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Abstract: The CuAAC ‘click’ reaction was used to couple alkyne-functionalized lanthanide-DOTA 

complexes to a range of fluorescent antennae. Screening of the antenna components was aided by 

comparison of the luminescent output of the resultant sensors using data normalized to account for 

reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background 

luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in 

a reaction which is specific to the presence of copper(I). This optimized complex provides a new 

lead design for lanthanide-DOTA complexes which can act as irreversible ‘turn-on’ catalytic sensors 

for the detection of ligand-bound copper(I). 

Keywords: CuAAC click reaction; DOTA complexes; luminescence; Cu(I) sensor; picolinyl azides; 

coumarin azides 

 

1. Introduction 

The misregulation of copper in humans is linked with serious neurodegenerative disorders such 

as Menkes and Wilson’s diseases [1–3], amyotrophic lateral sclerosis [4,5], and Alzheimer’s disease 

[6,7]. To avoid the accumulation of excess copper, cells control copper pools rigorously through a 

range of uptake, storage, and trafficking mechanisms; this maintains a low concentration of labile 

copper ions, while simultaneously preserving sufficient cellular copper stores for function. It is 

thought that there are essentially no ‘free’ copper ions within the cell [8]. Although, there has been 

considerable progress in the development of fluorescent sensors for both copper(I) and copper(II) in 

recent years [9,10], most of these sensors rely on the detection of copper(I) through complexation of 

the ‘free’ metal ion giving rise to a concomitant change in spectroscopic properties of the sensor 

molecule in either a turn-on or turn-off sense. In an alternative strategy, we [11] and others [12] have 

reported reaction-based probes [13], which rely upon the irreversible formation or breaking of 

covalent bonds rather than the formation of supramolecular complexes. These ‘reactive’ probes can 

be used to detect the presence of ligand-bound copper(I); however, to date these sensors have been 

limited by either a modest signal output (10-fold increase in signal over background) [11], or the limit 

of detection (20 M) [12]. Clearly, the signal output which a turn-on catalytic sensor must generate in 

order to be ‘useful’ depends upon the specific application, but in the current study we set a goal of 

attaining a signal enhancement of 102–103 fold. 

Lanthanide chelates offer considerable advantages over the use of standard fluorescent dyes for 

detection in vivo, especially when there is significant autofluorescence [14]. Our sensor design 
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(Figure 1) relies upon the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) coupling of two 

components—a lanthanide-DOTA complex 1 or 2, and a fluorescent azide antenna 3—to give a 

luminescent complex 4 or 5. Since we [11,15] and others [16–19] first introduced the use of 

bioorthogonal DOTA-alkyne complexed lanthanides such as 1 and 2 for ‘click’ chemistry they have 

found a range of applications; from metal ion reporting [11,20], to MR contrast agents [16,17,21–23]. 

It was envisaged that a dramatic improvement in their application to copper(I) sensing might be 

achieved through optimization of the energy transfer process. This might be achieved through: (i) 

screening of the fluorescent azides 3 used as the antenna; (ii) an investigation of the lanthanides at 

the core of the sensor itself (1a Ln = Eu, 1b Ln = Tb etc.); (iii) alteration of the linker length between 

the DOTA core and the fluorescent antenna (e.g., using DOTA-alkyne complexes 1a, 2a, etc.); and (iv) 

reversal of the component reactivity, i.e., DOTA-azide complexes reacting with fluorescent alkynes 

(not shown). Because the CuAAC reaction of DOTA complexes such as 2a and 2b has been reported 

to be sluggish [18,19,24], rendering them unsuitable for use as sensors, we chose to focus this study 

on approaches (i) and (ii).  

 

Figure 1. Sensor design for the detection of ligand-bound copper(I). 

2. Results and Discussion 

2.1. Synthesis of Sensor Components 

Lanthanide DOTA complexes 1a and 1b were prepared by standard methods through 

functionalization of 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic acid tri-tert-butyl ester (DO3tBu) 

[25] with propargyl chloroacetamide [26], followed by deprotection of the acid functionalities and 

complexation with either Eu(OTf)3 or Tb(OTf)3 (Supplementary Material (SM) Scheme S1) [11]. 

Although lanthanides have previously been shown to be sensitised by a variety of fluorophores [27–

31], with a view to potential future biological applications of our sensor, we restricted ourselves to 

four classes of fluorophore azide (3) which have been shown to be cell-permeable and to have 

potential in two-photon excitation studies (Figure 2).  

1. Picolinate-derivatized ligands have previously been shown to act as sensitizers for europium 

and terbium ions [32–35], to undergo cellular entry via diffusion, and to be suitable for two 

photon excitation studies. Thus picolinate azides 6–9 were prepared from pyridine-2,6-

dicarboxylic acid dimethyl ester through ready adaptation of the synthetic route to the 10-

coordinate N,N,N′,N′-tetrakis[(6-carboxypyridin-2-yl)methyl]ethylenediamine (tpaen) ligand 

reported by Mazzanti et al. [33,36,37] (SM Scheme S2; three steps (28% overall), four steps (15% 

overall), three steps (27% overall), and four steps (22% overall) respectively).  
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2. Lanthanide complexes based on coumarin derivatives were pursued due to the known 

membrane permeability of coumarin azides [38], and previous reports of strong fluorescence 

activation of lanthanides by coumarin [39–42]. Coumarin azides 10 [43] and 11 [44] were both 

readily prepared in one step from commercially available starting materials (in 72% and 82% 

yields, respectively).  

3. A derivative of carbostyril 124, azide 12, was chosen because lanthanides complexed with 

ligands functionalised with carbostyril 124 have been shown to have long-lifetimes, good water 

solubility, and measurable brightness [45–47]. Diazotization of carbostyril 124, followed by 

addition of sodium azide, yielded 12 (65%) [48].  

4. Finally, for comparison with our previously reported CuAAC reaction [11], dansyl azide 13 was 

prepared in two steps from dansyl chloride (70% overall) [49].  

 

Figure 2. Fluorescent azides screened in this study. 

2.2. Component Coupling by the CuAAC Reaction 

In our original work we made use of glutathione ligands for the CuAAC reaction, as 

complexation of Cu(I) to the carboxylate anion of glutathione (GS−), to give a GS−-Cu(I) complex, is 

thought to provide a pooling mechanism for Cu(I) in living cells [11,12]. However, this complex was 

found to be quite sensitive to environmental conditions and, in order to conduct a component screen, 

alternative catalyst systems were sought. The CuAAC reaction may be catalyzed by a range of ligand-

bound copper(I) sources [50–52]. Notably, the readily accessible, stable ligand tris-

(benzyltriazolemethyl)amine (TBTA) has been shown to bind strongly to the copper(I) ion [53], 

making it a good model for ligand-bound copper(I). Thus, to screen for alkyne/azide pairings with 

the most intense luminescent read-out, lanthanide-alkyne complex 1a or 1b was premixed with TBTA 

in tBuOH:H2O (2:1), sodium ascorbate was added followed by copper(II) sulfate, finally the 

fluorescent azide (1 equivalent) was added and the mixture stirred at room temperature for 16 h. To 

quench the reaction, the solution was gently shaken with a metal scavenger resin to remove the 

copper. Removal of both the scavenger resin and solvent gave crude products in which the formation 

of the luminescent DOTA complex could be confirmed by ESI-MS.  

The optimum wavelength for excitation of each sensor complex was determined from the 

excitation spectrum of the fluorophore component (Table 1). Dilution experiments (performed on 19-

Eu) indicated that a standard concentration of 100 M in water would give the sharpest luminescence 

emission spectra. The europium luminescence arising from 5Do to 7FJ transitions was evaluated at 593 

or 615 nm, depending on which offered the greatest increase in signal; whilst terbium luminescence 

was measured at 545 nm as this provides the most intense terbium transition. 
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Table 1. Sensor Output after CuAAC Reaction a. 

Entry Alkyne Azide Sensor ex/nm Emission/cps b (wavelength/nm) 

1 1a 6 14-Eu 325 100 (615) 

2 1b 6 14-Tb 325 240 (545) 

3 1a 7 15-Eu 325 800 (615) 

4 1b 7 15-Tb 325 338 (545) 

5 1a 8 16-Eu 300 610 (615) 

6 1b 8 16-Tb 300 845 (545) c 

7 1a 9 17-Eu 300 1,300 (615) 

8 1b 9 17-Tb 300 791 (545) c 

9 1a 10 18-Eu 345 5,371 (593) 

10 1b 10 18-Tb 345 6,078 (545) 

11 1a 11 19-Eu 325 56,592 (593) 

12 1b 11 19-Tb 325 10,000 (545) 

13 1a 12 20-Eu 345 16,665 (593) 

14 1b 12 20-Tb 345 25,000 (545) 

15 1b 13 21-Tb 350 4,530 (545) 
a Reagents and Conditions: CuSO4 (10 mol%), NaAsc (20 mol%), TBTA (10 mol%), tBuOH:H2O (2:1), 

rt, 16 h; b Relative emission at specified wavelength (100 M in H2O, time delay = 0.076 ms, slits = 10 

nm, sample window = 5 ms, number of flashes = 20); c Decrease in signal from background. 

2.3. Initial Analysis of the Sensor Design by Component 

To facilitate comparison of the different sensors, the increase in lanthanide luminescence 

intensity between a background spectrum (1:1 mix of alkyne and azide components, 100 M in water) 

and the crude lanthanide sensor was expressed as a “fold increase” (Figure 3a,b, SM Tables S1–S4). 

These data indicate that—in terms of both the absolute signal brightness, and fold-increase over 

background—sensor 19-Eu, arising from the CuAAC coupling of DOTA-alkyne complex 1a with 

coumarin azide 11, offers the optimum readout. These experiments also highlighted that CuAAC 

coupling of picolinate-derived ligands to DOTA-alkyne complex 1a gave complexes (14-17)-Eu in 

which the europium was not efficiently sensitised. This is perhaps not surprising, because it has 

already been shown that, in general, sensitization of terbium by picolinate-derived ligands is more 

efficient [33]. However in the case of complexes 16-Tb and 17-Tb (which combine terbium alkyne 

complex 1b with the di-picolinate ligands 8 and 9), surprisingly high background signals were 

observed for the 1:1 mix of the azide and alkyne components, accompanied by a significant decrease 

in signal (4–4.5-fold) on CuAAC coupling of the components. This suggests that the component 

azides 8 and 9 actually bind to, and sensitise, the terbium metal rather well; but that when they are 

separated from the terbium ion through CuAAC coupling to the DOTA core, this sensitization is 

significantly reduced. 
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(a) (b) (c) 

Figure 3. Change in Signal Output after CuAAC Reaction: (a) Sensor-Ln complex (Front (blue): Tb; 

Back (orange): Eu) vs. Signal increase over background (fold); (b) Luminescence of crude sensor 19-

Eu (blue) and background 1a:11 (1:1) (orange), showing a 69-fold increase in emission (measured at 

100 M in H2O, time delay = 0.076 ms, slits = 10 nm, sample window = 5 ms, number of flashes = 20). 

(c) FT-IR analysis of azide peak at 2100 cm−1 for crude sensor 19-Eu (blue) with normalization of 

absorbance to carbonyl band at 1612 cm−1 in a 1:1 mixture of 1a:11 (orange). 

2.4. Normalization of Luminescence Output Data by IR 

In comparing the output data, it became clear that not all of the reactions had reached completion 

within the standard 16 h timeframe used for the CuAAC coupling reaction. This was evidenced by 

MS data which indicated the presence of both starting material(s) and coupled product (e.g., SM 

Figure S1 for 20-Tb), and is not surprising given the use of TBTA which is known to have relatively 

poor acceleration characteristics in the CuAAC reaction [50–52]. In seeking a rapid analysis method 

to determine the absolute increase in signal for each coupled product over the background signal, we 

were attracted to the use of vibrational spectroscopies such as IR to determine the extent to which the 

reaction had proceeded in the crude reaction mixture. In situ IR monitoring, using the azide 

absorption at ~2100 cm−1 for quantification, has previously been used to reveal mechanistic insights 

into the CuAAC reaction [54]. The utility of this technique to determine click reaction conversions, 

based on IR absorption levels corresponding to residual azide, has also been reported in a variety of 

contexts [55–60]. IR monitoring is particularly appropriate in this instance, as both the sensor complex 

and the lanthanide-DOTA core are paramagnetic; rendering reaction monitoring and assessment of 

product purity by NMR challenging. 

The presence of carbonyl bands in both the initial complex (1a or 1b) and the CuAAC coupled 

product (4, Figure 1), which were not expected to shift in either position or intensity following the 

CuAAC reaction, led to an expectation that normalization and hence quantification of the conversion 

data could be achieved [56,58]. In order to demonstrate that there were no unexpected absorption 

peaks in the azide region of the coupled product, a sample of one of the complexes was purified by 

HPLC (SM Figure S2 for 19-Tb); the IR spectrum of the purified material showed the complete 

absence of signal at 2115 cm−1 which had previously been ascribed to the presence of unreacted azide 

in the crude material. In addition, experiments with the comparatively unreactive Eu-DOTA complex 

2a showed that, under identical CuAAC conditions when there is no coupling reaction, the 

fluorophore azide absorptions remain at their original intensities. On this basis, IR spectra for the 

crude product mixtures from four of the most promising reactions were normalized (using the 

carbonyl bands indicated in Table 2) against composite spectra generated for the appropriate 1:1 

mixtures of initial azide and alkyne components (Figure 3c, SM Tables S5 and S6). The percentage of 

unreacted azide remaining in the crude product mixtures was determined and was used to estimate 

the percentage conversion of each of these reactions. These conversion values were then used to 

adjust the maximal emission output of the lead sensors (Figure 4) to allow rapid determination of the 

‘optimum’ sensor design; the maximal output for sensor 19-Eu was determined to be an 82-fold 

increase over background using this normalization process. This lead complex was purified by HPLC 
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(SM Figure S3) and its UV-vis (SM Figure S4), MS (SM Figure S5) and 1H-NMR (SMI) spectra were 

acquired. 

 

Figure 4. Structures of lead sensors 19-Eu/Tb and 20-Eu/Tb. 

Table 2. Normalized Values for Signal Increase for Sensors 19 and 20. 

Entry Sensor 
Output a 

(fold) 

Wavenumber 
b (cm−1) 

Conversion 

(%) 

Normalized 

Output c (fold) 

1 19-Eu 69 1612 (1612) 84 82 

2 19-Tb 57 1614 (1615) 85 67 

3 20-Eu 30 1628 (1624) 83 36 

4 20-Tb 29 1614 (1626) 68 43 
a Signal increase over background; b Carbonyl bands used to normalize data for % conversion 

calculation: 1:1 component mixture (product spectra); c Sensor output normalized to 100% conversion 

for CuAAC reaction. 

2.5. Metal Ion Specificity for Formation of the Optimum Complex 19-Eu 

Metal ion specificity for the optimum sensor was confirmed through coupling of DOTA alkyne 

1a and coumarin azide 11 to give 19-Eu in three solutions, one containing Na(I), K(I), Fe(II), Ni(II), 

Zn(II), and Cu(II) (10 mol% each); a second containing CuSO4 (10 mol%), sodium ascorbate (20 mol%) 

and TBTA (10 mol%); and a third in which there were no metal ions present. Each solution was stirred 

for 16 h at room temperature and, following metal ion extraction as described in Section 2.2, was 

excited at 325 nm. The lanthanide luminescence was measured at 593 nm; the mixed ion solution 

(without Cu(I)) showed no increase in signal over background (at ~800 cps), whilst the reaction 

conducted in the presence of Cu(I) showed the expected increase in signal output to ~60,000 cps. 

These experiments confirmed that this CuAAC coupling reaction has the potential to selectively 

detect ligand-bound copper(I) in the presence of other biologically relevant metal ions. 

3. Materials and Methods 

3.1. General Procedure for the Synthesis of CuAAC Coupled Complexes 14–21 

To Eu-DOTA complex 1a, or Tb-DOTA complex 1b (1 eq; dissolved at 20 mM concentration) in 
tBuOH:H2O (2:1) was added TBTA (0.1 eq) and the mixture was allowed to stir for 15 min. Sodium 

ascorbate (0.2 eq; 0.1 M aq.) was added and the mixture was allowed to stir for 15 min followed by 

the addition of copper(II) sulfate (0.1 eq; 0.1 M aq.). After a further 15 min of stirring, the appropriate 

azide was added (1 eq) and the solution was allowed to stir under nitrogen at room temperature for 

16 h. QuadraPure-IDA® metal scavenger resin was added and the mixture was gently shaken at room 

temperature overnight, during which the blue colour of the solution faded. The resin was removed 

by filtration and the solvent was then removed in vacuo to give the crude triazole sensor. 

3.2. Luminescence Measurements on Crude CuAAC Coupled Complexes 14–21 
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Excitation and emission fluorescence spectra were measured using a Horiba Jobin Yvon 

Fluoromax-P instrument. Lanthanide emission spectra were measured using a time-delayed setting 

on the same instrument.  

Solutions of the crude mixtures of (14–21)-Eu/Tb were prepared (100 μM, H2O). The lanthanide 

luminescence intensity of each solution was measured at the stated max of the antenna component 

(Table 1) using the following settings: time delay = 0.076 ms, slits = 10 nm, sample window = 5 ms, 

number of flashes = 20. The output was recorded as the relative emission (cps) at the wavelength (nm) 

corresponding to the most intense lanthanide transition (Table 1). A fold-response was calculated by 

comparing this emission (in cps) to that of a solution of the sensor components (100 μM each, 1:1 

mixture in H2O) stirred at rt for 16 h, measured under identical conditions at the same wavelength. 

3.3. Normalization of Output of CuAAC Coupled Complexes 19 and 20 by IR 

IR were measured on a Perkin Elmer Paragon 100 FT-IR machine, and ASCII files of the resultant 

spectra used for subsequent data handling in Excel.  

Samples were prepared as KBr die (at a final concentration of 0.5 mg azide, alkyne or crude 

complex in 120 mg KBr). The reproducibility of sample preparation was confirmed by preparing 

triplicate dies of pure sensor 19-Tb. A spectrum of the 1:1 alkyne:azide starting component mixtures 

was generated from the reference spectra of the two starting materials using the principle of 

additivity of the two absorbers present. Normalization of absorbance between reference and crude 

product spectra was carried out at the wavenumber shown, allowing for a slight shift (<10 cm−1) in 

the C=O stretch between the two spectra (Table 2). Normalized luminescence output data (expressed 

as a fold increase) were calculated by estimating the % remaining azide in the normalized IR 

spectrum of the crude product mixture (Beer Lambert Law) and using this to determine the % 

reaction conversion by which the measured output could be proportionately adjusted. 

3.4. Data for Purified Lead Complex 19-Eu 

UV-vis (nm) max = 219, 325; 1H-NMR δ (600 MHz, D2O) 32.76 (1H, s), 31.26 (1H, s), 30.60 (1H, s), 30.46 

(1H, s), 7.67 (1H, s), 6.92-6.63 (3H, m), 5.08 (2H, s), 4.85 (2H, s), 3.82 (3H, s), 0.06 (1H, s), −0.37 (1H, s), 

−2.57 (1H, s), −2.67 (1H, s), −3.33 (1H, s), −4.55 (1H, s), −5.85 (1H, s), −7.18 (1H, s), −7.64 (1H, s), −7.95 

(1H, s), −11.04 (1H, s), −11.33 (1H, s), −11.66 (1H, s), −12.22 (1H, s), −14.23 (1H, s), −14.40 (1H, s), −14.85 

(1H, s), −15.67 (2H, s), −16.86 (1H, s); m/z (ESI+, H2O) 823 ([153EuM + H]+, 74), 821 ([151EuM + H]+, 44), 

412 ([153EuM + 2H]2+, 100), 411 ([151EuM + 2H]2+, 80). 

4. Conclusions 

The detection of copper(I) species in a native biological setting (i.e., not one in which copper has 

been artificially introduced at non-physiological conditions) has the potential to enhance our 

understanding of a range of diseases, including those in which copper metabolism is misregulated 

(such as Menkes and Wilson’s diseases) and those in which copper is thought to be either causative 

or related to disease progression (such as Alzheimer’s disease). However, this detection is reliant on 

the design of sensors which are capable of reacting with predominantly ligand-bound copper, with 

a signal output which is not perturbed by the intrinsic properties of the biological milieu (e.g., 

inherent cellular fluorescence). For these reasons, sensors which are constructed using the exquisitely 

metal-ion selective CuAAC reaction [61] and which produce luminescent read-outs are particularly 

promising. By screening a range of potential antenna, using classes of fluorophore which are known 

to be cell-permeable, we have identified a sensor pairing which gives nearly two orders of magnitude 

signal increase over background, overcoming previous limitations in sensor design. Pairing this 

knowledge with recent advancements in ligand acceleration of the CuAAC reaction [62] could enable 

the very rapid detection of ligand-bound copper in an intracellular environment.  

Supplementary Materials: The following are available online at www.mdpi.com/link, Schemes S1 and S2 and 

synthetic details for preparation of DOTA complexes 1a and 1b, and azides 6–13 [63,64]; spectroscopic data for 

complexes 14–21; Tables S1–S4: luminescence spectra for complexes 14-21; Figure S1: ESI mass spectrum for 
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crude reaction product 20-Tb; Figure S2: HPLC chromatogram of crude reaction product 19-Tb; Tables S5 and 

S6: normalized IR spectra for complexes 18 and 19; 1H and 13C-NMR spectra for azides 7, 8 and 9; HPLC 

chromatogram, UV-vis, MS and 1H-NMR spectra for purified complex 19-Eu.  
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