
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Synthesis of ()-Angiopterlactone B

Citation for published version:
Thomson, MI, Nichol, GS & Lawrence, A 2017, 'Total Synthesis of ()-Angiopterlactone B', Organic letters.
https://doi.org/10.1021/acs.orglett.7b00929

Digital Object Identifier (DOI):
10.1021/acs.orglett.7b00929

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Organic letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322479565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1021/acs.orglett.7b00929
https://doi.org/10.1021/acs.orglett.7b00929
https://www.research.ed.ac.uk/portal/en/publications/total-synthesis-of-angiopterlactone-b(62f0047a-7994-4515-969f-9de847ef020c).html


Total Synthesis of (–)-Angiopterlactone B 
Marie I. Thomson, Gary S. Nichol,† Andrew L. Lawrence* 

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 
3FJ, UK 
Supporting Information Placeholder 

 
ABSTRACT: An enantioselective total synthesis of (–)-angiopterlactone B has been accomplished in four steps. The synthesis 
features a proposed biomimetic domino ring-contraction/oxa-Michael/Michael dimerization sequence, forming three new bonds, 
two new rings and three new contiguous stereogenic centres in a single step. It has been determined that the originally proposed 
absolute configuration of natural (+)-angiopterlactone B needs revision. This reveals that angiopteroside, a known glycoside natural 
product, is the likely biosynthetic precursor to (+)-angiopterlactone B.

(+)-Angiopterlactone B (1) is a structurally complex bis-
lactone metabolite isolated from the rhizome of Angiopteris 
caudatiformis by Zou and co-workers in 2009 (Scheme 1).1 
The connectivity and relative stereochemistry of (+)-
angiopterlactone B (1) was determined by extensive NMR and 
MS studies and secured by X-ray crystallography. The CD 
excitation chirality method and modified Mosher ester analy-
sis were used to propose the absolute configuration shown in 
Scheme 1.1 

Zou and co-workers noted that (+)-angiopterlactone B (1) 
may be derived from the co-isolated (−)-angiopterlactone A 
(2) by an intramolecular Michael reaction (Scheme 1).1 With 
no further biosynthetic speculation provided, we ventured that 
(−)-angiopterlactone A (2) might be formed by an intermolec-
ular oxa-Michael reaction between γ-lactone 3 and δ-lactone 
4.2 This proposal was driven by the recognition that lactones 3 
and 4 are isomers of one another. The chemical feasibility of a 
δ- to γ-lactone isomerization (i.e., 4 to 3) is well precedented; 
osmundalactone 5 (the aglycone of osmundalin 6) is reported 
to undergo ring contraction to give the γ-lactone 7 under acidic 
or basic conditions (Scheme 1).3a Furthermore, the known 
natural products osmundalin (6)3 and angiopteroside (8)4 
prompted us to consider that a diastereomer of these struc-
tures, glycoside 9, might represent a plausible biosynthetic 
precursor to (+)-angiopterlactone B (1). This biosynthetic pro-
posal raises many questions concerning reactivity and selectiv-
ity. Are enzymes required for the domino ring-
contraction/oxa-Michael/Michael reaction sequence,5 or is it 
the result of predisposed reactivity? Are angiopterlactones A 
(2) and B (1) the only natural dimers formed, through a highly 
selective process, or do they hint at the potential for an entire 
family of related dimers? In an attempt to answer these ques-
tions, we decided to embark upon efforts towards achieving a 
biomimetic total synthesis. 

 

Scheme 1. Proposed biosynthesis of angiopterlactones A (2) 
and B (1).1,3,4 

 
The required δ-lactone 4 was prepared following an ap-

proach recently reported by Tang, Guo and co-workers.6 The 
synthesis began with an enantioselective multi-gram scale 
Noyori transfer hydrogenation of commercially available 2-
acetylfuran 10,7 which gave highly enantioenriched (S)-
alcohol 11 in near quantitative yield (Scheme 2). Achma-
towicz rearrangment of alcohol 11 using N-bromosuccinimide 
(NBS) gave pyranone 12 as an inconsequential mixture of 
diastereomers.8 Dynamic kinetic isomerization of pyranone 12 
using tandem Brønsted-acid and iridium catalysis gave δ-
lactone 4 in 62-71% yield on a multi-gram scale.6 Following 
extensive screening of various reaction conditions, three and a 



 

half grams of δ-lactone 4 were dissolved in 1,2-dichloroethane 
and a sub-stoichiometric quantity of potassium carbonate was 
added.2e This mixture was heated at 70 °C overnight to give (–
)-angiopterlactone B (1) in 25% isolated yield (>0.85 g), thus 
completing a four step enantioselective total synthesis 
(Scheme 2).9 Attempts to improve the yield for this final di-
merization, by extending the reaction time, varying the con-
centration and adding more base, were ineffective (see the 
Supporting Information for full details). Nevertheless, analysis 
of the 1H NMR spectrum of the crude dimerization product 
(see Scheme 2) revealed a remarkably selective reaction, with 
δ-lactone 4, γ-lactone 3 and γ-lactone 7 (presumably formed 
through base-mediated epimerization of γ-lactone 3) account-
ing for the majority of the remaining material. When the three 
monomeric lactones (4, 3 and 7) are present, there are a total 
of 72 dimeric structures that could conceivably form through a 
domino oxa-Michael/Michael reaction sequence.10 It is, there-
fore, fascinating that we observe the highly selective for-
mation of just one, (–)-angiopterlactone B (1). 

Scheme 2. Total synthesis of (–)-angiopterlactone B (1),a its 
X-ray crystal structure,9 and diagnostic upfield-region of 
the crude 1H NMR spectrum for the dimerization reaction. 

 
aYields are reported as a range, representing the isolated yields 

obtained from several reactions. The reaction scale corresponds to 
the approximate quantity of product isolated from a single reac-
tion. 

An [𝛼𝛼]𝐷𝐷20 of +22 (c 0.04, EtOAc)1 is reported for natural 
angiopterlactone B (1), whereas an [𝛼𝛼]𝐷𝐷20 of –25 (c 0.04, 
EtOAc) was obtained for our synthetic material. Therefore, it 
must be concluded that the absolute configuration of natural 
(+)-angiopterlactone B (1) needs revision.11 Importantly, this 
reveals that angiopteroside 8 (see Scheme 1), a glycoside natu-
ral product previously isolated from various Angiopteris 
plants,4 is a likely biosynthetic precursor to natural (+)-
angiopterlactone B (1). 

In summary, a scalable, protecting-group-free, enantiose-
lective total synthesis of (–)-angiopterlactone B (1) has been 
achieved in four steps. Our experimental results indicate that 
(+)-angiopterlactone B (1) is likely the result of an inherently 
selective dimerization of the aglycone of angiopteroside (8).12 
Detailed mechanistic studies, both experimental and computa-
tional, are currently underway in our laboratory to investigate 
the reactivity and selectivity of this dimerization process and 
will be reported in due course. 
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