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Abstract—Limited contrast, along with speckle and acoustic noise, can reduce the diagnostic value of echocardio-
graphic images. This study introduces dynamic histogram-based intensity mapping (DHBIM), a novel approach
employing temporal variations in the cumulative histograms of cardiac ultrasound images to contrast enhance
the imaged structures. DHBIM is then combined with spatial compounding to compensate for noise and speckle.
The proposed techniques are quantitatively assessed (32 clinical data sets) employing (i) standard image quality
measures and (ii) the repeatability of routine clinical measurements, such as chamber diameter and wall thickness.
DHBIM introduces a mean increase of 120.9% in tissue/chamber detectability, improving the overall repeatability
of clinical measurements by 17%. The integrated approach of DHBIM followed by spatial compounding provides
the best overall enhancement of image quality and diagnostic value, consistently outperforming the individual ap-
proaches and achieving a 401.4% average increase in tissue/chamber detectability with an associated 24.3%
improvement in the overall repeatability of clinical measurements. (E-mail: A.Perperidis@hw.ac.uk) � 2017
The Authors. Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Key Words: Ultrasound, Echocardiography, Histogram processing, Image enhancement, Contrast enhancement,
Noise suppression.
INTRODUCTION

Transthoracic echocardiography, although a valuable tool
for the assessment of cardiac morphology and function,
suffers from a range of artifacts because of the interaction
of the transmitted ultrasound with structures such as bone,
lung and fat. These interactionsmay cause acoustical noise
and speckle, reduce contrast and limit the delineation of
fine anatomic detail. Such artifacts may therefore limit
the (i) diagnostic value and (ii) effectiveness of post-
processing tools on cardiac ultrasound images. Although
advances in data acquisition technologies have substan-
tially improved cardiac ultrasound data, a systematic study
performed at the Echocardiography Department of the
Western General Hospital (Edinburgh, Scotland) indicated
ddress correspondence to: Antonios Perperidis, Institute of Sig-
nsors and Systems, School of Engineering and Physical Sciences,
Watt University, Edinburgh, EH14 4 AS, UK. E-mail: A.
idis@hw.ac.uk
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that a considerable (#30%) portion of routine cardiac
scans generate low-quality images of limited diagnostic
value (corrupted structures, limiting or even prohibiting
clinical measurements). The results have been used for
educational purposes within the department and have not
been published yet. Consequently, there is research interest
in the development of post-processing methods that
address these limitations, enhancing the image quality
and diagnostic value of cardiac ultrasound.

Numerous approaches to enhancement of cardiac ul-
trasound images have been suggested (Perperidis 2016).
Spatial compounding is a popular method that suppresses
noise by combining partially decorrelated images pro-
duced by imaging the target region of interest from
different viewing angles. Tissue structures present in all
the partially decorrelated views are enhanced, whereas
artifacts not present in all views are suppressed. There
are studies that have employed spatial compounding
through transducer repositioning for the enhancement
of 3-D cardiac ultrasound data (Gooding et al. 2010;
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Mulder et al. 2014; Rajpoot et al. 2011; Szmigielski et al.
2010; Yao et al. 2010). Some studies have attempted to
enhance 2-D cardiac ultrasound images by averaging
temporally consecutive frames (Achmad et al. 2009;
dos Reis et al. 2009; Li et al. 1994; Petrovic et al.
1986). Other studies have utilised the repeated rhythmic
contractions of the heart to acquire and compound
multiple partially decorrelated 2-D images of the same
cardiac phase over consecutive cardiac cycles through a
single acoustic window. The process has been referred
to as temporal compounding (Abiko et al. 1997;
Amorim et al. 2009; Klingler et al. 1989; Olstad 2002;
Perperidis et al. 2009; Rigney and Wei 1988; Unser
et al. 1989; van Ocken et al. 1981; Vitale et al. 1993).

Although spatial compounding is primarily a tool for
noise and speckle suppression, it has also been found to
compensate for other artefacts in cardiac ultrasound,
including partial shadowing and reverberations. Howev-
er, spatial compounding has no noteworthy effect in
enhancing the cardiac tissue/chamber contrast. Limited
contrast between cardiac tissue and chambers constitutes
a major limitation in cardiac ultrasound images, poten-
tially making (when combined with noise) the delineation
of cardiac structures very challenging. Non-contrast tis-
sue harmonic imaging (THI) is a well-established
approach (sometimes employed as the standard acquisi-
tion mode) for enhancing the contrast and delineation be-
tween cardiac tissue and chambers (Averkiou et al. 1997;
Becher et al. 1998; Caidahl et al. 1998; Franke et al. 2000;
Ward et al. 1997). However, challenging cases still arise
where effective post-processing techniques for the
contrast enhancement between cardiac tissue and cham-
bers could be beneficial. A number of filters (Finn et al.
2011; Tay et al. 2010; Yue et al. 2005; Zong et al.
1998) and spatial compounding approaches (Rajpoot
et al. 2009; Szmigielski et al. 2010; Yao and Penney
2008) have been claimed to enhance the structure
boundaries along with the contrast between cardiac
tissue and chambers. However, many of these noise
suppression methods actually perform contrast and
boundary preservation rather than enhancement.
Consequently, dedicated methods that suppress noise in
cardiac chambers while enhancing the contrast and
detectability between cardiac tissue and chamber
structures are desirable.

To distinguish and enhance the contrast between tis-
sue and chamber pixels, a method to derive an effective
tissue/chamber threshold is required. Sezgin and Sankur
(2004) categorised thresholding methods into six groups:
(i) histogram shape, (ii) clustering, (iii) entropy, (iv) im-
age attributes, (v) spatial information and (vi) local char-
acteristics. Histogram-based methods are very popular
because of their simplicity and efficiency. Therefore,
the multiframe nature of cardiac ultrasound data
(exceeding 100 frames/s on state-of-the-art scanners)
makes histogram based thresholding very appealing.

Abdullah-Al-Wadud et al. (2007) and Ibrahim and
Kong (2007) introduced contrast enhancement techniques
that analyse the shape of the histogram and partition it based
on local minima and maxima, respectively. They both then
assigned specific gray-level ranges to each partition before
performing histogram equalisation on them individually.
Both techniques performed well in low-contrast images.
However, the high levels of noise along with speckle and
the subsequently more complex histograms in cardiac ultra-
sound data impose a severe limitation on the potential of
similar histogram shape-based techniques (Hammoude
1998). Zwirn and Akselrod (2004, 2005) introduced the
adaptive brightness transfer function (ABTF) based on the
assumption that the histogram of cardiac ultrasound
images can be approximated by the sum of three
overlapping Gaussian distributions. The intersections
between these three Gaussians would act as thresholds,
with each section of the histogram being individually
processed using a number of techniques, including
histogram equalisation, specification and scaling. The
results presented on suppressing chamber noise and
enhancing contrast between cardiac tissue and chambers
were promising. However, like most histogram shape-
based approaches, ABTF makes a strong assumption about
the shape of the histograms of the processed images.
Although some images may conform to this paradigm,
such an assumption may result in considerable pixel
misclassification, especially in cases of large overlap be-
tween the fitted Gaussians. Moreover, ABTF assumed con-
stant illumination throughout the field of view, which in
many scans is not the case because of suboptimal manual
setting of the time gain compensation (TGC).

The aim of this study was to introduce a cardiac ul-
trasound image enhancement approach that suppresses
noise and speckle while increasing contrast and detect-
ability between cardiac tissue and chambers. Initially, dy-
namic histogram based intensity mapping (DHBIM) is
introduced as a novel, simple and efficient method for
suppressing cardiac chamber noise, enhancing tissue
speckle and increasing tissue/chamber detectability.
Unlike previous approaches, DHBIM employs variations
over time in the cumulative histograms of cardiac ultra-
sound image sequences to derive a tissue/chamber
threshold, avoiding strong assumptions on histogram
shape. DHBIM is then combined with a temporal com-
pounding (Perperidis et al. 2015) approach that also
makes use of image variations over time to compensate
for noise and speckle, as well as other artefacts that
may momentarily appear, such as shadowing and rever-
berations. The results of the individual (DHBIM and tem-
poral compounding) approaches as well as the integrated
approach are finally compared.
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METHODS

Data acquisition and classification
Cardiac data from 32 patients were acquired accord-

ing to the standards adopted by the British Society of
Echocardiography (Feigenbaum et al. 2005; Henry
et al. 1980; Wharton et al. 2012) at the Western General
Hospital, Edinburgh. All data sets used in this study
were selected from fully anonymised cine loops
recorded during routine clinical examinations in the
course of normal care with no intention to use them in
research at the time of collection. Consequently, no
National Health Service (NHS) ethics approval was
required under the terms of the Governance
Arrangements for Research Ethics Committees: A
Harmonised Edition (Department of Health Research
and Development Directorate of England et al. 2011).
The data sets were representative of patients examined
in the department and so included data over the full diag-
nostic quality range of high (12), average (12) or low (8)
(as specified by an experienced echocardiographer). B-
Mode data of at least 25 cardiac cycles of the parasternal
long-axis (PLAX) view were selected with no other
quality-related selection criteria being used. The PLAX
view was utilised because it is common in clinical prac-
tice and enables (i) the visualisation of multiple cardiac
structures and (ii) the acquisition of a range of clinical
measurements that are essential during the diagnostic
process. All data were acquired using a GE Vivid 7
Dimension ultrasound scanner (GE Healthcare, Little
Chalfont, UK) along with a 3-MHz phased array probe
employing tissue harmonic imaging as standard acquisi-
tion mode. Images were captured at 25 frames/s (fps).
Other acquisition parameters such as acquisition depth,
focus depth, sector width, gain and TGC were manually
optimised for each subject. Finally, B-mode image se-
quences of 434 3 636 pixels were exported in DICOM
format with no compression applied.
Fig. 1. Block diagram of (a) the proposed dynamic, contrast enh
ing to a holistic image enhan
Data analysis: Contrast enhancement
Dynamic histogram-based intensity mapping was

implemented using a three-step process (Fig. 1a): (i) iden-
tification and compression of any underutilised intensity
levels within the frame sequence, (ii) derivation of a car-
diac tissue/chamber intensity threshold and (iii) enhance-
ment of the contrast between cardiac tissue and chamber
structures.

A B-mode cardiac cycle can be described by an or-
dered sequence of n 2-D images S (x,y) with a fixed field
of viewUS and an acquisition time t in the temporal direc-
tion. The resulting image sequence can be viewed as
2-D 1 time structure S (x,y,t) defined on the spatiotem-
poral domain US 3 ½t1; tn�. The goal was therefore to
derive an intensity transformation function T of the form:

T : Sðx; y; tÞ/S0ðx; y; tÞ [1]

where S (x,y,t) represented the gray level of the original
image at point (x,y) and time t ˛½1;M�; and S0 (x,y,t) rep-
resented the corresponding gray level on the processed
data of image. Transformation T mapped the intensity
level S (x,y,t) at any point in an image sequence into a
corresponding intensity level S0 (x,y,t). Any parameters
required to define the intensity transfer function T (inten-
sity mapping) were automatically derived by analysing
the dynamic variations in the image histograms through
a sequence of consecutive cardiac ultrasound frames.
The normalized histogram of a digital image with gray
levels in the range [0,N] (N5 255) was a discrete function
(Gonzalez and Woods 2001)

pðrkÞ5 nk=n [2]

where rk is the kth gray level, nk is the number of pixels in
the image having gray level rk for k˛½0;N� and n denotes
the total number of pixels in the image (i.e., p (rk)
denotes the probability of occurrence of gray level rk).
ancement approach followed by (b) temporal compound-
cement methodology.
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Identification and compression of underutilised
intensities within the frame sequence

Underutilised intensity levels can be defined as in-
tensity levels that either are not utilised because of limited
imaging dynamic range or correspond to regions that are
not affected by the constant motion of the cardiac walls
(such as central regions of chambers). Underutilised in-
tensity levels within the B-mode frame sequences were
identified by analysing the dynamic temporal variations
in the image histograms corresponding to a sequence of
consecutive cardiac ultrasound frames. A normalised his-
togram was generated for each frame in the B-mode
sequence:

pðrk; tÞ5 nkðtÞ=n [3]

The standard deviation (SD) of the variations in each
intensity level over consecutive frames was then derived:

spðrkÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
t 5 1

ðpðrk; tÞ2mÞ2
vuut [4]

whereM is the total number of frames, and m is the mean
p (rk) value across the B-mode frame sequence. A heuris-
tic threshold set as,1% of the maximum value observed
over the derived sp (rk) profile was utilised to identify
such underutilised intensity levels:
thl 5
n
maxðiÞ; i˛½1;N� : �spðr0Þ; spðriÞ

�
,0:013 max

k
sðrkÞ

o

thu 5
n
minðjÞ; j˛½1;N� : �sp

�
rj
�
; spðrNÞ

�
,0:013 max

k
sðrkÞ

o [5]
where thl and thu are the estimated lower and upper
thresholds, respectively. Subsequently, a simple
piecewise-linear transformation T1 function was used as
an intensity mapping between the original and the pro-
cessed frame sequences

T1ðrkÞ5
8<
:

0;
N;

ða 3 rkÞ1b;

if k#thl
if k$thu
if thl,k,thu

[6]

where rk is the kth intensity level, a5N/(thu–thl) and
b5(N 3 thl)/(thu–thl) represents the slope and y-intercept
of the linear contrast stretching, respectively. T1 com-
pressed all intensity levels below or equal to thl to
0 (black-level expansion) and all intensity levels above or
equal to thu toN5 255 (white-level expansion), increasing
the dynamic range of the imaged cardiac structure.
Identification of tissue/chamber intensity threshold
The novel approach proposed in this study was

based on some basic observations in cardiac ultrasound
images. More precisely, the cardiac tissue/chamber inten-
sity threshold thct, was identified by analysing the dy-
namic variations in the image histograms over a
sequence of consecutive cardiac ultrasound frames. Let
nc (td) and nc (ts) represent the true number of cardiac
chamber pixels within an end-diastole (ED) (td) and an
end-systole (ES) (ts) frame, respectively (corresponding
to a correct tissue/chamber threshold thct), and DSc 5
nc (td)2nc (ts) represent the difference in the number of
chamber pixels between ED (where ventricular chambers
reach maximum volume) and ES (where ventricular
chambers reach minimum volume). Because thr˛½0;N�
represents an arbitrarily selected tissue/chamber gray-
level threshold, there are three possible cases.

In the first case, thr , thct; therefore,

DSr 5 nrðtdÞ2nrðtsÞ5
�
ncðtdÞ2nftðtdÞ

�
2
�
ncðtsÞ2nftðtsÞ

�
5 ðncðtdÞ2ncðtsÞÞ2

�
nftðtdÞ2nftðtsÞ

�
5DSc2

�
nftðtdÞ2nftðtsÞ

�
[7]

where nr (td) and nr (ts) are the total number of pixels iden-
tified as chamber pixels (i.e., pixels with intensity less
than threshold thr), and nft (td) and nft (ts) are the number
of chamber pixels falsely identified as tissue pixels in the
ED and ES frames, respectively. Because the number of
chamber pixels reaches its maximum in ED and its min-
imum in ES, it is expected that ðnftðtdÞ2nftðtsÞÞ.0 and,
therefore, DSr,DSc.

In the second case, thr . thct; therefore,

DSr 5 nrðtdÞ2nrðtsÞ5
�
ncðtdÞ1nfcðtdÞ

�
2
�
ncðtsÞ1nfcðtsÞ

�
5 ðncðtdÞ2ncðtsÞÞ1

�
nfcðtdÞ2nfcðtsÞ

�
5DSc1

�
nfcðtdÞ2nfcðtsÞ

�
[8]

where nfcðtdÞ and nfcðtdÞ are the number of tissue pixels
falsely identified as chamber pixels in the ED and ES
frames, respectively. Given that the number of tissue
pixels reaches its minimum in ED and its maximum in
ES, it is expected that ðnfcðtdÞ2nfcðtsÞÞ,0; and therefore,
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DSr,DSc. Consequently, in the third and last case, where
thr 5 thct, DSr is expected to attain its maximum value,
which is equal to DSc.

In this study, the number of pixels identified as
‘‘chamber’’ nr for a given threshold thr (pixel intensities
less than threshold thr) was derived over the full range
of possible threshold values (i.e., thr˛½0;N�, N 5 255)
utilising the cumulative image histogram

nrk 5 cHðrkÞ5
Xk

i 5 0

ni [9]

where rk is the kth gray level, and ni is the number of
pixels in the image having gray level i. Considering the
high noise level along with other artifacts (such as shad-
owing) present in cardiac ultrasound data, a more robust
measure of determining the variation in the number of
chamber pixels between ED and ES (compared with
DSr) was required. As a result, the standard deviation
(SD) of the population variations over consecutive frames
for each intensity level within the cumulative histogram
was utilised:

snðrkÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
t 5 1

ðnrkðtÞ2mÞ2
vuut : [10]

HereM is the total number of frames, andm is themean
nrk value over the B-mode frame sequence. Similar to DSr,
the SDwas expected to have amaximum value for thr equal
to the actual tissue/chamber threshold (thr 5 thct):

thct 5 k : max
k˛½0;N�

ðsnðrkÞÞ: [11]

To further enhance the robustness of the approach,
making it less susceptible to outliers, data from multiple
ED–ES sequences were utilised during the derivation and
allocation of the maximum SD value.
Fig. 2. Partition of scan in four non-overlapping subsectors
along the y-axis.
Enhance contrast between cardiac tissue and chamber
structures

Having identified threshold thct defining the inten-
sity levels corresponding to cardiac chamber and tissue,
a piecewise-linear transformation function (intensity
mapping) was employed to (i) suppress noise in cardiac
chambers; (ii) increase the displayed dynamic range in
cardiac tissue, enhancing the available tissue speckle
information; and (iii) enhance the contrast between car-
diac tissue and chamber. The shape of the transformation
T2 was controlled by threshold thct and was defined as

T2ðrkÞ5
�

rk=2; if k#thct
a � rk1b; if k.thct

[12]
where rk is the kth intensity level, a represents the slope of

the linear contrast stretching

�
a 5 11 thct

2�ðN2thctÞ

	
and b

represents its y-intercept

�
b52N N�thct

2�ðN2thctÞ

	
.

Subsectioning
From experience, the level of chamber noise as

well as the tissue/chamber contrast can vary consider-
ably across the imaged field of view. Such variations
can be attributed to the complex interaction of each
structure with the transmitted ultrasound signals, as
well as non-optimal TGC settings during data acquisi-
tion. To compensate for such potential variations, each
step was performed on a number of non-overlapping
subsectors along the y-axis of the cardiac scan
(Fig. 2). Each non-overlapping sector would act as a bi-
nary mask, with no information outside the sector being
used throughout the tissue/chamber threshold estimation
process. A prerequisite for each subsector was that it
contain both cardiac tissue and chamber structures so
that temporal histogram variations could generate a
representative tissue/chamber threshold. Identifying a
suitable number of subsectors was essential for the
effectiveness and efficiency of the DHBIM process.
The sectors were therefore empirically selected to
include different cardiac sections imaged in a paraster-
nal long-axis cardiac ultrasound scan. A linear interpo-
lation between the individual extracted thresholds was
employed across the boundaries of each sector to avoid
any intensity level discontinuities.



Fig. 3. (a) Example measurements of the interventricular septum thickness (IVSd), left ventricular internal dimension
(LVIDd) and left ventricular posterior wall (LVPWd) during end diastole (ED). (b) Example measurements of left ven-
tricular internal dimension (LVIDs) and left atrial dimension (LADs) during end systole (ES). All measurements were

made across the parasternal long-axis view of the heart.
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Data analysis: Noise suppression
To further enhance the image quality and diagnostic

value of the imaged cardiac structures, temporal com-
pounding was employed as a noise/speckle suppression
technique. Temporal compounding was implemented us-
ing a three-step process (Fig. 1b), including (i) temporal
alignment of the multicycle data to a reference cardiac
cycle, (ii) spatial alignment of the temporally aligned
frames and (iii) spatial compounding of the spatiotempo-
rally aligned data. Detailed information can be found in
Perperidis et al. (2015).

Step 1: Temporal alignment. The temporal align-
ment process was further divided into four steps.

Identification of ED and ES frames. All ED and ES
frames within a multicycle data set were identified utilising
Fig. 4. Mean absolute difference (MAD) in threshold estimation
for each of the four non-overlap
intensity information (a robust adaptation of normalised
cross-correlation [NXC]) from the B-mode image
sequence. Themethodwas based on the periodic ventricular
deformation during the cardiac cycle and required the
manual identification of only one ED (ED1) and one ES
(ES1) frame. The remaining end-diastolic frames within
the B-mode sequencewere automatically identified demon-
strating maximum similarity with ED1 and minimum sim-
ilarity to ES1. Similarly, the remaining end-systolic frames
were automatically identified demonstrating maximum
similarity with ES1 and minimum similarity to ED1.

Selection of a representative reference cardiac
cycle. For each cardiac cycle, a weighting factor was
defined comprising the difference (in number of frames)
of the current diastole and systole lengths from the
mean diastole and systole lengths over the whole
for increasing number of cardiac cycles. Separate curves
ping regions are provided.



Table 2. Range of total number of underutilised intensity
levels within the 32 cardiac ultrasound data sets

Underutilised level

Minimum 0
Maximum 146
Mean 28
Standard deviation 34
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multicycle data set. The cardiac cycle with the lowest
weighting factor was considered the most representative
within the data set and was therefore selected as the refer-
ence cardiac cycle for all remaining cardiac cycles to be
temporally and spatially registered to.

Identification of additional control points. To pro-
vide a reliable representation of the seven independent
stages of a cardiac cycle (Berne et al. 2004; Bray et al.
1999; Guyton 1991; Guyton and Hall 1997), two
additional frames were introduced at regular temporal
intervals in each of the contraction and relaxation
phases of the reference cycle (i.e., 7 points in total).
Image similarity (NXC) was then employed to identify
equivalent frames within the remaining cardiac cycles.
These frames would act as additional control points
during the interpolation process, generating an
alignment independent of the nature of the temporal
variations throughout the multicycle data.

Interpolation process. The final stage of the tempo-
ral alignment between two frame sequences established a
correspondence between frames in the reference and the
aligned cardiac cycles. Both global and local temporal
variations were addressed by applying a 1-D interpolating
cubic B-spline curve (Barsky 1982; Caglar et al. 2006)
between the reference and all the remaining cardiac
cycles within a multicycle frame sequence.

Step 2: Spatial alignment. A rigid body transforma-
tion was found to correct for most of the spatial misalign-
ments observed throughout the multicycle data sets
(mostly caused by respiratory motion). More precisely,
Nelder andMead (1965) simplex approach was employed
to derive the optimal transformation that maximised the
similarity (NXC) between the registered images.

Step 3: Spatial compounding. Each frame within the
reference cardiac cycle was replaced by a compound
frame generated by averaging the 12 most similar spatio-
temporally aligned frames, one from each cardiac cycle.
Intensity averaging was employed as a well-established
and effective compounding method for noise/speckle
suppression in ultrasound data sets. Dissimilar frames
(potentially caused by spatiotemporal misalignments)
were automatically identified, employing a threshold on
Table 1. Numbers and percentages of 32 cardiac ultrasound data
intensity r

Sector No. of data sets with thl.0 No. of data sets w

1 14 (43.8%) 7 (21.9
2 22 (68.8%) 6 (18.8
3 9 (28.1%) 19 (59.4
4 5 (15.6%) 11 (34.4
Total 50 (39.1%) 43 (33.6
their image similarity with the reference frame, and dis-
carded before spatial compounding to minimise the tis-
sue/chamber boundary blurring being introduced on the
compound images.
Clinical assessment
An experienced echocardiographer assessed the effect

of proposed image enhancement approaches on the diag-
nostic value of cardiac ultrasound images. Quantitative
assessment was achieved by performing routine clinical
measurements on ED and ES frames from both the original
unprocessed and the processed data. More precisely, a
sequence of ED frames was presented, and (i) interventric-
ular septal thickness (IVSd), (ii) left ventricular internal
dimension (LVIDd) and (iii) left ventricular posterior wall
(LVPWd) measurements were performed on each frame
(Fig. 3). Similarly, a sequence of ES frames was presented,
and (i) left ventricular internal dimension (LVIDs) and (ii)
left atrium dimension (LADs) measurements were per-
formed on each frame (Fig. 3). The selected measurements
are widely used during routine clinical cardiac ultrasound
examinations and provide valuable information on the state
and function of the examined heart. More information is
available in Feigenbaum et al. (2005). Each frame sequence
contained one original and three enhanced frames (com-
pounded, contrast enhanced and combination) for each of
the data sets (128 frames in total). The order of the frames
was randomised to ensure no bias in the results. All clinical
measurements were performed twice, according to the stan-
dards adopted by the British Society of Echocardiography
(Feigenbaum et al. 2005; Fuster et al. 2008; Henry et al.
1980; Wharton et al. 2012), to enable the examination of
measurement repeatability and agreement among the
techniques (Bland and Altman 1986).
sets exhibiting underutilised gray levels within the image
ange

ith thu,255 No. of data sets with underutilised intensities

%) 18 (56.3%)
%) 26 (81.3%)
%) 25 (78.1%)
%) 13 (40.6%)
%) 82 (64.1%)



Table 3. Comparison of the effects of individual and integrated methods on image quality metrics

Temporally compounded Contrast enhanced
Contrast enhanced and
temporally compounded

Tissue SNR 87.1% (63.0%)* 237.0% (15.9%) 14.1% (38.3%)
Chamber SNR 143.1% (75.0%) 226.8% (17.4%) 78.2% (59.7%)
Contrast 23.1% (16.4%) 73.8% (48.1%) 72.1% (56.4%)
SDNR 128.6% (85.1%) 120.9% (52.3%) 401.4% (182.3%)

SDNR 5 signal difference-to-noise ratio; SNR 5 signal-to-noise ratio.
* Mean (standard deviation).
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RESULTS

To ensure that an accurate and robust tissue/chamber
threshold was derived, images from multiple cardiac cy-
cles were utilised. More precisely, the mean absolute dif-
ference (MAD) of the derived threshold thct for
increasing number cardiac cycles was estimated as

MADðtÞ5 1

K

XK
k 5 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
thkctðtÞ2thkctðt21Þ�2

q
[13]

withK5 32 being the number of examined data sets and t
being the number of cardiac cycles employed in the
threshold thct estimation of the kth data set. Figure 4 illus-
trates the MAD for increasing number of cardiac cycles
for each of the four non-overlapping subsectors. In all
subsectors, the threshold estimation converges (MAD
,0.5) within eight cardiac cycles. Sector 1 at the top of
the field of view exhibits (because of its small size) the
most variate behavior in the threshold estimation over se-
ries of eight or more cardiac cycles. Twelve cardiac
Fig. 5. Binary masks overlaid on top of B-mode end-diastole f
value.
cycles have previously been reported to provide a good
trade-off between image enhancement and acquisition
and processing requirements in temporal compounding
(Perperidis et al. 2015). Although fewer cardiac cycles
(e.g., 8 cycles) would suffice when 12 cardiac cycles
cannot be obtained, images from 12 cardiac cycles were
used in the estimation of the results presented in the
remainder of this study.

Each step of the algorithm was performed on a num-
ber of non-overlapping subsectors along the y-axis of
each cardiac scan. A prerequisite for each subsector
was that it contain both cardiac tissue and chamber struc-
tures so that temporal histogram variations could
generate a representative tissue/chamber threshold. After
thorough examination, it was empirically estimated that
four subsectors (Fig. 2) were the most computationally
efficient option (smallest number of subsectors) that pro-
vided a fair representation of the (i) near-field noise, (ii)
right ventricle (RV) chamber, (iii) left ventricle (LV)
chamber and (iv) left atrium (LA) chamber.
rames of (a,b) low, (c,d) average and (e) high diagnostic



Fig. 6. Images characterised as of very low diagnostic value. (a) Original, (b) compounded, (c) contrast-enhanced and (d)
combined end-diastole frames.
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Underutilised intensities
Table 1 enumerates the data sets identified as having

underutilised gray levels within the image intensity
range. The threshold identification algorithm was inde-
pendently executed in four non-overlapping subsectors
of each cardiac scan. Table 2 provides the range of the to-
tal number of underutilised intensity levels within the 32
cardiac ultrasound data sets.

Effect on SNR, contrast and SDNR
Two 113 11-pixel regions of interest (ROIs) corre-

sponding to the IVS and the RV chamber were manually
defined on each of the 32 patient data sets. The pixel in-
tensity values within each ROI were used to estimate the
tissue and chamber signal-to-noise ratio ðSNR5m=sÞ,
where m and s refer to the mean and standard deviation
of the corresponding ROI intensity values. In a similar

manner, the tissue/chamber contrast

�
C5 jmT2mC j

ðmT1mCÞ=2

	

and signal difference-to-noise ratio

�
SDNR5 jmT2mC j

sC

	
,

also referred to as the detectability index, were derived,
where mT and mc corresponded to the mean tissue and
chamber intensity levels, respectively, and sc corresponds
to the chamber standard deviation. Table 3 summarises
and provides a direct comparison of the mean effects of
the individual and integrated image enhancement
methods on all four image quality metrics.

Visual effect
Figure 5 illustrates characteristic examples of the bi-

nary masks distinguishing between cardiac tissue and
chambers over a range of image qualities. Figures 6 to
10 display five example ED frames before and after
three image enhancement methods (compounding,
contrast enhancement, combination) are applied to their
corresponding multicycle data sets. Data sets covering a
range of image and diagnostic qualities (2 low, 2 average
and 1 high) were selected to best illustrate the effect of
each enhancement approach on cardiac ultrasound data.

Effect on diagnostic value
Bland–Altman analysis (Bland and Altman 1986)

was employed for the quantitative assessment of the



Fig. 7. Images characterised as of low diagnostic value. (a) Original, (b) compounded, (c) contrast-enhanced and (d) com-
bined end-diastole frames.
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effect of each enhancement approach on routine clinical
measurements. The Bland–Altman analysis derives the
coefficient of repeatability (CR) denoting (i) the level
of repeatability of clinical measurements performed us-
ing a single approach, and (ii) the level of agreement be-
tween corresponding measurements performed using
different approaches. In all cases, the lower the CR, the
higher are the measurement repeatability and agreement.
Moreover, the mean difference indicates the presence of
any bias in the corresponding measurements. Table 4
summarises the bias and repeatability level coefficients
derived from the individual plots for each clinical mea-
surement. Similarly, Table 5 summarises the bias and
agreement of each clinical measurement when performed
on enhanced images, compared with measurements on
the original, unprocessed data.
DISCUSSION

In this study, tissue/chamber contrast enhancement
was applied to the original B-mode data before spatial
compounding. Inverting the process is expected to
generate a similar effect on cardiac ultrasound data. How-
ever, spatial compounding can sometimes introduce minor
tissue/chamber boundary blurring, which in turn can have
a limiting effect on the derivation of an effective threshold.
Furthermore, the effectiveness of compounding is heavily
based on the accurate alignment of the multicycle data.
Suppressing chamber noise and enhancing tissue/chamber
contrast before spatial compounding can therefore in-
crease the accuracy of the spatiotemporal data registration,
resulting in more effective image enhancement.
Identify underutilised intensities
Table 1 indicates that 64.1% of the data sets included

underutilised intensity levels spread fairly evenly in the
lower (33.6%) and higher (39.1%) ends of the [0–255]
image intensity range. On average, 11% (28 levels) and
up to 57% (149 levels) of the available intensity range
were estimated to be underutilised. A substantial 72%
of the cases demonstrating thl.0 occurred on the top
two subsectors of the field of view, whereas 70% of the
cases demonstrating tht,255 occurred on the bottom
two subsectors. This observation suggests that signals at
low-depth regions tend to be overamplified, whereas sig-
nals at larger depths are underamplified. This behaviour



Fig. 8. Images characterised as of average diagnostic value. (a) Original, (b) compounded, (c) contrast-enhanced and (d)
combined end-diastole frames.
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can be partially attributed to non-optimal TGC manually
set during data acquisition. Identifying and compensating
for such underutilised intensity levels can provide a par-
tial, indirect solution to the problem. Moreover, it pro-
vides a simple process increasing the dynamic range in
the imaged structure for a more robust subsequent tis-
sue/chamber identification.
Effect on SNR, contrast and SDNR
As outlined in Table 3, temporal compounding

suppressed speckle and noise, increasing the average tissue
(87.1%) and chamber (143.1%) SNR, as well as the asso-
ciated tissue/chamber detectability (128.6%). On the other
hand, temporal compounding had a negligible effect on tis-
sue/chamber contrast. The proposed DHBIM enabled a
large mean increase in contrast (73.8%) and detectability
(120.9%) between cardiac tissue and chambers. The
drop observed in the estimated SNRs should not neces-
sarily be associated with increase in the noise within the
signal. The tissue SNR increase is mostly generated by
enhancing the underlying speckle patterns, providing valu-
able (e.g., in speckle tracking applications) information on
the imaged structure and relevant motion patterns. On the
contrary, the chamber SNR is mostly noise, and its
suppression is always desirable. However, spurious
high-intensity noise in cardiac chambers can sometimes
be misclassified (Fig. 5a,b,e) and enhanced as tissue, but.
as illustrated in Figures 6 to 10, without any noticeable
detrimental effect in the processed images. Simple
morphologic filtering in the binary mask before the
intensity mapping can also partially compensate for such
spurious pixels. Finally, the integrated approach,
combining contrast enhancement and temporal
compounding, provides the only method improving all
four image quality metrics, yielding a large mean
increase in chamber SNR (78.2%) and tissue/chamber
contrast (72.1%), as well as an impressive mean increase
of 401.4% in tissue/chamber detectability (SDNR).
Visual effect
Figures 6 to 10 provide characteristic examples of

the effects of each enhancement approach on clinical
data (12 consecutive cardiac cycles) over a range of
image quality and diagnostic value. Visual examination
of the 32 data sets suggests that temporal compounding,
as suggested by the relevant SNR increases (Table 3),
can significantly reduce tissue speckle as well as noise
in cardiac tissue and chambers. Furthermore, it can also
enhance structures whose boundaries are hard to delin-
eate because of high levels of noise or shadowing, such



Fig. 9. Images characterised as of average diagnostic value. (a) Original, (b) compounded, (c) contrast-enhanced and (d)
combined end-diastole frames.
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as the RVand IVS (Figs. 8 and 10), the LVPW (Fig. 7) and
the aortic valve in (Fig. 8). In Figure 6 is an example of
very limited diagnostic value; although the quality of
the data set remained low, structures such as the RV
chamber and the LVPWwere marginally enhanced, mak-
ing them easier to delineate. On the other hand, temporal
compounding has no noteworthy effect on tissue/chamber
contrast and may introduce modest tissue/chamber
boundary blurring, mostly around rapidly moving struc-
tures, such as valves (mitral valve in Figs. 8–10).

Visual examination of 32 data sets indicated that
DHBIM can (i) generate a representative binary cardiac
tissue mask (Fig. 5), (ii) suppress the cardiac chamber
noise levels and (iii) increase the delineation of cardiac tis-
sue. In general, the lower the image corruption levels are,
the more representative the binary mask is. However, even
in highly corrupted cases, the underlying tissue structure is
fairly delineated (Figs. 5a and 6). Noticeable noise
suppression occurs in the top half of the RV chamber,
typically corrupted by near-field static noise (Figs. 6–10).
Applying the algorithm in four non-overlapping sectors
partially compensated for the variations in mean intensity
and noise level among cardiac structures. A limitation of
DHBIM occurs when high levels of noise, along with arti-
facts such as shadowing,mask out certain cardiac structures
(IVS in Fig. 8). In such cases, the algorithm canmisclassify
and suppress the relevant pixel intensities of the corrupted
tissue. Nevertheless, DHBIM has not been observed to sup-
press vital clinical information that is present in the original
data set.

As illustrated in Figures 6 to 10, the integrated image
enhancement method benefits from the advantages,
whereas it compensates for the limitations of each
individual method. In the first instance, the chamber
noise is suppressed and the tissue/chamber contrast and
detectability are enhanced, making cardiac structures
clearly distinguishable. Likewise, tissue speckle as well
as acoustic noise is further suppressed through spatial
averaging. Averaging of spatiotemporally aligned
frames also compensates for tissue structures that are
heavily corrupted by noise or shadowing, which are
otherwise misclassified and suppressed as chamber
noise (aortic valve in Fig. 7, IVS in Fig. 8) by DHBIM.
Furthermore, suppressing chamber noise and enhancing
tissue/chamber contrast before image alignment result
in a moderate reduction to the boundary blurring intro-
duced during spatial compounding (mitral valve in
Figs. 8 and 10). Nevertheless, low blurring levels are
still observed, mostly around fast moving structures,
such as valves, with some blurring identified along



Fig. 10. Images characterised as of high diagnostic value. (a) Original, (b) compounded, (c) contrast-enhanced and (d)
combined end-diastole frames.
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chamber walls. The blurring effect is partially due to
quantification errors as a result of the limited
acquisition frame rate. Cardiac ultrasound scanners can
acquire B-mode sequences at frame rates $100 Hz.
Such an increase in temporal resolution (currently
25 Hz) is expected to further decrease the level of the
tissue/chamber boundary blurring introduced.

Effect on diagnostic value
The repeatability and agreement plots derived for

each of the five clinical measurements revealed (i) no
Table 4. Comparison of effects of the individual and integrate
repeatabi

Original Compounded

Bias Repeatability Bias Repeatabili

IVSd 1.12 3.31 0.54 2.93
LVIDd 21.06 7.06 20.25 4.73
LVPWd 0.35 2.99 1.11 2.49
LADs 20.31 4.17 0.27 5.64
LVIDs 2.82 8.75 1.67 6.23
Combined 0.52 6.22 0.64 4.80

IVSd5 end-diastole interventricular septal thickness; LVIDd5 end-diastole
ular posterior wall; LADs 5 end-systole left atrium dimension; LVIDs 5 end
major outliers and (ii) no substantial or systematic bias
within each method or among the original and processed
data. Furthermore, as suggested by Tables 4 and 5, the
measurement agreement of each enhancement approach
with the original measurement is on the same scale as
the relevant measurement repeatability levels.
Consequently, the results indicate a strong potential for
the original and processed data to be interchangeable
when performing cardiac measurements, and act as an
additional aid in the diagnostic process, especially in
challenging cases with corrupted imaged structures. In
d image enhancement methods on clinical measurement
lity

Contrast enhanced Integrated

ty Bias Repeatability Bias Repeatability

20.30 3.49 0.27 2.87
0.47 6.12 21.38 6.48
1.01 4.97 0.69 4.32
0.11 4.68 20.06 3.94

21.06 5.22 0.47 3.77
0.07 5.16 20.02 4.71

left ventricular internal dimension; LVPWd5 end-diastole left ventric-
-systole left ventricular internal dimension.



Table 5. Agreement of clinical measurements performed on processed images compared with measurements on original data

Compounded Contrast enhanced Integrated

Bias Agreement Bias Agreement Bias Agreement

IVSd 20.36 3.63 21.18 2.98 21.00 3.62
LVIDd 0.19 7.17 0.60 5.73 20.02 7.24
LVPWd 20.24 3.37 20.72 3.24 20.45 3.51
LADs 0.48 3.94 21.52 3.12 21.18 2.72
LVIDs 20.57 5.13 21.28 5.03 21.81 6.16
Combined 20.08 4.92 20.81 4.43 20.87 5.09

IVSd5 end-diastole interventricular septal thickness; LVIDd5 end-diastole left ventricular internal dimension; LVPWd5 end-diastole left ventric-
ular posterior wall; LADs 5 end-systole left atrium dimension; LVIDs 5 end-systole left ventricular internal dimension.
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particular, all three approaches improved the repeatability
of the clinical measurements, with the integrated approach
achieving the highest overall improvement of 24% (and
highest improvement in three of the five measurements).
On the other hand, DHBIM contrast enhancement
achieved the lowest overall improvement with a
reduction of the repeatability in two of the five
measurements (LVPW and LAD). This reduction is
potentially a result of the inability of DHBIM to
compensate for heavily corrupted tissue structures that
are therefore misclassified and suppressed as chamber
noise. However, as suggested by their visual effect on
cardiac images and indicated by the associated increase
in LVPW and LAD measurement repeatability (13% and
16% respectively), the integrated approach can
compensate for this limitation. Clinical measurement
repeatability is expected to improve as the familiarity of
the echocardiographer with the processed images
increases. Given no observed degradation of high-quality
images, the proposed integrated method has the potential
to replace or act as an adjunct to existing image processing
and display methods in ultrasonic scanners.
Limitations and future work
There are a number of limitations that, although

beyond the scope of this work, will need to be addressed
in future studies. In particular, the proposed algorithms
can be further improved by making temporal compound-
ing a fully automated approach. Currently, a single pair of
ED and ES frames need to be manually identified by the
clinician. The remaining ED and ES frames are then auto-
matically identified using image similarity measures.
Additional information, such as ECG data, LV shape/
size parameters and tissue movement direction, can be
incorporated to automatically classify all ED and ES
frames. Furthermore, the current implementations of the
proposed algorithms were aimed at the off-line process-
ing and enhancement of cardiac ultrasound images. How-
ever, the real-time aspect of cardiac ultrasound
constitutes a major advantage over other imaging modal-
ities. Implementing the algorithms for the real-time or
near real-time enhancement of cardiac ultrasound images
can be of great benefit to the diagnostic process. Finally,
the proposed algorithms have been thoroughly evaluated,
on both image quality metrics as well as routine clinical
measurements. However, a more extensive clinical
assessment of the algorithms, including (i) direct compar-
ison (on the same data) with other state-of-the-art
enhancement approaches, (ii) on a wider range of imag-
ing views (in addition to PLAX), and (iii) with a larger
number of assessing expert echocardiographers will be
of great value. Any subsequent study needs to ensure
that images are acquired using a state-of-the-art device
with optimal acquisition parameters such as axial, lateral
and temporal resolution.
CONCLUSIONS

This study introduced DHBIM, a novel approach
that employs variations of the cumulative histograms
over time to estimate an intensity threshold between car-
diac tissue and chambers and subsequently enhance their
respective contrast. DHBIM reduces noise in cardiac
chambers and improves the tissue/chamber contrast and
detectability levels considerably. However, DHBIM
does not compensate for tissue speckle and other com-
mon cardiac ultrasound artefacts such as shadowing and
reverberations. Furthermore, there are cases in which
heavily corrupted cardiac tissue structures are misclassi-
fied and suppressed as noise. Combining DHBIM with a
temporal compounding to an integrated methodology can
compensate for many of their individual limitations
generating low-noise and high-contrast images with
well-delineated cardiac structures. Assessment of the ef-
fect of each of the approaches on the image quality and
diagnostic value of cardiac ultrasound data verified that
although all three approaches can enhance the processed
images, the integrated approach provided the best overall
improvement.
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