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ABSTRACT 

 

Sex estimation is vital for biological profiling, thus qualitative and quantitative methods 

have been developed for every skeletal part in humans. Amongst them the radius is 

somehow neglected. This study aims to develop a sex estimation method on 

radiographs of the radius applicable in situations when classical osteometry cannot be 

applied. A total of 103 left radii were used in this study. Three classical measurements 

(maximum length, head diameter and distal breadth) were taken on the dry bones. 

Digital radiographs of the same radii were taken using a portable X-ray machine 

(Technix TCA 4R PLUS). Eight landmarks are selected on the radiograph of the 

proximal and six on the radiograph of the distal radius generating in total 43 linear 

distances. ANOVA detected 3 osteometric and 24 radiometric variables that differed 

significantly between males and females (p<0.05). Classical osteometry resulted in up 
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to 91% classification accuracy while the best multivariate formula of the radiometric 

method gave 88% correct classification. The study proposes a rapid and inexpensive 

alternative method for sex screening based on digital radiographs of the radius that can 

be particularly advantageous in cases of mass disasters with numerous mutilated 

and/or burnt bodies where maceration is not an option. 

 

Key words: Forensic Anthropology, Sex estimation, Digital Radiography, Radius, 

Discriminant function analysis 

 

 

 

 

 

1. Introduction 

 

Sex estimation is the foremost crucial part of forensic identification when 

recovering human remains in extreme decomposition. Conventional methods of 

identification such as facial features, fingerprints, birthmarks or scars are useless when 

highly decomposed, mutilated, incinerated or skeletonized bodies are recovered1. 

Consequently, forensic anthropologists are tasked to reconstruct the individual’s 

biological profile to assist the identification process. Correct sex assessment guides 

forensic investigations of suspicious or complicated deaths towards the right direction 

while the opposite impedes the clarification of the circumstances surrounding the death 

of the individuals.  

Classical osteometry has been widely used to develop sex estimation techniques 

for different populations in time and space 2–9. In addition, medical imaging techniques 

can be extremely useful in the estimation of sex. An excellent example of the use of 

conventional radiography in rapid sex estimation is given by Brogdon10 when describing 

the X-ray screening in one of the victims of Air India crash (Flight 182, 2000). The 

thoracic radiograph of a young female revealed a 18-22 week fetus displaced in her 

chest. In addition, conventional radiography and computed tomography have also been 

employed lately to develop digital methods of sex estimation for every bone of the 
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human skeleton 11–15. Amongst the bones that have been used in that aspect, the radius 

has received very little attention compared to the skull, the pelvis and other long bones.  

Osteometric studies on the radius for sex estimation include a number of different 

populations. Berrizbeitia 16 analysed radiographs of 567 paired radii from the Terry 

Collection, with respect to the minimum and maximum diameter of the radial head.  A 

sample of 50 pairs was used for cross validation, resulting in up to 94% correct group 

membership.  Among the five measurements taken from the forearm by Holman and 

Bennett17, maximum length and semistyloid breadth (SSB) of the radius are included. 

The SSB was measured from the most lateral point on the styloid process to the deepest 

point of the ulnar notch, at a right angle to the long axis of the bone. When only these two 

measurements were combined, classification accuracy yielded 72% for males and 92% 

for females. Mall and co-workers18, in a study of the upper extremity of a contemporary 

German population, included three radial dimensions (maximum length, maximum head 

diameter and distal width). The best discriminatory variable for the radius was found to 

be maximum length (89.1%), followed by maximum head diameter (88.6%) and 

multivariate analysis gave 94.9% classification accuracy. In a study by Safont and 

collaborators19 using the circumferences of long bones, radial tuberosity circumference 

was found to be the second most effective single dimension, with a classification 

accuracy of 92.8%. The radius has also been studied for Greeks using ROC analysis and 

resulted in up to 91% classification accuracy when considering single variables20. 

The aim of the current study is to explore the validity of digital radiographs of the 

radius for sex estimation in situations of extreme mutilation such as mass disasters 

when the time and limited resources do not allow for the maceration of the remains. A 

secondary goal of the study was to compare the efficiency of radiographic methods for 

sex estimation compared with classical osteometry techniques on the same sample and 

bone. For this reason the exact same sample was used to employ radiometric and 

osteometric techniques. Since the integrity of the recovered bones in forensic settings 

cannot be assured, this study considers fragmentary models in order to simulate real-life 

situations where the integrity of the skeleton is compromised due to post-mortem 

decomposition or mass disaster incidents.  

 

2. MATERIAL AND METHODS 

2.1 Study population 
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A total of 103 (53 males and 50 females) adult left radii were used in this study. The 

remains were selected from the Cretan collection, a modern reference collection 

comprising individuals who were born on the island of Crete, Greece between 1867 

and 1956, and died between 1968 and 1998 3.  

 

2.2 Osteometric and radiographic equipment 

Osteometric data were obtained using a sliding caliper. A digital X-ray machine 

(Technix TCA 4R PLUS), which constitutes part of the routine equipment in the 

forensic investigation of our department, was used for taking the radiographs of the 

radii. A more detailed description of the system can be found elsewhere 13,21. 

 

2.3 Data acquisition. 

Three classical measurements were taken on each radius: maximum length (ML), 

maximum head diameter (HD) and maximum distal breadth (DB) as defined by Martin 

and Seller 22. 

Standard orientation of the bones was achieved by letting the radius balance on the 

horizontal plane, with the anterior surface facing the X-ray camera. Eight landmarks 

(A-G) were selected on the radiograph of the proximal radius and 28 generated 

distances (PR1-PR28), representing all possible combinations of these points were 

calculated. Six landmarks (A-G) were selected on the radiograph of the distal 

epiphysis and 15 generated distances (DR1-DR15) representing all possible 

combinations of these landmarks, were calculated. The selected landmarks for both 

proximal and distal radius are defined in Table 1 and illustrated in Figure 1 for 5 

different specimens. 

TpsUtil was used to create the databases from the radiographs. This software 

creates a sequence of images that can be used afterwards for digitizing landmarks on 

each consecutive image in an efficient and rapid way. TpsDig2 23 is a second program 

that was used to digitize the selected landmarks and to incorporate the scaling factor. 

Morpheus et al.24 was used to generate the distances from the selected landmarks. 

Combining the eight selected landmarks on the proximal radius, 28 distances (PR1-

PR28) were generated. Combining the six selected landmarks, on the distal radius, 15 

distances (DR1- PR15) were generated. All radiometric variables can be seen in Table 

2. 
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Table 1. Definition of landmarks for both proximal and distal Radius 

 
Landmarks Proximal Radius 
A Point under the end of the lateral projection of radial tuberosity in  

the long axis of the radial shaft as seen in the radiograph. 
B Point so that the distance AB is perpendicular to the axis of the 

radial shaft. 
C and D Points on the radial neck so that the distance CD represents the 

minimum radial diameter on the radiograph 
E and F Points on the radial head so that the distance EF represents the 

maximum radial diameter on the radiograph. 
G Point on the most lateral projection of the radial tuberosity 
H Point on the radial shaft so that the distance GH is perpendicular 

to the radial shaft. 
 Distal Radius 
A Point on the most medial projection of the distal radial epiphysis 
B Point on the most distal projection of the styloid process 

C Point on the most lateral projection of the styloid process 

D Point on the most inferior and medial border of the lunar articular 
facet and the inferior projection of the ulnar notch. 

E Point of intersection between the posterior and inferior border of 
the scaphoid articular facet medially. 

F Point of insertion of brachioradialis. It corresponds to the most 
lateral projection near the lateral end of the epiphyseal line as 
seen in the radiograph.  

 

 

Figure 1. Position of the landmarks on the proximal and distal radius in 5 random specimens 

 

2.4 Statistical analysis 

2.4.1 Error estimation 
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Intra-observer variation was quantified for osteometric variables according to 

Ulijaszek and Kerr25 and for landmark data according to O'Higgins and Jones26.  

 

2.4.2 ANOVA and discriminant function analysis 

Measurements were submitted to discriminant function analysis using SPSS 22. 

Descriptive statistics were used to present the study sample. A one-way ANOVA was 

used to test the mean differences between males and females for each measurement. 

All subset discriminant function analysis was used to select the optimal combination 

of variables and to calculate specific formulae in order to classify cases in pre-existing 

groups according to the similarities between each case and the other cases belonging 

to the same group. The accuracy rate of the original sample was always compared to 

the one created using a “leave one out” approach. 

Table 2. Definition of variables for the proximal and distal Radius 
 

Proximal Radius (28) Distal Radius (15) 

Variables Distances  Variables Distance Variables Distances 

PR1 AB PR16 CF DR1 AB 
PR2 AC PR17 CG DR2 AC 
PR3 AD PR18 CH DR3 AD 
PR4 AE PR19 DE DR4 AE 
PR5 AF PR20 DF DR5 AF 
PR6 AG PR21 DG DR6 BC 
PR7 AH PR22 DH DR7 BD 
PR8 BC PR23 EF DR8 BE 
PR9 BD PR24 EG DR9 BF 

PR10 BE PR25 EH DR10 CD 
PR11 BF PR26 FG DR11 CE 
PR12 BG PR27 FH DR12 CF 
PR13 BH PR28 GH DR13 DE 
PR14 CD   DR14 DF 
PR15 CE   DR15 EF 

 

2.4.3 Posterior probabilities 

The normal curve models of the discriminatory variables for each group were used to 

provide estimates (posterior probabilities) of a particular score given membership in 

a particular group. Posterior probability is a statistical term referring to the 

conditional probability of the individual being of a particular sex given that a 

particular value of discriminant score or linear measurement was observed. For sex 

estimation three thresholds were considered (PP>/= 80%, PP>/= 90% and PP>/= 
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95%. In order to evaluate the accuracy of the given formulae posterior probabilities 

were calculated for all functions that resulted in more than 80% classification 

accuracy. 

 

Table 3. Intra-observer error was quantified by calculating TEM, rTEM and  R for each variable. 

 
 TEM rTEM R 

ML 1.05 0.46 0.99 

HD 0.22 1.42 0.96 

DB 0.37 1.22 0.97 

 

3. RESULTS 

3.1 Error estimation  

Error of the osteometric variables was estimated using Technical Error Measurement 

(TEM), relative TEM (rTEM) and R (coefficient of reliability) in a sample of 10 randomly 

selected radii. The error estimates can be seen in Table 3. 

 

Table 4. Means, Standard Deviations and F-ratios for all osteometric (Vost) and radiometric (Vrad) variables 
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Five specimens were randomly selected, each one was digitized five times and principal 

components analysis was carried out for the whole sample and the repeats. The relative 

position of the repeats in respect to each other and to the other individuals was tested in 

an effort to evaluate the magnitude of error relative to the differences in shape between 

these five specimens and within the sample. Figure 2 shows a plot of principal 

component 1 and 2 where the repeats of test specimens 1,2,3 and 5 cluster much 

closer to themselves than to other individuals. This indicates small intra-observer 

error. In the case of the repeats of test specimen 4 other individuals also cluster very 

close. This can be attributed to perhaps the fact that many individuals were a similar 

size to this particular individual and the two components cannot differentiate easily 

between them. 

 

Figure 2. Plot of Principal components 1 and 2 using radiometric measurements for 5 test 

specimens and the whole sample. 

 

3.2 Osteometry 

3.2.1 Univariate analysis 

All osteometric variables were found to differ significantly (p<0.001) with respect to 

their means after ANOVA was carried out. Descriptive statistics can be found in Table 

4. Univariate equations were created for ML, and HD and BD sectioning points were 

calculated accordingly (see Table 5). The best discriminatory variable was found to be 
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ML (88%) followed by HD (86%) for cross-validated data. Interestingly HD classifies 

strikingly higher females compared to males and the other two variables. 

 

Table 5. F-ratios, cut-off values and classification accuracies for the Osteometric (Vost) and the Radiometric 

(Vrad) variables.  

 

    Original Cross-validated 

 V F-ratio Cut-off 
value 

Males Females Total Males Females Total 

 % % % % % % 

V
o

st
 ML 119.03 227.3 88.7 87.5 88.1 88.7 87.5 88.1 

HD 99.76 21.39 83 91.7 87.1 81.1 91.7 86.1 

BD 58.82 28.62 84.9 79.2 82.2 84.9 77.1 81.2 

V
ra

d
1

 

Proximal Radius 

PR16 8.54 21.67 75.5 90 82.5 75.5 90 82.5 

PR23 6.3 20.17 77.4 94 85.4 77.4 94 85.4 

Distal Radius 

DR5 78.6 30.18 75 85.7 80.2 75 85.7 80.2 

DR11 76.01 9.34 78.8 81.6 80.2 78.8 79.6 79.2 

DR14 90.51 27.22 75 91.8 83.2 75 91.8 83.2 

 
1
Only variables with over 80% accuracy are included 

 

 

3.2.1 Multivariate analysis 

Multivariate formulae for all possible combinations of the three variables were created 

and classification accuracy was calculated for both original and cross-validated data. 

Function R1 (ML, HD, BD) gave the best classification accuracy for cross-validated data 

(96%) while R4 (HD, BD) performed the worst with 86% for cross-validated data. 

Table 6 presents all multivariate functions (R1-R4) and classification accuracies. 

 

3.3 Radiometry 

3.3.1 Univariate analysis 

Descriptive statistics of the 43 dimensions and univariate differences between the 

sexes are shown in Table 4. Ten variables (PR1, PR5, PR11, PR15, PR16, PR19, PR20 

PR23, PR25 and PR27) of the proximal radius were found to be significantly different 

between the sexes at the level of p< 0.05. Of them only PR 16 (82.5%) and PR23 

(85.4%) resulted in over 80% classification accuracies (see Table 5). Thirteen 

variables of the distal radius were found to differ significantly between the sexes at the 
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level of p< 0.001 (Table 4). Of them only three exceeded 80% classification, thus they 

are listed in Table 5. 

Table 6. Multivariate discriminant functions and classification accuracies for the radius for 
osteometric and radiometric variables. 

 

3.3.2 Multivariate analysis 

Various formulae were produced using direct and stepwise discriminate function 

analysis of various combinations of the 10 variables for the proximal radius, however, 

none exceeded the cut-off of 80% that was set as a limit in this study; therefore no 

multivariate formula is presented herein. Similarly, various different combinations of 

the 13 variables for the distal radius resulted in higher classification. The combination of 

9 measurements (DRF1) gave a classification accuracy of 88.1% for the original data 
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and 84.2% for the cross-validated sample. When a stepwise procedure was applied 

(DRF2), only two variables (DR6 and DR14) were selected. Many different combinations 

gave similar classification results for the original data but worse for the cross-validated 

ones. Some of the best formulae for separating the sexes along with classification results 

for both original and cross-validated data are presented in Table 6. Sectioning point is 

set to zero in all cases. DRF3 is the result of a direct DFA using the three more effective 

single variables (DR6, DR11 and DR14). Classification accuracy reached 86.1% for the 

original whereas classification for the cross-validated data was only slightly lower. 

 

3.4 Posterior probabilities 

3.4.1 Univariate statistics 

3.4.1.1 Proximal radius 

Posterior probabilities for the measurements taken on the radiographs of the 

proximal radius resulted in grouping all the specimens under a 0.8 threshold, 

suggesting that there is a considerable degree of overlap between the two groups. 

 

 3.4.1.2 Distal radius 

Posterior probabilities for the measurements taken on the radiographs of the distal 

radius classified up to 29% of the specimens at a 0.95 threshold. More specifically 

DR14 classified 43% of the sample at a 0.9 and 29% of the sample at a 0.95 threshold 

with 83% accuracy. The cut-off values for this formula at a 0.95 threshold are 

30.26mm for males and 16.3mm for females (Table 7). 

 

3.4.2 Multivariate statistics 

3.4.2.1 Proximal radius 

Multivariate discriminant functions using different number of variables of the proximal 

radius did not exceed the cut-off of 80% accuracy that  was set in this study. Therefore, 

posterior probabilities for the multivariate functions of the proximal radius are not 

presented here.  

 

3.4.2.2 Distal radius 

The best multivariate discriminant function for the distal radius (DRF1) classified over 

76% of the sample at a 0.8, over 64% at a 0.9 and over 50% at a 0.95 threshold 
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exhibiting 88% correct group membership. For this function discriminant scores 

over 1.2501 classify males and under -1.2378 classify females at a 0.95 threshold. 

DRF3 classified over 60% of the sample with 90% probability and over 40% with 95% 

probability of correct group assignment with 86.1% accuracy. For this function and 

individual with DS>1.4316 has 95% probability to be a male while if DS<-1.3826 it 

has 95% probability to be a female. Posterior probabilities for all multiple 

discriminant functions of the distal radius are shown in Table 7.  

 

Table 7. Posterior probabilities for univariate and multivariate functions for the radiometric 

variables 

PP 

(%) 

Males Females Total Males Females Total 

> % < % % > % < % % 

 DR5 DRF1 

>95 34.00 28.9 25.93 14.3 21.8 1.25 51.9 -1.24 49.0 50.5 

>90 33.14 42.3 27.27 28.6 35.6 1.07 59.6 -0.92 69.4 64.4 

>80 32.46 55.8 28.37 57.1 56.4 0.58 67.3 -0.63 85.7 76.2 

>50 30.18 75.0 30.18 85.7 80.2 0 84.6 0 91.8 88.1 

 DR11 DRF2 

>95 11.35 21.2 7.40 18.4 19.8 1.45 48.1 -1.43 28.6 38.6 

>90 10.76 32.7 7.80 36.7 34.7 1.19 51.9 1.04 63.3 57.4 

>80 10.26 55.8 8.44 55.1 55.5 0.65 65.4 -0.65 77.6 71.3 

>50 9.34 78.9 9.34 81.6 80.2 0 80.8 0 87.8 84.2 

 DR14 DRF3 

>95 30.26 42.3 24.24 16.3 29.7 1.43 46.2 -1.38 34.7 40.6 

>90 29.52 51.9 24.97 32.7 42.6 1.06 59.6 -1.02 61.2 60.4 

>80 28.84 61.5 25.82 55.1 58.4 0.69 69.2 -0.71 77.6 73.3 

>50 27.26 75.0 27.26 91.8 83.2 0 80.8 0 91.8 86.1 

 

 

An example of the applicability of the method is illustrated in Figure 3. A radiograph of 

the wrist from the hospital’s archives was randomly selected with unique criterion the 
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preservation of the distal epiphysis of the radius and was used to apply the method. 

Landmarks were placed according to the instructions (see materials and methods) 

and measurements were calculated using taking under account the scale 

(corresponding to 6 cm). For this case DRF1 was found to be -0.9718, which according 

to Table 7 classifies the individual as female with over 90% probability. Demographic 

information of the patient confirmed the X-rays belonged to a female. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 

Example of 

the 

 

DISCUSSION 

 

 

 

Figure 3. Example of application of the method in a randomly selected radiograph from the 
hospital’s archive. 

 

4. Discussion 
 

Sex can be identified through direct observation, osteometry or medical imaging 

techniques by the shape and the size of the pelvis, the cranial features and the size of 

the long bones. In the case of severe mass incidents resulting in mass destruction, 

disfigurement and mutilation of human bodies, classic identification techniques 
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(facial recognition, fingerprints) become problematic while osteological methods for 

biological profiling are often deemed unfeasible as they require maceration of the 

body parts, which would be time consuming under the circumstances of a mass 

incident. In these cases, medical imaging techniques, including classical radiography 

could be of extreme help if radiometric standards of biological profiling were 

available. Taking these under consideration the current study aspires to use 

radiographs of the radius, a relatively neglected bone in medical imaging studies, to 

develop a sex estimation method for a modern Greek population. 

Indeed, there are hardly any radiographic studies dealing with sex estimation of 

the radius. One of the early radiographic studies using portable X-ray equipment 

is that of Allen and colleagues in 1987 recording 3 measurements on the radius 27. 

Most recent studies from radiographs and CT scans include the correlation of 

maximum length and distal width using radiographs of the radius 28 but mostly focus 

on developing age 29 and stature estimation methods 30,31. The present study created 

and tested 43 new metric variables from the proximal and distal epiphyses of the 

radius to explore statistically significant differences between the sexes. The best 

function for the proximal epiphysis involved a single variable (PR16, 85.4%) while 

different combination of variables gave poor results for cross-validated data. For the 

distal epiphysis the best variable was DR14 (83.2%) while three multivariate 

formulae gave over 84% accuracy for the cross-validated data (see table 6).  

Comparing the classification accuracy of the radiometric method to classical 

osteometry on the same sample, the latter performs better with 81-96% 

classification accuracy for cross-validated data. The best single variable was found to 

be ML (88%) followed by HD (86%) and DB (81%). The best single radiometric 

variables for the upper and lower epiphysis are PR23 (85%) and DR14 (83.2%) 

respectively. These results are comparable with the results of the osteometric method. 

In the case of the multivariate functions, the osteometric methods the best function 

(R1) achieved 96% accuracy which is 10% higher than the best radiometric functions 

for cross-validated data. This can be attributed to the inclusion of total length in the 

functions R1-R3 which is the most important single sex indicator. Function R4 (which 

only includes HD and BD) achieved lower classification accuracy (86%) compared to 

R1-R3. The radiometric method considered separately each epiphysis and gave similar 
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results (up to 84% for cross-validated data) to R4, which makes it valuable in cases of 

mutilated bodies where the radius may not be found intact.  

Figure 4. Human arm found away from the rest of the body, due to animal scavenging, in a forest 

in Rethymnon, Crete. This is an excellent example of a case that would benefit from the 

radiometric method. 

 

Digital radiographs have been proven to be useful in developing sex estimation 

methods for Greeks on several occasions. Studies of radiographs from the upper 

epiphysis of the Cretan femur yielded up to 93% accuracy while osteometric methods 

on the same sample did not exceed 87%32. A similar study on femoral radiographs of 

living individuals from Egypt33 followed the same protocol on data acquisition and 

reported similar and in some occasion higher classification accuracy compared to the 

Kranioti et al. 32 study. In addition, studies of the radiographs of the Cretan humerus 

using traditional13 and geometric morphometric approaches34 resulted in high 

classification accuracies (up to 90%) making the use of radiographs an excellent 

alternative when other methods are unavailable. 

Medical imaging techniques have been increasingly used by forensic 

practitioners not only for diagnostic purposes but also for the development of 

standards for biological profiling. Amongst the obvious advantages is the availability 

of large samples from hospital archives, which allows for data collection without the 

existence of modern skeletal collections. For example, in Muslim countries the 

creation of modern skeletal collections is an impossible task due to the religious 

prohibition of exhuming human remains after their burial14. Another example is the 

strict legislation regarding the use of modern human remains for research that 
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currently applies in the UK (see Human Tissue Act, 2004; 2006). This work 

eliminates the abovementioned problems with the use of portable X-ray 

machines in the examination of skeletal remains and presents an example of 

developing a sex estimation technique from fragments of the radius under X-rays. The 

classification results are comparable to the classical osteometric method applied on 

the epiphyses of the bone, and thus it can be used as an alternative method for cases 

of dismembered bodies. Figure 4 illustrates a human arm that was found away from 

the body due to animal scavenging in a forest in the area of Rethymnon, Crete, which 

would be an excellent example of applicability of this method. The same X-ray 

machine that was used for this study is always available at the morgue for a quick 

scan of the remains and the application of the method would not take more than 5-

10 minutes depending on the experience of the operator. It must be stressed that the 

data was derived from a documented sample of a modern Greek population from 

Crete thus, it should not be considered applicable to other populations without further 

testing.  

 

Conclusions 

Radiometric techniques are valuable alternative tools to classical osteometry for 

building a biological profile of unknown remains. They become especially 

advantageous in cases of semi-decomposed, incinerated or postmortem scattered 

remains that maceration cannot be done due to restrictions in time or resources. The 

current study presents a method of sex estimation based on the radiographs of the 

radius, which classifies the study sample almost as well as the classical osteometric 

technique. Thus, it is recommended for use in forensic cases if the specifics of the case 

dictate,  bearing in mind that the method is population specific and not appropriate for 

wider use without validation. 
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