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Abstract  1 

BACKGROUND: The photocatalytic treatment of the artificial sweetener saccharin 2 

(SAC), an emerging environmental contaminant, was investigated. UVA irradiation was 3 

provided by an environmentally friendly light-emitting diode (UV-LED), whose efficiency 4 

was compared to a conventional blacklight fluorescent lamp (UV-BL). 5 

RESULTS: The effect of the initial SAC concentration (2.5-10 mg/L), TiO2 concentration 6 

(0-500 mg/L), water matrix (absence/presence of humic acids), and treatment time on 7 

process efficiency was evaluated. At the best conditions assayed ([SAC]0=2.5 mg/L, 8 

[TiO2]=250 mg/L), SAC was degraded within 20 and 90 min under UV-LED and UV-BL 9 

irradiation, respectively. Liquid chromatography-high resolution mass spectrometry 10 

(LC-HR/MS) revealed that SAC degradation proceeds via hydroxylation of the phenyl 11 

ring, cleavage of C-N bond and further oxidation reactions. Finally, UV-LED was found 12 

to be up to 16 times more energy efficient than UV-BL. 13 

CONCLUSIONS: In all cases, UV-LED achieved higher photocatalytic efficiency, in 14 

terms of organic degradation, and found to be significantly more energy and cost efficient 15 

than conventional UV-BL irradiation source, thus rendering LED-photocatalysis a 16 

sustainable technology for the treatment of persistent contaminants. 17 

 18 

 19 

Keywords: Advanced oxidation processes; photocatalysis; wastewater treatment; UV-LED; 20 

humic acids; artificial sweeteners; energy consumption  21 
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INTRODUCTION  1 

Artificial sweeteners (ASs) have been recently recognised as emerging micro-contaminants 2 

due to their increasing consumption, environmental persistence and widespread detection in 3 

the water cycle. 1 ASs are high production volume chemicals used worldwide to sweeten 4 

beverages, personal care products and pharmaceuticals. 2,3 Municipal wastewater effluents are 5 

the main entrance pathway of ASs in the aquatic environment and among them, saccharin 6 

(SAC), acesulfame (ACE) and sucralose (SUC) are widely detected, at trace level 7 

concentrations, in groundwater, surface and drinking water. 1,4-7 The unawareness of ASs’ long-8 

term ecotoxicological effects and their reported formation of toxic by-products during natural 9 

attenuation, raise some important environmental concerns 5,8 and further call for the 10 

development of highly efficient treatment methods. 11 

 12 

TiO2-mediated photocatalysis, an advanced oxidation process with well-proved efficiency in 13 

degrading recalcitrant, non-biodegradable compounds 9,10, has been recently studied for the 14 

degradation of SUC, ACE and SAC and the obtained results are encouraging. 8,11,12 In principle, 15 

photocatalytic oxidation is initiated upon UV illumination of TiO2; highly reactive species, 16 

mainly hydroxyl radicals (HO•), are then formed and non-selectively attack organic pollutants, 17 

which are subsequently mineralized into CO2 and harmless inorganic products. 13,14 Blacklight 18 

(BL) fluorescent UV lamps are commonly used as irradiation source in photocatalytic 19 

applications. Nevertheless, these are energy intensive devices and pose environmental hazards 20 

due to their content in toxic chemicals (i.e. mercury and lead). 15 As a result, high operational 21 

cost and increased environmental impact hinder the large-scale application of photocatalytic 22 

process. 16 On this basis, UV light-emitting diodes (UV-LEDs) attract considerable attention 23 

as eco-friendly alternatives to UV-BL lamps. LEDs’ energy efficiency, extended lifetime and 24 

less toxic nature (i.e. mercury and lead-free) can lower the cost and improve process 25 
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sustainability 17,18 while their small footprint, directional light output and narrow band emission 1 

spectra allow for flexible design and development of compact water treatment units. 19 2 

 3 

UV-LEDs were firstly employed by Chen et al. (2005) for the photocatalytic treatment of 4 

perchloroethylene 20 and since then LED-photocatalysis has been proved feasible for the 5 

treatment of a wide range of contaminants.  Development of LED photocatalytic reactors has 6 

attracted increasing attention recently. UV and visible LEDs of different irradiation 7 

wavelengths have been tested, in various configurations (i.e. flexible LED strips, LED arrays, 8 

single LEDs, etc.) and reactor set-ups (i.e. LEDs placed above, wrapped around, mounted on, 9 

immersed in the reactor, etc.). 21-25 Several studies have also compared the efficiency of LEDs 10 

with germicidal and blacklight lamps in photocatalytic applications. 25-28 However, the 11 

comparison has been usually made between irradiation sources of different electrical power or 12 

at reactor geometries optimised for U shaped lamps, without considering LEDs’ optical 13 

characteristics. The directivity of LEDs’ affects dramatically the irradiation uniformity 24 and 14 

when integrated within the reactor in a close distance from catalyst the non-uniform irradiation 15 

of the latter results in lower oxidation rates compared to blacklight lamps, as has been 16 

previously reported by Levine et al (2011). 28 Therefore, a study evaluating a UV-LED 17 

relatively to a UV-BL at a set-up providing uniform irradiation, at the same spectral irradiance, 18 

electrical power and reactor geometry, in terms of organic removal, energy consumption and 19 

under a variety of photocatalytic conditions is still missing from literature.  20 

 21 

As a result, the aim of the present study is the investigation of photocatalytic degradation of 22 

SAC, the forerunner of ASs with the most diverse uses (i.e. additive in piglet feed 29 and 23 

brightener in nickel plating 30), under UVA irradiation emitted from either a UV-LED or UV-24 

BL lamp. For this purpose, a UV-LED and a UV-BL fluorescent lamp of the same electrical 25 
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power and peak emission wavelength were tested in parallel experimental series, under 1 

identical photocatalytic conditions (i.e. initial SAC concentration, TiO2 concentration and 2 

water matrix). The influence of key operational parameters, such as the initial SAC 3 

concentration, TiO2 concentration, water matrix, treatment time and irradiation source on 4 

photocatalytic performance was assessed. The main transformation products (TPs) under UV-5 

LED and UV-BL irradiation were identified and possible degradation pathways were 6 

elucidated. Finally, the energy efficiency of both irradiation sources was evaluated and a 7 

comparative study was carried out. To the best of the authors’ knowledge, this is the first study 8 

employing LEDs for the photocatalytic treatment of ASs. 9 

 10 

MATERIALS AND METHODS  11 

Chemicals 12 

All chemicals in this study were of analytical grade and used without further modification. 13 

SAC (CAS No: 81-07-2) was purchased from Acros. Leonardite humic acid IHSS standard 14 

was used and a stock solution was prepared by dissolving the proper amount of HA in 0.1 M 15 

NaOH and further diluting it in deionised water. Aeroxide TiO2 P25, supplied by Evonik 16 

Industries, was used as the photocatalyst because of its higher photocatalytic efficiency among 17 

other commercial catalysts, as was found also in our previous study. 12 18 

 19 

Photocatalytic experiments 20 

Experiments were conducted in a batch-operated slurry photoreactor, applying a working 21 

volume of 150 mL. For LED driven photocatalysis, a UVA emitter (λmax=365 nm; LZ4-22 

00U600, LED Engin) was employed and mounted onto a heat sink to prevent radiant flux 23 

decrease due to temperature rise. The LED assembly (Schematic 1) was placed directly above 24 

the reactor and a quartz protective plate was placed between them. The second irradiation 25 
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source was a UV-BL fluorescent lamp (λmax=365 nm; PLS G23, Casell Lighting), housed in a 1 

quartz tube and, for the sake of comparison, positioned on top of the photoreactor, at the same 2 

height as UV-LED. Both set-ups were covered with an aluminium shield to prevent any light 3 

diffusion out of the reactors and to minimise penetration of ambient light. The quartz glasses 4 

were used to protect the lamps from water spills. UV-LED and UV-BL irradiation sources were 5 

driven by electrical power of 11W and were connected in series to a DC power supply. 6 

 7 

Schematic 1 8 

 9 

In a typical run, SAC solution (2.5-10 mg/L) was loaded in the photoreactor and the desired 10 

amount of catalyst was added. The slurry solution in the reactor was continuously stirred at 500 11 

rpm with a magnetic stirrer to promote uniform dispersion of the photocatalyst powder and 12 

dissolved oxygen. At the beginning of each experiment, the solution was stirred in the dark for 13 

30 min to ensure adsorption-desorption equilibrium of SAC on TiO2 surface. The UV source 14 

was then switched on and at regular time intervals samples were withdrawn and filtered through 15 

0.45 μm syringe filters to separate catalyst particles and further analysed in terms of their SAC 16 

concentration. All experiments were conducted at room temperature and at the natural pH of 17 

SAC solutions (~ 4.6). After 45 min of treatment, solution’s temperature was found to increase 18 

by 3° C (from 21 oC to 24 oC) under both irradiation sources. 19 

 20 

Analytical techniques  21 

SAC concentration in filtrate samples was measured by a high performance liquid 22 

chromatography (HPLC) system (S200 Pump, S225 Autosampler, Perkin Elmer) coupled with 23 

a diode array detector (S200 EP, Perkin Elmer) with a limit of detection (LOD) and limit of 24 

quantification (LOQ) of 0.005 and 0.1 mg/L, respectively. Separation was performed on a 25 
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reverse phase C18 analytical column (Luna® Phenomenex 5u, 250 x 4.6 mm). HPLC method 1 

for SAC was obtained from Trandafil et al. (2009) 31 and was appropriately modified. The 2 

mobile phase consisted of 85 vol. % 0.02 M KH2PO4 and 15 vol. % CH3CN fed at a flow rate 3 

of 1 mL/min. The elution was isocratic and the injection volume was 40 μL. The detection 4 

wavelength was at λ=216 nm.  5 

 6 

The photon flux emission of the irradiation sources was determined by potassium ferrioxalate 7 

actinometry, as described by Murov 32, and found to be 3.32×10-6  and 3.15×10-7 Einstein/s for 8 

UV-LED and UV-BL lamp, respectively. The spectral distribution of UV-LED and UV-BL 9 

was measured by a Labsphere E1000 spectral irradiance receiver with a concentrator area of 1 10 

cm2 and are presented in Figure 1. 11 

 12 

Figure 1 13 

 14 

A Bruker micrOTOF Focus II interfaced to a Dionex (Thermo Scientific) Ultimate 3000 15 

UHPLC system was used for the identification of SAC TPs. The chromatographic separation 16 

was performed using a Thermo Scientific Acclaim TM RSLC 120 C18 column thermostated at 17 

30° C. The mobile phase consisted of LC-MS grade water-0.01% formic acid (A) and LC-MS 18 

grade acetonitrile (B) with a flow rate of 0.25 ml/min. The following elution was adopted: A/B: 19 

99/1 (0 min), A/B: 1/99 (15 min), A/B: 99/1 (17 min), A/B: 99/1 (18 min). The micrOTOF 20 

Focus II was operated in negative ionization mode. Dry gas at 8 L/min, nebulizer press at 2.4 21 

bar, dry heater at 200° C, hexapole RF at 100 Vpp and capillary were adjusted at 4200 V. 22 

 23 

Energy consumption  24 
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The energy consumption of artificial lighting constitutes a major fraction of the operating costs 1 

in UV photocatalysis. Bolton et al. (2001) introduced the electric energy per order, EEO, defined 2 

as the energy required for 90% degradation of a pollutant per cubic meter of contaminated 3 

water. 33 EEO (kWh/m3/order), for a batch-operated reactor, is calculated from the following 4 

equation: 5 

𝐸𝐸𝑂 =
𝑃 × 𝑡 × 1000

𝑉 × 60 × log⁡(𝐶𝑖 𝐶𝑓)⁄
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 6 

where P is the electrical power of the irradiation source (kW), t is the irradiation time (min), V 7 

is the volume of the treated effluent (L), and Ci and Cf are the initial and the final pollutant 8 

concentrations (mg/L), respectively. 9 

 10 

RESULTS AND DISCUSSION 11 

Effect of initial SAC concentration  12 

Initial SAC concentration in the range of 2.5-10 mg/L was applied to assess its effect on 13 

photocatalytic performance, in the presence of 125 mg/L TiO2. In both cases, the pseudo-first-14 

order reaction model was found to describe well the photocatalytic removal of SAC (Table 1). 15 

As seen in Figure 2, increase in the initial SAC loading resulted in decreased removal 16 

efficiency. Specifically, increase of SAC concentration from 2.5 to 10 mg/L led to removal 17 

decrease from 99.9 to 86.1% (with k=0.198–0.043 min-1) during UV-LED photocatalysis 18 

(Figure 2a) and 71.2 to 35.1% (with k=0.030–0.010 min-1) under UV-BL irradiation (Figure 19 

2b). Increase in the initial organic substrate concentration, at a fixed catalyst concentration, 20 

lowers the ratio of oxidant species to substrate and further results in decreased degradation 21 

yields 34, thus explaining the findings presented above. According to the results, UV-LED 22 

could completely degrade up to 5 mg/L of SAC within 30 min of photocatalytic treatment 23 
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(Figure 2a). On the other hand, SAC, even at the lowest (2.5 mg/L) concentration, could not be 1 

degraded after 45 min of treatment under UV-BL irradiation (Figure 2b).  2 

 3 

Table 1 4 

 5 

Figure 2 6 

 7 

Effect of catalyst concentration  8 

Control experiments (i.e. photolysis and exposure under darkness in the presence of catalyst) 9 

were performed to assess the effect of catalyst on process efficiency and its adsorption capacity. 10 

As presented in Figure 3, photocatalysis was shown to be the main removal mechanism, since 11 

SAC concentration remained almost unchanged after 45 min of photolysis or treatment in the 12 

dark.  13 

The effect of catalyst concentration on process efficiency was then investigated by applying 14 

various catalyst concentrations (i.e. 125, 250 and 500 mg/L), at 5 mg/L initial SAC 15 

concentration. Figure 3a shows that 99.9% degradation of SAC took place within 30 min under 16 

UV-LED irradiation, in the presence of all the tested catalyst concentrations and it becomes 17 

evident that increase in catalyst concentration beyond 125 mg/L did not further improve the 18 

process efficiency. Similarly, as depicted in Figure 3b, catalyst concentration did not affect 19 

notably SAC removal under UV-BL irradiation, either. In principle, increase of TiO2 20 

concentration enhances organic substrate’s oxidation by offering more photoactive surface area 21 

for adsorption and generation of a greater amount of oxidizing species. However, at higher 22 

TiO2 concentrations removal efficiency becomes independent of catalyst mass, as it was 23 

observed in the present study, due to agglomeration of TiO2 particles and subsequent reduction 24 
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in available surface area, as well as, due to increased opacity and light scattering that further 1 

reduce the light passage through the solution. 13  2 

Unlike catalyst concentration, irradiation source had a profound effect on process efficiency. 3 

SAC removal was only about 60% after 45 min of treatment under UV-BL irradiation, making 4 

it clear that UV-LED was more efficient (i.e. total SAC degradation achieved after 30 min of 5 

treatment) in terms of organic removal.  6 

 7 

Figure 3 8 

 9 

Effect of water matrix  10 

5 and 8 mg/L of humic acids (HA) were added to SAC/TiO2 system to examine the effect of 11 

water matrix on SAC removal and the results are presented in Figure 4. The addition of HA 12 

was found to be inhibitory for SAC photocatalytic oxidation, under both types of irradiation, 13 

resulting in removal rates up to 3.6 times lower than in the respective SAC/TiO2 systems. In 14 

particular, addition of 8 mg/L HA reduced by 73% the removal rate of SAC, regardless of the 15 

light source. Specifically, SAC removal percentages decreased from 99.9% to 27% and 55.1% 16 

to 15% under UV-LED and UV-BL irradiation, respectively. The observed removal efficiency 17 

may be attributed to a partial expenditure of oxidizing radicals for the degradation of HA by 18 

UV/TiO2 
35,36 that lowers the ratio of oxidant species to SAC molecules and further limits SAC 19 

oxidation.  20 

 21 

Figure 4 22 

 23 

TPs and reaction pathways 24 
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For the identification of TPs, additional experiments were conducted at an increased SAC 1 

concentration (15 mg/L) in the presence of 250 mg/L TiO2 for both systems. Accurate mass 2 

measurements in negative ionization mode (Table 2) revealed the formation of seven and five 3 

TPs during SAC degradation under UV-LED and UV-BL irradiation, respectively. Based on 4 

the mass spectra data (m/z [M-H]- ions) and the elemental composition of the deprotonated 5 

ions obtained by the mass instrument software as well as the kinetic profiles of the TPs, possible 6 

structures and degradation pathways are proposed and shown in Figure 5. According to the 7 

results, the photocatalytic transformation of SAC under both irradiation sources, starts by the 8 

hydroxylation of the molecule giving rise to the formation of three isomers (TP4, TP5, TP6). 9 

The hydroxylation mechanism proposed in the present study is consistent with previous work 10 

that reported relatively high reactivity of hydroxyl radicals towards the studied sweetener and 11 

proposed that the oxidation mechanism involves the addition of hydroxyl radicals in the 12 

aromatic ring, resulting in hydroxylated products 37. 13 

Hydroxylation of phenyl ring as well as N atom can be considered. Sequential hydroxylation 14 

of the above-mentioned TPs results to di- and tri-hydroxy derivatives (TP7 and TP1). The 15 

sequential steps of hydroxylation are also confirmed by the evolution profiles of TPs (Figure 16 

6) revealing that TP7 and TP1 peak concentrations are recorded in longer irradiation times than 17 

that of monohydroxylated TPs.  18 

Based on the fact that mono-hydroxylated TPs attained their maximum concentration within 19 

the first stages of the process, they can be characterized as primary TPs. TP7 and TP1, di-20 

hydroxylated and tri-hydroxylated products, are recorded in longer irradiation times 21 

simultaneously with the slower degradation of mono-hydroxylated derivatives, proving the 22 

sequential steps of hydroxylation. Their rapid disappearance can be associated with the 23 

formation of ring opening products and the favored cleavage of the molecule after successful 24 

hydroxylation. TP5 is the most abundant mono-hydroxylated product identified during the 25 
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photocatalytic degradation of saccharin and shows a slower degradation rate during the process 1 

and a prolonged irradiation time for its complete removal. 2 

Cleavage of the C-N bond of sulfonamide group and further oxidation leads also to the 3 

formation of TP2 and TP3, bearing amine and/or carboxylic acid functional groups. As 4 

depicted in Figure 6, under UV-LED irradiation all the TPs are completely removed between 5 

30-120 min. On the other hand, some TPs remain at trace levels after 300 min of treatment 6 

using UV-BL as irradiation source. Short-chain carboxylic acids, such as oxalic, formic, and 7 

maleic acid is expected as end-products from the oxidative transformation of SAC primary TPs 8 

using advanced oxidation processes as reported elsewhere. 38 9 

 10 

Table 2 11 

 12 

Figure 5  13 

 14 

Figure 6 15 

 16 

Effect of the irradiation source  17 

It becomes obvious from the results presented so far that the irradiation sources, although 18 

driven by the same electrical power and having the same λmax=365 nm, resulted in different 19 

SAC degradation yields, with UV-LED leading constantly to higher oxidation rates than UV-20 

BL.  21 

Catalysts’ activity depends strongly on photon energy (i.e. wavelength) and TiO2 (P25) is 22 

sufficiently photo-activated at λ<380 nm. 13 Figure 1 presents the spectral irradiance 23 

distribution of the two light sources; as can be seen, UV-LED has a narrow band emission 24 
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centred at about 370 nm so the catalyst can absorb all the incident radiation. However, the 1 

broadband spectrum of the UV-BL lamp consists of a higher fraction of photons with λ>380 2 

nm that are beyond the action spectrum of catalyst, thus resulting in decreased oxidation rates 3 

when compared to UV-LED. 4 

The photon flux is another critical, and possibly the most important, parameter to be 5 

considered. Increased photon flux can lead to the formation of more hydroxyl radicals and 6 

therefore higher oxidation rates of organic substances. 39 As was revealed by potassium 7 

ferrioxalate actinometry, the incident photon flux on reactant solution under UV-LED 8 

irradiation (i.e. 3.32×10-6 Einstein/s) was an order of magnitude higher than that of the UV-BL 9 

lamp (i.e. 3.15×10-7 Einstein/s), explaining the higher photocatalytic efficiency under UV-LED 10 

irradiation. This tenfold gap is due to the different directionality of the light sources. UV-BL 11 

lamp emits light in all directions, and even though aluminium foil is used to reflect the 12 

irradiation back into the photoreactor, a fraction of the emitted photons is lost. On the other 13 

hand, UV-LED produces a directional beam of light so there is no leak of UV light outside the 14 

reactor.  15 

Under a closer look, although the light intensity provided by the UV-LED is 10 times higher, 16 

k values, during LED-photocatalysis, were 4-9 times higher than those of UV-BL, implying a 17 

lower apparent photonic efficiency (i.e. ratio of reaction’s rate to the rate of incident photons) 18 

than UV-BL. The reaction rate increases linearly with light intensity up to a point and then it 19 

increases with the square root of the light intensity 39,40 due to the higher recombination of the 20 

photogenerated electron-hole pairs. 41 That means that increase in light intensity enhances to a 21 

lesser extent the process efficiency, thus lowering the photonic efficiency. This tendency has 22 

been also reported by Chen et al. (2007) and Coutts et al. (2011) 40,42 and highlights the need 23 

for the right balance between removal efficiency and energy consumption when it comes to the 24 

determination of light intensity.  25 
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 1 

Energy consumption  2 

The energy consumption, EEO, of the two irradiation sources was estimated by Equation (1) 3 

and the results are shown in Figure 7. It is observed that UV-LED requires significantly lower 4 

EEO values, compared to UV-BL, suggesting its higher sustainability. Specifically, the 5 

maximum EEO,BL/EEO,LED ratio (with values up to 16) was found at initial SAC concentration 6 

≤5 mg/L. For instance, during the photocatalytic treatment of 5 mg/L SAC in the presence of 7 

125 mg/L TiO2, the EEO was estimated at 8.2 kWh∙m-3∙order-1 and 134.4 kWh∙m-3∙order-1 under 8 

UV-LED and UV-BL, respectively. In all cases, UV-LED was found to be more energy-9 

efficient than UV-BL photocatalytic treatment, since the first requires less treatment time to 10 

achieve SAC removal than the latter.  11 

A cost estimation of the two photocatalytic processes, based on their energy consumption, was 12 

attempted. The average electricity price, which is 0.10 ₤∙kWh-1 43, purchased by non-domestic 13 

consumers in the United Kingdom was used. Under the best conditions assayed, UV-LED 14 

treatment costs 0.72 ₤∙m-3∙order-1. The corresponding cost for SAC removal, under UV-BL 15 

irradiation, is 3.3 ₤∙m-3∙order-1, rendering UV-LED more cost-efficient than UV-BL 16 

photocatalysis. 17 

 18 

Figure 7  19 

 20 

CONCLUSIONS 21 

The photocatalytic treatment of saccharin (SAC), an emerging persistent contaminant, was 22 

investigated. Two different UVA irradiation sources, an eco-friendly light-emitting diode (UV-23 

LED) and a conventional blacklight fluorescent lamp (UV-BL), were employed and their 24 
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photocatalytic performance was compared. The effect of operating parameters, namely initial 1 

SAC concentration, TiO2 concentration, and water matrix on process efficiency was assessed. 2 

In addition, intermediate transformation products (TPs) were identified for both irradiation 3 

sources and potential degradation pathways were proposed. The conclusions drawn are 4 

summarised below.  5 

- SAC conversion increases with the initial SAC concentration decrease; however, TiO2 6 

concentration does not largely affect the process efficiency.  7 

- The presence of humic acids (HA) in the reactant solution decreases considerably SAC 8 

degradation, under both irradiation sources, indicating the significance of the effect of 9 

water matrix on process efficiency. 10 

- Seven and five TPs were identified for the UV-LED/TiO2 and UV-BL/TiO2 system, 11 

respectively. The degradation of SAC occurs via (i) hydroxylation of the phenyl ring, 12 

(ii) cleavage of the C-N bond and (iii) oxidation reactions.  13 

- The irradiation source has a critical effect on process efficiency. In all cases, UV-LED 14 

yielded higher removal rates than conventional UV-BL irradiation. The superior 15 

performance of LED driven photocatalysis is attributed to the higher photon flux 16 

reaching the reactant solution due to UV-LED’s directionality. Therefore, LED was 17 

found to be significantly more energy and cost-efficient than BL photocatalysis. 18 

All in all, UV-LED/TiO2 photocatalytic oxidation is proved to be promising for water treatment. 19 

Nevertheless, future efforts should focus on assessing the energy requirements and operating 20 

costs of LED-based photocatalysis at real-scale and how this technology can be incorporated 21 

into existing water treatment plants. Also, the ecotoxicity of the final effluent should be 22 

quantified and comprehensively investigated before any further process scaling-up. 23 

 24 
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Table 1. Removal percentage (R), reaction rate constant (k), and coefficient of linear regression 

of data fitting (r2) for SAC photocatalytic degradation, under UV-LED and UV-BL irradiation. 

Table 2. High resolution mass spectra data for SAC and identified TPs derived from mass 

spectrometric analysis.  
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Table 1 

Operating      

parameter 

Irradiation 

source 
mg/L R, % 

First-order reaction 

model 

k, min-1 r2 

Initial SAC 

concentrationa 

 

UV-LED 

 

2.5 99.9 0.198 0.996 

5 99.9 0.159 0.995 

7.5 98.4 0.069 0.989 

10 86.1 0.043 0.974 

UV-BL 

2.5 71.2 0.030 0.988 

5 55.1 0.018 0.993 

7.5 42.7 0.014 0.981 

10 35.1 0.010 0.960 

TiO2 

concentrationb 

UV-LED 

125 99.9 0.159 0.995 

250 99.9 0.170 0.991 

500 99.9 0.163 0.997 

UV-BL  

125 55.1 0.018 0.993 

250 61.0 0.022 0.990 

500 58.6 0.018 0.964 

Best operating 

conditionsc 

UV-LED  99.9 0.303 0.998 

UV-BL  85.5 0.044 0.991 

                             a [TiO2]=125 mg/L; irradiation time=45 min 

                             b[SAC]0=5 mg/L; irradiation time=45 min 

                             c[SAC]0=2.5 mg/L; [TiO2]=250 mg/L;  irradiation time=45 min 
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Table 2  

LED-driven photocatalytic removal of SAC 

tR 

(min) 

 

Code 

name 

Elemental 

Composition of 

deprotonated 

molecule 

Theoretical 

m/z [m-H]- 

Experimental 

m/z [m-H]- 

Δ 

(ppm) 

RDBE 

1.6 TP1 C7H4NO6S
- 229.9765 229.9756 3.7 6.5 

2.3 TP2 C7H6NO6S
- 231.9921 231.9917 1.8 5.5 

3.3 TP3 C6H6NO4S
- 188.0023 188.0025 -0.9 4.5 

3.7 TP4 C7H4NO4S
- 197.9867 197.9867 0 6.5 

4.0 TP5 C7H4NO4S
- 197.9867 197.9870 -1.9 6.5 

4.1 TP6 C7H4NO4S
- 197.9867 197.9867 0 6.5 

4.3 TP7 C7H4NO5S
- 213.9816 213.9815 0.3 6.5 

4.7 SAC C7H4NO3S
- 181.9917 181.9920 -1.4 6.5 

Photocatalytic removal of SAC under UV-BL 

tR 

(min) 

 

Code 

name 

Elemental 

Composition of 

deprotonated 

molecule 

Theoretical 

m/z [m-H]- 

Experimental 

m/z [m-H]- 

Δ 

(ppm) 

RDBE 

2.3 TP2 C7H6NO6S
- 231.9921 231.9925 -1.8 5.5 

3.7 TP4 C7H4NO4S
- 197.9867 197.9871 -2.3 6.5 

4.0 TP5 C7H4NO4S
- 197.9867 197.9858 4.1 6.5 

4.1 TP6 C7H4NO4S
- 197.9867 197.9858 4.1 6.5 

4.3 TP7 C7H4NO5S
- 213.9816 213.9810 2.6 6.5 

4.7 SAC C7H4NO3S
- 181.9917 181.9915 1.1 6.5 
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List and captions of Schematics  1 

 2 

Schematic 1. Schematic diagram of (a) UV-LED and (b) UV-BL photocatalytic reactors (1: 3 

magnetic stirrer, 2: stirring bar, 3: glass reactor, 4: quartz plate, 5: LED emitter, 6: heat sink, 7: 4 

cable connection to DC power supply, 8: BL lamp and 9: quartz sleeve). 5 

  6 
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Schematic 1.  4 
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List and captions of Figures  

 

Figure 1. Relative spectral irradiance of UV-LED and UV-BL. 

Figure 2. Effect of initial SAC concentration on its photocatalytic removal under (a) UV-

LED and (b) UV-BL irradiation. Experimental conditions: [TiO2]=125 mg/L. 

Figure 3. Effect of catalyst concentration on SAC photocatalytic removal and control 

experiments under (a) UV-LED and (b) UV-BL irradiation. Experimental conditions: 

[SAC]0=5 mg/L. 

Figure 4. Photocatalytic removal of SAC in the presence of different concentrations of HA 

under UV-LED and UV-BL irradiation. Experimental conditions: [SAC]0=5 mg/L; 

[TiO2]=125 mg/L; irradiation time=45 min.  

Figure 5. Photocatalytic degradation pathways of SAC under UV-LED and UV-BL 

irradiation. 

Figure 6. Kinetic profiles of SAC TPs under (a) UV-LED and (b) UV-BL irradiation. 

Experimental conditions: [SAC]0=15 mg/L; [TiO2]=250 mg/L. 

Figure 7. Electrical energy per order (EEO) under UV-LED and UV-BL irradiation for 

different initial SAC concentrations. Experimental conditions: [TiO2]=125 mg/L; irradiation 

time=45 min.  
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