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Abstract. Neighbourhood tractography aims to automatically segment 

equivalent brain white matter tracts from diffusion magnetic resonance imaging 

(dMRI) data in different subjects by using a “reference tract” as a prior for the 

shape and length of each tract of interest. In the current work we present a 

means of improving the technique by using references tracts derived from 

dMRI data acquired from 80 healthy volunteers aged 25–64 years. The 

reference tracts were tested on the segmentation of 16 major white matter tracts 

in 50 healthy older people, aged 71.8 (±0.4) years. We found that data-

generated reference tracts improved the automatic white matter tract 

segmentations compared to results from atlas-generated reference tracts. We 

also obtained higher percentages of visually acceptable segmented tracts and 

lower variation in water diffusion parameters using this approach. 

Keywords: MRI; Brain; White matter; Unsupervised segmentation; 

Tractography. 

1 Introduction 

Tractography uses dMRI data to reconstruct in vivo the white matter 

connections within the brain [1]. Clinical applications of tractography 

typically involve group analysis, where tract characteristics are 

examined across a patient group of interest, or compared to a matched 

control group. In these instances, sources of nuisance variance within 

and between groups—and in particular any variability introduced by 

the tract segmentation method—need to be kept to a minimum to 

facilitate detection of true biological differences and avoid spurious 

findings. Probabilistic neighbourhood tractography (PNT) aims to 

reduce operator interaction, and therefore any potential variability 

induced by it, during the tract segmentation process. PNT automatically 



segments the same white matter fasciculus in different subjects by 

scoring the similarity between a predefined “reference tract” and a 

group of candidate tracts generated with different initial seed points 

within a neighbourhood [2, 3]. Other automated tract segmentation 

tools informed by prior information have also been developed [4] 

Reference tracts can be generated directly from dMRI data, or from an 

atlas or similar reference point. In either case, the underlying reference 

dataset should be representative of the population. A suitably large and 

diverse “training” dataset is subsequently used to capture the variability 

typically observed around each reference tract. However, this set of 

training data should generally be kept separate from the data that will 

be used for hypothesis testing, to prevent any potential bias during 

analysis. To avoid use of valuable testing data in the creation of 

reference tracts, and for consistency across studies, a set of reference 

tracts has been previously derived from a white matter atlas, which is 

independent of all new subject data acquired [5, 6]. These atlas-based 

reference tracts improved significantly the results from PNT, however a 

small a proportion of the segmented tracts still needed excluding after 

visual inspection [7]. 

In the current work, we are proposing a new set of reference tracts 

directly derived from dMRI data acquired from a large group of healthy 

volunteers with a wide age range, so as to capture the variability due to 

age. We then test these new reference tracts on a different set of healthy 

older volunteers.  

2 Methods 

2.1 Participants 

Training data. The reference and training data consisted of brain 

dMRI from 80 clinically normal, right-handed, healthy volunteers (40 

males, 40 females) aged 25–64 years. All participants gave written 

informed consent. Health status was assessed using medical 

questionnaires and all structural MRI scans were reported by a fully 

qualified neuroradiologist. More details can be found in previous 

publications [8]. 

Testing data. The testing data consisted of brain dMRI data from 50 

healthy, community-dwelling older participants from the Lothian Birth 



Cohort 1936 (LBC1936), all born in the same year, with average age 

71.8 ± 0.4 years at the time of scanning. All participants gave written 

informed consent. More details of this cohort have been published 

previously [9]. 

2.2 MRI 

All brain MRI data were acquired using the same GE Signa Horizon 

HDxt 1.5T clinical scanner (General Electric, Milwaukee, WI, USA) 

equipped with a self-shielding gradient set (33 mT/m maximum 

gradient strength) and manufacturer supplied eight-channel phased-

array head coil. The same dMRI protocol was used for both training 

and testing data. The acquisition consisted of seven T2-weighted (T2W; 

b=0 s/mm
2
) and sets of diffusion-weighted (b=1000 s/mm

2
) single-shot, 

spin-echo, echo-planar (EP) imaging volumes, acquired with diffusion 

gradients applied in 64 non-collinear directions [10] and 2 mm 

isotropic spatial resolution. 

2.3 Image analysis 

dMRI volumes were preprocessed using FSL tools (http://www. 

fmrib.ox.ac.uk/fsl) to extract the brain [11], remove bulk motion and 

correct eddy current induced distortions by registering all subsequent 

volumes to the first T2W EP volume [12]. The water self-diffusion 

tensor was calculated, and parametric maps of fractional anisotropy 

(FA) and mean diffusivity (MD) derived from its eigenvalues using 

DTIFIT. 

2.4 Creation of reference tracts 

We followed the standard reference tract construction steps for PNT in 

the TractoR software package v.2.1 for all reference datasets 

(http://www.tractor-mri.org.uk/reference-tracts#creating-custom-

reference-tracts;[13]). Briefly, for each tract of interest, a seed point 

was chosen in standard space and registered linearly to each of the 80 

training datasets. A cuboidal region of interest (ROI) was created in the 

7×7×7 voxel neighbourhood around each of these original seeds in 

native space. A probabilistic tract was then created for each voxel in the 

neighbourhood with FA>0.2, using BEDPOSTx/PROBTRACKx as the 



underlying tractography algorithm [14], with 2000 streamlines and a 

two-fibre model. All the tracts generated were reviewed visually, and 

for each dataset we manually chose the seed that produced the tract 

most closely representing the expected shape and length of the 

fasciculus of interest. In the cases where there was more than one 

potential candidate available, we chose the one generated from the seed 

closest to the centre of the neighbourhood, i.e. closest to the seed point 

selected originally in standard space.  

We therefore obtained 80 representative training tracts for each tract of 

interest. Each of them was reduced to a single streamline by obtaining 

the spatial median [3], and then mapped into the standard MNI brain 

(with its corresponding seed point) by applying the reverse linear 

transformation. A reference tract was then created by obtaining the 

median seed point and median streamline from the 80 training tracts, 

and fitting a B-spline to it, with a distance between knots of 

approximately 6 mm. A maximum bending angle restriction of 90
o
 was 

also applied to avoid unrealistic ‘twists’ at the ends of the tracts, where 

uncertainty is larger. 

2.5 Creation of matching models 

The “matching model” describes typical deviations in shape and length 

that matching tract pathways make from the reference tract, using 

maximum likelihood estimation. The model for a tract of interest may 

be fitted in a supervised fashion by manually choosing a set of training 

tracts representing good matches to the reference [3], or following an 

unsupervised approach using an expectation-maximisation (EM) 

algorithm which will train the model and select at the same time the 

best segmentations from each dataset [2]. 

With the centroid reference tract created from the training data as 

explained above, the whole set of 80 training tracts were used to fit a 

matching model in a supervised fashion [3].  

We then used an unsupervised approach in the 50 testing datasets 

(LBC1936), based on an EM algorithm, whereby the model was trained 

and applied iteratively using the same data [2]. Using this approach, a 

matching model was obtained from the testing data as well as the best 

candidate tract for each dataset. We therefore obtained two matching 

models for each tract of interest, one created from the 80 training 



datasets (ages 25–64 years) and one created from the 50 testing datasets 

(age 71.8 ± 0.4 years). 

2.6 Testing of reference tracts and matching models 

The new reference tracts were used to segment the fasciculi of interest 

in the LBC1936 testing data with PNT by evaluating novel candidate 

tracts for plausibility against the model fitted to the training data and 

against the model created with the unsupervised approach in the own 

testing data. This allows us to test the influence of the matching model 

on the selection of candidate tracts in the testing data. 

The unsupervised fitting process was also repeated using the reference 

tracts previously created from an atlas [6, 15], which are currently 

provided with the TractoR package. This allows the new data-based 

reference tracts to be compared with the previous atlas-based reference 

tracts. 

We therefore obtained three segmentations for each fasciculus of 

interest for each testing dataset (LBC1936): (a) using a supervised 

matching model from the training dataset and the data-based reference 

tract, (b) using an unsupervised matching model from the testing 

LBC1936 dataset and the data-based reference tract, and (c) using an 

unsupervised matching model from the testing LBC1936 dataset and 

the atlas-based reference tract. 

For all methods, an additional shape modelling-based approach was 

used to reject false positive streamlines from the final tracts [16]. The 

resulting segmented tracts were then visually assessed, blinded to the 

method used, and tracts were considered unacceptable if any significant 

portion of the tract (i.e. with high visitation count) ran in a direction 

different from that expected from anatomy, or if they were severely 

truncated or bent in an unrealistic angle.  

Tract-averaged FA and MD values were then calculated in tracts that 

passed this visual quality check, weighting the values in each voxel by 

the streamline visitation count. To compare the three segmentations, the 

proportions of visually plausible tracts were recorded and the 

coefficients of variation (CV) of the mean FA and MD values extracted 

from the resulting tracts calculated and compared. 

To obtain an impression of the relative importance of the reference 

tracts and the fitted model, the degree of agreement on the best-



matching candidate tract was assessed across the 50 LBC1936 

datasets between the three methods

3 Results 

3.1 Reference tracts

The data-based reference tracts were created for 16 main brain white 

matter fasciculi: the genu and splenium of the corpus callosum, 

anterior thalamic radiations (ATR), the arcuate (Arc), uncinate (Unc), 

and inferior longitudinal fasciculi (ILF), the frontal and ventral cingula 

(Cing), and the corticospinal tract (CST), bilaterally. Figure 1 shows a 

representation of all the referen

as a projection in a
 

Fig. 1. 2D projections of the reference tracts created form the training data. From left to right 

and top to bottom: genu and splenium of the corpus cal

fasciculi, L and R anterior thalamic radiations

frontal cingula, L and R 

fasciculi. Note: images are

ing candidate tract was assessed across the 50 LBC1936 testing 

datasets between the three methods 

Reference tracts 

reference tracts were created for 16 main brain white 

matter fasciculi: the genu and splenium of the corpus callosum, 
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projections of the reference tracts created form the training data. From left to right 
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3.2 Testing of reference tracts and matching models 

Visual assessments. The use of the data-based reference tracts 

improved the number of visually acceptable tracts when compared with 

the same segmentations created from the previous atlas-based reference 

tracts. Table 1 shows the percentage of successful segmentations for 

each white matter tract using each method.  

When comparing tracts created with the same testing data model, the 

data-based reference tracts improved the consistency of the 

segmentations, with >92% of successful segmentations for all tracts. By 

contrast, atlas-based reference tracts had a lower average performance, 

particularly due to the poor performance segmenting the ATR, 

bilaterally, where only 32 and 76% of the cases could be segmented 

successfully.  

When comparing the two models, both perform well, with an average 

of >98% visually plausible tracts, suggesting that a model can be 

trained in a separate dataset and still successfully segment the tracts in 

the testing (LBC1936) data. 

Table 1. Proportion of segmented tracts visually acceptable when using two different matching 

models and each set of reference tracts as priors.  

 Reference tracts Data-based Atlas-based 

Model trained on  Training data Testing data 

Genu 100.0% 100.0% 96.0% 

Splenium 98.0% 96.0% 98.0% 

LArc 100.0% 100.0% 98.0% 

RArc 96.0% 96.0% 94.0% 

LATR 100.0% 100.0% 32.0% 

RATR 96.0% 100.0% 76.0% 

LCing 98.0% 98.0% 100.0% 

RCing 98.0% 92.0% 98.0% 

LCing_ventral 98.0% 100.0% 98.0% 

RCing_ventral 94.0% 98.0% 100.0% 

LILF 100.0% 100.0% 100.0% 

RILF 100.0% 100.0% 100.0% 

LUnc 96.0% 92.0% 88.0% 

RUnc 100.0% 100.0% 100.0% 

LCST 100.0% 98.0% 100.0% 

RCST 100.0% 100.0% 100.0% 

Mean 98.3% 98.1% 92.4% 

 

Figure 2 shows the group maps created by overlaying the segmented 

tracts from the 50 older age volunteer LBC1936 testing data set into the 

standard brain as maximum intensity projections. These images show 

that the segmentations obtained from the two sets of reference tracts are 

similar, except for the left and right ATR, where many of the 



segmentations using the atlas

thereby failing the visual 

obvious in other tracts, sp

particular, the segmentations of the corpus callosum genu, the arcuate 

fasciculi and the ventral cingula were longer when using the new data

based reference tracts, with more of the tract included in the 

segmentation.   

The group maps from tracts generated with each training model showed 

that the choice of training model had a modest effect on the segmented 

tracts. 

Fig. 2. Group maps projections for the 16 tracts of interest segmented 

(left) and data-based (right) reference tracts

testing data, and the bottom row used a model trained in the training data

represents the voxel visitation frequency, from 

into the plane of the voxel with maximum visitation value.

tions using the atlas-based reference followed the wrong path, 

failing the visual check. Some small differences are, however

obvious in other tracts, specifically regarding their lengths. In 

lar, the segmentations of the corpus callosum genu, the arcuate 

fasciculi and the ventral cingula were longer when using the new data

ence tracts, with more of the tract included in the 

The group maps from tracts generated with each training model showed 

that the choice of training model had a modest effect on the segmented 

maps projections for the 16 tracts of interest segmented using the atlas

based (right) reference tracts. Top row used a matching model trained in the 

testing data, and the bottom row used a model trained in the training data.  Colour scale 

the voxel visitation frequency, from 1 (dark blue) to 50 (yellow). Maps are projected 

into the plane of the voxel with maximum visitation value. 

based reference followed the wrong path, 
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lar, the segmentations of the corpus callosum genu, the arcuate 

fasciculi and the ventral cingula were longer when using the new data-

The group maps from tracts generated with each training model showed 

that the choice of training model had a modest effect on the segmented 
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. Top row used a matching model trained in the 

Colour scale 

dark blue) to 50 (yellow). Maps are projected 



FA and MD variability. Table 2 shows the mean values and CV of FA 

and MD, measured along the tracts extracted by the three methods. 

One-way analysis of variance (ANOVA) tests, corrected for multiple 

comparisons, showed that the parameters measured in tracts generated 

by each method were generally not significantly different. Only the 

corpus callosum splenium, the RATR and RCST produced significantly 

different mean parameters. Without multiple comparison correction, 

genu (FA), LCing (FA) and LCST (FA and MD) also became 

significant. However, for both the FA and MD, the variation across the 

50 LBC1936 datasets is lower for most tracts when generated with the 

data-based reference tracts.  

Table 2. Averaged values of fractional anisotropy (FA) and mean diffusivity (MD) measured 

along the tracts segmented with two different matching models, and atlas-based or data-based 

reference tracts as priors in 50 older age volunteers. The coefficients of variation (CV) for each 

parameter are shown in the shaded columns. Bold type indicates that the mean parameters were 

significantly different (p<0.05) between the tracts created with each method (One-way 

ANOVA after Bonferroni-Holm adjustment for multiple comparisons across tracts). 

 FA MD (10-6mm2/s) 

Reference Atlas-based Data-based Atlas-based Data-based 

Model training Testing data Training data Testing data Training data 

 
Mean (sd) CV Mean (sd) CV Mean (sd) CV Mean (sd) CV Mean (sd) CV Mean (sd) CV 

Genu 0.41 (0.05) 0.11 0.39 (0.05) 0.12 0.39 (0.05) 0.12 776.91 (65.59) 0.08 799.20 (75.46) 0.09 799.85 (74.59) 0.09 

Splenium 0.45 (0.09) 0.20 0.52 (0.06) 0.12 0.51 (0.08) 0.15 1117.26 (220.22) 0.20 807.61 (108.59) 0.13 837.77 (162.71) 0.19 

LArc 0.46 (0.05) 0.10 0.45 (0.04) 0.09 0.45 (0.04) 0.10 663.30 (49.21) 0.07 661.30 (49.26) 0.07 659.82 (49.73) 0.08 

RArc 0.43 (0.05) 0.12 0.42 (0.04) 0.10 0.43 (0.04) 0.09 646.56 (55.00) 0.09 645.36 (48.93) 0.08 644.13 (45.30) 0.07 

LATR 0.34 (0.05) 0.14 0.34 (0.03) 0.10 0.34 (0.03) 0.10 757.89 (81.23) 0.11 755.39 (60.94) 0.08 746.41 (60.30) 0.08 

RATR 0.35 (0.04) 0.10 0.36 (0.03) 0.08 0.33 (0.04) 0.12 747.07 (54.08) 0.07 704.05 (50.40) 0.07 766.81 (74.85) 0.10 

LCing 0.45 (0.05) 0.12 0.46 (0.06) 0.12 0.46 (0.06) 0.12 647.29 (51.00) 0.08 638.39 (45.15) 0.07 640.95 (47.46) 0.07 

RCing 0.42 (0.06) 0.13 0.43 (0.04) 0.10 0.42 (0.05) 0.11 619.92 (36.16) 0.06 626.56 (36.03) 0.06 630.97 (33.82) 0.05 

LCing_ventral 0.32 (0.06) 0.19 0.29 (0.04) 0.12 0.29 (0.04) 0.12 752.54 (155.54) 0.21 728.86 (62.50) 0.09 733.07 (69.52) 0.09 

RCing_ventral 0.30 (0.06) 0.20 0.30 (0.05) 0.15 0.29 (0.04) 0.14 760.68 (95.07) 0.12 748.37 (79.00) 0.11 748.73 (88.67) 0.12 

LILF 0.42 (0.05) 0.12 0.41 (0.05) 0.12 0.40 (0.05) 0.12 740.50 (75.45) 0.10 752.41 (67.06) 0.09 745.86 (61.13) 0.08 

RILF 0.39 (0.05) 0.14 0.40 (0.04) 0.11 0.38 (0.05) 0.12 788.00 (142.54) 0.18 750.31 (83.70) 0.11 755.39 (87.47) 0.12 

LUnc 0.34 (0.03) 0.10 0.33 (0.03) 0.10 0.34 (0.04) 0.11 767.04 (53.54) 0.07 767.63 (60.41) 0.08 764.88 (60.65) 0.08 

RUnc 0.33 (0.03) 0.10 0.33 (0.03) 0.10 0.33 (0.04) 0.11 756.22 (41.27) 0.05 758.75 (41.27) 0.05 754.75 (41.77) 0.06 

LCST 0.48 (0.03) 0.07 0.46 (0.04) 0.08 0.46 (0.04) 0.08 655.47 (36.72) 0.06 672.26 (37.18) 0.06 675.52 (38.65) 0.06 

RCST 0.49 (0.03) 0.07 0.49 (0.03) 0.07 0.50 (0.04) 0.07 653.82 (32.72) 0.05 676.03 (32.36) 0.05 676.37 (31.99) 0.05 

Mean 0.40 (0.06) 0.13 0.40 (0.07) 0.10 0.40 (0.07) 0.11 740.65 (115.51) 0.10 718.28 (58.64) 0.08 723.83 (61.36) 0.09 



 

Comparison between fitted models. The source of training data used 

to fit the model appeared to be less influential than the choice of 

reference tract. Models trained with the separate training data or with 

the testing data (in the unsupervised framework), but with the reference 

tracts in common, resulted in agreement on the best candidate tract in 

an average of 39% of subjects. By contrast, the two models fitted in an 

unsupervised fashion on the same testing data (LBC1936), but with 

different reference tracts, agreed only 9% of the time. 

4 Discussion  

The reference tract represents the “matching” target for PNT automatic 

segmentation, and it is therefore crucial that this prior epitomises the 

topological characteristics of the fasciculus of interest correctly. Using 

a large group of healthy volunteers, with a wide age range, we were 

able to capture the variability in tract topology better. Our results 

showed that the results from PNT can be improved, even when the 

testing data corresponds to an age group outside the age range used 

during training to generate the reference tracts or the matching models 

(72 vs 25–64 years old). We also demonstrated that the source of 

training data used to fit the model was less influential than the choice of 

reference tract, and that matching models previously fitted in training 

data can be used to apply PNT in separate testing datasets. This enables 

the possibility of using PNT in small samples of testing data, where the 

number of datasets might not be large enough for fitting the matching 

model in an unsupervised fashion. 

 The large percentage of successful segmentations obtained in the older 

population (>98%) when using the new reference tracts suggests that 

these can be used as priors in different populations, and not just in a 

population matching the training data characteristics. Although the 

improvement is significant, is it still not sufficient to make manual 

checking of the segmented tracts entirely unnecessary, but this is true 

for most automated methods. Further tests would also be required to 

investigate whether these reference tracts would still be good priors to 

perform PNT segmentation in diseased populations with potentially 

large changes in brain topology, such as in the presence of tumours or 



stroke, but preliminary work suggests that the general approach is 

robust to even quite substantial mass effects [17]. 

The most obvious improvement with the new reference tracts is the 

high success rate obtained for the ATR, indicating that the prior for this 

tract generated from real data is a much better representation of the 

ATR topology. Another improvement is the extraction of longer 

segments of some of the tracts of interest, such as the genu of the 

corpus callosum, the arcuate and the ventral cingulum, which arises due 

to the greater difficulty of inferring accurate pathways near the ends of 

tracts when using an atlas as the reference, leading to a shorter 

reference tract. The segmentation of a larger section of the genu 

projections into the frontal cortex (where FA tends to be lower than in 

the centre of the tract) could explain the slightly lower mean values of 

FA obtained for this tract when using the new reference tracts. There 

was also a very subtle shift in the overall position of the splenium of 

the corpus callosum, with the segmentations for this tract obtained with 

the atlas-based reference tract being generally closer to the boundary 

with the ventricles, while the data-based reference producing 

segmentations within the middle of this fasciculus. This is also 

reflected in the higher MD and lower FA of the atlas-based splenium, 

suggesting more partial volume averaging with cerebrospinal fluid 

from the ventricles. 

There could be two main reasons for the differences in parameters 

measured with each method. Firstly, the atlas used to generate the 

previous references tracts was obtained using data from subjects with 

an average age of 29 ± 7.9 years [6], while the training data for the new 

priors had a wider age range of 25–65 years. The new reference tracts 

will therefore represent better the characteristics of the white matter in 

older age, and particularly the changes due to ageing such as atrophy 

and enlarged ventricles. This is reflected in the better segmentations, 

and in the change in the parameters measured, in the tracts running 

closer to the ventricles, such as the ATR, the CST, and the genu and 

splenium of the corpus callosum. Secondly, the native-space 

tractography data used for generating the reference tracts here is a 

much richer dataset than the subject-averaged tract probability maps 

that constitute the atlas. 

The CVs in the parameters measured in the segmentations created from 

the new set of reference tracts are lower than those created from the 

atlas-based reference tracts, particularly for the splenium and the 



ventral Cing. This suggests a lower variability introduced by the tract 

segmentation method, which should facilitate detection of true 

biological differences and avoid spurious findings. 

In summary, we have created a new set of data-based reference tracts to 

be used as priors for PNT, which improved the segmentations of 16 

tracts of interest. We have also demonstrated that the matching model 

could be fitted in separate training data, which will make the use of 

PNT in small testing datasets newly practicable. 
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