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Abstract 

The cuticle is a unique invisible oviduct secretion that protects avian eggs from bacterial 

penetration through gas exchange pores. Despite its importance, experimental evidence is 

lacking for where, when and what is responsible for its deposition. By using knowledge about 

the ovulatory cycle and oviposition we have manipulated cuticle deposition to obtain 

evidence on these key points. Cuticle deposition was measured using staining and 

spectrophotometry. Experimental evidence supports the location of cuticle deposition to be 

the shell gland pouch (uterus), not the vagina, and the time of deposition to be within the 

final hour before oviposition. Oviposition induced by arginine vasotocin or prostaglandin, the 

penultimate and ultimate factors for the induction of oviposition, produces an egg with no 

cuticle; therefore these factors are not responsible for cuticle secretion. Conversely, 

oviposition induced by GNRH, which mimics the normal events of ovulation and oviposition, 

results in a normal cuticle. There is no evidence that cuticle deposition differs at the end of a 

clutch and, therefore, there is no evidence that the ovulatory surge of progesterone affects 

cuticle deposition. Overall the results demonstrate that the cuticle is a specific secretion and 

is not merely an extension of the organic matrix of the shell. Cuticle deposition was found to 

be reduced by an environmental stressor and there is no co-dependence of the deposition of 

pigment and cuticle. Defining the basic facts surrounding cuticle deposition will help reduce 

contamination of hen’s eggs and increase understanding of the strategies birds use to 

protect their eggs. 
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Introduction 

The cuticle is an invisible layer deposited on the outside of avian eggs [1], filling the gas 

exchange pores and preventing bacterial contamination [2, 3]. However, despite knowledge 

of its existence and its function for at least 130 years [4, 5], there remains confusion about its 

formation, its relationship with protoporphyrin pigmentation of eggs and indeed where it is 

formed; similar questions were posed 80 years ago [6].  

The cuticle can be found on eggs from many avian species [7], with its thickness greater on 

eggs laid in nests with a greater microbial challenge, particularly those of aquatic birds [7, 8]. 

The presence of cuticular mineralized nanospheres has been suggested to be correlated 

with the wetness and warmness of the nest [9]  and the   reports of eggs with no cuticle are 

from species such as Melopsittacus undulates (budgerigar), which are from drier 

environments and overall there is a relationship between damp environments and cuticle 

occurrence [9, 10]. Although separated, egg and feces exit through the avian cloaca, which 

along with dirty nest sites, provides opportunities for egg contamination [11]. Having an 

aqueous and antimicrobial barrier, such as the cuticle, would seem to be an appropriate 

evolutionary response to these challenges. We demonstrated that the quantity of cuticle was 

a heritable trait in chickens and, within its normal range of variation, had a significant effect 

on bacterial penetration of eggs [2]. Complete removal of the cuticle increases both particle 

and water penetration [12, 13]. A good cuticle will therefore inhibit vertical and horizontal 

transmission [14, 15] of bacteria that may threaten the viability of the developing embryo.  

The cuticle comprises proteins, which we [2] and others [16-18] have identified, in chickens, 

to be principally BPI fold containing family B member 3 BPIFB3 (ovocalyxin-36), kunitz-like 

protease inhibitor, matrix extracellular phosphoglycoprotein MEPE (ovocleidin-116), 

ovocleidin-17 OC-17, ovocalyxin 25, clusterin CLU  and retinoic acid receptor responder 1 

RARRES1 (ovocalyxin-32). These proteins are also major components of the organic matrix 

of the eggshell [19]. The cuticle contains polysaccharides related to the glycosylation of the 

proteins as well as lipids [6, 17, 20] indeed most of the proteins are thought to be heavily 

glycosylated [21].The antimicrobial activity of these proteins has been hypothesized [18, 22], 
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therefore it is likely that the cuticle acts both as a physical barrier and as a chemically active 

antimicrobial layer [16, 23]  

Where the cuticle is formed appears to be contentious. There are online articles on avian 

reproduction stating that it is formed in the vagina but proof seems limited for the assertions 

made. The vagina of birds is a muscular region where the egg spends a short time whilst it is 

ejected during oviposition [24] but it does contains secretory cells and appears to produce 

antimicrobial factors [25, 26]. The shell gland pouch or uterus, by contrast, is where the egg 

spends the majority of time during egg formation, while the egg shell matrix and the Ca++ 

and CO3
- ions for mineralization of the matrix are secreted [27]. The evidence is best for the 

formation of cuticle in the shell gland. It was reported that dermatan sulfate, a strongly 

sulfated acidic glycoprotein, is present in the epithelial and tubular glands of the shell gland 

in large amounts towards the end of shell formation [28], but was largely gone after 

oviposition. In quail a 32 kD protein, present both on the surface of the egg and in the 

ciliated cells of the luminal epithelium of the shell gland, accumulates towards the end of egg 

formation and was largely gone after oviposition (Rahman 2009). Although the correct size, 

RARRES1, which is known to be abundant in the outer layers of the shell, especially the 

cuticle [18], was not thought by Rahman to be the protein they observed. Unfortunately, 

none of these authors reported on the vagina, so it is not possible to rule it out as a source of 

the cuticle. However, a study where eggs were removed from the oviduct at different times 

during formation concluded that the cuticle was formed in the uterus [6]. 

Another unanswered question is when is the cuticle deposited? Logic might dictate that the 

cuticle is deposited towards the end of egg formation, as it covers the outside of the egg. 

The study of Fernandez [28], based on the disappearance of dermatan sulfate from the 

epithelia of the shell gland, was made 18 hours after the previous oviposition, however, it 

would be a further 6 hours until the egg in the shell gland was oviposited. Similarly 

Rahman’s (Rahman 2009) observations on a protein potentially involved in cuticle formation 

were made approximately 4 hours before the expected time of the next oviposition, so 

neither study narrowed down the time of cuticle deposition. Whilst it may be supposed that 
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the cuticle is a specific deposition, unrelated to that of the organic matrix of the eggshell, this 

has not been tested and the similarity of the proteins in the cuticle and in the matrix [2] do 

not preclude the possibility that the cuticle is in some way a continuation of the process of 

matrix secretion. Indeed this very question was posed in an early study [6].  

It is frequently stated that in chickens the cuticle is related to the deposition of, or contains to 

some extent, the egg shell pigment in brown eggs [29]. This is supported by observations 

[17, 30], but there was no evidence for a genetic correlation between the amount of pigment 

and the amount of cuticle on an egg [2].  

Finally, although we know that genetics contributes to variation in the amount of cuticle 

deposited on an egg [2], the influence of environmental factors on its variation has not been 

investigated. In an effort to answer the questions posed in the introduction and to move on 

from Hutt’s statement that ‘the cuticle is part of the shell concerning the formation of which 

little is known’ [31], we have undertaken a series of experiments, most of which utilize the 

events controlling the ovulatory cycle and subsequent oviposition, to understand the process 

of deposition of the cuticle.  

 

Materials and Methods 

Animals 

Throughout these experiments, commercial Lohmann Brown (Lohmann GB, Worcester, 

England) layer hens (Gallus gallus domesticus) were used, typically weighing 1.8Kg. They 

were reared on the floor, to peak-of-lay (22-28 weeks), following commercial management 

practice, except for the lighting, which was 14L:10D. After hens reached peak-of-lay they 

were transferred to cages on a 14L:10D lighting regime for experiments 1 and 2, or onto a 

28-hour ahemeral light/dark cycle (14L: 14D) for all other experiments (except experiment 8) 

to enable accurate synchronization of ovulation/oviposition times [32]. By maintaining hens 

on a 28-hr (14L:14D) cycle, the ovulatory surge and oviposition can be predicted with great 

accuracy, as pause days are eliminated, and there is no drift in oviposition time. On a 28-

hour light/dark cycle, ovulation and oviposition occurs 8 hours after dusk [33].  
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In experiment 8, comparing eggs oviposited by hens that did or did not experience a 

progesterone surge, hens were maintained in cages on 15L:9D. Hens ovulate and oviposit 

approximately once every 24 hours, but an ovarian follicle takes slightly longer than 24 hrs to 

mature [34]. Therefore, hens occasionally have a ‘pause day’, when no oviposition takes 

place because no ovulation occurred ~24hrs previously. This is because the follicle is not 

sufficiently mature to sustain the progesterone feedback required to propagate an ovulatory 

surge [35]. However, the egg that was in the shell gland when an ovulation did not occur is 

oviposited [36]. This offers a contrast between eggs which, when oviposited, had or had not 

experienced the milieu of an ovulatory progesterone surge whilst in the shell gland, which 

has been hypothesized as a factor influencing cuticle secretion and deposition [37].  

Administered substances 

A number of hormonal factors can induce premature ovulation and/or oviposition; this 

can be used to study cuticle formation by intervening in the neuroendocrine pathway 

between brain and ovary.  

An injection of chicken gonadotropin releasing hormone 1 (GNRH1) 10 hours before 

normal oviposition initiates a normal endocrine cascade of hormones including a 

progesterone surge [38, 39] which results in a premature ovulation and a subsequent 

ovposition which are temporally linked [40]. Prostaglandins released from the mature follicles 

during ovulation are believed to initiate the linked oviposition [40].  The administration of 

prostaglandin, which is most proximate to the stimulation of muscular contractions, leads 

almost immediately to oviposition [41, 42] but has no effect on ovulation. 

Arginine vasotocin (AVT) from the neurohypophysis initiates a premature oviposition 

by mimicking the final part of the endocrine cascade, resulting in oviposition, stimulating 

local release of prostaglandin which causes bearing down, uterine contraction and vaginal 

relaxation [43-45]. Indomethacin, a non-steroidal anti-inflammatory drug, blocks 

prostaglandin synthesis and is known to prevent the action of AVT on oviposition [46]. In the 

experiments described in this paper, therefore, the following substances were administered 

in different combinations: Indomethacin (I7378, Sigma-Aldrich Company Ltd., Dorset, 
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England) i.m. at a dose of 3.6x10-3 mol/kg body weight suspended in peanut oil (0.112 

mol/m3); AVT (ab-142562, Abcam, Cambridge, England) i.v. at 1.05x10-6 mol/kg body weight 

in PBS (initially dissolved in 25% v/v acetic acid to 4.76x10-6 mol/m3 then diluted  to 3.8x10-9 

mol/m3 with PBS for injection); chicken GNRHI (H-3106, Bachem, St. Helens, England) i.v. at 

a dose of 28.9x10-6 mol/kg body weight in PBS (17.3x10-6 mol/m3); the prostaglandin 

associated with events surrounding oviposition is PGF2α (16020, Cambridge Bioscience, 

Cambridge, England) and was given i.v. at a dose of 1.06x10-6 mol/kg body weight in PBS 

(33.8x10-9 mol/m3) [47]. Additionally tamoxifen (CAY-11629, Cambridge Bioscience, 

Cambridge, England) , which is an estrogen antagonist was administered at a dose 

designed to cause mild reduction in steroid tone and therefore oviduct mass and function 

[48]. We predicted this would cause a reduction in the quality of the cuticle and it was 

administered i.m. at a dose of 37x10-3 mol/kg body weight suspended in propylene glycol 

(40.4x10-6 mol/m3). 

Experimental protocols 

There are eight experiments described, to make these easier to follow there is a summary in 

table 1.  

To understand the external factors which influence the formation of the cuticle, we made 

subtle changes to the physiology of the laying hen to determine the effect of perturbation to 

oviduct trophic support on egg cuticle deposition: experiments 1 and 2, described below. 

Experiment 1: pen-to-cage transfer to perturb oviduct function. Moving hens between 

environments is a mild stressor which can cause significant regression of the oviduct within 4 

days of movement [49]. Hens were housed in 4 floor pens, 6 hens per pen (n=24), prior to 

commencement of lay. At peak of lay a pen of hens was transferred to cages in the same 

room on day 1, day 3, day 7 and day 10 (Batch 1-4). Eggs were collected from the floor-pen 

nest-boxes for two days prior to transfer (control) and from the cages for two days post 

transfer. A one way ANOVA was performed to analyze the data. The nuisance factor of 

batch was fitted in the model.  
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Experiment 2: administration of the oestrogen antagonist tamoxifen to perturb oviduct 

function. The hens described in Experiment 1 were acclimatized for two weeks in the 

individual cages. Each hen was treated on two successive days with tamoxifen or vehicle 

control (n=11 per treatment). After one week the reciprocal treatment was performed in a 

Latin square design, so hens acted as their own controls. Eggs were collected on the day 

prior to treatment (as a control) and on the day of treatment. Data were analyzed as a Latin 

square design ANOVA, with hen and occasion as row and column. The nuisance factor of 

batch was fitted in the model. 

A further set of experiments examined how inducing premature oviposition, by altering the 

timing of hormonal signals on hens kept on 28 hr ahemeral lighting cycles, influenced cuticle 

formation: experiments 3 to 5, described below. 

Experiment 3: administration of AVT and indomethacin to influence oviposition time. If 

prostaglandins are involved in the deposition of the cuticle, we would expect that 

manipulating prostaglandin levels would have an effect. Hens (n=24) were transferred to 

cages in rooms on 14L:14D cycles in four batches (6 hens per batch). Once hens were 

acclimatized to the cages, they were treated over 4 weeks, with each hen acting as its own 

control. Once per week each hen received one of the following treatments in a Latin square 

design: AVT only; indomethacin + AVT; indomethacin only; vehicle control. Indomethacin 

was administered 3 hours before the AVT injection, which, although at a lower efficiency 

than AVT alone, was reported to still induce oviposition, but without an increase in 

prostaglandin [43]. Vehicle injections were given in place of indomethacin and AVT, where 

appropriate. Eggs were collected on the day prior to treatment (as a control) and on the day 

of treatment 

Data were analysed as a Latin square design ANOVA, with hen and occasion as row and 

column. The nuisance factor of room was fitted in the model. The same analyses were used 

for experiment 4, 5, 6 and 7. 

Experiment 4: administration of AVT to induce premature oviposition at different times, in 

advance of a predicted oviposition. To establish when the cuticle is deposited relative to 
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oviposition, AVT was administered 5, 3 and 1 hours prior to the predicted oviposition on a 28 

hour ahemeral light cycle. Hens (n=12) were housed in 3 rooms and assigned treatments in 

a Latin square design over 3 weeks, each hen receiving all treatments over successive 

weeks. Eggs were collected on the day prior to treatment (as a control) and on the day of 

treatment.  

Experiment 5: administration of GNRH1 and AVT to induce premature oviposition. GNRH1 

was used to induce a premature oviposition; AVT was administered to result in an 

oviposition that would match the premature GNRH1 induced oviposition. This allowed a 

comparison of cuticles from eggs oviposited at the same time, 4-4.5 hours premature, but 

which had experienced a different endocrine milieu before oviposition. Each hen (n=12) 

received GNRH1, AVT or vehicle control in a Latin square design with each hen acting as its 

own control. Eggs were collected the day prior to (as a control) and the day of treatment.  

The previous series of experiments was designed to evaluate the effects of oviposition time 

and changes to that induced by GNRH1 and AVT on cuticle deposition on eggs. In the 

following experiment we wanted to investigate a factor, not directly tested in the previous 

experiments, that was a candidate for inducing cuticle deposition, prostaglandin [42]. Our 

aim was to test if PGF2α was directly involved in the secretion and deposition of the cuticle 

on eggs. 

Experiment 6: the effect of administration of prostaglandin on cuticle deposition. AVT or 

PGF2α were given 2 hours prior to expected oviposition. Hens (n=16) were treated on two 

separate weeks in a Latin square design. Eggs were collected on the day prior to treatment 

(as a control) and on the day of treatment.  

Nicarbazin has been used since the 1950’s for the prevention and control of coccidiosis 

caused by Eimeria spp. in poultry [50]. A known side effect is the rapid depigmentation of 

eggs in brown egg layers [50] probably through the inhibition of expression of the rate 

limiting step in protopophyrin production, 5-Aminolevulinate Synthase (ALAS1) [51]. In the 

following experiment, we used this effect to investigate whether the amount of pigment 

(color) and cuticle on the egg surface are linked. 
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Experiment 7: the effect of the depigmentation of eggs by nicarbazin on cuticle deposition. 

Hens (n=12) were kept in cages in two rooms for two weeks before the start of treatments to 

allow acclimatization and to gather base-line data. All eggs were collected. The diet was 

changed to contain 2.35x10-4 mol /kg of nicarbazin (N3905, Scientific Laboratory supplies, 

Newhouse, Scotland) (n=6) or continued with no nicarbazin control (n=6), balanced across 

rooms. Eggs were collected for seven days; the treatments were then reversed, with egg 

collection for a further seven days. Eggs from the 7th day of each treatment were measured 

for comparison.  

In the final experiment, we utilized the hens ‘pause day’, when no oviposition takes place, to 

enable comparison of eggs that, when oviposited, had or had not experienced the milieu of a 

progesterone ovulatory surge whilst in the shell gland. 

Experiment 8: the effect of a pause day on cuticle deposition. By careful monitoring of an 

individually housed flock of hens over 3 days, it was possible to characterize 21 hens 

experiencing a pause day. Eggs oviposited on the day prior to the pause day were 

compared with eggs from the same hen oviposited on the preceding day. Essentially, we 

chose hens which had not oviposited on the 3rd day, assuming that the egg previous to that 

had been oviposited on a day with no ovulation. By using a flock that was at the end of 

production (~70 weeks of age) we were able to confirm our assumption by killing the hen 

and checking for an absence of internal ovulation and a full ovarian hierarchy of follicles. The 

egg from before the pause day and the one prior to that was measured for cuticle coverage. 

The hypothesis proposed that we should have a poorer cuticle on eggs oviposited 

immediately prior to a pause day as there was no progesterone surge. A paired ‘t’ test was 

used to analyze if there was any difference between the two eggs from the same hen.  

 

Data analysis and presentation.  

All analyses in the paper with the exception of the immunohistochemistry were performed 

using Genstat (13th edition, VSN International Ltd, Hemel Hempstead, England). Details of 
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analysis for each experiment have been  given in the relevant experimental methods. 

Sample sizes were derived from initial power calculations based on observations of variance 

from previous measurements of the cuticle and projected treatment effects.  This was 

subsequently revised down in light of the size of the effects observed. Animals were 

assigned to experimental treatments, within rooms where appropriate, by ranking and 

randomization on body weight. 

Data from experiment 1 and 8 is presented as mean and standard error of the mean±s.e.m. 

of the observed data from eggs in the treatment or observed groups. Data from experiment 

2-7 is presented as mean±s.e.m. of the difference between the egg before and the egg after 

treatment from the same hen. 

 

Shell cuticle and pigment measurement 

Cuticle and pigment were measured spectrophotometrically, essentially as described 

previously [2]. Briefly, reflectance at 640 nm was measured in situ on the egg shell using a 

USB4000-VIS-NIR spectrometer coupled to an ISP-REF integrating sphere and data 

collected using Oceanview spectroscopy software (Ocean Optics, Oxford, England). The 

measured reflectance values were converted to absorbance, which is linearly related to the 

concentration of the absorbing species. This initial measurement gave a value attributable to 

protoporphyrin IX pigment. Eggs were then stained with a cuticle-specific dye, which shows 

no staining when the cuticle is removed and has been used previously [13, 52]. The dye 

consists of Tartrazine/Lissamine green B (Sigma-Aldrich, Poole, Dorset, England), eggs are 

dipped for 30 seconds then rinsed in H2O and  dried. Stained eggs were measured again, as 

above, and the difference between the pre-stain and post-stain absorbance at 640 nm gave 

a measure of the cuticle deposition. Using these spectrometric measurements, the following 

values were calculated for the appropriate experiments. 
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 Abs @ 640 nm (pigment): measurement of absorbance at 640 nm on the unstained egg. 

This value is directly related to the intensity of the pigmentation, or in other words the 

brownness of the egg. 

ΔAbs @640 nm (Δ pigment): difference in absorbance at 640 nm of unstained eggs from the 

same hen before and after the hen was treated. This indicates the effect of the treatment on 

the amount of pigment (brownness). 

Cuticle ΔAbs @640 nm: difference in absorbance at 640 nm between the unstained egg and 

the same egg stained with cuticle dye. This is the absorbance attributable to the dye bound 

to the cuticle and therefore is indicative of amount of cuticle deposition.  

Cuticle ΔΔAbs @640 nm: difference between Cuticle ΔAbs @640 nm values for an egg 

before and after treatment of the hen. This indicates the effect of treatment on the amount of 

cuticle deposited. 

Measurement of other egg parameters 

Standard measurements of egg parameters were also made in some experiments such as 

weight, and particularly shell thickness on shells without membrane, using a digital 

micrometer, model 705-1279, with a spherical anvil to account for shell curvature (RS 

Components Ltd, Corby, England). These were used to calculate before and after treatment 

the hen received; Δ egg weight (g), and Δ shell thickness (µm). 

Immuno-histochemistry 

Tissue samples for immunocytochemistry were collected using the same paradigm as 

experiment 4, except hens were euthanized immediately after the premature oviposition 

induced by GNRH1 or AVT. This mimicked, respectively, the whole or the final stages of the 

endocrine cascade leading to oviposition. Tissue samples from the shell gland pouch (SGP) 

and vagina were immediately fixed in 10% buffered neutral formalin for 24 h. 

Immunocytochemistry for RARRES1 (commonly known as Ovocalyxin 32) used an antibody 

previously characterized using the protocol described previously [18]. We knew from 

previous proteomic experiments and from immunohistochemistry that RARRES1 was a 

major component of the cuticle [2, 18, 53].  
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Differences to the previous protocol were that rabbit anti-RARRES1 antiserum at 1:50,000 

was used in conjunction with a goat anti-rabbit biotinylated second antibody (E0432, DAKO) 

as per the manufacturer’s instructions. Binding was with a VECTASTAIN Elite ABC-HRP 

reagent (Vector Laboratories, Peterborough, England) followed by color development with 

3,3_-diaminobenzidine tetrahydrochloride chromogenic substrate (K3468, Liquid DAB+ kit, 

DAKO Denmark A/S, Glostrup, Denmark). Brown staining indicated a positive result for 

RARRES1. Controls were performed with no primary antibody or with normal rabbit serum 

substituted for the primary antibody. ImageJ software was used to analyze four images per 

ICC section by first defining a region of interest (ROI), splitting the color channels, making 

the ROI binary, and then measuring the percentage of ‘black’ which corresponded to the ICC 

positively stained regions. The ROI in each case incorporated as many whole epithelial cells 

as possible on a single image. The % mean area of uterus or vaginal tissue staining positive 

for RARRES1 were compared using ANOVA (Minitab version 17, Coventry, England).  

 

Ethical statement: experiments were carried out under the Animals (Scientific Procedures) 

Act 1986, project license 70/7909 and individual experiments were approved by the institute 

ethics committee. 

 

Results 

Experiment 1: pen-to-cage transfer to perturb oviduct function. 

Pen-to-cage transfer resulted in a reduction in the amount of cuticle (Cuticle ΔAbs @640 

nm) on eggs laid after the transfer (Table 2). There was no effect of the transfer of hens from 

pens to cages on pigment or on any other measured egg parameter. 

 

Experiment 2, administration of the estrogen-antagonist, tamoxifen, to perturb oviduct 

function.  

Tamoxifen, administered to cause a mild reduction in steroid tone, had a small effect on the 

deposition of cuticle on the egg compared to the control (Table 3). Tamoxifen administration 
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resulted in a small reduction in the amount of pigment on the treated hens’ eggs (ΔAbs 

@640 nm), but this did not reach significance (Table 3). The change in cuticle deposition 

due to the treatment (ΔAbs @640 nm) was very small, compared to the changes observed in 

other experiments in this study and, in fact, the amount of cuticle was reduced after 

treatment in the control but was unaffected in tamoxifen-treated hens (Table 3). The 

experimental procedure itself appeared to have an effect on the cuticle, in the control 

injection group there was a reduction in cuticle deposition when comparing before and after 

treatment by a paired t-test (Abs @640 nm 0.54±0.01 before v 0.48±0.01 after injection; 

P=0.004; n=22). However, this is small in comparison with differences reported elsewhere in 

this paper. 

 

Experiment 3: administration of AVT and indomethacin to influence oviposition time.  

As expected, the median time of oviposition after AVT injection was short, 30 minutes, 

compared to the median time of oviposition after control injections of 468 minutes. Injecting 

indomethacin prior to AVT injection blocked the advancement to some extent, the median 

time of oviposition after AVT injection being 168 minutes, although this was very variable. 

Injecting indomethacin alone had no effect on the median time of oviposition. The median 

time of oviposition after a control injection, with a prior injection of indomethacin, was 480 

minutes compared to the median time of oviposition after control injections alone of 468 

minutes. The predicted time of oviposition on the 28-hr cycle, had no injections taken place, 

was 8 hrs after dusk and, therefore, at 450 mins after the injection time. The eggs produced 

after AVT injections were approximately 21 hours after their ovulation and 7 hours prior to 

their expected oviposition. 

Eggs prematurely oviposited after the injection of hens with AVT alone, or in combination 

with indomethacin, had a significant reduction in cuticle deposition (Fig. 1A), pigment (Fig. 

1B) and shell thickness (Fig. 1C), when compared with eggs from the control hens. 

Indomethacin on its own had no apparent effect on the cuticle, or pigment and only a minor 

effect on shell thickness.  
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Experiment 4: administration of AVT to induce premature oviposition at different times in 

advance of a predicted oviposition.  

In experiment 3, AVT was administered 7 hours prior to the expected natural oviposition 

time. In this experiment AVT was administered progressively closer to the expected time of 

oviposition, to understand when cuticle and pigment are deposited on the egg. As shown in 

Fig. 2A, injections as close as 1 hour prior (-1 hr) to the expected oviposition time resulted in 

a level of reduction in cuticle deposition that was indistinguishable from that observed after 

an injection 5 hours prior (-5 hr) to the expected oviposition; however, the change was less 

than at 3 hours prior (-3 hr) to oviposition. When the cuticle deposition after the injection of 

AVT at -1 hr was compared with that of a normal egg oviposited the day before treatment, 

rather than the effect of treatment, using a paired ‘t’ test, it was found to be significantly less 

(0.10±0.03 and 0.25±0.01, respectively, P=0.003). In the case of the deposition of pigment 

(Fig. 2B), although there is a reduction of pigment at -1 hr, this is much smaller and 

significantly different from the reduction observed after AVT injection at -3 hr or -5 hr. As 

shown in Fig. 2C, the shell is progressively thinner, the earlier the injection was administered 

before the expected oviposition time. However, there was no observable difference in 

thickness between an egg from the same hen oviposited at -1 hr, compared with a normal 

egg oviposited the day before treatment using a paired ‘t’ test (0.397±0.011 and 0.405±0.007 

mm respectively, P=0.34).  

 

Experiment 5: administration of GNRH1 or AVT to induce premature oviposition.  

The median time-of-lay in the control group was as predicted, whilst the AVT- or GNRH1- 

injected hens oviposited 4.5 or 4 hours, respectively, prior to the predicted oviposition time. 

With the exception of the thickness of the shell, which was reduced (Fig. 3C), the deposition 

of cuticle and the deposition of pigment was the same in eggs prematurely oviposited by 

GNRH1 injection, when compared to the control injection (Fig. 3A, B). In contrast, the 

injection of AVT, which resulted in a premature oviposition in the same time period as the 
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GNRH1-induced oviposition, resulted in significantly reduced cuticle and pigment deposition 

in comparison to the control or GNRH1 groups (Fig. 3A, B). The analysis of variance did not 

suggest that the effect on shell thickness differed significantly across treatments; although 

there is a decrease in thickness with the GNRH1-induced oviposition, this is relatively 

modest compared to other experiments. 

 

Experiment 6: the effect of administration of prostaglandin on cuticle deposition.  

In this experiment we directly tested if prostaglandins, which lie downstream of AVT, are 

involved in cuticle deposition, by comparing their effect with that of AVT. Prostaglandin had 

the same effect on cuticle deposition as AVT, producing a similar reduction in absorbance 

(Cuticle ΔΔAbs @640 nm, = -0.17± 0.04 versus -0.12±0.05, P=0.53), which was also true for 

the deposition of pigment (ΔAbs @640 nm (Δ pigment) = -0.08±0.02 versus -0.08±0.02, 

P=0.615) and shell thickness (Δ Shell Thickness (mm) = -0.027±0.012 versus -0.008±0.005, 

P=0.4). 

 

Experiment 7: the effect of the depigmentation of eggs by nicarbazin on cuticle deposition.  

The addition of nicarbazin to the diet induced a relatively rapid loss of pigment. Seven days 

after administration, the Abs @640 nm (pigment) value had reduced by over 60%, from 0.40 

to 0.14 (Fig. 4B). This was accompanied by ~40% increase in the amount of cuticle 

measured on the same eggs (Fig. 4A). As expected, there was no effect on shell thickness 

(Fig. 4C). 

 

Experiment 8: the effect of a pause-day on cuticle deposition. 

There was no difference between the pigment or cuticle deposition of eggs oviposited on a 

pause-day, when an ovulation was missed, and those eggs oviposited the preceding day, 

when an ovulation occurred, when tested using a paired ‘t’ test (before a pause day Abs 

@640 nm (pigment) = 0.29±0.01 versus 0.28±0.01 on a pause-day, P=0.28; Cuticle abs 

@640 nm before a pause-day, 0.31±0.02 versus 0.29±0.02 on a pause-day, P=0.47).  
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Experiment 9: immunocytochemistry on shell-gland pouch and vagina tissues, after 

premature oviposition induced by the administration of GNRH1 or AVT. 

With hematoxylin and eosin (H&E), red-staining granules were observed in the ciliated 

epithelia cells of the SGP of AVT-injected bird (arrows in Fig. 5A). The red-staining granules 

were less abundant in the ciliated epithelial cells of the SGP of GNRH1 injected birds (Fig. 

5B) and were absent in the epithelium lining the vagina in both the AVT  (Fig. 5C) and 

GNRH1 injected birds. Abundant positive staining was observed for RARRES1 

immunocytochemistry in the ciliated epithelial cells of the SGP of AVT-injected birds (Fig. 

5D). Relatively sparse positive staining for RARRES1 was observed in the SGP of GNRH1-

injected birds (Fig. 5E). Quantification using ImageJ indicated that the % area of epithelium 

containing RARRES1 positive-staining granules was significantly greater in the SGP from 

hens after a premature oviposition had been induced by AVT, where no cuticle was 

deposited, than in tissues from hens where a premature oviposition had been induced by 

GNRH1, where a normal cuticle was deposited (22.7±1.7% v 16.0±1.8%; P=0.016, 

n=10/11). There was no specific staining for RARRES1 in the vaginal tissue derived from 

AVT-injected (Fig. 5F) or GNRH1-injected birds. There was no staining in the uterus of AVT-

injected birds where the primary antibody was omitted (Insert in Fig. 5C). 

Discussion 

We have demonstrated for the first time that the cuticle on an egg is susceptible to the 

effects of a mild environmental stressor which we know causes temporary inhibition of the 

reproductive axis and an increase in circulating corticosteroids [49]. However, the attempt to 

transiently reduce estrogenic tone by pharmaceutical means appeared to very slightly 

improve cuticle deposition in comparison with the control. This might be due to the partial 

agonist activity of tamoxifen [54] although its effect in chicks at the dose we used was 

reported as a pure antagonist [55]. We have demonstrated that the normal endocrine events, 

that are required for the ovulation of an ovum and its ultimate oviposition as a shelled egg, 
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are necessary for the deposition of the cuticle, even if that egg is oviposited prematurely. 

However, causing premature oviposition using either AVT or PGF2α, which mimics only the 

final steps of the endocrine and paracrine events that result in oviposition, results in the 

absence of cuticle. Even if AVT is administered very close to the expected time of 

oviposition, the evidence for the deposition of cuticle is slight. This leads to two inferences: 

firstly, that deposition of cuticle on the egg occurs very close to the time of oviposition; and, 

secondly, that the cuticle is not contiguous with the organic matrix of the eggshell, but is a 

specific secretion which is spatially and temporally distinct from other events in the egg-shell 

formation. While we have not ruled out a role for progesterone in cuticle deposition, it would 

appear that the existence of a pre-ovulatory surge of progesterone, while an egg is in the 

shell gland, has no effect on cuticle deposition or pigmentation, as witnessed by the 

similarity between eggs from the same hen that experienced both events. We have shown 

that although pigment deposition and cuticle deposition are temporally close, the pigment is 

deposited earlier, since it is almost complete an hour before the expected oviposition, which 

is not the case for the cuticle.  

There exists some confusion in sources of information as to where the cuticle is formed. We 

can say with some confidence that the cuticle is deposited in the shell gland and not the 

vagina. The absence of granules which stain positive for RARRES1, one of the most 

abundant cuticle proteins [2, 18, 53]in the vaginal epithelium of hens that laid eggs with, or 

without, cuticle supports the conclusion that the cuticle is not deposited in the vagina. This 

agrees with Romankewitsch’s observation [6] that eggs recovered from the shell gland just 

before oviposition had cuticle coverage. So although the vagina produces antimicrobial 

secretions [25, 26] these are likely to be protective of the reproductive tract rather than the 

egg. 

The observation that the cuticle is susceptible to the effect of a mild stressor has not been 

reported previously to our knowledge. It is known that stress around the time of oviposition 

can cause egg retention and surface deposition of calcium on eggs, so an effect on the 

cuticle may be have a similar etiology [56, 57]. The impetus to find markers of stress which 



19 

 

are non-invasive is a recurring topic in welfare research and has included measurements of 

hormones, typically in feces or eggs, and measurements of egg abnormalities or color, which 

has had some success [58, 59], but often the correlation is not perfect [60]. It is known that 

injections of adrenaline cause changes in the eggs subsequently oviposited [61], so the 

possibility that cuticle deposition is a sensitive integrated indicator of environmental stress 

warrants future examination. 

It is clear that a premature oviposition induced with AVT or PGF2α results in an egg that 

lacks a cuticle, whereas if evoked by GNRH1 to be oviposited at the same time, the cuticle is 

normal. Therefore, it is not a matter of time per se after ovulation. There must instead be an 

event which is evoked by GNRH1, and which is not evoked by prostaglandin or AVT, that 

one would conclude was responsible for the deposition of the cuticle. It can also be 

concluded that AVT or PGF2α can be ruled out as factors which stimulate the deposition of 

the cuticle, despite their credentials in stimulating the muscular events leading to oviposition 

[44]. The most obvious factor that we have not fully tested in this series of experiments is 

progesterone which has been postulated as a factor controlling cuticle deposition [37]. 

Experiment 8, investigating the pause- day hypothesis, indicated that eggs formed in the 

presence or absence of an ovulatory progesterone surge were identical for pigment and 

cuticle deposition. In many respects, it would make no evolutionary sense for eggs to be 

dependent on the ovulatory surge of progesterone for their protection. If this were the case, 

the final egg in any clutch would lack protection. The post ovulatory follicle (POF), in 

chickens does contain significant amounts of progesterone [62] and probably represents an 

important source of circulating progesterone at the end of a clutch. It is conceivable that the 

duration of progesterone secretion or some other factor, as yet unidentified, from the POF is 

important. The simple presence of the POF is unlikely to be sufficient, since the outcomes of 

GNRH1 and AVT-induction are different. A signal associated with the normal endocrine 

cascade of ovulation and oviposition seems likely to be the key, but it does not appear to be 

related to the final action of AVT or prostaglandin. A possible hypothesis for the deposition of 

the cuticle is that a combination of the action of substances from the POF, combined with 
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factors that act at the time of oviposition interact to induce deposition of the cuticle. Potential 

proximal factors may be the products of the sympathetic [63, 64] and para-sympathetic 

nervous system [65]. The uterus is well innervated by these systems [66] and they do have a 

role in oviposition. 

It is clear that the cuticle is deposited just prior to oviposition. We have demonstrated that 

the termination of shell formation occurs before the deposition of the cuticle, which strongly 

suggests that, despite having similar constituents to the organic matrix of the shell [2], cuticle 

deposition is not simply an extension of shell production, but appears to be a specific event. 

There is also the question of the relationship between cuticle and pigment. It has been 

reported that the majority of the pigment is located in the outer calcified layers, with only 13-

20% found in the cuticle [30], although it is commonly stated that the pigment is associated 

with the cuticle[29]. In the present studies, we find no direct correlation between deposition 

of pigment and cuticle, indeed there seems to be an increase in the amount of cuticle when 

the deposition of pigment is inhibited. Thus, as indicated by our previous genetic studies [2], 

there is no strict dependency of one event on the other. That is not to say there is no 

pigment in the cuticle, but rather there is no connection between the genes controlling each 

trait, and that the deposition of pigment is not dependent on the presence of an intact cuticle.  

In conclusion, the cuticle is clearly deposited in the shell gland pouch (uterus) and not the 

vagina. It is susceptible to environmental stressors and requires the normal endocrine 

cascade leading to oviposition for deposition. However, premature oviposition induced by 

AVT, one of the final endocrine events prior to oviposition, even close to the expected time 

of oviposition does not result in the deposition of cuticle. This means the deposition of cuticle 

is a specific event and occurs just prior to oviposition. The cuticle is, therefore, not related 

directly to the organic matrix of the eggshell. The cuticle deposition is distinct from other 

events in egg shell formation and although it may overlap with pigment deposition it is not 

directly related to it. We have eliminated factors that might induce the deposition of the 

cuticle, but more work is needed to determine what does induce its release. We have made, 

however, significant progress in understanding basic facts about its elaboration; this will give 
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a sound basis for future studies and the development of measures to ensure that its 

expression can be maximized, to reduce vertical transmission of microorganisms and reduce 

contamination of eggs. 
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Figure 1. The effect of treatment with 1.05x10-6 mol/kg of AVT i.v. 7 hours (AVT), 

3.6x10-3 mol/kg indomethacin i.m. 10 hours (INDO), their combination (INDO/AVT) or 

control injections (CON) prior to the time of an expected oviposition on (A) cuticle 

deposition, (B) pigment and (C) shell thickness of eggs. All hens received each 

treatment and the data presented is mean±s.e.m. and was analyzed as a Latin 

square design ANOVA (n=24,). The experiment was carried out with 4 batches of 6 

hens.   
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Figure 2. The effect of the timing (-1, -3 or -5 hours) of a 1.05x10-6 mol/kg of AVT i.v. 

injection prior to the time of an expected oviposition on (A) cuticle deposition, (B) 

pigment and (C) shell thickness of eggs. All hens received each treatment and the 

data presented is mean±s.e.m. and was analyzed as a Latin square design ANOVA 

(n=12).  The experiment was carried out using 3 rooms of 4 hens. Columns with 

different letters are different at P<0.05 using least significant difference. 
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Figure 3. The effect of inducing a premature oviposition using 28.9x10-6 mol/kg 

GNRH1 i.v.(GNRH1) or 1.05x10-6 mol/kg AVT i.v. injection (AVT) or a control 
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injection (Control) on (A) cuticle deposition, (B) pigment and (C) shell thickness of 

eggs. The treated hen’s eggs were laid 4-4.5 hours prior to the time of an expected 

oviposition. All hens received each treatment and the data presented is mean±s.e.m. 

and was analyzed as a Latin square design ANOVA (n=12). The experiment was 

carried out using 3 rooms of 4 hens. Columns with different letters are different at 

P<0.05 using least significant difference. 
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Figure 4. The effect of treating hens with or without 2.35x10-4 mol /kg nicarbazin in 

the feed on (A) cuticle deposition, (B) pigment and (C) shell thickness of eggs. The 

data shown represents the direct measurement of each trait. All hens received each 

treatment and the data presented is mean±s.e.m. and was analyzed as a Latin 
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square design ANOVA (n=12). The experiment was carried out using 2 rooms of 6 

hens. 

 

 

Figure 5. Representative images of H&E (A, B) and RARRES1 immunocytochemical 

staining (D, E,) of the shell gland pouch from hens sampled after a premature 

oviposition was induced by injection of 28.9x10-6 mol/kg GNRH1 i.v. (B, E) or 

1.05x10-6 mol/kg AVT i.v. (A, D). H&E (C) and RARRES1 immunocytochemical 

staining (F) of vagina from hens where a premature oviposition was induced by 

injection of AVT. The insert in panel (D) is the SGP of an AVT-injected hen where 

the primary antibody has been omitted (negative control). Red-staining granules 

(arrows) were observed in the ciliated epithelia cells of the SGP of AVT-injected 

hens (A). These were less abundant in the ciliated epithelial cells of the SGP of 
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GNRH1-injected hens (B) and were absent in the epithelium lining the vagina. 

RARRES1 positive staining was more abundant in the ciliated epithelia cells of the 

SGP of AVT-injected hens (D) and less abundant in the ciliated epithelial cells of the 

SGP of GNRH1-injected hens (E) and were absent in the epithelium lining the vagina 

(F). Scale bar = 50µm  
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Table 1. Summary of experiments, hypothesis tested and variables manipulated. 

Experiment title  
 

Hypothesis tested Variable manipulated or 
substance administered 
 

1: pen-to-cage transfer to 
perturb oviduct function. 

That stress would reduce cuticle 
deposition. 
 

Pen to cage transfer 

2: administration of the 
estrogen-antagonist, 
tamoxifen, to perturb oviduct 
function. 
 

That a reduction in steroid tone 
would reduce cuticle deposition. 

Tamoxifen i.m. administration 

3: administration of AVT and 
indomethacin to influence 
oviposition time.  
 

That premature oviposition 
mediated by prostaglandin 
would result in an egg with 
normal cuticle. 
 

AVT i.v.  and indomethacin 
i.m. administration 3hrs before 
an expected oviposition. 

4: administration of AVT to 
induce premature oviposition 
at different times in advance of 
a predicted oviposition.  
 

That cuticle deposition occurred 
immediately prior to oviposition. 

AVT i.v. administration at 1, 3 
and 5 hrs before an expected 
oviposition. 

5: administration of GNRH1 or 
AVT to induce premature 
oviposition. 

That cuticle deposition after a 
premature oviposition following 
a premature ovulation would 
differ from a premature 
oviposition unaccompanied by a 
premature ovulation. 
 

AVT or GnRH i.v. 
administration 4 and 10 hrs 
before an expected 
oviposition respectively. 

6: the effect of administration 
of prostaglandin on cuticle 
deposition.  

That premature oviposition 
induced by AVT and 
prostaglandin  would be 
identical. 
 

AVT and prostaglandin i.v. 
administration 2 hrs before an 
expected oviposition. 

7: the effect of the 
depigmentation of eggs by 
nicarbazin on cuticle 
deposition.  

That inhibition of pigment 
deposition would have no 
correlated effect on cuticle 
deposition. 
 

Nicarbazin in feed 
administration.  

8: the effect of a pause-day on 
cuticle deposition. 

That the absence of a 
preovulatory progesterone surge 
would reduce cuticle deposition. 

Examination of eggs from 
hens experiencing a day with 
no ovulation. 
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Table 2. Effect of pen to cage transfer on cuticle deposition, pigment deposition, egg weight 

and shape (n=24).  

 

Egg Parameter Before transfer
1
 After transfer

1
  ANOVA 

 ± s.e.m.    ± s.e.m. p-value 

Cuticle ΔAbs @640 nm 0.529±0.018 0.465±0.017 0.01 

 Abs @640 nm (pigment) 0.376±0.006 0.384±0.007 0.429 

Egg Weight (g)  59.0±0.7 59.3±0.8 0.832 

Egg Length (mm) 55.8±0.3 56.4±0.3 0.176 

Egg Width (mm) 43.1±0.2 43.5±0.2 0.183 

 

1
In this experiment values are shown as the mean± s.e.m. of measurements derived from 2 eggs 

before and 2 eggs after transfer.  
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Table 3. Effect of tamoxifen administration on cuticle deposition, pigment deposition and egg 

weight (n=22). 

  Control Tamoxifen p-value 

Cuticle ΔΔAbs@640 nm -0.059 ± 0.018 0.003 ± 0.018 0.046 

 ΔAbs @640 nm (Δ pigment) 0.008 ± 0.008 -0.021 ± 0.009 0.058 

Egg Weight Δ (g) -1.09 ± 0.36 -0.05 ± 0.49 0.053 

 

  


