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Control of a Realistic Wave Energy Converter
Model using Least-Squares Policy Iteration

Enrico Anderlini, David I. M. Forehand, Elva Bannon, and Mohammad Abusara

Abstract—An algorithm has been developed for the resistive
control of a non-linear model of a wave energy converter
using least-squares policy iteration, which incorporates function
approximation, with tabular and radial basis functions being
used as features. With this method, the controller learns the
optimal PTO damping coefficient in each sea state for the
maximization of the mean generated power. The performance
of the algorithm is assessed against two on-line reinforcement
learning schemes: Q-learning and SARSA. In both regular and
irregular waves, least-squares policy iteration outperforms the
other strategies, especially when starting from unfavourable
conditions for learning. Similar performance is observed for
both basis functions, with a smaller number of radial basis
functions underfitting the Q-function. The shorter learning time
is fundamental for a practical application on a real wave energy
converter. Furthermore, this work shows that least-squares policy
iteration is able to maximize the energy absorption of a wave
energy converter despite strongly non-linear effects due to its
model-free nature, which removes the influence of modelling
errors. Additionally, the floater geometry has been changed
during a simulation to show that reinforcement learning control
is able to adapt to variations in the system dynamics.

Index Terms—Wave energy converter (WEC), resistive control,
reinforcement learning (RL), function approximation, radial
basis function (RBF).

I. INTRODUCTION

WAVE energy has the potential to become a signifi-
cant contributor to the future energy mix thanks to

a resource of up to 2.1 TW of power worldwide [1], with
a consequent reduction in greenhouse gas emissions. Never-
theless, wave energy converters (WECs) are not economically
viable yet, despite numerous designs having been proposed
over the years. A review of some of the most promising, recent
technologies can be found in [2]. The design of an effective
control scheme can considerably reduce the levelised cost of
energy associated with WECs, since it can bring about a gain
in energy absorption with little additional hardware costs.

Since the 1970s, multiple control strategies have been
studied so as to maximise energy extraction. Thorough reviews
of the topic can be found in [3] for the initial analyses and
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in [4] for more recent developments. By achieving resonance
between the device and the incident waves, complex-conjugate
control would result theoretically in optimal power absorption
[3]. However, this is infeasible in practice because of the
resulting large motions of the WEC in energetic sea states and
the associated high loads. Hence, alternative control algorithms
have been developed, which limit the motions, forces and
power ratings of the device [4]. It is possible to differentiate
between two main types of control schemes: time-averaged
and real-time.

Time-averaged strategies assume stationary wave conditions
over a prescribed time, over which a constant, optimal control
setting is used [5]. In the case of reactive control, this is
represented by the combination of damping and stiffness
coefficients of the Power Take-Off (PTO) unit that maximise
energy generation in each sea state. A specific case occurs for
zero stiffness: resistive control. The optimal values are found
through preliminary simulations, which can constrain the force
and displacement, and then stored in a look-up table. Whereas
time-averaged schemes may be less efficient than real-time
strategies, their computational cost is lower.

Real-time algorithms consist of applying an optimal control
action at every time instant such that it is expected to maximize
energy generation over a short (in the order of one wave cycle)
future time horizon [4]. Examples are latching [6], declutching
[7], simple-but-effective [8], and model predictive control [9]–
[11]. Whereas simple-but-effective control is computationally
light, since it relies on classical closed-loop controllers, non-
linear model predictive control and latching and declutching
control based on Pontryagin’s principle can present a high
computational cost associated with their real-time optimiza-
tion. Solutions to reduce the computational costs are to use a
linear model in model predictive control and a moving window
in latching and declutching control, as for instance proposed
by [12]. Furthermore, the control operation is strongly affected
by the accuracy of the wave excitation force forecast.

As the performance of all aforementioned control schemes
depends on the quality of the model of the device dynamics,
modelling errors can decrease the generated power as well as
cause damage to the machines if the physical limits are ex-
ceeded in practice. Whereas a hierarchical robust controller has
been used to decrease the sensitivity of simple-but-effective
control to modelling errors and non-linear effects [13], the
other control strategies are negatively affected by modelling
errors. An alternative approach to robust control based on
fuzzy logic has been proposed by [14]. Similarly, the authors
proposed, in a previous study, the application of an alternative
strategy, reinforcement learning (RL), to the control of WECs.
This scheme does not rely on a model of the WEC dynamics to
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obtain the control action and is thus able to adapt to changes
in the system response due to ageing, e.g. the build-up of
marine biofouling. Although the algorithm described in [15]
can be implemented on an actual device, a test-case numerical
study was run in that paper using a linear model of a point
absorber, a well known WEC technology which comprises of
a float whose size is small compared with the characteristic
wavelength [2].

In this article, RL is applied to the control of a realistic,
non-linear model of a WEC, whose accuracy was validated
by the developers against measurements on a prototype device
[16]. In the absence of costly experimental measurements, this
study enables the assessment of the convergence behaviour of
RL when non-linear effects are important. As in [16], only
damping, or resistive, control is analysed. This is known to
be inferior in performance to fully reactive control, which is
in fact treated by most other real-time control schemes, as
described in [4]. However, the practical implementation of
resistive control is simple. Additionally, the optimization of
only the damping coefficient results in a simpler framework
to demonstrate the applicability of RL for the control for
WECs, which can then be extended to the treatment of
combined damping and stiffness control. In particular, here
resistive control is implemented using least-squares policy
iteration (LSPI), an efficient RL algorithm [17]. Furthermore,
its performance is assessed against two simpler RL algorithms,
SARSA and Q-learning [18]. In addition, the effectiveness of
function approximation in reducing the learning time has been
assessed using LSPI with radial basis functions (RBFs) [17].

II. RESISTIVE CONTROL OF THE SEABASED WEC

A. System Description

The Seabased device is a point absorber with a direct-drive
PTO system. The development and testing of a number of full-
scale prototypes at Uppsala University is well described in the
literature [19]–[23]. The version studied in [16] is analysed in
this article, although the generator is now connected to the
electrical grid.

Figure 1 shows a diagram of the device, which is inspired
by [16]. A small float, excited by incident waves, drives a
linear, permanent-magnet generator along vertical rails. The
two bodies are connected by a mooring line. When the distance
between the float and the translator decreases, the mooring
line goes slack and the translator is pulled downwards by a
dedicated spring. Additionally, springs at the upper and lower
end stops prevent the translator from breaking the casing in
large waves. The motion of the magnet induces electrical
current in the coils wound around the stator. Power absorption
is controlled through a power electronic converter by setting
the stator current Is to be proportional to the velocity of the
translator. A second power electronic converter controls the
voltage across the capacitor between the converters by setting
the grid current. The wave elevation ζ is measured through a
wave buoy sited 80 m from the prototype at the Lysekil wave
energy research site [21].

In Figure 1, the same naming convention as in [16] is
held, with the values of the variables quantities being given in

Float

Mooring Line

Upper End Stop

Lower End Stop

Translator

Stator

Restoring Spring

le,u

le,l

lslp

kw

ks

kl

ku

γ→Is

Outer Casing

Wave Buoy

ζ→Hs,Te

x

y

Controller

Hs,Te max x

Floating Bodies

Power Take-Off SystemGrid

Power Electronics

Fig. 1. Diagram of the prototype Seabased WEC.

Table I in [16]. In addition, le,u = 0.25 m and le,l = 0.14 m
are a measure of the end stops length, as given in [21].

B. Mathematical Model

A weakly non-linear mathematical model of the system
dynamics has been developed by [16]. Although the float is
free to move in all directions in reality, only the heave degree
of freedom is analysed because the influence of the other
motions is negligible [24]. Defining y and x as the float and
translator displacement respectively, the motions of the two
bodies are described by the following system of equations

(mb +m∞) ÿ(t) = Fe(t)− Fr(t)− Fh(t)− Fw(t), (1)
mpẍ(t) = Fw(t)− Fem(t)− Fs(t) + Fu(t) + Fl(t), (2)

where t indicates time, mb and mp the mass of the float and
piston respectively, and m∞ the added mass of the float. Fe is
the incident and diffracted wave excitation force, Fr part of the
float radiation force, Fh the hydrostatic restoring force, Fw the
tension in the wire connecting the float to the translator, Fem

the electromotive force, Fs the force of the restoring spring in
Fig. 1, Fu and Fl the spring force of the upper and lower end
stops, respectively. The non-linearities are associated with Fw,
where compression effects are ignored, Fu and Fl, which are
activated only if the end stops are reached, and Fem, which
depends on the exposure of the translator to the stator.

The electromotive, or control, force Fem is discussed in the
next section. The hydrostatic force is calculated as

Fh(t) = ρgSwy(t), (3)

where ρ = 1025 kg/m3 is the seawater density, g = 9.81 m/s2

the gravitational acceleration and Sw the float waterplane area.
The Fr part of radiation force is approximated through a

state-space system so as to reduce its computational cost [25]

ẋss(t) = Assxss(t) +Bssẏ(t) (4)
Fr(t) ≈ Cssxss(t). (5)
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The matrices Ass, Bss and Css are calculated with frequency-
domain system identification, as described in [25]. Fr is given
by the convolution of the product of the radiation impulse
response function and the float velocity [26]. Furthermore,
the radiation impedance function has been computed using
the commercial software WAMIT for the vertical cylinder
geometry described in [16] for circular wave frequency values
ranging from 0 rad/s to 10 rad/s in steps of 0.005 rad/s.
Furthermore, m∞ has been calculated for the infinite wave
frequency case.

Similarly, the wave excitation force Fe is given by the
convolution integral of the product of the wave elevation at
the float location and the diffraction impulse response function
[26], which has also been computed using WAMIT. In irregular
waves, a number of wave components have been superimposed
to obtain ζ. The amplitude of each wave has been obtained
from a wave spectrum, sampled at a circular wave frequency
step of 0.005 rad/s in order to prevent repeating the wave
trace within a 15-minute window, as the value is less than the
Nyquist frequency [27]. In order to obtain longer time series,
individual wave traces generated using a different seed to the
random number generator have been joined. The connections
are smoothed using a 200-point filter over the last and first
20 s of each wave trace.

The force of the spring connected to the translator is
expressed as [16]

Fs = F0 + ksx, (6)

where F0 is a static force due to precharging, and ks is the
spring stiffness. Ignoring compression effects, the wire force
is given by [16]

Fw =

{
−kw(y − x) if y > x

0 else
, (7)

with kw being the wire stiffness. Similarly, the forces due to
the upper and lower end stops are given by [16]

Fu =

{
−ku(x− lu) if x > lu

0 else
, (8)

Fl =

{
−kl(x+ ll) if x < −ll
0 else

, (9)

where ku and kl are the equivalent stiffness values of the
springs in the upper and lower end stops respectively. lu and ll
are the distance of the two end stops from the vertical midpoint
of the translator at equilibrium, as shown in Fig. 1. In [16], it
is possible to find the values of ll, lu, kl, ku, kw, ks, mb, mp,
F0 and Sw.

Using (3-9), Equations (1-2) have been expressed in the
following non-linear state-space form

ż(t) = Az(t) +Bu(t, x) +Bw(t) +Bl(t, x, y), (10)

The state, input, noise and non-linear vectors are given by

z =
[
y ẏ x ẋ xTss

]T
, (11)

u =
[
0 −Fem(x)

]T
, (12)

w =
[
Fe(t) 0

]T
, (13)

l =
[
−Fw(x, y) Fw(x, y)− F0 + Fu(x) + Fl(x)

]T
. (14)

The state and input matrices are

A =


0 1 0 0 0T

− ρgSw

mb+m∞
0 0 0 − Css

mb+m∞
0 0 0 1 0T

0 0 − ks
mp

0 0T

0 Bss 0 0 Ass

 , (15)

B =


0 0
1

mb+m∞
0

0 0
0 1

mp

0 0

 . (16)

C. Resistive Control of the Translator

The motions of the float and the translator, and thus ulti-
mately the power absorption of the device, can be controlled
through the electrical behaviour of the generator. In particular,
the electromotive force is proportional to stator current Is and
active area Afac

Fem = kτAfac(x)Is, (17)

where kτ is the generator torque constant. If the current is
controlled (by power electronics) so that it is proportional to
speed such as Is = bẋ, with b being a constant, then Equation
(17) becomes

Fem = kτ bAfac(x)ẋ, or Fem = γAfac(x)ẋ, (18)

where γ = kτ b is the PTO damping coefficient. The active
area, i.e. the overlap between stator and translator, is given by

Afac =


0 if |x| ≥ 0.5(lp + ls)

1 if |x| ≤ 0.5(lp − ls)
[0.5(lp + ls)− |x|] /ls else

,

with lp and ls being given in [16]. The generated power is
computed as

P (t) = Fem(t)ẋ(t). (19)

RL is employed to find the optimal PTO damping coeffi-
cient, γ, in each sea state for the maximization of the energy
generation. The values of γ are assumed to be limited to 0-
100 kNs/m. The upper limit corresponds approximately to the
case of no load resistance in the experimental setting in [16].

D. Simulation System

Equation 10 has been discretized with a fourth-order Runge-
Kutta scheme [28], and solved with a time step of 0.002 s.
The controller is implemented as in (18). The workflow of
the program is similar to that described in [15], and it is
summarised in Fig. 2 with a block diagram.

III. REINFORCEMENT LEARNING

In the RL framework [29], an agent takes an action a in
state s, landing in a new state s′ while observing a reward r. A
Markov decision process is used to model the action selection
depending on the value function Q(s, a), which represents an
estimate of the future reward. With time, the agent learns an
optimal policy, π, that maximizes the total reward.
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γ 

Fig. 2. Workflow diagram of the computer program used to simulate the
Seabased WEC.

A. Least-Squares Policy Iteration

LSPI is a powerful, off-line, off-policy RL algorithm. Whilst
still being model-free, the method, developed by [17], presents
an efficient use of the samples (s, a, s′, r), which results in
a smaller learning time as compared with other strategies,
such as Q-learning and SARSA. Additionally, it automatically
incorporates function approximation for the action-value func-
tion. This means that the scheme is able to generalize for
unseen states, thus further shrinking the convergence time. In
particular, a linear architecture is used for the approximation of
Q due to its simple implementation and ease of debugging and
feature engineering [17]. In matrix notation, this is expressed
as [18]

Q(s, a) ≈ φ(s)TΘ:,a, (20)

where Θ is the weight matrix and φ is the vector of arbitrary,
linearly independent, usually non-linear basis functions, or
features. Θ:,a indicates the ath column of Θ, with Θ having
|A| columns, where A is the action space. Θ and φ have
J � |S| rows, with S indicating the state space. Here,
two basis functions types are used: tabular and radial. The
tabular representation is the simplest and consists in assigning
a separate weight for each state-action pair [18]. Hence, for
discrete states, this corresponds to the exact representation
Q(s, a), although its size is equal to the state-action space
(J = |S|). Conversely, in RBFs, the feature activation decays
continuously away from the state-action pair where the RBF
is centred, sj for RBF j, spanning many discrete states [18]

φj(s) = exp

(
−||s− sj ||

2

2µj

)
, (21)

where µj indicates the bandwidth of RBF j. RBFs are shown
graphically in Fig. 3.

LSPI consists of two main stages: policy evaluation (the
critic) and policy improvement (the actor) [17]. LSPI is defined
as off-line because the algorithm is trained using samples
that have been previously recorded from observations of the
environment. The algorithm is summarized in Fig. 4. The
discount factor is set here to γd = 0.95. The values of the
weight matrix in (20) can be computed from

ÃΘ:,a = b̃ (22)

for each action, where the tilde indicates a learned variable.
The reader is referred to [17] for a full derivation of the
equations for Ã and b̃, which are obtained from the least-
squares fixed-point approximation.

μj μj+1

A
ct
iv
at
io
n

Statesj sj+1

φj φj+1

Fig. 3. Activation function of the RBFs as per Eq. (21).

 

input: 𝑾:   set of samples (𝑠, 𝑎, 𝑟, 𝑠’) 

𝛾𝑑:   discount factor 

𝛿 = 10−3: stopping criterion 

𝜋0:   initial policy, given as 𝚯0 = 𝟎 

𝜋:   policy, or exploration strategy 

 

 𝚯’ ←  𝚯0 

 while ||𝚯 − 𝚯′|| ≥ 𝛿: 

o 𝛩 ←  𝜣’ 

o �̃� ← 𝟎   (𝐽 × 𝐽 matrix) 

o �̃� ← 𝟎   (𝐽 vector) 

o for each (𝑠, 𝑎) ∈ 𝑾: 

 �̃� ← �̃� + 𝝓(𝑠) (𝝓(𝑠) − 𝛾𝑑𝝓(𝑠′, 𝜋(𝑠′)))
𝑇

 

 �̃� ← �̃� + 𝝓(𝑠)𝑟 

 𝚯′:,a ← �̃�−1�̃� 

 return 𝚯 

 

Fig. 4. LSPI algorithm, adapted from [17].

B. Application of LSPI to the control of WECs

Employing a time-averaged approach, at the start of each
time-averaging period, or time horizon with duration HRL, an
action, which consists in a step change in the PTO damping
coefficient, is selected following the current policy. The state is
a combination of γ and the sea state, as given by the significant
wave height Hs and energy wave period Te [30]. Holding γ
constant during HRL, the reward is obtained as a function of
the mean generated power, Pavg. The selection of a new action
results in a new state, and the sample (s, a, s′, r) is added to
the sample set W . After the collection of Ns samples, the
policy is updated using the LSPI algorithm in Fig. 4. In the
following sections it is possible to find an accurate description
of the state and action spaces, the reward function and the
exploration strategy.

1) State Space: Similarly to [15], the discrete state-space
can be expressed as

S =

s|si,l,m = (Hs,i, Te,l, γm) ,
i = 1 : I,
l = 1 : L,
m = 1 : M

 . (23)

As described in Sec. III-A, LSPI incorporates linear function
approximation. With the tabular approach, J = ILM , i.e.
there is an entry in Θ for each state-action value, or the Q-
table is exact. With RBFs, a smaller number of values can be
used. In fact, for the control of WECs, a hybrid approach is
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TABLE I
DISTANCE BETWEEN KERNELS, BANDWITH AND NUMBER OF KERNELS

USED IN THE STUDY OF LSPI WITH RBFS.

δc (kNs/m) µ (kNs/m) M
10 10 10
10 20 10
20 10 5
20 20 5
20 40 5

used, where discrete sea states are still employed, while RBFs
approximate the control variable. I and L are determined from
the wave data at the deployment site, with steps of 1 m and
1 s being common for Hs and Te, respectively [30].

For the tabular approach, M = 11 has been selected, with
γ ranging from 0 to 100 kNs/m in steps of 10 kNs/m. For
function approximation, 5 cases have been considered in order
to study the influence of the number of kernels, or centres,
and bandwidth on the learning behaviour of LSPI with RBFs.
In Table I, it is possible to see the distance between kernels
δc = sj−sj−1 and bandwith µ for each case as given in (21).
The first kernel is always sited at γ = 0 kNs/m.

2) Action Space: The action space is defined as

A = {a| (−∆γ, 0,+∆γ)} , (24)

where ∆γ = γm+1−γm. However, the states corresponding to
the maximum and minimum of the PTO damping coefficient
are constrained to two actions in order to avoid going beyond
the RL state space limits.

3) Reward Function: The same reward function as in [15]
is employed and the reader is referred there for a more detailed
explanation. A penalty p = −1 is returned if the constraints
max(x) > lu + le,u or min(x) < −(ll + ll,u) are exceeded
during the time horizon h. This enables the algorithm to learn
to avoid actions that will result in possible damage to the
device. Hence, the reward function is expressed as

r =

{[
m(sh)

maxs′′=o:p m(s′′)

]u
if constraints met

p otherwise
. (25)

The entries of the vector m, whose size is equal to the total
number of discrete states |S| (valid for both tabular and RBF
methods), correspond to the average of up to 10 values of
Pavg/H

2
s that are stored for each discrete state, with older

values being overwritten by new ones once 10 values are
registered. The indices o and p ensure that the maximization
in (25) is performed only over the values of m corresponding
to the current sea state, as given by Hs and Te.

The power u must be an odd number to prevent rectifying
negative power values (in the case of reactive control). The
higher the value, the closer the cost function is to returning
1 for the optimal control variable and 0 for all other settings
in each sea state. Here, u = 25 has been used in order to aid
convergence in irregular waves.

Initialize all variables

For every time horizon h

Record x, P, ζ 

Has HRL,1 passed?

Start calculating Pavg

Has HRL passed?

Get Hs & Te from FFT analysis; Observe discrete 
state sh from Hs, Te, γ 

Get reward rh from (25) using Pavg and x

Update εh with (27) and N(sh)←N(sh)+1; Select 
an action ah with (26)

Update γ  

Store sample (sh,ah,rh,sh’) in W

Have Nh horizons passed?

Update policy π  (and matrix Θ) with 
LSPI algorithm in Fig. 4

Controller

Policy 
Improvement

Measurements

Power 
Averaging

Samples 
Collection

Fig. 5. Flowchart of the LSPI algorithm for the resistive control of the stator.

4) Exploration Strategy: An ε-greedy policy [29] selects
the action at the start of each time horizon h

a =

{
arg maxa′∈AQ(sh, a

′) with probability 1− εh
random action with probability εh

,

(26)
where εh is the exploration rate. maxa′∈AQ(sh, a

′) represents
the maximum action-value (i.e. a measure of the expected
reward) for the current state over all actions, with the action-
value function being given by the mapping in (20). This term
represents the selection of the action that results in maximum
expected total reward starting from the current state.

Greater exploration is desired at the start of RL control,
while the greedy action, i.e. such that it maximises the value
function, is preferred as the learned policy improves. Thus,
the exploration rate is obtained as

εh =

{
ε0 if N(sh) ≤ Nε
ε0/
√
N(sh)−Nε if N(sh) > Nε

, (27)

with N(sh) indicating the number of visits to the current dis-
crete state (hence, valid for both tabular and RBF approaches).
Nε = 5 is the minimum number of encounters for random
exploration, and the initial exploration rate is set to ε0 = 0.5.

C. Algorithm

The proposed LSPI algorithm for the resistive control of the
stator can be seen in Fig. 5. After initializing all variables, the
algorithm is run continuously until the device is disconnected,
e.g. due to maintenance. During each time horizon h, the
policy is applied in order to select a suitable action based
on the encountered sea state, mean generated power and
maximum translator displacement. Furthermore, at the end of
each horizon, the current state, action, next state and reward
are sampled and added to W . Due to the finite memory of
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the controller computer, a specified number of samples can be
stored, say 106. Therefore, new samples will be stored only if
they have not been recorded before, with a difference greater
than 10−3 being acceptable for the reward. Once the memory
limit is reached, older values will need to be overwritten,
ensuring the sample range is broad, i.e. accounting for the
different sea states and values of the PTO damping coefficient.

As shown in Fig. 5, the policy is improved using the LSPI
algorithm in Fig. 4 every Nh = 40 time horizons. This
operation can be performed off-line on separate computing
cores so as to reduce the computational effort and ensure the
on-line implementation is feasible.

A time horizon duration HRL = 10T has been chosen
in regular waves, with T being the wave period, while
HRL = 150 s in the analysed irregular waves because a
JONSWAP spectrum is used. This selection is based on a
compromise between a fast response and a stable algorithm.
Irregular waves in particular require a longer duration of the
power averaging process due to their stochastic nature. If a
wider-banded wave spectrum is adopted, the horizon length
should be increased. Additionally, this process is started only
after HRL,1 = 0.4HRL so as to remove the influence of the
transient effects associated with the change in load resistance.

D. Q-learning and SARSA

The performance of LSPI in the control of the WEC is
compared with Q-learning and SARSA. SARSA, which stands
for state-action-reward-state-action, and Q-learning are on-
line schemes that rely on discrete states and actions [29].
Hence, at each step, they update the Q-table with the following
equations [29]

Q(s, a)← Q(s, a) + α

[
r + γd max

b∈A
Q(s′, b)−Q(s, a)

]
, (28)

Q(s, a)← Q(s, a) + α
[
r + γdQ(s′, a′)−Q(s, a)

]
, (29)

for Q-learning and SARSA respectively. α is the learning rate
and a′ the action applied in the future state. Hence, it is clear
that the main difference between the two algorithms is that
while SARSA is on-policy, i.e. it updates the value function
based on the policy it will follow, Q-learning is off-policy, i.e.
the update is based on the maximum possible Q-value in the
new state [29]. The application of Q-learning to the resistive
control of WECs is described in a previous publication [15],
with SARSA presenting an almost identical implementation.
Hence, the reader is referred to [15] for details. The initial
learning rate is set here to 0.4.

IV. SIMULATION RESULTS

A. Regular Waves

The behaviour of SARSA, Q-learning and LSPI has been
assessed against the optimal PTO damping coefficient, which
has been calculated using the Matlab optimization function
fmincon in each sea state. This is to provide a benchmark of the
control variable that results in the maximum mean generated
power.

Regular waves of unit amplitude and a wave period of
6 s have been analysed first, with a wave trace lasting 3
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Fig. 6. PTO damping coefficient selected by different RL control strategies
as compared with the optimal value in regular waves with unit amplitude and
T = 6 s starting from γ = 0 kNs/m.

hours. Two different starting points have been selected, namely
γ = 0 and γ = 100 kNs/m, as shown in Fig. 6 and
Fig. 7, respectively. For the RBFs, δc = 10 kNs/m and
µ = 10 kNs/m, i.e. an almost tabular approach has been
used. For each figure, the same seed number has been set
to the random number generator for all algorithms, selecting a
particularly unfavourable number for Fig. 7 in order to assess
the convergence properties under difficult conditions.

In Fig. 8, it is possible to see the behaviour of the LSPI
algorithm for the RBF settings in Table I, when the starting
value of the PTO coefficient is γ = 100 kNs/m. For all runs,
the same seed values is used as in Fig. 7. A longer wave trace
lasting 4 hours is employed.

The mean generated power corresponding to the run with
LSPI with RBFs and δc = 10 kNs/m and µ = 10 kNs/m in
Fig. 7b and Fig. 8 is plotted in Fig. 9.

B. Irregular Waves

In irregular waves, an 8-hour long wave trace with Hs =
2 m and Te = 6 s with a JONSWAP spectrum [30] has been
analysed, typical of the Lysekil testing site [31]. In Fig. 10a
and Fig. 10b, the learning behaviours of the three control
algorithms are shown, with the same setting being used for
LSPI with RBFs as in Fig. 7 throughout this section. The
difference in mean generated power between LSPI with RBFs
and the optimal control setting is shown in Fig. 10c.

Nevertheless, real sea states actually last between 0.5 to 6
hours [30]. Therefore, in order to prove that RL is able to deal
with changing sea states, the control is tested in an additional
12-hour-long wave trace composed of the alternation of two
sea states, so that I = L = 2. Both have a JONSWAP
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Fig. 7. PTO damping coefficient selected by different RL control strategies
as compared with the optimal value in regular waves with unit amplitude and
T = 6 s starting from γ = 100 kNs/m.
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Fig. 8. PTO damping coefficient selected by the LSPI algorithm with different
RBF settings in regular waves with unit amplitude and T = 6 s. The values
of δc and µ are in kNs/m.
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Fig. 9. Mean generated power for the run with LSPI with RBFs and δc =
10 kNs/m and µ = 10 kNs/m in Fig. 7b and Fig. 8.

spectrum and last for two hours before changing. The first
one corresponds to Hs = 2 m and Te = 5 s, while the second
one has Hs = 1 m and Te = 6 s. Fig. 11a and Fig. 11b show
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Fig. 10. PTO damping coefficient selected by different RL control strategies
as compared with the optimal value in irregular waves with Hs = 2 m and
Te = 6 s and a JONSWAP spectrum starting from γ = 100 kNs/m (a-b). (c)
shows the difference in the mean generated power for the optimum (Pavg,opt)
and the case of LSPI with RBFs (Pavg,LSPI).

the learning behaviour of the three RL algorithms. In fig. 11c,
the difference in mean power between LSPI with RBFs and
the optimal control setting in each sea state can be seen.

Furthermore, although RL is expected to result in adaptive
control, as it is model-independent [32], this was not proven
in the previous work on the control of WECs [15]. Hence, a
simple example is treated here to show the adaptivity of RL
to possible marine growth effects. Bio-fouling is expected to
affect the dynamics of the system mainly through an increase
in its inertia and especially drag force. However, in this simple
model, the viscous drag force is not considered. Hence, we
treat the case of a sudden increase in the radius and draught
of the floater to 1.75 m and 0.5 m, respectively (from 1.5 m
and 0.4 m, respectively, in [16]). These values have been
assumed, as they result in a significant change in the optimal
damping coefficient in the analysed sea state. A full sensitivity
analysis of the power absorption and control of the device to
the variations in floater design as well as a realistic treatment
of marine growth effects go beyond the scope this study. The
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Fig. 11. PTO damping coefficient selected by different RL control strategies
as compared with the optimal value in irregular waves with two alternating
sea states (JONSWAP spectra with Hs = 2 m and Te = 5 s, and Hs = 1 m
and Te = 6 s) starting from γ = 100 kNs/m (a-b). (c) shows the difference
in the mean generated power for the optimum (Pavg,opt) and the case of
LSPI with RBFs (Pavg,LSPI).

changes in the floater design result in an increase in its mass
(mb) of 2032.7 kg, in its surface area of 2.5525 m2 (note
that these values are relative to the values in [16]) as well
as changes in the radiation approximation state-space system,
with the radiation coefficients being computed with WAMIT.

The same sea state as in Fig. 10 is used in this simple
example, whereas the new geometry of the floater is employed.
In particular, a simulation is initialized with the final values
of Fig. 10a and Fig. 10b being set for each RL strategy.
Additionally, the same values of the m vector have been
kept for each scheme. This corresponds to initializing the
reward function to incorrect values for each discrete damping
coefficient. For this reason, the exploration rate (as well as the
learning rate for Q-learning and SARSA) is reinitialized with
the same settings as in Sec. III-B4.

In Fig. 12a and Fig. 12b, the learning behaviours of the
three control algorithms are shown. The difference in mean
generated power between LSPI with RBFs and the optimal
control setting is shown in Fig. 12c.
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Fig. 12. PTO damping coefficient selected by different RL control strategies
as compared with the optimal value for the new floater geometry in irregular
waves with Hs = 2 m and Te = 6 s and a JONSWAP spectrum. The
initial conditions are set based on the final settings of Fig. 10a and Fig. 10b,
respectively. (c) shows the difference in the mean generated power for the
optimum (Pavg,opt) and the case of LSPI with RBFs (Pavg,LSPI).

The computational time of the algorithm run at the start of
each time horizon has been less than 0.06 s on an i7 processor
with 16Gb RAM in all simulations run here. As this time is
proportional to the number of states, if, say, 100 sea states were
to be used, the computational time would increase to 0.3 s.
Hence, a practical implementation is realistic, particularly
considering the much longer time horizon duration.

V. DISCUSSION

A. Regular Waves

In this work, we define RL algorithms to have converged
towards a policy once the same PTO damping coefficient is
selected for longer than an hour. However, within the short
duration of the analysed wave traces, the exploration rate
does not fully decay. Hence, the definition of convergence is
extended to include a maximum of up to 5 distinct deviations
from the mean value of the selected γ within the one-hour
period, which may be due to random actions being adopted.
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In Fig. 6, it can be seen that all algorithms learn the optimal
PTO damping coefficient within 2.5 hours, with subsequent
wiggles, especially visible for Q-learning and SARSA, mainly
due to the exploration rate not having fully decayed. This fast
learning is because this is a benign case, with the optimal
value of γ being very close to the starting PTO damping
coefficient, thus requiring little exploration before finding the
optimum. Conversely, Fig. 7 represents a more challenging
scenario for the RL algorithms. In particular, SARSA and Q-
learning are unable to converge to the optimal policy, and
learn a suboptimal policy instead, which results in less energy
absorption than the optimal policy. This problem could be
solved with a slower decay in the exploration and learning
rates, which would cause learning to be smoother, but also
slower. This behaviour is particularly worrying in the case of
extreme waves because if this oscillation occurs on the bound-
ary of the feasible damping coefficient envelope to prevent
excessive displacements, it could lead to failure. Conversely,
LSPI with both tabular and radial basis functions learns the
optimal policy within 2.5 hours in regular waves in Fig. 7b.

Comparing the behaviour of LSPI with tabular features and
RBFs with δc = 10 kNs/m and µ = 10 kNs/m in Fig.
6b, 7b and Fig. 10b, the two approaches almost completely
match, with RBFs actually resulting in a stabler behaviour
in regular waves and greater exploration in irregular waves.
This is expected because almost the same number of kernels
as discrete states are used, with the bandwidth spanning the
space between discrete states. In Fig. 4, decreasing the number
of kernels was expected to result in faster learning because the
RBFs are expected to generalise the shape of the Q-function
for unseen states and actions [18]. In fact, this is not the case,
with LSPI with RBFs with δc = 20 kNs/m (thus half as many
kernels) and µ = 20 kNs/m taking longer to learn the optimal
policy. Increasing the bandwidth of RBFs also augments the
confusion in the controller, as the overlap between distinct
RBFs is increased spanning multiple γ values, thus causing the
algorithm to diverge from the optimal policy. These counter-
intuitive results are believed to be due to the small number of
discrete states used, with many more features being typical for
standard RL problems [17]. Hence, the use of 5 or less RBFs
incurs in an underfitting problem, i.e. using too coarse a model
to fit the Q-function. A minimum of 10 RBFs is recommended
for the control of WECs with LSPI. Additionally, setting the
bandwidth to match the distance between kernels seems to
provide best behaviour. Nevertheless, designing RBFs features
needs care, and it is likely to be device-specific.

B. Irregular Waves

Q-learning and SARSA are similarly unable to converge
towards the optimal policy in irregular waves as well, as
shown in Fig. 10 and Fig. 11. Again, this is an indicator
that the exploration and learning rates should be decreased
more slowly for these algorithms, thus resulting in longer
learning times. Conversely, LSPI with both tabular and radial
basis functions is able to learn the optimal policy in less than
6 hours in each sea state, despite some wiggles owing to the
exploration rate not having decayed fully yet in Fig. 11b.

In particular, the learning time is lower than the 12 hours
required by Q-learning for convergence in irregular waves in
[15], where a more benign linear WEC model was used for
validation. This diminished convergence time is mainly due
to the shorter time-averaging horizon length employed in this
study and, especially, the superior capacity of LSPI to learn
using a small number of observations [17]. Furthermore, as
shown in Fig. 11b, LSPI is able to pick up learning in a specific
sea state from where it left off the last time the controller was
in that sea state. This is a fundamental consideration for a
realistic application, since actual sea states usually last for a
shorter time than 6 hours [30].

As the Seabased device is tested in the Skagerrak strait
[16], a JONSWAP spectrum is appropriate due to its bounded,
shallow-water nature [30]. However, a JONSWAP spectrum is
a single-peaked spectrum with a relatively narrow frequency
range [30]. This means that energy is contained mainly in
a region close to the peak wave period. As a result, deter-
mining the optimal PTO damping coefficient for each sea
state is simpler than for wider-banded wave spectra, such as
Bretschneider or even double-peaked spectra. Although RL is
expected to find the global optimum [29], the learning process
would be expected to take longer if the latter spectra were
used: a longer time horizon length would be necessary. In
particular, a double-peaked spectrum would cause significant
challenges to the convergence behaviour. This will be the focus
of future studies.

Being model-free, RL is proven to be able to adapt to
changes in the dynamics of the WEC in Fig. 12. Even though
the reward function is initialized with the wrong values, RL is
able to converge towards the optimal PTO damping coefficient
with all three analysed algorithms. However, it is important to
note that this is possible because the exploration rate is reset
after the change of the system dynamics. Therefore, during
operation of a WEC, it is necessary to reset the exploration
rate after specific time intervals, say yearly, in order to pick
up any possible changes in the device response.

VI. CONCLUSION

An efficient RL algorithm has been suggested for the control
of a WEC, with its performance being compared with Q-
learning and SARSA. In particular, a non-linear model of
the dynamics of the Seabased point absorber, validated in a
previous study, has been used as a test case. As expected,
despite the system non-linearities, all control schemes are
able to find the optimal PTO damping coefficient from a
random start in regular waves because of their model-free
nature. However, if the algorithms are started with particularly
unfavourable conditions, only LSPI is able to converge within
2.5 hours, with higher learning and exploration rates being
required for Q-learning and SARSA to converge. Unexpected
results have been found in the study of RBFs as features for
function approximation with LSPI: a smaller number of RBFs
than discrete states does not correspond to faster learning
time. This is because a very small number of discrete states
has been employed, with the few RBF kernels resulting in
underfitting. Hence, although RBFs should be preferred over
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tabular features as they presented a stabler behaviour, their
number should be high enough to prevent underfitting, thus
meaning that their design is likely to be specific to the device
dynamics.

In irregular waves, LSPI learns the optimal policy within
6 hours starting from unfavourable conditions, thus proving
its superior capacity of learning from a limited set of obser-
vations. The same behaviour is observed when the controller
is tested in two sea states, alternating every 2 hours. Finally,
RL is shown to converge towards a new optimal policy after
changing the floater geometry, with the controller still being
initialized with the reward function valid for the older system.
This proves the adaptive nature of RL control, supporting its
ability to account for changes in the system dynamics, e.g.
due to marine bio-fouling.
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