ, S(A), S(B)), is as follows:

{Λ, rC,
#»o (A), #»o (B), tk, ID(A), ID(B),Compute,Λ}

In the above view, rC is the outcome of internal random coins

of the cloud, #»o (A), #»o (B) are the hash tables each containing the

blinded set representations of A’s and B’s sets, and tk is an l-bit

random key used in the protocol to generate the pseudorandom

polynomials and the blinding factors to mask the result generated

by the cloud.

To simulate this view, SimC does the following: it creates an

empty view and appends to it Λ and uniformly at random chosen

coins r′
C

. It uses the public parameters and the hash function to

construct two hash tables HT
′(A) and HT

′(B). Then, it fills each

bin of the hash tables with n uniformly random values picked

from the same field Fp; so each bin HT
′(I)
j

(∀I, I ∈ {A,B})

contains the vector #»o
′(I)
j of n random values. It also chooses

a key tk′. Afterward, it appends #»o ′(A) = [ #»o ′(A)
1 , ..., #»o

′(A)

h ],
#»o ′(B) = [ #»o ′(B)

1 , ..., #»o
′(B)

h ] and tk′ to the view. Finally, the

simulator appends ID(A), ID(B),Compute and Λ, to the view and

outputs the view.

We argue that the simulated view is computationally indistin-

guishable from the real view. In both views, the input parts are

identical (i.e. both are Λ), the random coins are both uniformly

random, and so they are indistinguishable. In the real model,

the elements in #»o (I) ( ∀I, I ∈ {A,B}) are blinded with the

outputs of a pseudorandom function. Also, the elements in #»o ′(I)
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are random elements of the field. As the blinded values and

random value are indistinguishable, the vectors #»o
(I)
i and #»o

′(I)
i

are indistinguishable; thus, the vectors #»o (I) and #»o ′(I) are also

indistinguishable. As the keys tk and tk′ are picked uniformly at

random, they are computationally indistinguishable as well. What

is more, ID(A), ID(B) and Compute in both models are identical.

Moreover, the output parts in both views are identical (i.e. both

are Λ). So, we conclude that the views are indistinguishable.

Case 2: Corrupted client A. In the real execution, the A’s view

is as follows:

Viewπ
A
(Λ, S(A), S(B)) = {S(A), rA,mk

(B), ID(B),Λ}

The simulator SimA does the following: it creates an empty

view. It receives the party’s input S(A) and appends it to the view.

Then, it inserts uniformly at random chosen coins r′
A

to it. Next,

it picks an l-bit key mk′(B) uniformly at random and appends it to

the view. After that, it inserts ID(B) and Λ into the view. In both

models S(A) is identical. Moreover, both rA and r′
A

are picked

uniformly at random so they are indistinguishable. Since both

keys mk(B) and mk′(B) are chosen uniformly at random they are

computationally indistinguishable, too. Moreover, ID(B) and Λ are

identical in both models. So, the two views are indistinguishable.

Case 3: Corrupted client B. In the real execution, client B’s

view is as follows:

Viewπ
B
(Λ, S(A), S(B)) = {S(B), rB,

#»g , #»q , f∩(S
(A), S(B))}

The simulator SimB receives the party’s input (S(B)) and

output (f∩(S
(A), S(B))), and does the following:

1) Creates an empty view, then appends S(B) and uniformly at

random chosen coins r′
B

to it.

2) Picks two sets S′(A) and S′(B) such that S′(A) ∩ S′(B) =
f∩(S

(A), S(B)) and |S′(A)|, |S′(B)| ≤ c.
3) Constructs the hash tables HT′(A) and HT

′(B) using the public

parameters. Next, maps the elements in S′(A) and S′(B) to

the bins of HT′(A) and HT
′(B), respectively. ∀I, I ∈ {A,B}

and ∀s′(I)i ∈ S′(I): H(s′(I)i ) = j, then s
′(I)
i → HT

′(I)
j

, where

1 ≤ j ≤ h.

4) For each bin constructs a polynomial representing its ele-

ments. If a bin contains less that d elements first it is padded

with dummy values, r
′(I)
j,i , to d elements. ∀I, I ∈ {A,B} and

∀j, 1 ≤ j ≤ h: τ
′(I)
j (x) =

d
∏

i=1

(x−e(I)i ), where e
(I)
i ∈ HT

′(I)
j

,

e(I)i = s′(I)i or e(I)i = r′(I)j,i .

5) Assigns a random polynomial ω
′(I)
j of degree d to each bin

HT
′(I)
j

(∀j, 1 ≤ j ≤ h) of the hash table HT
′(I) (∀I, I ∈

{A,B}).

6) Constructs the vectors #»g ′
j

whose elements are computed as

follows. ∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

g′
j,i

= τ
′(A)
j (xi) · ω

′(A)
j (xi) + τ

′(B)
j (xi) · ω

′(B)
j (xi)

where τ
′(I)
j (x) is the polynomial representing the set of

elements contained in bin HT
(I)
j

.

7) Picks a key mk′ and derives h keys, k′
j
, from it as below.

∀j, 1 ≤ j ≤ h : k′
j
= PRF(mk′, j)

8) Uses each key k′
j

to generate #»q ′
j

whose elements are com-

puted as follows.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n: q′
j,i

= PRF(k′
j
, i)

9) Adds #»g ′ = [ #»g ′
1
, ..., #»g ′

h
] and #»q ′ = [ #»q ′

1
, ..., #»q ′

h
] to the view.

10) Finally, inserts, f∩(S
(A), S(B)) to the view.

Now we show that the two views are computationally indis-

tinguishable. In both models S(B) is identical. As rB and r′
B

are

chosen uniformly at random, they are indistinguishable.

In the real model, the elements in #»q j are blinded by the

outputs of a pseudorandom function. So the blinded elements are

uniformly random values. On the other hand, in the ideal model

the elements in #»q ′
j

are the outputs of a pseudorandom function.

Hence, the elements in both vectors #»q and #»q ′ are computationally

indistinguishable.

Furthermore, in the real model, given each unblinded vec-

tor #»g j , the adversary interpolates a polynomial of the form

φ(x)j = ω
(A)
j (x) · τ (A)

j (x) + ω
(B)
j (x) · τ (B)

j (x) = µj ·
gcd(τ (A)

j (x), τ (B)
j (x)), where µj is a uniformly random poly-

nomial and gcd(τ (A)
j (x), τ (B)

j (x)) represents the intersection of

the set elements in the corresponding bin. Similarly, in the ideal

model, each polynomial φ′
j
(x) interpolated from vector #»g ′

j
has

the form φ′
j
(x) = ω

′(A)
j (x) · τ ′(A)

j (x) + ω
′(B)
j (x) · τ ′(B)

j (x) =
µ′

j
· gcd(τ ′(A)

j (x), τ ′(B)
j (x)), where µ′

j
is a uniformly random

polynomial. As mentioned in section 3.3, it has been shown in

[21] that the polynomials φj(x) and φ′
j
(x) (for each bin) only

contain information about the intersections of the corresponding

sets and have the same distribution in both models. Finally, in both

views the output part (i.e. f∩(S
(A), S(B))) is identical. Hence, the

two views are computationally indistinguishable.

Combining the above, we conclude the protocol is secure and

complete our proof.

Thus, both the O-PSI and EO-PSI protocols are secure in the

semi-honest model and we have proven their security using the

real-ideal paradigm. In the proof, we used standard assumptions

and did not rely on non-standard ones (e.g. random oracle model).

7 COMPARISON

We first evaluate EO-PSI and O-PSI by comparing their properties

to those provided by other protocols that delegate PSI compu-

tation to a cloud. We also compare these protocols in terms of

communication and computation complexity. Table 2 summarizes

the results.

Properties. When PSI computation is delegated to a server who is

not fully trusted, protecting the privacy of the computation input

and output from the server is crucial. However, as discussed in

section 2 the protocols in [17], [19], [20] do not fully preserve data

privacy and leak some information to the cloud server. Protocols

like the size-hiding variation of [15], those in [16], [18], O-PSI

and EO-PSI offer this protection.

Another desirable security property is that PSI computation is

only possible with the explicit authorization from all the clients.

In [19], the server can use the outsourced data to compute PSI

without client permission. The server cannot decrypt the result but

can learn information about the intersection e.g. the size. In [17],

the protocol includes an authorization step. However, this step is

not very effective. If the intersection between the sets of client A
and B is computed, followed by that between the sets of client A
and C, then the server will also find out whether some elements

are common in the sets of clientB andC without their permission.

In O-PSI, EO-PSI, [17], [19], [20], datasets are outsourced

and stored on the cloud server. The server then uses the stored

encrypted datasets for computation. This is not the case for
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TABLE 2
Comparison of different delegated PSI protocols. Set cardinality and intersection cardinality are denoted by c and k, respectively.

Property EO-PSI O-PSI [15] [16] [17] [18] [19] [20]

Private against the Cloud X X X X × X × ×

PSI Computation Authorization X X X X × X × X

Data Storage Outsourcing X X × × X × X X

Non-interactive Client-side Setup X X × × X X X X

Many Private Set Intersections without Re-preparation X X × × × × × ×

Multiple Clients X X X X X × X X

Communication Complexity O(c) O(c) O(c) O(c2) O(c) O(c2) O(k) O(k)

Computation Complexity O(c) O(c2) O(c) O(c2) O(c2) O(c2) O(c) O(c)

protocols in [15], [16], [18]. Those protocols are for one-off

computation and the clients have to upload the encrypted datasets

to the server before each computation.

The protocols in [15], [16] require clients to interact with each

other at setup. In [15] clients need to jointly compute the key

for the pseudorandom permutation used to encode the datasets,

while in [16] they need to jointly compute the parameters used

to encrypt their datasets. In contrast to these protocols, in [17],

[18], [19], [20], O-PSI and EO-PSI the clients can independently

prepare and outsource their private datasets. This is particularly

desirable in the context of cloud computing as organizations and

individuals should be able to outsource their datasets at different

points in time and without prior knowledge of those they will

engage in computation in the future. Among the five protocols

that support non-interactive client setup, the protocols in [19],

[20] require additionally a trusted third party to initialize some

protocol parameters on behalf of the clients, whereas the rest of

the protocols do not need such assistance.

Note that O-PSI and EO-PSI are the only PSI protocols that

allow clients to delegate the computation an unlimited number of

times without the need to prepare their datasets for each compu-

tation. Also, the computation does not reveal any information to

the cloud even if it is delegated multiple times. This is vital in the

case where outsourced datasets are expected to be used a lot of

times, as it significantly reduces the overall communication and

storage cost for the clients. Nevertheless, this is not the case for

any of the other aforementioned protocols. In the other protocols,

the clients need to re-encode the datasets locally for each time

the computation is delegated in order to prevent the cloud from

inferring information about the set elements and the intersection

over time.

As we illustrated in sections 4.3 and 5.3, O-PSI and EO-PSI

can be easily extended to support multiple clients. The same holds

for [15], [16], [17], [19], [20]. In contrast, [18] does not support

multiple clients, as it requires an additional logical operation that

is not supported by the homomorphic encryption scheme it uses.

Communication Complexity. The communication complexity of

O-PSI for the client who receives the result, client B, is O(c),
where c is the dataset size. Because client B sends client A the

n = 2c + 1 encrypted random values EpkB (r
(B)
i ) for 1 ≤ i ≤

n, in step c.1. The communication complexity for client A, who

authorizes the operation on its dataset, is also O(c), as it sends

n values of the form EpkB (r
(B)
i · (r(A)

i )−1), 1 ≤ i ≤ n to the

cloud, in step c.3. The communication complexity for the cloud is

O(c) too. Because it sends to client B the result vector
#»

t of size

n, in step d.3. Thus, the overall communication complexity of our

protocol is 3n which is linear, O(c), to the dataset size.

Note that, in EO-PSI, for a fixed probability and fixed bin’s

maximum load, the hash table length h is linear to the set cardi-

nality c. This is clearer, if we rewrite d = (1 + σ) · c
h

(presented

in subsection 3.5) as h = (1 + σ) · c
d

. During the protocol, client

B sends a single value to client A so its communication cost is

constant, in step c.1. Client A sends a single value to the cloud

and sends h bins each containing n elements to client B, in step

c.6. Therefore, client A’s communication complexity is O(c). The

cloud’s communication complexity is O(c) as well, because it

sends h bins each containing n elements to client B, in step d.4.

Therefore, the overall communication complexity is linear to the

dataset size.

In [16] for each set intersection, the client engages in a two-

round protocol, one round to upload its elements in the form of

RSA ciphertexts to the cloud with O(c) communication complex-

ity, and another to interactively compute the private set intersection

with the cloud with O(c2) communication complexity. For the

protocol in [18], the communication complexity is also quadratic

O(sc2), where s is the number of hash functions used for the

bloom filter, and the messages contain BGN encryption cipher-

texts. On the other hand, the protocols in [15], [17] have O(c)
communication complexity with messages containing symmetric

key encryption ciphertexts. Finally, the protocols in [19], [20] have

O(k) complexity, where k is the intersection size.

Computation Complexity. We evaluate the computation cost of

O-PSI by counting the number of exponentiation and factorization

operations, as their cost dominates that of other operations in the

protocol. More specifically, client B performs n exponentiations

to encrypt the random values in step c.1, and needs another n
exponentiations to decrypt the polynomial sent by the cloud in

step e.1. Also, it needs to factorize the result polynomial that costs

O(c2) in step e.2. So, in total it carries out 2n exponentiations and

factorizes a polynomial with the cost of O(c2). Client A performs

n exponentiations to authorize the set intersection in step c.2,

while the cloud carries out n exponentiations to encrypt client B’s

dataset and n exponentiations to transform client A’s dataset in

step d.2, a total of 2n exponentiations. It is interesting to note that

using the point-value representation increases the overall storage

costs at the cloud side. But, the modest increase in storage brings a

significant decrease in the computational costs, from O(c2) (when

using encrypted coefficients such as in [21]) to O(c).
Now we analyze the computation complexity of EO-PSI. In

our analysis, we do not consider the pseudorandom function invo-

cation cost as it is a fast operation and dominated by the other op-

erations (e.g. modular arithmetic, interpolation and factorization)

in our protocol. Client A, performs 2hn modular multiplication

and 2hn modular addition operations to blind the values, in step
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TABLE 3
EO-PSI Hash Table Parameters (bin size d = 100, overloading probability < 2−40).

Set size (c) 210 211 212 213 214 215 216 217 218 219 220

Number of Bins (h) 26 53 106 211 432 863 1772 3543 7282 14564 29128

σ 1.5 1.56 1.56 1.56 1.63 1.63 1.70 1.70 1.78 1.78 1.78

c.5. Also, in order for it to evaluate the two polynomials allocated

to every bin, it carries out 2hnd modular multiplication and

2hndmodular addition operations, in step c.5. So the computation

complexity of client A is O(c). Also, the cloud carries out 2hn
modular multiplication and 2hn modular addition operations to

blind the values in step d.3. Moreover, for the cloud to evaluate

the two polynomials assigned to every bin, it performs 2hnd
modular multiplication and 2hnd modular addition operations, in

step d.3. Therefore, the computation complexity of the cloud is

O(c), too. Client B executes hn modular addition operations to

unblind the cloud’s response, in step e.1. Furthermore, in step e.2,

it interpolates h polynomials where each polynomial interpolation

costs O(d) and d is a constant value. In step e.3, it factorizes h
polynomials where each polynomial factorization costs O(m2)
and m = 2d is a constant value. Hence, in total client B’s

computation cost is O(c).
The semi-honest variant of the protocol in [15] also has linear

complexity O(c), as the client computing the result and the cloud

invoke the pseudorandom permutation (PRP) c times, while the

other client invokes the PRP, 2c times. On the other hand, the

computational overhead in [16] is quadratic O(c2), as it involves

a joint PSI protocol (plus public key encryption of the dataset

elements). The protocol in [18] also has quadratic complexity,

as it involves O(c2) BGN public key encryption operations. In

[17] the client performs O(c) modular additions, while the cloud

carries out O(c2) operations to compare the expanded sets of the

users. The protocol in [19] is based on bilinear maps and requires

6c pairings at the cloud side and 2k exponentiations at the client

side, resulting in O(c) and O(k) computation complexity at the

cloud and client side respectively. The protocol in [20] is also

based on bilinear maps, it requires 6 exponentiation operations at

the client-side, k pairings for decryption of the result at the client-

side, and 8c pairing at the server-side. So the overall computation

cost of the protocol is O(c).
Storage Complexity. In our protocols, storage complexity at

the client-side is constant. In O-PSI each client needs to keep

only two keys (for the pseudorandom function and public key

encryption); and in EO-PSI it needs to keep only one key (for

the pseudorandom function). The protocols designed in [17], [19],

[20] require also constant storage complexity at the client-side.

Nevertheless, since the protocols in [15], [16], [18] support one-

off delegation, the client needs to have data locally available

to re-encode and delegate the computation and this introduces

storage complexity linear to the set size. The server side storage

complexity is linear in all protocols.

Comparison to regular PSI. The computational and commu-

nication complexity of EO-PSI is linear to the dataset size.

Currently the most efficient regular PSI protocols also have linear

complexity. Although similar in complexity, in practice the regular

PSI protocols can be more efficient. In our protocols, storage

complexity at client-side is constant. The regular PSI protocols’

storage complexity is at least linear to the set size, as each

party uses the locally available set elements. We emphasize that

delegated PSI and regular PSI protocols are designed for different

settings with different requirements and they cannot substitute

each other. Thus it is difficult to make a fair comparison. For

example, in delegated PSI protocol, the cloud has to compute the

intersection without knowing anything about both clients’ datasets,

unlike regular PSI protocols where a party knows its own set. Also

there is no way in regular PSI to reduce the storage complexity, as

there is no external server to outsource the storage. Therefore the

comparison above is only a presentation of facts and should not be

interpreted as regular PSI is better than delegated PSI or the other

way round.

8 PERFORMANCE EVALUATION

We implemented the O-PSI and EO-PSI protocols in C++ 7.

Both implementations use the NTL library 8 for the polynomial

operations. The O-PSI implementation also uses the Paillier library
9 for the Paillier homomorphic encryption. In the experiments,

we use 32-bit integers as set elements and 80-bit padding. All

experiments were run on an Ubuntu 14.04 desktop PC with an

Intel i5-4590@3.3 GHz CPU, 8 GB RAM.

In section 7, we compared our protocols with the state-of-the-

art protocols in [15], [16], [17], [18], [19], [20]. Here we compare

the performance of our protocols with the protocols in [17], [20].

We chose these two protocols because they are delegated PSI

protocols that support both storage and computation outsourcing.

Thus they are the closest to our protocols. The protocols in

[15], [16] are server-aided PSI protocols and only support one-

off computation with the help of a server. We did not choose the

protocol in [19] because the protocol in [20] is more efficient than

it (see [20]). For the protocol in [17] we implemented it using C++

and measured its performance using the hardware above, while

for the protocol in [20] we used the performance data reported

in the paper. Although the hardware used in [20] is different, this

difference would not affect the comparison results, because as we

show later, the performance difference to EO-PSI is significant,

almost 2 orders of magnitude. We also implemented the protocol

in [18]. However, the performance of this protocol is much worse

than the others and cannot scale to sets with more than a few

hundred elements. Thus we do not include it in the comparison and

provide the performance results for it separately in an appendix.

We first show in Fig. 3 the performance comparison of the four

protocols. The figure is plotted using a logarithmic scale. In the

figure, the x-axis shows the number of elements in both clients’

sets and the y-axis indicates the total running time of the protocols.

We range the set size between 210 and 220 elements. For EO-PSI,

we also set the bin size of the hash table to 100 and the probability

of overloading to less than 2−40. Using inequality 2, we calculate

7. EO-PSI’s source code is available at https://github.com/nitrogl/eo-psi

8. http://www.shoup.net/ntl/

9. http://acsc.cs.utexas.edu/libpaillier
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the number of bins we need in the hash tables. The results are

shown in Table 3. Table 3 also shows σ, which is the ratio of the

bin size d and the expected number of elements in a bin. A σ
closer to 1 means the bins are better utilized. As we can see, the

performance of EO-PSI is much better than O-PSI and the one in

[20]. In fact, for O-PSI and [20] we skipped tests with set size

over 215 as the running time would be too long. The performance

of protocol in [17] is better than EO-PSI when the set cardinality

is less than 218, while for larger sets EO-PSI is better.
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Fig. 3. Performance comparison of protocols (total running time).

We further show the time breakdown by step of all four

protocols in Table 4. As we can see, for EO-PSI, the running

time for each step increases almost linearly to the set size.

The data outsourcing, the computation delegation, and cloud-side

computation steps are fast. The protocol running time is dominated

by the last step which is the result retrieval step. In the result

retrieval step, client B unblinds the data received, interpolates

the polynomials, and extracts roots from the polynomials by

factorizing them. We found out that factorization takes most of

the time in this step. In the experiments with set sizes 210, 215

and 220, the factorization times are 5.32, 175.35, 5918.93 seconds,

respectively. In our implementation, we factorize polynomials by

using the NTL library. This step could be improved by improving

the underlying factorization algorithm. For O-PSI, the running

time is also dominated by the last step. It is worse than EO-PSI

because the polynomial to be factored is larger. For the protocol in

[17], the running time is dominated by the cloud-side computation.

The complexity of this step is quadratic thus it is less scalable

than EO-PSI. For the protocol in [20], outsourcing and cloud-

side computation steps dominate the running time. Although the

complexity of the protocol is linear, it uses heavy public key

operations which make it less efficient than EO-PSI.

For EO-PSI, the hash table parameters also affect the perfor-

mance. When the set size is fixed, if we increase the bin size, then

we have fewer bins to process, but the time for processing (i.e.

polynomial evaluation, blinding and factorization) each bin will

increase. To investigate the best trade-off between the number of

bins and their size, we ran experiments with different bin sizes.

The results are illustrated in Fig. 4. In the figure, the x-axis is the

bin size and the y-axis is the total running time. We range the

set size between 210 − 217 elements, and the number of bins are

calculated accordingly using inequality 2 so that the probability of

overloading is less than 2−40. In theory, we should see a (not so

sharp) “V” shape such that the running time decreases along with

decreasing bin size until some point where the running time starts

to increase when the bin size decreases. However, the results from

our experiment are not exactly as expected. In the figure, we can

see that for all the tested cases, there does exist a turning point

when the bin size is ∼ 120. Nevertheless, there is an unexpected

sharp increase in running time when the bin size is larger than

120.
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Fig. 4. The performance of EO-PSI with different bin sizes.

Since the running time of EO-PSI implementation is dom-

inated by polynomial factorization which is done by NTL, we

suspect that this increase is due to some unknown implementation

choices of the NTL library. To confirm this, we measured the time

for factorizing random polynomials with degree corresponding to

the bin size in NTL. The results are shown in Fig. 5. From the

figure, we can see also a sharp increase near bin size 120. Without

a further investigation, a safer choice of bin size would be 100,

which is a bit away from the sharp increase while the running

time is not much higher.

Fig. 5. Time taken to factorize random polynomials using NTL library.

9 CONCLUSIONS

Cloud computing is rapidly gaining in popularity among indi-

viduals and businesses, mainly due to the innovation it enables

and the opportunities it offers. With its importance increasing,

outsourcing datasets and computation to the cloud becomes an

appealing approach. Nevertheless, as the cloud cannot be fully

trusted the privacy of the outsourced data is a major concern

for clients. So, the need arises for protocols that can carry out

private set operations on outsourced private data without revealing

anything about the data and the computation results to the cloud.

In this paper, we presented two such protocols for private

set intersection, O-PSI and EO-PSI. The protocols let clients

independently prepare and outsource their private datasets to the
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TABLE 4
Protocols’ performance comparison: breakdown by step (time in seconds).

Steps Protocols 210 211 212 213 214 215 216 217 218 219 220

Data

Outsourcing

EO-PSI: 0.1 0.2 0.4 0.8 1.8 3.7 7.3 14.6 30.7 59.8 126.3

O-PSI: 0.2 1 4 16.2 124.2 301.4 – – – – –

[17]: 0.007 0.01 0.02 0.05 0.1 0.2 0.4 0.8 1.7 3.5 6.7

[20]: 117.3 229.2 458.4 915.3 1842.3 3679.9 – – – – –

Computation

Delegation

EO-PSI: 0.1 0.3 0.8 1.5 3.2 6.5 13 25.6 54.3 105.2 218

O-PSI: 02.4 4.8 9.6 19.2 73.9 86.1 – – – – –

[17]: 0.007 0.01 0.02 0.05 0.1 0.2 0.4 0.8 1.6 3.4 6.3

[20]: 0.089 0.089 0.089 0.089 0.089 0.089 – – – – –

Cloud-side

Computation

EO-PSI: 0.2 0.4 0.8 1.6 3.3 6.8 13.5 26.9 57.2 109.7 226.7

O-PSI: 2.9 7 18.5 54.9 336.1 697.4 – – – – –

[17]: 0.02 0.1 0.4 1.8 7.3 29.6 121.8 493.7 1953.8 7710.2 31173.3

[20]: 90.6 178.9 368.4 739.6 1468.7 2984.5 – – – – –

Result

Retrieval

EO-PSI: 5.7 11.8 23.2 45.7 92.8 187.5 381.8 773.3 1576.8 3164.2 6293.1

O-PSI: 20.6 86.8 418.1 2036.9 26685.3 56354.8 – – – – –

[17]: 0.0005 0.0006 0.0007 0.00078 0.0008 0.001 0.0015 0.002 0.003 0.006 0.008

[20]: 10.9 21.1 42.5 90.2 179.1 364.2 – – – – –

Total

EO-PSI: 6.2 12.8 25.2 49.8 101.2 204.6 415.8 840.6 1719.1 3438.9 6864.2

O-PSI: 23.9 95.2 441.2 2109.1 27148.8 57357.5 – – – – –

[17]: 00.03 0.1 0.4 1.9 7.5 30.1 122.6 495.4 1957.1 7717.3 31186.4

[20]: 218.9 429.3 869.3 1745.2 3490.1 7028.6 – – – – –

cloud. At any point later in time, they can ask the cloud to run PSI

on their private datasets. In this process, the cloud learns nothing

about the dataset elements, the intersection, and the intersection

cardinality. Furthermore, the protocols ensure that the cloud can

compute the intersection only when all the clients agree and the

clients can securely delegate PSI computation on the outsourced

datasets an unlimited number of times with no need to download

and re-prepare the datasets. These properties make the protocols

particularly suitable for a cloud computing setting, allowing clients

to fully benefit from the increased collaboration the cloud enables

and the cost-efficient resources it provides without sacrificing their

privacy.

Although both our protocols satisfy the properties outlined,

EO-PSI is much more efficient than O-PSI for two reasons. First, it

does not use any public key encryption, which is computationally

expensive, and second it lets clients retrieve the result faster

by utilizing a hash table. A performance study of prototype

implementations of the two protocols clearly demonstrates this.

Moreover, a comparison to the performance of other similar state-

of-the-art protocols also shows that EO-PSI scales well and is

faster than them for large set sizes.

We have shown that our protocols are secure in the presence of

semi-honest parties. Even though the semi-honest model is widely

used in the literature, we would have a stronger protocol if we

relax this assumption. Therefore, in the future, we would like to

improve EO-PSI so that it relies on a weaker assumption (e.g.

malicious cloud). Finally, we would like to design protocols that

support more delegated private set operations (e.g. set different,

set union).
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APPENDIX

We also implemented the outsourced PSI protocol in [18] in C++.

We use the Pairing-Based Cryptography Library 10 for the under-

lying bilinear pairing operation. We measured the running time

with sets whose cardinalities range from 24 = 16 to 27 = 128.

The performance figures can be found in Table 5.

As we can see in the table, the performance of this protocol

is much worse than the other protocols we considered in Section

8. There are several reasons for this: (1) the complexity of the

protocol is quadratic; (2) the protocol requires costly pairing-based

BGN homomorphic encryption [38]; (3) the protocol uses Bloom

10. https://crypto.stanford.edu/pbc/

TABLE 5
Running time (in seconds) of the protocol in [18]

Steps 24 25 26 27

Data Outsourcing 8.14 16.19 32.22 64.07

Computation Delegation 130.33 517.98 2066.56 8208.07

Cloud-side Computation 191.53 767.37 3046.90 11896.68

Result Retrieval 6.73 27.85 116.67 498.94

Total 336.72 1329.39 5262.35 20667.76

filters and the Sander Young Yung Technique [39] which together

add a large hidden constant factor to the asymptotic complexity

and impact significantly the performance.
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