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Abstract 

Due to their electroanalytical advantages, microelectrodes are a very attractive technology for 

sensing and monitoring applications.  One highly important application is measurement of 

DNA hybridisation to detect a wide range of clinically important phenomena, including 

single nucleotide polymorphisms (SNPs), mutations and drug resistance genes.  The use of 

electrochemical impedance spectroscopy (EIS) for measurement of DNA hybridisation is 

well established for large electrodes but as yet remains relatively unexplored for 

microelectrodes due to difficulties associated with electrode functionalisation and 

impedimetric response interpretation.  To shed light on this, microelectrodes were initially 

fabricated using photolithography and characterised electrochemically to ensure their 

responses matched established theory.  Electrodes with different radii (50, 25, 15 and 5 µm) 

were then functionalised with a mixed film of 6-mercapto-1-hexanol and a thiolated single 

stranded ssDNA capture probe for a specific gene from the antibiotic resistant bacterium 

MRSA.  The complementary oligonucleotide target from the mecA MRSA gene was 

hybridised with the surface tethered ssDNA probe.  The EIS response was evaluated as a 

function of electrode radius and it was found that charge-transfer (RCT) was more 

significantly affected by hybridisation of the mecA gene than the non-linear resistance (RNL) 

which is associated with the steady state current.  The discrimination of mecA hybridisation 

improved as electrode radius reduced with the RCT component of the response becoming 

increasingly dominant for smaller radii.  It was possible to utilise these findings to produce a 

real time measurement of oligonucleotide binding where changes in RCT were evident one 

minute after nanomolar target addition.  These data provide a systematic account of the effect 

of microelectrode radius on the measurement of hybridisation, providing insight into critical 

aspects of sensor design and implementation for the measurement of clinically important 

DNA sequences.  The findings open up the possibility of developing rapid, sensitive DNA 

based measurements using microelectrodes. 

 

Introduction 

Chemical and biochemical sensing is vital for diagnosis of medical conditions
1
, detection of 

pathogens
2
, monitoring of water quality

3
 and industrial processes

4
. Detection of specific 
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genetic sequences enables rapid profiling of clinical samples for evidence of disease, e.g. 

antibody/antigenic biomarkers or presence of antibiotic resistant bacteria.  Electrochemical 

impedance spectroscopy (EIS) is a powerful measurement technique which provides 

information on a number of physical processes taking place at an electrified interface.  

Processes which can be probed using EIS include: double layer capacitance, electron transfer, 

diffusional phenomena etc. and because the technique does not require the target molecule to 

be labelled it has potential for use at the point of care.   

Microelectrodes have the electroanalytical advantages of reduced iR drop, improved signal to 

noise ratio, insensitivity to convection and the ability to be produced in individually 

addressable arrays.  They offer a number of advantages over macroelectrodes for 

electrochemical sensing
5 

in chemical
3
, industrial

6,7
 and medical applications

8
.  These 

advantages make microelectrodes and arrays of microelectrodes an attractive technology for 

sensitive and specific detection of biomarkers.  To harness these advantages, particularly for 

EIS measurements, it is necessary to fully characterise microelectrode based measurements of 

DNA hybridisation.  Photolithographic techniques from the silicon semiconductor industry 

are particularly attractive for microelectrode fabrication due to the ability to produce with 

high precision and reproducibility metallic structures and insulating layers with well-defined 

shapes and dimensions
9
.  Here, these techniques were employed for fabrication of well-

defined disc microelectrodes with high reproducibility. 

Electrochemical impedance spectroscopy (EIS) involves the use of an AC voltage peturbation 

at the working electrode and measurement of the resulting current.  The technique can be 

performed in a Faradaic manner (with the use of a redox couple) and in a non-Faradaic 

manner and parameters such as the solution resistance (RS), double layer capacitance (CDL), 

charge transfer resistance (RCT) and Warburg impedance (W) can be extracted from the 

response.  In nucleic acid detection, a common approach is to use the negatively charged 

redox couple potassium ferri-ferrocyanide for the measurement of RCT upon DNA 

recognition
10

.  EIS has been used to detect DNA-DNA recognition at an electrode surface and 

numerous biosensors have been developed using this measurement approach in concert with a 

wide range of electrode types
11–14

.    Specifically, for the detection of nucleic acids, studies 

have demonstrated the successful fabrication of microelectode devices using 

photolithographic methods and the development of nucleic acid sensors which use EIS as the 

measurement technique.  Examples include the detection of BRCA1 gene in breast cancer 

using interdigitated electrodes
15

 the measurement of matched an mismatched DNA for 

detection of mutations
16

 the measurement of 16SrRNA for antibiotic susceptibility testing
17

 

and the detection of West Nile virus using interdigitated microelectrodes
18

. 

Antimicrobial resistance is a major scientific challenge of the day.  The United Nations and 

the World Health Organisation have publicised the need for urgent, coordinated, global action 

in the fight against emerging rates of resistance.  Recently, there have been reports in the 

literature of emergence of resistance to the antibiotic of last resort in the United States
19

.  In 

the effort to counter antimicrobial resistance (AMR) it is important to both develop new 

antibiotics and achieve improved stewardship over existing drugs.  A key aspect of improving 

antibiotic stewardship is developing rapid diagnostic tests and electrochemical sensors 

represent a potentially useful technology for rapidly detecting resistance and informing 

clinicians of which antibiotics to prescribe and whether isolation of the patient is necessary.  

Resistance to methicillin and in particular the emergence of the methicillin resistant 

Staphylococcus aureus (MRSA) strain has been a major problem in both healthcare acquired 

and community acquired drug resistant infections
20

.  Methicillin resistance relies primarily on 

the organism having acquired the mecA gene which codes for penicillin binding protein 2A 
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(PBP2A)
21

.  Detection of the mecA gene sequence confirms methicillin resistance and in this 

study, a probe sequence for the mecA gene was employed for electrochemical detection of 

short oligonucleotides.  The paper demonstrates the advantageous nature of using 

microelectrodes with smaller radii for the detection of such DNA sequences and brings to 

light the possibility of utilising microelectrode sensors for routine clinical detection purposes. 

 

Materials and Methods 

Microfabrication of electrode devices 

The microelectrode devices were produced using reliable, well-characterised silicon based 

microfabrication processes (Figure 1).  Initially, a 500 nm thick layer of silicon dioxide 

insulation was grown on silicon wafer substrates. Next, a 20 nm thick film of titanium nitride 

was deposited onto the surface as an adhesion layer for the electrode metal which was a 50 

nm film of platinum. Patterning of the electrode metal layer was then achieved by reactive 

ion etching, using photolithographic masking to prevent the exposure of a band of metal 

around the perimeter of each device when diced. Subsequent deposition of a 500 nm thick 

layer of silicon nitride produced a top insulator, which was again patterned using 

photolithographic masking and reactive ion etching of the insulator to expose the bond pad 

and the microelectrode.  Detailed accounts of the electrode fabrication process can be found 

in a previous publication
22

. 

 

Figure 1.  Depiction of the microfabrication processes used for electrode production. 

 

Electrode preparation and DNA sequences 

The DNA sequences employed in this study are shown in table 1 and were developed as part 

of a previous study along with a detailed protocol for the immobilisation of the mixed thiol 

probe film
23

.  To summarise, the mixed layer of 6-mercapto-1-hexanol (30 µM) and a 

thiolated ssDNA probe (1.5 µM) was prepared on the sensor surface by overnight incubation 

with a mixed solution followed by a 1 hour “blocking” step in 1.0 mM 6-mercapto-1-hexanol 

solution to remove unbound ssDNA molecules and to ensure upright orientation of the 

capture probe.  Tris(2-carboxyethyl) phosphine was added to both the probe immobilisation 

solution and back filling solution at 50 mM concentration to promote cleavage of dithiol 

bonds
24

.   Probe modified microelectrodes were electrochemically characterised using the 
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ferri-ferrocyanide redox couple and then incubated with 100 nM solutions of DNA before 

electrochemical measurements were repeated. 

Table 1 – DNA sequences employed in this study 

 Oligo name 3' Modif. 5' Modif. Sequence 5'-3' 

1 
30 mer 

mecA target 
- - GTATGCTTTGGTCTTTCTGCATTCCTGGAA 

2 Non complementary - - GTACTGAGTAATACC 

2 
PNA MRSA mecA 

capture probe 
- 

3.8 nm - Thiol-

C11-AEEEA 

TTCCAGGAATGCAGA 

 

 

Electrochemical measurements 

Cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements 

were performed in a measurement buffer consisting of various concentrations of potassium 

ferrocyanide, potassium ferricyanide, and potassium chloride as the supporting electrolyte.  

CV measurements were performed using a platinum counter electrode and a saturated 

Ag/AgCl/Cl
- 
 reference electrode.  EIS measurements were performed by superimposing an 

AC potential of 10 mV rms onto the open circuit potential over a frequency range of 100 kHz 

to 0.1 Hz and measuring the current response.  Thirty frequencies were measured and 

frequency values were selected on a logarithmic basis.  Nyquist plots were produced (Z’ vs –

Z’’) and circuit fitting was performed in order to extract values for the different circuit 

elements of an equivalent circuit. 

 

Results & Discussion 

Electrochemical characterisation of unmodified microelectrodes 

Initially, electrochemical responses from Pt microelectrodes with different radii were 

recorded using cyclic voltammetry.  CV experiments were performed in a solution of 5.0 mM 

potassium ferrocyanide + 10 mM potassium chloride.  Figure 2A shows the voltammetric 

response with the limiting currents for the oxidation of potassium ferrocyanide to ferricyanide 

how they were reduced as electrode radius decreased.  The responses observed in these 

voltammograms were typical of microelectrodes, in that a “steady state” CV was recorded 

with sweep rate independence observed. 

Equation 1 has been shown to describe the limiting current for a microdisc electrode
5
: 

 

iL = 4nFDcr    (1) 

where iL is the limiting current, n is the number of electrons transferred, F is Faraday’s 

constant, D is the diffusion coefficient, c is the concentration of the redox species and r is the 

electrode radius.  From equation 1, an example value of D = 6.85×10
-6

 cm
2
s

-1
 (298 K) was 

calculated for potassium ferrocyanide using the r = 25 µm disc, which corresponded 

favourably to literature values (e.g. 6.3×10
-6

 cm
2 

s
-1 

at 298 K
25 

- it is important to note a wide 

variation in the literature for diffusion coefficients of the ferri-ferrocyanide couple).  As can 

be seen in figure 2A the limiting current scaled with electrode radius as predicted by equation 
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1.  It is reassuring and satisfying that these photolithographically fabricated microelectrodes 

showed the expected response prior to chemical modification and mecA detection 

experiments.  Reductions in current observed immediately upon reversing the bias can be 

attributed to parasitic capacitances from microfabricated structures
26

.  Figure 2B presents a 

microscope image of an r = 25 µm electrode (diameter = 50 µm) and shows a platinum disc 

defined by the silicon nitride insulating layer. 

 

Figure 2.  (A) CVs recorded at electrodes with radii 5. 15, 20 and 50 µm in 5 mM 

potassium ferrocyanide + 10 mM potassium chloride prior to immobilisation of the 

sensing film. (B)  Microscope image of a r = 25 µm Pt disc microelectrode produced 

using photolithographic microfabrication techniques. 

 

Impedimetric response following formation of a self-assembled monolayer (SAM) and 

microelectrode based detection of the mecA antimicrobial resistance gene. 

Next, investigations were performed where a sensing probe film was immobilised onto the 

electrode surface by incubation in a solution containing a thiolated DNA probe sequence for 

the mecA gene and 6-mercapto-1-hexanol.  In these experiments the probe-film immobilised 

electrodes were subjected to an initial EIS measurement in order to record the pre-

hybridsation response.  The electrodes were then incubated in 100 nM mecA target DNA + 10 

mM KCl solution for 20 minutes to allow DNA hybridisation, followed by a stringency wash 

in 1 mM KCl to remove any non-specifically bound DNA before a final EIS measurement to 

characterise the electrode post hybridisation. The results of these measurements can be seen 

in Figure 3A-D where EIS responses of clean, pre-hybridisation and post-hybridisation 

microelectrodes with four different radii (50, 25, 15 and 5 µm) are shown. The most obvious 

trend is the increase in the “impedance” as each electrode is sequentially modified, i.e. RCT 

increased as the electrode was first modified with capture probe and then following 

hybridisation of target DNA.  This initial observation was not entirely expected since there 

are a number of varying reports in the literature on the impedimentric behaviour of micro and 

nano electrode DNA sensors.  In the presence of ferri/ferrocyanide as a redox mediator there 

are accounts of both increased 
16

 and decreased RCT values 
27

 upon target DNA binding.  

These reports attribute the observed change in the impedimetric response to the sensing film 

structure and the resulting conformational/structural changes which occur on the surfaces of 

electrodes with different geometries
27

.  In this study, the protocol used to prepare the sensor 

surface resulted in a film conformation which caused an increase in RCT following target 

binding, which was in keeping with previous macroelectrode studies where increases in RCT 
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were attributed to the target DNA blocking pinholes and increasing electrostatic repulsion at 

the electrode surface, ultimately causing a decrease in the exchange current density
28

. 

The second most obvious thing to note from figure 3 is the changing nature and magnitude of 

the impedimetric response as electrode radius decreased, i.e. the merging of the RCT and RNL 

semi-circles and the overall increase in resistance as r decreased.  For r = 50 µm electrodes 

(figure 3D) there were two distinct semi-circles with the first originating from RCT and the 

second from RNL (which is characteristic of the limiting current (iL) established following the 

evolution of a hemispherical diffusion profile).  As electrode radius decreased, the first semi-

circle, i.e. that associated with RCT, increased, as would be expected since RCT is inversely 

proportional to electrode area.  This can be seen from the circuit fit values shown in table 2 

(equivalent circuits shown in figures 4B & C), where, the increased magnitude of the RCT 

semi-circle made it difficult to obtain a realistic fit for RNL because the steady state current 

was responsible for a smaller proportion of the overall response.  As the electrode radius 

decreased the relative contribution of RCT increased and in the case of the r = 5 µm electrode 

the response was almost entirely one single semi-circle (see figure 3A).  As shown in Figure 

3A and Table 2, the equivalent circuit had to be amended as both the electrode radius 

decreased and as the electrode was modified with first probe and second target DNA.  It was 

necessary to fit the r = 5 µm response with a Randles’ circuit – see figure 4C. It was also 

necessary to fit the probe + DNA target response for r = 15 µm with the same orthodox 

Randle’s circuit.  It is noteworthy that as the radius of the microfabricated sensor reduced and 

as the electrode was increasingly modified the ‘goodness of fit’ for the modified Randles’ 

circuit (see figure 4B) decreased, again demonstrating the importance of the RCT reaction and 

its relative dominance over RNL in the microelectrode response
29

.  Finally, from figure 3A-D 

and table 2 it can be seen that RNL was not a reliable parameter for assessing DNA 

hybridisation and the changing nature of the surface, the pattern of consistent increases seen 

for RCT was not observed with RNL and for electrodes with smaller radii it was difficult to 

obtain an accurate value from circuit fitting due to the relative dominance of RCT.  
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Figure 3.  EIS response from microelectrodes of four different radii (A) 5 µm (B) 10 µm 

(C) 25 µm and (D) 50 µm after cleaning, probe functionalisation and target binding 

recorded at open circuit in a measurement buffer containing 1 mM potassium ferri-

ferrocyanide + 10 mM KCl. 

Table 2.  Fitted values and errors for RCT and RNL and global χ
2
 for EIS fits recorded at 

microelectrodes with r = 50, 25, 15 and 5 µm 

 RCT (MΩ) Error (%) RNL(MΩ) Error (%) χ
2
 

r = 50 0.12 2.75 1.96 1.54 1.51 × 10
-2

 

Probe  0.51 0.96 1.68 1.23 8.30 × 10-3 

Target 0.69 1.00 1.77 1.60 1.09 × 10
-2 

      

r = 25 0.36 7.89 5.52 0.52 4.34 × 10
-3 

Probe  2.94 2.46 4.28 1.584 1.04 × 10
-2 

Target 4.35 1.90 3.39 2.34 1.52 × 10-2 

      

r = 15 1.09 12.8 13.54 5.76 2.30 × 10-1 

Probe 21.4 4.16 11.73 5.99 3.62 ×10 
-2

 

Target 52.5 0.71 - - 5.44 × 10-2 

      

r = 5 24.5 1.79 - - 3.33 × 10
-1

 

Probe 627 0.47 - - 8.93 × 10-3 

Target 1160 0.71 - - 9.70 × 10
-3 

 

Figure 4 shows a plot of RCT × Area vs electrode radius and is in effect a normalisation to 

account for electrode area.  The plot importantly indicates that as radius decreased the 

magnitude of the signal change between clean, probe immobilised and DNA target bound 

electrodes increased demonstrating that microelectrodes with smaller radii showed enhanced 

performance at discriminating first the immobilisation of the probe film and second the 

binding of the mecA DNA target sequence.  Crucial to the explanation of this was the 

observation that a decrease in electrode radius from 50 to 5 µm caused the limiting current to 

reduce by a factor of ten (as shown in figure 2 and predicted by equation 1).   Equation 2 

describes how the limiting current is related to the non-linear resistance (RNL) and therefore is 

governed primarily by the electrode radius.  As a result, the limiting current was influenced 

less by capture probe immobilisation and target DNA addition than the RCT reaction (see 

figure S1 in supplementary information which shows CV responses for DNA modified 

microelectodes).   When the radius decreased from 50 to 5 µm, the electrode area changed by 

a factor of one hundred and since the surface based redox reaction is influenced by the area of 

the electrode (see equation 3)
30

, a larger, more apparent change in RCT was observed than for 

RNL.  The results presented in figure 4 and the fitted values displayed in Table 2 show that as 

the electrode radius decreased the surface based RCT reaction dominated the response and for 

smaller radii showed enhanced discrimination of DNA target binding. 

��� = 	
���

	
��

  (equation 2) 

Where R is universal gas constant, T is temperature, F is Faraday’s constant and iL is limiting 

current. 

�� =	
����

	�
���

 (equation 3) 
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Where R is universal gas constant, T is temperature, L is the diffusion length, F is Faraday’s 

constant c∞ is bulk concentration and A is the electrode area. 

 

Figure 4.  (A) Plot of RCT × electrode area vs electrode radius for electrodes following 

cleaning, probe functionalisation and target binding. (B) Modified Randles’ circuit for 

microelectrodes.  (C) Randles’ equivalent circuit. 

Our previous studies involving nucleic acid macroelectrode sensors have not shown 

improvements in sensitivity through reduction of electrode area and for microelectrode based 

DNA sensors there are no systematic reports in the literature on the effect of radius on the 

impedimetric measurement.  The data presented here demonstrate a clear trend of increasing 

dominance of RCT in the impedimetric response at microelectrodes as radius is reduced and 

that for greatest discrimination of DNA hybridisation, a radius of 5-15 µm was optimal 

which, is well within the resolution limits of standard photolithographic approaches and for 

use in multi-electrode arrays.    Having developed a number of macroelectrode based 

bioassays for AMR 
31–34

 and infection biomarkers
35

 with limits of detection in the pM to fM 

range and with high specificity for AMR genes such as the mecA sequence
29&30

, it will now 

be possible to utilise the well-known electroanalytical advantages of microelectrodes to 

improve performance of this clinically relevant assay. 

Finally, and having shown that reducing the electrode radius improved the resolution of 

DNA-DNA hybridisation an r = 15 µm electrode was used to perform measurement of 

ssDNA mecA target binding with the surface tethered capture probe in real time.  In this 

experiment the microelectrode was used to record EIS measurements in a continuous fashion.  

The frequency range was selected using the impedimetric response obtained and initially 

displayed in figure 3C and the protocol designed to record an impedance measurement every 

minute.  After 6 minutes of measurements, complementary and non-complementary DNA 

target strands were added at a concentration of 10 nM (arrows) which is above the limits of 

detection for the DNA sequence established in previous reports
30

.  Following addition of the 

ssDNA oligonucleotide target a change in RCT was apparent after one minute with 

hybridisation of the target following the expected binding isotherm.  This result demonstrates 

an approach to rapidly measuring binding of an oligonucleotide sequence from an antibiotic 

resistance gene in real time using a microelectrode and paves the way for the use of 

microelectrode arrays for the measurement of several resistance genes on a single multi-

microelectrode chip.  It is also important to note that in previous studies which developed this 

mecA detection system, macroelectrodes were employed and consideration was given to 
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sample preparation, probe design & sequence and aspects of sample handling & processing 

which allowed for the rapid detection of MRSA in human wound fluid in less than 30 

minutes
33

.  Specificity was given consideration and of particular importance was the DNA 

probe sequence, which was selected using a microarray to screen potential sequences
34

 for 

optimum binding of the mecA sequence.  Figures 6B & S2 show the effect of adding non-

complementary DNA to a functionalised microelectrode and it can be observed that a 

negligible increase in RCT was seen after one hour showing that the specificity of the assay 

had been preserved when transferred from macro to microelectrode.   The detection 

sensitivity reported here is at least equivalent and with development of the microelectrode 

measurement and measuring longer DNA strands from clinical samples it will lead to 

sensitivity gains using the new protocol. 

 

Figure 6.  Binding of the mecA MRSA oligonucleotide (A) and a non-complementary 

sequence (B) measured in real time by continuous EIS.  Recorded using a 

microelectrode (r = 15 µm) at open circuit in a measurement solution of 0.1 mM 

potassium ferri-ferrocyanide + 10 mM KCl.  Both oligonucleotides were added at a 

concentration of 10 nM. 

 

Conclusions 

Using photolithographic microfabrication techniques, it was possible to produce 

microelectrode discs with well-defined radii which gave the expected limiting currents and 

diffusion coefficients for potassium ferrocyanide.  These electrodes were functionalised with 

a ssDNA capture probe and used to bind a complementary ssDNA oligonucleotide target 
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from the mecA gene.  The microelectrode response initially consisted of two semi circles, the 

first characteristic of the surface based RCT reaction and the second characteristic of the 

steady state current denoted RNL.  Equivalent circuit fitting showed that RCT changed 

predictably and consistently with binding of the mecA gene and the greatest signal increases 

came from electrodes with smaller radii.  RNL was found to show little change following 

electrode modification with ssDNA capture probe and following target DNA binding.  As 

electrode radius decreased it was difficult to obtain realistic fits for RNL with RCT increasingly 

dominating the response.  In these cases it was necessary to fit with the well-established 

Randles’ circuit.  Following optimisation of the measurement and selection of suitable 

conditions it was then possible to use the microelectrode to rapidly detect the binding of 

single stranded mecA oligonucleotide DNA in less than one minute, demonstrating the 

possible use of the microelectrode sensor for the detection of methicillin resistance in clinical 

isolates.  These data highlight some of the important issues in developing microelectrodes for 

detection of nucleic acid hybridisation from clinical samples.  Having shown the critical 

importance of electrode radius and response interpretation for actualising a microelectrode 

measurement, it is now our intention to develop individually addressable arrays for a number 

of clinically important measurements, including pathogen identification, resistance gene 

detection and measurement of clinically important DNA mutations. 
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