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SUMMARY 21 

Group 2 innate lymphoid cells (ILC2s) play crucial roles in type 2 immune responses 22 

associated with allergic and autoimmune diseases, viral and helminth infections and tissue 23 

homeostasis. Experimental models show that in helminth infections ILC2s provide an early 24 

source of type 2 cytokines and therefore are essential for the induction of potentially 25 

protective type 2 responses. Much of our knowledge of ILC2s in helminth infections has 26 

come from experimental mouse models with very few studies analysing ILC2s in natural 27 

human infections. 28 

In attempts to harness knowledge from paradigms of the development of protective 29 

immunity in human helminth infections for vaccine development, the role of ILC2 cells could 30 

be pivotal. So far, potential vaccines against human helminth infections have failed to 31 

provide effective protection when evaluated in human studies. In addition to appropriate 32 

antigen selection, it is apparent that more detailed knowledge on mechanisms of induction 33 

and maintenance of protective immune responses is required. Therefore, there is need to 34 

understand how ILC2 cells induce type 2 responses and subsequently support the 35 

development of a protective immune response in the context of immunizations. Within this 36 

review, we summarize the current knowledge of the biology of ILC2s, discuss the importance 37 

of ILC2s in human helminth infections and explore how ILC2 responses could be boosted to 38 

efficiently induce protective immunity.     39 
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INTRODUCTION: 40 

 41 

Group 2 Innate lymphoid cells (ILC2s) were originally identified in experimental mouse 42 

models of helminth infections. Several studies published in 2010 utilized reporter mouse 43 

strains marking either interleukin (IL-)13 [1] or IL-4 [2] producing cells to identify a cell type, 44 

which did not express classical lineage markers of T, B, NK, myeloid or dendritic cells [2]. 45 

These lineage-negative innate lymphocytes produced classical T helper-type 2 (TH2) 46 

cytokines in response to IL-25 and IL-33. In mice infected with the murine helminth parasite 47 

Nippostrongylus brasiliensis, these cells acted as an early source of IL-13 and were essential 48 

for timely worm expulsion [1, 2]. These innate cells, later designated as ILC2s [3], are now 49 

well characterised and their importance in mediating pathology in asthmatic and allergic 50 

diseases as well as in viral infections has been described (reviewed in [4-7]). Subsequently 51 

further innate lymphoid cells were described mirroring the different adaptive CD4+ T cells; 52 

group 1 Innate lymphoid cells (ILC1s) are the innate counterparts of TH1 CD4+ T cells, ILC2s 53 

are the counterpart of TH2 CD4+ T cells and group 3 innate lymphoid cells (ILC3s) mirror TH17 54 

and TH22 (reviewed in [8]). In contrast to T helper CD4+ T cells, and despite the fact that they 55 

are of lymphoid origin, ILCs do not express T cell receptors and lack any antigen specificity. 56 

The discovery of innate lymphoid cells has introduced a new immunological field and 57 

transformed our understanding of innate immune responses and the generation of the 58 

adaptive immune system.  59 

 60 

Experimental studies have demonstrated that ILC2 cells are involved in tissue repair and 61 

homeostasis [9] (reviewed in [10]) which is an important consideration for tissue dwelling 62 

helminth. In addition, the involvement in parasite expulsion in intestinal helminths makes 63 

these cells important in immune protection against helminth infection and pathology. In one 64 

of only two studies of ILC2s in natural human helminth infection, we have shown that ILC2 65 

cells are diminished in schistosome infected children and are restored to levels observed in 66 

children who are exposed to infection but remain uninfected following curative 67 

antihelminthic treatment [11].   68 

Within this review, we will discuss the current knowledge of the biology, function and 69 

regulation of ILC2s, their ‘potential’ importance in human helminth infections and 70 

possibilities of utilizing ILC2 to boost protective immune response induced following 71 

treatment and vaccination. This knowledge could inform helminth control efforts as calls for 72 
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helminth vaccine development escalate in light of global mandates such as ‘Sustainable 73 

Development Goal 3’ advocating for eradication or elimination of helminth infection.  74 
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THE BIOLOGY OF GROUP 2 INNATE LYMPHOID CELLS 75 

In mice, ILC2s were originally identified as a type 2 cytokine expressing cell subset, which 76 

could not be classified by conventional lineage markers for T cells, B cells, NK cells, 77 

macrophages, dendritic cells, neutrophils, eosinohphils, basophils or mast cells, but 78 

expressed the common leucocyte antigen (LCA) CD45 and their morphology resembled 79 

those of typical lymphocytes [1, 2, 12]. Early studies identified the markers IL-17 receptor B, 80 

in combination with IL-17RA forming the IL-25 receptor, the IL-33 receptor (T1/ST2) with 81 

varying expression of the stem cell factor c-kit (CD117) [1, 2]. These innate lymphoid- like 82 

cells, were given various names including nuocytes [1], innate helper type 2 cells (Ih2) [2] or 83 

natural helper cells [13]. They were enriched in mesentery [13] and have been shown to   84 

express the common gamma chain (γc, CD132) associated receptors CD25 (IL-2R) and 85 

CD127 (IL-7R). IL-7 be has been shown to play an essential role in the development and 86 

survival of ILC2s and ILC3s [14-16].     87 

 88 

Human ILC2s were initially described by Mjosberg et al. [17] as being similar to murine ILC2s 89 

in lacking the expression of classical lineage defining markers, but being positive for the 90 

leucocyte marker CD45 and the IL-7R (CD127). In addition, human ILC2s express the 91 

‘chemokine receptor homologous molecule expressed on TH2 cells’ (CRTH2 = CD294) [17], a 92 

marker well characterised for its expression on human CD4+ TH2 cells [18], the NK cell 93 

receptor NKR-P1A (CD161) [17] and ST2 [19] (a member of the IL-1 family receptors), which 94 

is part of the IL-33 receptor complex [20]. A combination of these markers is frequently used 95 

for identifying human ILC2s as Lin-CD45+CD127+CRTH2+CD161+(ST2+) [11, 17, 21-23] as we 96 

depict in the flow chart for analysing human ILC2 by flow cytometry (Figure 1).  97 

 98 

Apart from the IL-7R, ILC2s express the IL-2R (CD25) [17] and both IL-2 and IL-7 are 99 

indispensable for the development, homeostasis and activation of ILC2s [13, 24, 25]. The IL-100 

7R chain forms a heterodimer with the ‘thymic stromal lymphopoietin’ (TSLP) receptor [26] 101 

a further characteristic marker of human ILC2s [25]. TSLP is able to activate cytokine 102 

production by ILC2s, but works more efficiently in combination with IL-2 and has synergistic 103 

effects with IL-33 [25]. IL-33 (or IL-1F11) is a IL-1 family member and acts via the IL-33 104 

receptor [20]. Furthermore IL-25 activates cytokines production by ILC2s signalling via the IL-105 

25 receptor, a heterodimer of IL-17RB and IL-17RA. IL-25, IL-33 and TSLP can be seen as the 106 
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classical ILC2 activating cytokines and often referred to as alarmins (alarm signals). 107 

Hematopoietic cells can produce alarmins, but the primary sources are non-hematopoietic 108 

cells. IL-33 is primary produced by endothelial and epithelial cells [27-29], but can be 109 

released by macrophages [30] or dendritic cells [31]. In contrast, tuft cells, a subset of 110 

epithelial cells of the small intestine with previously more or less unknown function, were 111 

identified as a major source of IL-25 [32-34], which is required for ILC2 homeostasis. The 112 

numbers of tuft cells increase significantly when exposed to intestinal parasites. 113 

 114 

ILC2s express a variety of additional receptors involved in the activation and homeostasis. 115 

Expression of the IL-4R (CD124) was shown in mice and basophil derived IL-4 can positively 116 

control ILC2s [35]. Since IL-4 is secreted by ILC2s, IL-4 could potentially act as an autocrine 117 

feedback mechanism for activation of ILC2s. However, the exact role of IL-4 in controlling 118 

activation of human ILC2s is currently unknown. ILC2s are also the main source of IL-9, 119 

another common γ chain (γc) cytokine, [36, 37], with expression of IL-9 receptor being 120 

essential for ILC2 activation, survival of activated ILC2s and finally for efficient helminth 121 

worm expulsion in mouse experimental models [36]. IL-9 released by lung resident ILC2s 122 

plays a central role in the epithelial response to murine N. brasiliensis infection by inducing 123 

IL-5 and IL-13 production [38]. Gene expression analyses indicated that the IL-9 receptor is 124 

expressed on murine ILC2s, and in humans, expression of this receptor has been shown on 125 

blood and lung ILC2s [21]. The CRTH2 is a crucial marker for the identification of human 126 

ILC2s [17] and for classical TH2 cells [18, 39]. The agonist for CRTH2 is prostaglandin (PG)D2, 127 

a well characterised mediator of allergic asthma [40] released by activated mast cells. PGD2 128 

is crucial for chemotaxis of TH2 cells [41] and drives accumulation of ILC2s in inflamed tissues 129 

[42].     130 

 131 

Murine ILC2s isolated from lymphnodes and the spleen, and to a less extent, ILC2s from the 132 

peritoneal or broncho-alveolar lavage, express major histocompatibility complex class-II 133 

(MHC-II) molecules. They also express the co-stimulatory molecules CD80 and CD86 [43]. 134 

Expression of MHC-II in combination with co-stimulatory molecules allows a direct 135 

interaction with CD4+ T cells and can drive CD4+ T cell expansion and activation and TH2 136 

polarisation and is important for efficient worm expulsion in murine infections of N. 137 

brasiliensis. Accordingly, it had been demonstrated that human ILC2s isolated from 138 
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peripheral blood express high levels of HLR-DR, CD80 and CD86 [43].  139 

 140 

Similar to all other immune responses, the function of ILC2s needs counter-regulation 141 

allowing control of their function. Type 1 and type 2 interferons can negatively regulate 142 

ILC2s [23, 44] and both types of interferons are long known to inhibit helminth driven TH2 143 

responses. Additionally ILC2s can be suppressed by IL-27 [45] and express the inhibitory 144 

receptor killer-cell lectin like receptor G1 (KLRG1). In human ILC2s, the ligand of KLRG1, E-145 

cadherin, inhibited expression of GATA3 and production of TH2-cytokines [46]. GATA3, the 146 

transcription factor essential for TH2 CD4+ T cell polarization and function, is crucial for ILC2 147 

differentiation, maintenance and activation [24, 25], and also used as identifying marker to 148 

distinguish them from other ILC subsets. Furthermore, development, differentiation and 149 

function of ILC2s depend on ROR [16, 47], T cell factor-1 (TCF-1) [48] and GFI1 [49]. 150 

 151 

ILC2s are now considered to play a central role in inducing type 2 immune responses in mice. 152 

Following activation, ILC2s secrete type-2 cytokines and activate various and complex 153 

immune responses, which are characteristic for type 2 responses including B cell activation 154 

and isotype switching to IgE, induction of eosinophilia, polarisation of alternative activated 155 

macrophages and initiation of an adaptive TH2 T cell response including generation of TH2 156 

memory CD4+ T cells as outlined and described in Figure 2.  157 

 158 

Common γc – cytokine receptors  159 

Common gamma chain (γc) (CD132) cytokine receptors play a central role in the 160 

development, homoeostasis and function of several immune cell lineages and are 161 

indispensable for the immune system itself. Therefore, it is not surprising that common γc-162 

cytokines and the corresponding receptors are also essential for the development of ILC2s. 163 

The IL-7Rα chain, forming a heterodimer with the common γc (also known as common IL-2 164 

receptor gamma chain), was one of the first surface receptors identified as marker for ILCs 165 

and the development of ILC2s was depending on the common γc and IL-7 [13]. The IL-2Rα is 166 

also a marker human ILC2s and provides an important co-stimulatory signal for the 167 

activation of ILC2s [25].  168 

 169 

Using a reporter mouse strain, ILC2s, rather than CD4+ T cells, were also identified as main 170 
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source of IL-9 in a model of airway inflammation [37]. More importantly IL-9 acts as 171 

feedback signal enhancing the cytokine production by ILC2s. The importance of IL-9 as a 172 

feedback signal was subsequently confirmed in experimental infection with N. brasiliensis, in 173 

which IL-9 receptor expressing ILC2 are important for restoring tissue damage caused by the 174 

lung stage of N. brasiliensis [36, 38]. Hence common γc receptors play a pivotal in the 175 

development, maintenance and activation of ILC2s. 176 

 177 

 In T cells, common γc – signalling is mainly mediated by three pathways: the JAK-STAT 178 

pathway, the Mitogen-activated protein kinases (MAPK)-Erk pathway and the 179 

Phosphoinositide 3-kinase (PI3K)-pathway. Binding of cytokines to its corresponding 180 

receptors leads to an activation of Janus Kinases (JAK) which are associated to the receptor 181 

(reviewed in [50]). JAK activation leads to a phosphorylation of tyrosine residues within the 182 

receptor chain causing binding, phosphorylation and dimerization of signal transducer and 183 

activator of transcription (STAT), which then translocate to the nucleus and starts specific 184 

transcription. There are several STAT molecules partially determining specific effects of 185 

cytokines. IL-2, IL-7 and IL-9 mainly activate STAT5, whereas IL-4 mainly induces the 186 

activation of STAT6. Interestingly the TSLPR, which contains a IL-7Rα chain, but no common 187 

γc, activates STAT5 in a JAK independent way [51]. IL-2 and TSLP efficiently induce STAT5 188 

phosphorylation in human ILC2s, while IL-33 elicits a moderate phosphorylation of STAT3 189 

[25]. 190 

 191 

The JAK-STAT signalling pathway is tightly regulated to control strength, duration and 192 

specificity of activation. Suppressor of cytokine signalling (SOCS) molecule comprise a family 193 

of eight members SOCS1-SOCS7 and the cytokine-inducible SH2 domain protein (CISH) of 194 

which four are shown to be important in T cell signalling (CISH, SOCS1-SOCS3) (reviewed in 195 

[52]). The SOCS molecules including CISH have been shown to regulate STAT signalling and 196 

modulate T helper polarisation [53-55]. Both the MAPK-Erk as well as the PI3K pathways play 197 

central roles in the development, homeostasis and functions of several innate and adaptive 198 

immune cells. Both pathways contribute to T helper polarisation [56-59] including 199 

differentiation of TH2 cells [60, 61]. While the importance of common γc cytokine receptors 200 

for ILC2s is well described for mice, the precise signalling pathways controlling the 201 

development and function of human ILC2s remain to be investigated.  202 
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 203 

LOCATION OF ILC2s AND THE IMPLICATION FOR HUMAN HELMINTH INFECTIONS 204 

ILC2s have been identified in various tissues. Using reporter mice in experimental models of 205 

N. brasiliensis infection, ILC2s were identified in the spleen, liver, mesenteric lymphnodes,  206 

the intestine, fat-associated lymphoid clusters [1, 2, 13] and in skin [62]. In humans, ILC2s 207 

have been described in nasal polyps, tonsils, gastrointestinal tract, peripheral blood [17, 25] 208 

and the lung [9, 17]. ILC2 are also described in human skin [46, 63] with their migration to 209 

the skin being associated with PGD2, the ligand for CRTH2 [63], and the skin-homing marker 210 

cutaneous lymphocyte antigen [64]. Overall, mucosa-associated tissue of the lung, intestine 211 

and skin are now widely accepted as the most important locations for ILC2s.  212 

 213 

Helminths have complicated and diverse life histories, differing in their route and site of 214 

infection, migration within the human host, location of adult worms and exit of juveniles or 215 

eggs. This diversity in helminth biology results in heterogeneous acquired immune responses 216 

to helminth parasites reflected by fundamental differences in in vitro experiments and in 217 

immuno-epidemiological studies (reviewed in [65]). These life history differences together 218 

with differences in niches relative to the location of ILC2s, imply differences in the encounter 219 

between the parasite/parasite products and ILC2 cells. For instance, helminths such as 220 

Schistosoma spp. (a trematode), Strongyloides stercoralis or hookworms (Ancylostoma 221 

duodenale and Necator americanus; nematodes) are skin-penetrating parasites, meaning 222 

that the infective stage and/or the tissue damage caused by the skin-penetration, can trigger 223 

ILC2s.  224 

A percutaneous infection by Schistosoma mansoni larvae elicits a transient expression of 225 

TSLP and IL-33 [66]. Although not directly shown, the release of the cytokines is likely to 226 

activate ILC2s. Larvae (L3) of vector-transmitted filarial nematodes (Wucheria bancrofti, 227 

Brugia malayi, Loa Loa, Mansonella perstans) also need to penetrate the skin or the bite 228 

wound during the blood meal of the vector. Onchocerca volvulus, Mansonella streptocerca 229 

and Loa Loa directly develop a cutaneous filariasis with adults residing in subcutaneous 230 

tissues. It remains to be investigated whether dermal ILC2s do indeed play a role in initiating 231 

anti-filarial immune responses following skin penetration and in cutaneous filariasis.   232 

Infection via the skin causes a certain degree of tissue damage [67] and induces wound 233 

healing [66]. ILC2s are crucial for cutaneous wound healing [68]. These data suggest that, it 234 
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ILC2s may have an additional function in wound healing of damaged tissue caused by skin-235 

penetrating parasites. 236 

 237 

Several helminth species have evolved a critical lung stage, which can be either transient 238 

(Ascaris, Schistosoma, Strongyloides spp.) or more persistent (W. bancrofti, B. malayi, Loa 239 

Loa) (reviewed in [69]). Lung stages of helminths can cause tissue damage in the lung and 240 

affect mucosal integrity. In experimental mouse models, the crucial role of ILC2, mediated by 241 

IL-9, acting in autocrine manner, in tissue repair and lung homeostasis has been well-242 

documented [36-38]. Activated macrophages are also involved in limiting tissue damage 243 

during lung migration, a process requiring IL-4/IL-13 signalling [70], although in this former 244 

study the exact source of these cytokines was not determined, ILC2s should be considered as 245 

source of these cytokines. Mature adults of gastrointestinal helminths (hookworms, S. 246 

stercoralis) reside in different parts of the intestine and influence and/or damage the 247 

epithelial tissue resulting in a release of IL-25, IL-33 and TSLP, triggering ILC2s [71]. Since the 248 

intestinal tissue is a main compartment where ILC2s are located, it is likely that activated 249 

ILC2s play a major role in initiating the immune response in these helminth infections. It will 250 

be difficult to prove this role of intestinal ILC2s in a human infection, but mouse 251 

experimental studies strongly support this as reviewed in [72]. 252 

Adult schistosomes reside in mesenteric (S. mansoni, S. japonicum) or in perivesicular 253 

venules (S. haematobium) [73] were they interact with the epithelium. Moreover eggs 254 

released by the females need to penetrate the bladder wall (S. haematobium) or migrate to 255 

the intestine (S. mansoni), damaging epithelial tissue. As outlined above damaging the 256 

epithelium could trigger ILC2s, but so far there are no studies investigating whether 257 

schistosomes induce ILC2 directly or indirectly through tissue damage.  258 

 259 

ILCs derive from a common lymphoid precursor in bone marrow [74] expressing the integrin 260 

α4β7, mediating migration to endothelial venues and mucosal tissues, and chemokine 261 

receptor CXCR6 mediating migration to the intestine [75]. Additionally, a lineage-specific 262 

precursor has been identified for ILC2s [24, 47]. However, it has been suggested that ILC2s 263 

proliferate within tissues and are rarely replenished from the bone marrow [45]. More 264 

committed progenitors were also identified in secondary lymphoid organs [76]. Therefore 265 

the contribution of circulating ILC2s from peripheral blood to tissue-resident ILC2 pool needs 266 
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to be studied in more detail to allow interpretation of immuno-epidemiological data based 267 

on human blood, as theoretically, blood ILC2s maybe important in blood residing pathogens 268 

including schistosomes. 269 

 270 

Much of our knowledge about ILC2s in helminth infections derives from experimental 271 

infection with N. brasiliensis, a murine gastrointestinal parasite and most experimental 272 

infections cover days or a few weeks following initial infection. In human, however, adult 273 

worms can live for years, and in the case of Schistosoma spp. even decades [77]. For people 274 

living in endemic areas, an infection does not occur solely at a single time point, but instead 275 

occurs more gradually with multiple infection events, resulting in hosts carrying different life 276 

stages of the parasites concurrently. Hence, most helminth parasite can cause a chronic 277 

long-lasting disease, which cannot be recapitulated in the mouse experimental model. 278 

Hence, knowledge about the function and importance of ILC2 obtained from experimental 279 

models cannot necessarily extrapolated to natural human infections.  280 

 281 

ILC2s IN HUMAN HELMINTH INFECTION – WHAT WE DO ‘NOT’ KNOW.  282 

So far there are very few studies that have analysed ILC2s in natural human helminth 283 

infection, a fact, which is not surprising considering the history and biology of ILC2s outlined 284 

above. ILC2s constitute a small fraction of human blood leucocytes. In our studies in a 285 

Zimbabwean population a mean of 0.031% (median 0.023%, rage 0.003-0.133, N=72) of live-286 

gated leucocytes was denoted as ILC2s, a proportion which is comparable to data published 287 

elsewhere [17] and data in Caucasians (unpublished data). Of note, ILC2s are hardly 288 

detectable in peripheral blood of naïve mice [1, 2].  289 

In humans, proportions are slightly higher in the skin, ileum, lung and tonsils compared to 290 

peripheral blood and are increased in inflamed tissues such as inflamed nasal polyps and 291 

skin lesions of patients with atopic dermatitis [17, 46, 64, 78]. Furthermore, proportions of 292 

ILC2s are increased in lung specimens of patients with severe forms of asthma. However, it 293 

remains contradictory whether the proportions of ILC2s are higher in lung specimens 294 

compared to blood of the same patient [79, 80]. Such analyses of human tissues are 295 

informative but are beyond the scope of immuno-epidemiological approaches such as the 296 

ones we have previously published.  297 

 298 
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Nevertheless, there have been some advances in studying human ILC2 cells in the context of 299 

natural human infections. Nutman and colleagues analysed ILCs defined as lin-300 

CD45+CD127+CD117+ (c-kit), comprising both ILC2s and ILC3s, in peripheral blood of filarial 301 

infected adults (Loa Loa, W. bancrofti, O. volvulus) [81]. The frequency of c-kit+ ILCs and IL-302 

13 producing cells among c-kit+ ILCs were increased in filarial infected individuals. The 303 

proportion of c-kit ILCs correlated with IL-17 producing CD4+ T cells and ex vivo stimulation 304 

of enriched ILCs released IL-5 and IL-13, but also IL-10, IL-17 and IFNγ [81].  305 

In a different study, we evaluated ILC2s in context of natural infection with S. haemtobium in 306 

Zimbabwean children [11]. Schistosome-infected children aged 6-13 years (as diagnosed by 307 

parasite egg excretion) had a significantly lower frequency of ILC2s in the peripheral blood 308 

compared to same age schistosome uninfected children (Figure 3A). In contrast, older 309 

infected children (aged 14-18 years) had comparable levels of ILC2s to uninfected children 310 

[11]. Proportions of ILC2s recovered following curative anti-helminthic treatment (Figure 311 

3B). Of note is the difference in these age groups; children are exposed to schistosome 312 

infection very young and therefore acquire infection at a young age [82]. By the time they 313 

reach adolescence, they will have experienced several re-infection events. Thus, it is possible 314 

that the ILC2 dynamics are reflecting differences occurring upon first versus repeated 315 

infection events. Older egg positive children had levels of ILC2s comparable to same age egg 316 

negative children. These older egg positive children show a schistosome-specific antibody 317 

profile, which indicates a history of previous infection and also associated with the 318 

development of protective immunity, beginning to reduce re-infection levels [83-85]. This 319 

finding may indicate that ILC2s play a more pronounced role in the initiation of early 320 

immune response at a stage when effective TH2 responses are triggered and a full CD4+ T 321 

cell mediated TH2 response has not yet developed. In this context it would be interesting to 322 

perform long-term follow-up studies, which analyse if early changes in the proportion or 323 

phenotype of ILC2 are predictive for the development of, or the nature of a protective 324 

immune response. The study analysing ILCs in filarial infections mentioned above [81] found 325 

increased proportions of ILCs in infected adults, which may indicate a complete contrasting 326 

function of ILCs in adults. For instance, ILC2s could play a role in diminishing tissue damage 327 

and promote epithelial healing to limit pathology or alternatively contribute to pathology. 328 

Differences between the two studies could reflect differences in the biology of trematodes 329 

and filarial nematodes. For instance, filarial parasites frequently harbour Wolbachia spp. 330 
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endosymbionts [86], which could trigger TLR responses and potentially modify the response 331 

elicited by various ILC subsets including ILC2s and ILC3s. Whereas the precise pattern of TLR 332 

expression on ILC2s has not yet been specified, LTi-like group 3 ILCs have been shown to 333 

express TLRs [87]. Of note, the study by Boyd et al analysed CD127+CD117+ ILCs comprising 334 

both ILC2s and ILC3s [81]. To analyse the contribution of Wolbachia endosymbionts to ILC 335 

mediated immune responses, interventional studies with doxycycline, which targets 336 

Wolbachia spp. in filarial infections could be utilized [88-90]. Furthermore, differences in the 337 

life cycle and age dynamics in different types of helminth infections could contribute to 338 

differences in ILC2s. Therefore, additional observational and interventional studies are 339 

required to decipher the precise role of ILC2s in various helminth infections and in the 340 

context of the complex dynamics of human helminth infections, which cannot completely be 341 

mimicked by experimental models. The mechanism responsible for differences in the 342 

frequency of ILC2 in peripheral blood in these human helminth studies remains unknown. 343 

One possibility is that one or all of proliferation, survival and homoeostasis of ILC2 is altered 344 

during helminth infection. Common γc cytokine signalling (as outlined above) could be 345 

altered during helminth infections. Chronic down-modulation of IL-7Rα on memory T cells 346 

has been shown for chronic viral infections [91, 92], a mechanism potentially affecting ILC2s 347 

in chronic parasite infections. However, expression of the IL-7Rα chain on the surface of ILC2 348 

was not altered during schistosome infections [11]. Regulation of IL-7 signalling is much 349 

more complex and could depend on the availability of IL-7 and levels of soluble IL-7Rα 350 

(generated by alternative splicing [93]), which has been shown to inhibit IL-7 uptake [94] or 351 

function as IL-7 reservoir [95]. Aberrant levels of plasma IL-7 and soluble IL-7R were recently 352 

shown in the context of human tuberculosis [96].  In addition, modulation of downstream 353 

signalling in particular of the JAK-STAT pathway including modulation of SOCS may influence 354 

homeostasis and responsiveness of human ILC2s. Modulation of this signalling pathway in T 355 

cells has been shown for various infectious diseases including tuberculosis [97]. Whether 356 

and to which degree common γc signalling is modulated in ILC2s in particular during 357 

helminth infection remains elusive. Furthermore, modulation of signalling via the IL-9R and 358 

TSLPR could be regulated and may provide molecular targets for chemoprophylaxis or 359 

therapy. 360 

 361 

The impact of nutrition, particularly micronutrients on the immune system is well 362 
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established in experimental models. Micronutrient deficiency is widespread in helminth 363 

endemic areas with Vitamin A deficiency being one of the most common. Interestingly, work 364 

in experimental studies indicates that Vitamin A deficiency is characterised by an increase in 365 

ILC2 cells and increased production of IL-13 by these cells to maintain mucosal barrier 366 

immunity to helminth infection under malnutrition [98]. In addition, recent work has also 367 

highlighted that ILC2 cells predominantly depend on fatty acid (FA) metabolism during 368 

helminth infection [99]. The vast majority of the world's malnourished people live in 369 

developing countries, where 13.5% of the population is undernourished [100] and areas of 370 

malnutrition largely overlap with helminth endemic areas. Therefore, it is important to 371 

understand the development and function of ILC2 cells in populations exposed to  helminth 372 

infection. There are many potential sources of heterogeneity, not least the gut microbiome 373 

structure. Mouse experimental studies have demonstrated that infection with the helminth 374 

Trichuris muris significantly altered the host gut microbiome structure, reducing the diversity 375 

and abundance of the Bacteroidetes, Prevotella and Parabacteroidetes [101]. This dysbiosis 376 

was associated with a significant reduction in amounts of Vitamin D derivatives and a 377 

reduction in the breakdown of dietary plant derived carbohydrates involved in amino acid 378 

synthesis, with an associated reduction in the weight of the infected animals. We have 379 

demonstrated that the gut microbiome structure in children infected with schistosomes 380 

differed significantly from that of uninfected children from the same community [102]. 381 

Although the development of ILC2 cells does not seem dependent on the gut microbiome, 382 

their function is dependent on the colonisation of the gut by commensals (reviewed in 383 

[103]). However, the precise mechanisms of how/which signals from the gut microbes 384 

interact with the ILC2 to facilitate their maturation and function remains unknown. Answers 385 

to these questions will only come from studies conducted in context, in the relavant human 386 

populations. 387 

 388 

To date both experimental and human studies have mainly focused on infection. However, 389 

there is also another aspect of human helminthiases in which the immune response plays a 390 

central role; i.e. immunopathology. Eggs are mainly responsible for the pathology associated 391 

schistosomiasis and egg-induced immunopathology can occour in the chronic form of the 392 

disease. Eggs laid by adults worms, which reside in the vesical plexus of the bladder or 393 

mesenteric veins of the liver, can be carried to portal venules in the liver and to the bladder 394 
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or genital tract where eggs become trapped and eventually form granulomas and can induce 395 

immune-mediated fibrosis. The degree of pathology depends on the balance of type-1, type-396 

2 and type-17 immune responses (reviewed in [104, 105]). Servere forms of pathology are 397 

associated with TH1/TH17, wherease mild pathology is associated with a combination of 398 

regulatory and TH2 response. However, the type-2 cytokine IL-13 also contributes to hepatic 399 

fibrosis [106]. In mouse models, it has been shown that ILC2s are a likely source for IL-13 in 400 

hepatic fibrosis [107]. Hepatic IL-33 triggered the expansion and activation of liver resident 401 

ILC2s, which produced IL-13 and mediated fibrosis [107, 108]. In human intestinal 402 

schistosomiasis, the majority of patients develop a less severe form of the disease, but about 403 

5-10% suffer from hepatosplenic schistosomiasis with progressive fibrosis [109]. To what 404 

extend hepatic ILC2s contribute to the development of servere forms of schistosomiasis 405 

remains to be investigated. Furthermore, the impact of environmental enteropathy which 406 

affects gut permeability, execrebated by helminth infections has yet to be investigated 407 

[110].  408 

 409 

THE POTENTIAL IMPACT FOR TREATMENT STRATEGIES AND SUCCESSFUL VACCINATION 410 

The development of successful vaccinations against human parasitic infections and in 411 

particular against helminth infections has proven challenging. Although there are some 412 

promising vaccine candidates for instance, a vaccine against hookworms [111], currently 413 

there is no licenced vaccine against helminth infections for use in human. The reasons for 414 

lack of progress in human helminth vaccinology are manifold. Most helminths have complex 415 

life cycles with intermediates hosts and reservoirs and several life cycle stages even within 416 

the human host leading to highly variable and complex antigen pattern. Helminths typically 417 

induce a type 2 response, which is potentially protective. However, work over the last 418 

decade has shown that helminths have evolved immune evasion mechanisms allowing the 419 

establishment of long-lasting infections and modulation of pathology (reviewed in [112-420 

115]). To do so, helminths utilize immunosuppressive and immunoevasive mechanisms, 421 

mediated through various mechanisms. For instance, the importance of regulatory T cells 422 

has been shown for filarial [116, 117] and schistosome infections [118, 119] and excretory-423 

secretory products released by helminth parasites can directly induce regulatory T cells 424 

[120]. In the cases of schistosomiasis suppression of immune responses induced by worms 425 

can delay the development of protective immunity [121]. Mechanisms of how the host 426 



 16 

eventually manage to express a resistance phenotype have been a subject of our research, 427 

leading to the description of the threshold hypothesis [122]; i.e. the host needs to 428 

experience a threshold of antigens to mount an effective immune response and that these 429 

antigens become available following worm death. We and others have also demonstrated 430 

the requirement of the ratio of regulatory vs. effector cellular immune to favour effector 431 

responses for expression of resistance [118]. However, the precise mechanism of the 432 

induction of a protective response remains elusive. The description of the ILC2 cells bridging 433 

the innate and adaptive immune system could potentially shed light to this aspect of 434 

schistosome immunobiology.  435 

 436 

Therefore, apart from the search of new vaccine candidates, new strategies to trigger and 437 

boost the development of effective immune responses should be investigated. ILC2s are of 438 

major importance for the induction of effective type 2 immune responses (Figure 2) and are 439 

in particularly crucial in early immune response and hence are a promising target to boost 440 

responses. Here it is interesting to note that in an experimental mouse model excretory-441 

secretory products of Heligmosomoides polygyrus inhibited the production of TH2 cytokines 442 

by ILC2s through the blockade of IL-33 [123], indirectly indicating the importance for 443 

dampening ILC2 responses for parasite survival. Overcoming such inhibition and efficient 444 

triggering response mediated by ILC2s could be an important step in triggering protective 445 

responses against helminth infections. However, our knowledge of the role of ILC2 biology in 446 

helminth infections is still very limited to allow a predication if modulation of ILC2s can 447 

improve immune response and thereby improve vaccine efficacy.  448 

 449 

For schistosomiasis, protective immune responses can build up over time under constant 450 

exposure [124] and repeated treatment can boost specific immune responses [125]. 451 

Therefore ‘Infection and treatment’ (I&T) strategies are a potential alternative to induce 452 

protective immune responses [126], which so far has proven to be the most efficient 453 

method to induce protection.". The efficacy of this approach has been recently shown for 454 

human malaria infections [127]. Understanding the dynamics of ILC2 involvement in 455 

inducing protective immune responses might better inform targeting of treatment. For 456 

example, we are currently testing the potential for inducing protective immune responses in 457 

schistosomiasis following treatment of the first very infection event. Human immunology 458 
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and mouse experimental studies of helminths and Plasmodium infections suggest that the 459 

number of anti-parasite treatments required to induce protective immune responses can be 460 

reduced by treating people following first infection [128-132]. 461 

 462 

MODULATING ILC2 RESPONSES 463 

Common gamma γc cytokines and their receptors are crucial for homeostasis and activation 464 

of ILC2s and therefore are potential targets to boost ILC2 responses thereby potentially 465 

increase the effectiveness of vaccinations or I&T approaches.  IL-2 therapy has a long history 466 

in antitumor therapy [133] and therapies with low-dose IL-2 are currently tested in 467 

autoimmune disease such as hepatitis C virus-related vasculitis [134] and type 1 diabetes 468 

[135, 136]. Early on, it has been recognised that IL-2 therapy can lead to increased plasma 469 

levels of IL-5 and eosinophila [137, 138] an effect that, at least in mouse models, is caused by 470 

an activation of ILC2s [139]. Side effects of low doses of IL-2 are considered to be relatively 471 

safe, but in the context of autoimmune diseases are used to expand regulatory T cells 472 

(reviewed in [140]), which may contradict attempts to trigger a protective response in 473 

helminth infections. However, with detailed investigations of treatment regimes regarding 474 

the dose and duration of the IL-2 therapy might help to tackle this problem. For instance, 475 

regulatory T cells may expand only after a few weeks of IL-2 therapy, whereas ILC2 activation 476 

may occur quicker in particular if incorporated in I&T approaches or if applied with 477 

vaccinations.      478 

 479 

IL-7, another common gamma γc cytokine is also considered for use in cancer [141-143] and 480 

chronic viral infections [144] highlighting the potential in immunotherapies. This is 481 

particularly important in the carinogenic trematodes, S. haematobium, Opisthorchis viverrini 482 

and Clonorchis sinensis where one of the pathological manifestations of these infections is 483 

cancer in different organs (bladder, bile duct and liver) [145] for which we currently do not 484 

have any therapeutic interventions beyond surgery. Since IL-7 is crucial for the development 485 

and homeostasis of human ILC2s its potential to increase responses mediated by ILC2s in 486 

vaccination and/or I&T protocols should be investigated.  487 

 488 

Apart from the direct use of cytokines in immunotherapies, molecules crucial for the 489 

downstream signalling induced by these cytokine could be targeted. Interestingly, the 490 
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effects by IL-7 in the study on chronic viral infections were partially mediated by repression 491 

of SOCS3 [144]. Hence targeting the JAK/STAT or the MAPK/Erk pathway including SOCS 492 

inhibitors may have the potential to increase ILC2 activation, but also TH2 responses in 493 

general [53, 146].      494 

The main trigger of the ILC2 activity are the alarmins IL-25, IL-33 and TSLP, but their potential 495 

as activators in immunotherapy has not been investigated in detail. However, blocking 496 

alarmins has been considered for treating allergic diseases [147-149], but has not really gone 497 

beyond experimental testing with only initial studies in human [150]. ILC2 targeting alarmins 498 

could be also used in combination with common γc cytokines. Overall, specific modulation of 499 

ILC2 activity to improve vaccine or I&T induced protective immune responses is an exciting 500 

idea. Precise treatment strategies need to be carefully approved to avoid induction of 501 

regulatory T cells or to avoid the induction of allergic immune responses. Before attempting 502 

ILC2 targeting strategies to build up protective immune responses much more work needs to 503 

be done on dissecting mechanisms and signalling pathways in ILC2s.  504 

 505 

CONCLUSIONS 506 

Within a few years of their discovery, ILCs have revolutionised immunology research, added 507 

a new layer of complexity to the immune system as a whole and transformed our 508 

understanding of how immune responses are initiated and maintained. ILCs have been 509 

shown to be important in allergic disorders, autoimmune diseases, viral infections and even 510 

in tumor immunology. Experimental mouse models of helminth infections have led to 511 

increased understanding of the ILC2 biology and provided mechanistic details of the crucial 512 

role of ILC2s in inducing TH2 responses. Human studies testing the hypotheses from these 513 

mouse models lag behind, creating a knowledge gap. However, the limited studies of ILC2s 514 

in the context of natural human infections have already started to yield interesting results 515 

on the nature and function of ILC2s. Given the complexity and diversity of human helminth 516 

infections, much more work needs to be done to obtain a complete figure about the role of 517 

ILC2 and the underlying immunological pathways and mechanisms of their function in 518 

human helminth infections. While the study of the role and function of human ILC is still in 519 

its infancy, rapid incorporation of the knowledge of these cells in our paradigm of the nature 520 

and development of protective immunity is essential for helminth vaccinology and optimal 521 

treatment strategies.      522 
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Figure legends 523 

Figure 1. Identification of human ILC2s by flow cytometry as conducted in our studies. 524 

PBMC were isolated from human peripheral blood and analysed by multi-fluorochrome 525 

based flow cytometry. PBMC were gated on leucocytes (A), single cells (B) and live cells using 526 

a viability dye (C). Live single cells were gated on lineage negative (CD3, CD14, CD16, CD19, 527 

CD20, CD56, CD123, CD11c, αβTCR γδTCR), CD45+ (D), CD127+ (E) and CD161+CRTH2+ cells 528 

(F), which finally leads to the identification of lin-CD45+CD127+CRTH2+CD161+ ILC2s. 529 

 530 

Figure 2. Helminth induced immune responses mediated by ILC2s. Helminth parasites 531 

trigger the secretion of alarmins by endothial or epithelial cells (IL-33, TSLP) [27-29] or by 532 

tuft cells (IL-25) [32-34]. Myeloid cells (dendritic cells (DC) or macrophages) can also release 533 

IL-33 and thereby activate ILC2s [30, 31]. ILC2 activation is maintained and multiplied by IL-4 534 

and IL-9 (acting in an autocrine manner) [36] and require IL-2 and IL-7 for homeostasis and 535 

activation. ILC2s secrets type 2 cytokines upon activation. IL-5 induces eosinophilia [139, 536 

151], IL-4 triggers B cells and induce isotype switiching to IgE. Furthermore, IL-13 can 537 

activate mucus secretion by goblet cells [1, 16, 152], acts on mast cells (potentially in 538 

conjunction with IL-9 [152]) and regulate DC migration [153]. IL-4 and IL-13 can also induce 539 

alternative activated macrophages (AAM) [154]. ILC2s also secrete amphiregulin (Areg) 540 

important for tissue repair [9]. 541 

Furthermore, ILC2s interact with TH2 CD4+ T cells (TH2), which induces TH2 immune response 542 

[43, 155] and IL-2 secreted by T cells could further sustain ILC2 responses and further affect 543 

generation of T cell memory [156], which is altered in chronic helminth infections [84].  544 

Helminth can induce regulatory T cells (Treg), which potentially can dampen the 545 

development of full protective immune response [118]. 546 

 547 

Figure 3. Proportions of ILC2s are diminished in schistosome-infected children and 548 

restored by curative treatment. (A) Proportions of blood CD127+CD294+CD161+ ILC2s were 549 

compared between S. haematobium egg positive (ve+) children and S. haematobium egg 550 

negative (ve-) children (N = 24 per group, age 6-13 years). (B) Proportions of ILC2s of 12 551 

individuals (aged 6-13 years) were compared pre- versus 6 weeks post-treatment. Individuals 552 

were egg positive pre-treatment and had cleared S. haematobium infections after treatment 553 
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with the anti-helminthic drug praziquantel. Figures are reproduced from data published in 554 

[11]. 555 
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