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Abstract 

Background & Aims: There is growing interest in the use of bone marrow cells to treat liver fibrosis, 

however little is known about their anti-fibrotic efficacy or the identity of their effector cell(s). 

Sphingosine-1-phosphate (S1P) mediates egress of immune cells from the lymphoid organs into the 

lymphatic vessels; we investigated its role in the response of hematopoietic stem cells (HSC) to liver 

fibrosis in mice.  

Methods: Purified (c-kit+/sca1+/lin-) hematopoietic stem cells (HSC) were repeatedly infused into 

mice undergoing fibrotic liver injury. Chronic liver injury was induced in BoyJ mice by injection of 

carbon tetrachloride (CCl4) or placement on methionine/choline deficient (MCD) diets. Some mice 

were irradiated and given transplants of bone marrow cells from C57BL6 mice, with or without the 

S1P antagonist FTY720; we then studied HSC mobilization and localization. Migration of HSC cell 

lines was quantified in trans-well assays. Levels of S1P in liver, bone marrow and lymph fluid were 

measured using an ELISA. Liver tissues were collected and analyzed by immunohistochemical, 

quantitative PCR and sphingosine kinase activity assays. We performed quantitative PCR analyses of 

expression of sphingosine kinase 1 and 2 (SphK), sphingosine-1-phosphate lyase 1 (SGPL1), and 

sphingosine-1-phosphate phosphatase 1 (SGPP1) in normal human liver and cirrhotic liver from 

patients with alcohol related liver disease (n=6).  

Results: Infusions of HSC into mice with liver injury reduced liver scarring based on picrosirius red 

staining (49.7% reduction in mice given HSC vs control mice; P<.001), and hepatic hydroxyproline 

content (328 mg/g in mice given HSC vs 428 mg/g in control mice; P<.01). HSC infusion also reduced 

hepatic expression of alpha smooth muscle actin (0.19±0.007-fold compared with controls; P<.0001) 

and collagen type I alpha 1 chain (0.29±0.17-fold compared with controls; P<.0001). These anti-

fibrotic effects were maintained with infusion of lymphoid progenitors that lack myeloid potential 

and associated with increased numbers of recipient neutrophils and macrophages in liver. In studies 

of HSC cell lines, we found HSC to recruit monocytes, and this process to require C-C motif 
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chemokine receptor 2. In fibrotic liver tissue from mice and patients hepatic S1P levels increased due 

to elevated hepatic sphingosine kinase-1 expression, that contributed to a reduced liver:lymph S1P 

gradient and limited HSC egress from the liver. Mice given the S1P antagonist (FTY720) with HSC had 

increased hepatic retention of HSC (1697±247 cells in mice given FTY720 vs 982±110 cells in controls; 

P<.05) and further reductions in fibrosis.  

Conclusions: In studies of mice with chronic liver injury, we demonstrated the anti-fibrotic effects of 

repeated infusions of purified HSC. We found that HSC promote recruitment of endogenous 

macrophages and neutrophils. Strategies to reduce SIP signaling and increase retention of HSC in the 

liver could increase their anti-fibrotic activities and developed for treatment of patients with liver 

fibrosis. 

 

KEY WORDS: mouse model, CCR2, sphingolipid, immune cell localization  
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Background and Aims 

The incidence of chronic liver disease is rising worldwide
1
 and is characterised by the progression of 

liver injury from hepatic fibrosis to cirrhosis, resulting in death from liver failure, complications of 

portal hypertension or hepatocellular carcinoma
2
.  At present liver transplantation remains the only 

curative treatment for end stage liver disease but is limited by availability of donor organs and the 

risks of lifelong immunosuppression
3-5

. The development and resolution of hepatic fibrosis is 

recognised as a bidirectional process, with resolution of fibrosis mediated through degradation of 

hepatic collagen
6
 and apoptosis of activated hepatic myofibroblasts

7
. 

Initial observations that bone marrow cells may contribute to hepatic repair and regeneration
8-10

 

were followed by studies in animal models of chronic liver injury demonstrating variable therapeutic 

effects
11-14

.  Despite these mixed outcomes multiple clinical studies of BM-derived stem cell therapy 

have already been performed
15-17

. The design of these studies has not permitted any meaningful 

conclusions and larger randomised controlled trials are underway.  

The heterogeneous nature of the bone marrow cell populations studied to date has limited our 

understanding of their beneficial effects and prevented elucidation of potential mechanisms.  

Hematopoietic stem cells (HSC) reside with the bone marrow niche, provide continual renewal and 

replacement of all blood cell lineages
18

 and can be routinely isolated using cell surface markers
19

. 

The continual homeostatic recirculation of bone marrow stem cells has recently been described and 

the bioactive sphingolipid Sphingosine 1-phosphate (S1P) identified as a key regulator of this 

process
20

.   An S1P concentration gradient between body compartments is established by varying 

tissue distribution of sphingosine kinase  (SPHK1/2) and sphingosine-1-phosphate lyase (SGPL)/ 

sphingosine-1-phosphate phosphatase (SGPP)
21, 22

 and this gradient regulates the egress of HSC from 

peripheral tissue into draining lymphatics. Binding of FTY720, a functional antagonist , to S1P 

receptors results in internalisation and ubiquitin-dependent degradation  without downstream 
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signalling, thus rendering cells unresponsive to S1P
23

. This blocks egress of HSC resulting in an 

accumulation of HSC within peripheral tissues
20

.   

We studied the effect of chronic liver injury on HSC mobilisation and recruitment to the liver and 

demonstrated reduced hepatic fibrosis after repeated therapeutic administration of a purified 

population of HSC. Furthermore, we observed changes in S1P expression in chronic liver injury and 

demonstrated prolonged hepatic retention of HSC after administration of FTY720 which resulted in a 

further significant reduction in liver fibrosis when administered in conjunction with KSL cell 

injections. 
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Methods 

Murine Models of Liver Injury 

Mice were housed in a temperature controlled sterile animal facility with 12 hour light/dark cycles 

and free access to food and water. All experiments were conducted in accordance with the 

University of Birmingham ethics policy and the UK Animals (Scientific Procedures) Act 1986 (Project 

Licence PPL 40/3201). C57/BL6 mice were obtained from Charles River Laboratories and BoyJ mice 

from a colony maintained at the Biomedical Services Unit of the University of Birmingham.  To 

induce chronic liver injury carbon tetrachloride (CCl4, Sigma, 1mg/kg diluted 1:4 in mineral oil) was 

injected twice weekly for 9 weeks, with control mice receiving mineral oil vehicle only.  In separate 

experiments mice were fed either standard chow or a methionine choline deficient (MCD) diet (MP 

Biomedical) for 6 weeks. 

Experimental Protocols 

6-8 week old female BoyJ mice received twice weekly intraperitoneal injection of CCl4 (1mg/kg in 

mineral oil) for 6 weeks then randomly allocated to receive either purified cells isolated from 6-8 

week old male C57BL6 mice as described, or no treatment.  Cell injections were administered on the 

first day of weeks 7,8 and 9 of liver injury and mice were sacrificed one week following the final cell 

injection and 72 hours after the final CCl4 injection.  In some experiments FTY720 (Cayman 

Chemicals, 1mg/kg in PBS + 0.1 % DMSO) or vehicle control was administered by intraperitoneal 

injection three times per week from week 6 until sacrifice. 

Bone Marrow Transplantation 

6 week old C57/BL6 mice received lethal irradiation (9Gy in 2 divided doses) followed by 

transplantation via tail vein injection of 1x10
8
 whole bone marrow cells isolated from 6 week old 

BoyJ mice. After four weeks, mice were randomly allocated to receive either twice weekly injection 

of CCl4 (1 mg/kg) or mineral oil vehicle, for eight weeks followed by sacrifice. 
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Immunohistochemistry 

Picrosirius red staining was performed using 0.1% Direct Red 80 (Sigma) in saturated picric acid 

according to standard protocols. Quantification of Picrosirius red and αSMA staining was performed 

by threshold analysis of 10 non overlapping randomly selected fields of view per slide at x20 

magnification using ImageJ software (NIH) and expressed as % positive staining of total area.  F4/80 

and Ly6G staining was quantified by counting individual positive cells in 6 non overlapping randomly 

selected fields of view per slide at x20 and x100 magnification and expressed as cells per field of 

view. 

S1P and SphK Quantification 

SphK activity was determined using the Sphingosine Kinase Activity Assay (K-3500, Echelon) 

according to the manufacturer’s instructions, a standard curve was created and results normalised 

to protein content of the sample and time (pmol S1P/mg protein/min). S1P concentrations were 

measured using the Sphingosine 1-phosphate ELISA kit (K-1900, Echelon) according to the 

manufacturer’s instructions, S1P concentrations in serum and lymph fluid were expressed as molar 

quantities and in liver and bone marrow were normalised to the protein content of the sample 

(pmol S1P / mg protein). 

Chemotaxis Assay 

600µl Stem Pro 34 serum free media alone or containing the relevant concentration of S1P (Cayman 

chemicals) was placed in individual wells of a 12 well plate (Corning) and 6.5mm transwell inserts 

(5µm pore diameter) placed in each well. 100µl of cell suspension (1x10
6
 cells/ml) was added to the 

insert and incubated for 3 hours. Cell migration was assessed by quantification of the number of 

cells in each lower using flow cytometry as described; migration was expressed as a percentage of 

the input cells in the lower well.  S1P and FTY702-P were prepared by dissolving in 95%DMSO/5% 1N 
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HCl (Sigma) and diluted for use in PBS + 3% fatty acid free BSA (Sigma). W146 (Sigma) was dissolved 

in methanol containing 0.05% acetic acid and dilute for use in cell culture media. 

Cell Culture 

Studies of HSC trafficking have been limited by difficulties in isolating sufficient number of cells, in 

some experiments in this study we utilised an immortalised HSC line (HPC-7) which express common 

murine HSC markers and transcription factors
24

, and have been used in previous studies of HSC 

recruitment
25

. HPC-7 cells were cultured in StemPro Serum Free Media 34 (Invitrogen) 

supplemented with penicillin, streptomycin, glutamine and 100ng/ml recombinant murine Stem Cell 

Factor (Invitrogen).  For colony forming unit assays cells were added to Methocult GF media(Stem 

Cell Technologies) and incubated for 10 days, total number of myeloid colonies per assay were 

determined by counting under low power magnification. 

Statistics 

Statistical analyses were performed using GraphPad Prism version 5.0. Differences between groups 

were analysed using either the two tailed unpaired student’s t-test or multiple group comparisons 

with one way ANOVA with Bonferroni post-test correction unless otherwise stated.  A result was 

considered significant when p<0.05. 
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Results 

Bone marrow derived HSC are mobilised and recruited to the liver during chronic liver injury  

The effect of liver injury on the mobilisation and recruitment of BM-derived HSC was investigated in 

the model of carbon tetrachloride (CCl4) induced liver injury. Higher numbers of HSC (termed KSL; c-

kit
+
, sca-1

+
 and lineage

neg
), were isolated from the peripheral blood (0.397±0.05 vs 0.065±0.07 KSL 

cells/µl blood, p<0.001) and liver (1163±173 vs 258.5±22 KSL cells/liver, p<0.01) of mice with CCl4 

injury compared with control mice (Figure 1B). There were also marked increases in colony forming 

unit potential from cells isolated from liver and peripheral blood, but not BM, in CCl4 injury (Figure 

1C).  Similar results were seen in the setting of methionine choline deficient (MCD) diet induced liver 

injury. Liver resident populations of HSC have been described (Taniguchi et al 1996) and further 

studies to confirm the bone marrow origin of the isolated KSL cells were performed. Bone marrow 

chimerism was established (Supplementary Figure 1) and donor BM-derived HSC were identified as 

CD45.2
+
 KSL. Significant increases in CD45.2

+
 KSL cells were observed within the liver (788.2±59 vs 

292.6±45, p<0.01) and peripheral blood (0.333±0.06 vs 0.077±0.01, p<0.01) of CCl4-injured mice 

(Figure 1D), whilst BM populations remained constant.  Given the mobilisation and hepatic 

recruitment of HSC in liver injury the potential therapeutic benefits of administering purified HSC 

was investigated. 

 

Infused KSL cells reduce fibrosis in the CCl4 model of liver injury  

KSL HSC were isolated from donor bone marrow and purity of >96% confirmed in all experiments 

(Supplementary Figure 2).  Repeated injections of KSL cells (Figure 2A) resulted in a 49.7% reduction 

in hepatic fibrosis determined by Picrosirius red (PSR) quantification (2.21±0.12 vs 4.38±0.27 % 

staining, p<0.0001)(Figure 2B), and by reduced hepatic hydroxyproline content (328.5±30.4 vs 

428.4±31.9 µg/g liver, p<0.05) (Figure 2C). Resolution of fibrosis is dependent upon apoptosis of 
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alpha smooth muscle actin (αSMA
+
) myofibroblasts within the liver, and αSMA staining was 65.6% 

lower following KSL cell injections (2.42±0.2 vs 7.05±0.33, p<0.0001)(Figure 2D) and associated with 

downregulation of hepatic αSMA (0.19±0.007 fold vs control, p<0.0001) and col1a1 (0.29±0.17 fold 

vs control, p<0.0001) gene expression (Figure 2E). Serum albumin was higher in treated mice than 

untreated controls (4.06±0.37 vs 3.14±0.39, p<0.01)(Figure 2F). There were also increases in hepatic 

oval cell numbers (Figure 2G).  

 

Anti-fibrotic effect of KSL cells is associated with enhancement of endogenous repair mechanisms 

The fate of injected cells was investigated, but donor derived CD45.2
+
 cells could not be detected in 

significant numbers within the liver 7 days after injection. Quantification of cell populations within 

the liver revealed a 219% increase in neutrophils (12.4±2.7 vs 5.646±2.51 Ly6G
+
 cells per fov, 

p<0.0001) and a 177% in macrophages (44.2±11.8 vs 24.99±7.5 F4/80
+
 cells per fov, p<0.0001) 

following KSL injections (Figure 3A/B). The absence of CD45.2 staining indicated that these increases 

were due to rises in endogenous cell populations rather than differentiation of injected KSL. Whilst, 

there were increases in MMP9 and 13 expressing cells (Figure 3C), and a reduction in the Arg-1/iNos 

ratio (Figure 3C), in the livers of mice receiving KSL infusions, there were no differences in 

macrophage sub-sets within the liver (Figure 3E) or blood (Supplementary Figure 3A-C), after KSL cell 

infusion. Ratio of Ly-6C
hi

/Ly-6C
lo

 (M1-like to M2-like) macrophages was not different between 

control (0.23) and KSL groups (0.12). Murine monocytes migrated towards HPC-7 cells in a dose-

dependent fashion and at similar levels to CCL2 (Figure 3F), a classical monocyte chemoattractant. 

This migration was chemokine dependent as demonstrated by blockade seen after pertussis toxin 

(PTX) administration (Figure 3G). Notably the majority of this reduction was achieved when a CCR2-

blocking antibody was used (Figure 3G).  
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Anti-fibrotic effect of KSL cells occurs irrespective of their myeloid differentiation potential 

To explicitly establish whether anti-fibrotic effects of KSL were mediated through differentiation to 

macrophages, the effect of injecting committed myeloid or lymphoid progenitor cells was 

determined (Figure 4A). Common myeloid progenitors (CMP) established myeloid colonies whereas  

common lymphoid progenitors (CLP) did not (Figure 4B).  Repeated injections of either progenitor 

population resulted in reduced hepatic fibrosis (Figures 4C/D), including a reduction in PSR staining 

(CMP 1.94±0.29, CLP 2.27±0.13, vs Control 4.38±0.27 % staining, p<0.01 both vs control)(Figure 4C) 

and a reduction in αSMA staining (CMP 2.79±0.25, CLP 3.69±0.33, vs control 7.05±0.39 % staining, 

p<0.05 both vs control)(Figure 4D). This anti-fibrotic effect was similar to that observed with 

injections of KSL and confirmed that myeloid differentiation was not required to mediate this effect.  

As with KSL cells, infusions of CMP and CLP cells were also associated with histological evidence of 

increased numbers of endogenous Ly6G neutrophils and F4/80 macrophages (Figure 4F/G) in the 

liver. 

 

Hepatic sphingosine 1-phosphate expression and activity increases in rodent and clinical liver 

injury 

As S1P, mediated by differences in concentration gradients, regulates the homeostatic trafficking of 

HSC between tissue compartments we determined changes in liver injury. In CCl4 injury S1P levels 

were 1.7 fold higher in the liver (68.79±7.42 vs 39.45±7.06 pmol per mg protein, p<0.05) and 1.5 fold 

higher in the serum (1.71±0.13 vs 1.15±0.18 µM, p<0.01) with no significant change in BM or lymph 

concentrations (Figure 5A). To determine the factors influencing S1P levels we studied its cognate 

metabolising enzymes. SphK1 phosphorylates sphingosine to produce S1P and hepatic gene 

expression of SphK1 was upregulated during murine CCl4 liver injury (5.57±0.65 fold vs control, 

p<0.0001) whilst expression of sphingosine kinase 2, SGPL and SGPP remained unchanged (Figure 
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5B).  Similar findings were observed in human chronic liver disease (Figure 5C). SphK1 upregulation 

was not seen outside the murine liver (Supplementary Figure 4) and was also observed in mice fed 

the Methionine Choline deficient diet, an alternative model of chronic liver injury (Figure 5B). 

Analysis of isolated murine cell types demonstrated significant upregulation of SphK1 gene 

expression in liver sinusoidal endothelial cells during liver injury (5.26+/-1.26 fold vs control, 

p<0.001) without significant alteration in hepatocyte or PBMC gene expression (Figure 5D). SphK1 

expression was 12 fold higher in human subjects with chronic liver disease than in normal controls 

(12.55±6.1 fold vs control, p<0.01)(Figure 5C) and this observation held true for different aetiologies 

of liver disease (Supplementary figure 5). SphK1 was the most abundant enzyme in hepatic 

sinusoidal endothelial cells and peripheral blood mononuclear cells, whereas hepatocytes 

predominantly expressed SGPL and SGPP (Figure 5E). Increased SphK1 was detected by Western 

blotting (Figure 5F) in both murine and human chronic liver injury and SphK1 enzymatic activity was 

2.7 fold higher (5.76±0.95 vs 2.07±0.25 nmol/min/mg protein, p<0.01)(Figure 5G) in liver tissue from 

mice with CCl4 injury. SphK1 enzymatic activity was also increased in chronically diseased human 

liver tissue (Figure 5H).   

 

Blocking migration to S1P with FTY720 specifically increases retention of KSL cells in the injured 

liver 

S1P1 was the most highly expressed S1P receptor on KSL, which was predominantly found 

intracellularly (Supplementary Figure 8A/B). In vitro migration to S1P was dose-dependent and 

peaked at 1µM (Supplementary Figure 8C).  The HPC-7 cell line had similar c-kit/sca-1 expression 

(with absence of lineage markers), comparable S1P/chemokine receptor expression (Supplementary 

Figure 7) and migrated to S1P in vitro (Supplementary Figure 6E). Treatment of KSL with FTY720 

markedly impaired S1P dependent cell migration (Supplementary Figure 8D), as did treatment with 

the S1P1 specific antagonist W146. After administration of FTY720 to mice with CCl4 injury higher 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

numbers of KSL were isolated from liver (1697±247 vs 982±110 KSL cells/liver, p<0.05) whilst the 

number of circulating KSL in peripheral blood was not altered (0.36±0.1 vs 0.43±0.14 KSL 

cells/µl)(Supplementary Figure 8E). DiR labelling of KSL did not affect their viability or proliferation 

and fluorescence intensity of labelled cells was maintained at 7days without transfer of dye to 

unlabelled cells (Supplementary Figure 9).  DiR labelled HPC-7 cells were used to study the tissue 

distribution of injected HSC, which revealed rapid clearance from the lungs over the first 24-48 hours 

and ongoing accumulation within the liver over 48 hours followed by gradual clearance (Figure 6A-

C). Only low levels of uptake were found in the spleen and kidneys. Administration of FTY720 did not 

alter initial localisation of injected cells in either the liver or lungs, however the numbers of HPC-7 

remaining within the liver were 50% higher than control 4 days after injection and 86% at 7 days 

(Figure 6A-C). Based on these findings, tissue localisation of KSL cells was studied at a single time-

point, 4 days after injection. Greater numbers of injected KSL cells were found within the liver in 

mice treated with FTY720 compared with untreated controls (13514±1506 vs 7687±1556 DiR 

labelled KSL cells/liver, p<0.05) (Figure 6D). Intravital microscopy studies demonstrated that 

treatment of KSL cells with FTY720 or W146 did not increase their recruitment to the injured liver 

(Control 10.3±0.6, FTY720 9.6±2.4, W146 9.0±1.15 cells/fov) 60 minutes after injection (Figure 6E/F).   

 

Increased retention of KSL cells in the injured liver with FTY720 enhances their anti-fibrotic effect 

Administration of FTY720 alone did not alter hepatic fibrosis or αSMA activation (Supplementary 

figure 10). Administration of FTY720 in conjunction with repeated KSL cell injections resulted in a 

further 16% reduction in PSR staining (1.86±0.10 vs 2.21±0.11 % staining, p<0.05)(Figure 7A/B) and a 

12% reduction in hepatic hydroxyproline content (289.2±90.9 vs 328.9±83.6, p=0.05)(Figure 7C) 

compared to KSL cell injection alone. αSMA staining was 21% lower (1.82±0.19 vs 2.31±0.22, 

p<0.05)(Figure 7D) in the FTY + KSL group and hepatic gene expression of αSMA and Col1a1 

remained suppressed in both groups (Figure 7E).  
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Conclusions 

Despite the considerable interest in bone marrow cell therapy for liver disease there is still 

significant uncertainty regarding their efficacy. Moreover, there is also a lack of clarity as to which 

population of bone marrow cells is likely to be the most effective. In this manuscript we 

demonstrate that repeated injections of a purified population of murine hematopoietic stem cells 

result in a marked resolution of hepatic fibrosis, in association with an increase in hepatic 

populations of endogenous macrophages and neutrophils. In addition, we demonstrate that 

abrogation of the migration of hematopoietic  stem cells down an S1P gradient results in their 

greater hepatic retention and a further reduction in liver fibrosis, thus establishing a new 

therapeutic paradigm for the use of hematopoietic stem cells in this setting. 

 

It has previously been proposed that injected bone marrow cells differentiate into anti-fibrotic cells 

of a monocyte/macrophage lineage
11

. However we have demonstrated that myeloid differentiation 

is not required for cells to exert their anti-fibrotic effect in our study, as injection of lymphoid 

progenitor cells induced a similar amount of fibrosis resolution as injections of either myeloid 

progenitors or HSC. Neutrophils and macrophages, with expression of MMP 9 and MMP 13, are 

critical to the resolution of fibrosis
26, 27

 and significant increases in these cell populations were 

observed in the livers of mice receiving cell injections. The experimental design of this study, utilising 

a CD45 mismatch, confirmed that these cells were recipient derived, representing activation of 

endogenous repair pathways rather than a direct anti-fibrotic action of the injected cells. These 

findings clarify that HSC exert a paracrine effect within the injured liver stimulating repair through 

recruitment of other cell populations, and indeed HSC have been shown to be potent secretory cells, 

mediating effector properties through cytokine stimulation of immune cell populations
28

. Further 

study of the chemokines and cytokines (eg CCL2, IL-10, TWEAK) secreted by HSC may provide further 

define the mechanisms involved. Notably, our data indicate that murine monocytes, which may 
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mediate the anti-fibrotic effect of HSC are recruited to CCL2 and also to murine HPC-7 cells in a 

CCR2-dependent manner suggesting that a potential mechanism by which monocytes are 

recruited/positioned within the injured liver relates to hematopoietic stem cell expressed/secreted 

chemokine ligands. There were no differences in the proportion of macrophage subsets within the 

liver, or as a ratio of Ly-6C
hi

/Ly-6C
lo

 (M1-like to M2-like) macrophages, after KSL cell infusion. 

Similarly no differences were seen in peripheral blood analysis. As recognised by the literature, 

surface marker expression of macrophages is likely to be more complex and dynamic and thus even 

extensive panels do not completely characterise the full phenotype of macrophages in vivo
29

. The 

integral role of macrophages in mediating both the generation and resolution of fibrosis has been 

demonstrated by other groups including our previous work
30, 31

.  

 

It is assumed that homing of HSC to the injured liver is required for them to exert their anti-fibrotic 

actions although this has not been proven. Increased recruitment of hematopoietic stem cells to the 

liver has been reported in  response to stress-induced signals, such as increased expression of 

Stromal Derived Factor-1, MMP-9, and Hepatocyte Growth Factor which recruit human CD34+ 

progenitors
32

. We have previously reported that the adhesion of human hematopoietic (CD34+) 

stem cells to human liver compartments is integrin and CD44 dependent and modulated by CXCR3 

and CXCR4
33

. Our BM transplantation studies confirm that liver injury with CCl4 increases the number 

of BM-derived HSC in the liver, but without any change in the number of HSC in other organs. There 

have been a variety of different approaches taken to the administration of stem cell therapy in both 

humans and animal models, the peripheral venous route represents the safest and most feasible 

mode of delivery and we have shown this to be effective, as cells injected into a peripheral vein 

exert a beneficial therapeutic effect. Analysis of the distribution of injected HSC demonstrated their 

accumulation within the lungs immediately after injection followed by a rapid clearance, whereas 

recruitment to the liver increased over the first 48 hours with a more gradual reduction in cell 
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numbers subsequently. Seven days after injection the number of injected HSC remaining within the 

liver was very small and explains the absence of detectable numbers of cells on tissue section 

analysis. The whole organ analysis in this study provided an accurate assessment of cell numbers, as 

previous studies have used tissue section analysis which may not accurately quantify small numbers 

of cells or provide appropriate comparisons between organs for example overestimating the number 

of injected cells within the lungs.   

 

S1P has been recognised to mediate recirculation of HSC down S1P gradients from tissue back into 

lymph and the circulation
20

, and we demonstrate that S1P levels and activity are increased in the 

injured liver, thus partially reversing the normal S1P liver tissue:lymph gradient. Our data suggest 

that the increase in hepatic S1P levels is caused by upregulation of SphK1 in liver sinusoidal 

endothelial cells with less significant changes in other enzymes involved in S1P processing. To 

establish whether S1P was acting to increase recruitment of bone marrow-derived cells to the liver 

we performed intravital microscopy (Figure 6E/F) with blockade of the S1P axis using either a 

function-blocking antibody to S1P1 receptor or FTY720, neither of which altered the number of 

exogenously administered bone marrow-derived cells seen within the liver over a 60 minute period. 

We hypothesise therefore that the increased hepatic S1P levels act primarily to retain HSC within the 

liver by preventing their egress down the existing S1P liver-lymph gradient rather than priming the 

liver to recruit bone marrow-derived cells, which is in keeping with the observations of others in 

normal physiological conditions
20, 34

.  

 

To exploit this modulation of the S1P pathway we used pharmacological manipulation with the 

partial S1P1 receptor agonist, FTY720. FTY720 impaired the migration of HSC in vitro and when 

administered to mice with liver injury resulted in accumulation of HSC within the liver. Whilst FTY720 
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did not affect trafficking of HSC within the first 48 hours after injection, increased numbers of 

injected HSC were present in mouse livers at later time-points compared with placebo controls.  This 

supports our observations that HSC recruitment to the injured liver is not mediated through S1P 

receptors and that the increased number of HSC in the liver is a result of increased retention of HSC 

within the liver, rendered unresponsive to the S1P gradient by FTY720.  The use of isolated KSL cells 

in these tracking studies was limited by the difficulties isolating the large number of cells required, 

and thus the findings from experiments using the HPC-7 cell line were used to design experiments 

with isolated KSL cells at a single time-point. This study, with KSL cells, also confirmed that mice 

receiving FTY720 had a greater number of cells within the liver four days after infusion.  

 

Whilst administration of FTY could theoretically reduce homing to any organ our tracking data 

(Figure 6B-C) indicated no change in numbers of KSL cells found in the lungs. We believe therefore 

that the reason FTY720 increases the number of KSL cells in the liver, without an effect on other 

organs, is due to a combination of a reduced liver-lymphatic S1P gradient (due to the induction of 

liver injury which increases hepatic S1P levels) and a reduced tendency to migrate down an S1P axis 

due to the pharmacological action of FTY720. Notably, FTY720 has a range of systemic actions which 

in their own right may be anti-fibrotic, such as inhibiting of cytosolic phospholipase A2 and 

antagonising cannabinoid receptor 1
35

, although in this study it had no anti-fibrotic effect when used 

in isolation. The anti-fibrotic effect of injected HSC was augmented by approximately 20% with the 

addition of FTY720 and although the clinical significance merits further study, any optimisation of 

the effect of this very rare population of cells should be considered advantageous.  The optimal 

number of cells required to achieve an anti-fibrotic effect remains uncertain; in our studies we chose 

to administer lower numbers of cells than in previous studies and it is not clear whether the number 

of cells administered is proportional to the anti-fibrotic effect or whether there is a plateau effect 

beyond which no greater effect would be observed.   
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Our data demonstrate the potent anti-fibrotic actions of purified murine hematopoietic stem cells, 

and also indicate that enhanced exposure of the target organ, the injured liver, to infused HSC is 

associated with an augmentation of their anti-fibrotic effect. These findings support the 

development of clinical trials of stem cell therapy in humans. 
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Figure 1. Liver injury increases mobilisation and recruitment of HSC to the liver. 

(A) c-kit
+
 sca-1

+
 lineage

-
 (KSL) cells were quantified by flow cytometry and representative plots are 

shown. (B) Numbers of KSL cells were quantified in the peripheral blood, livers and bone marrow 

(BM) of CCl4, MCD and mineral oil (MO) treated mice. Data from individual mice are displayed with 

means indicated by horizontal line (n=6 per group). (C) Colony forming potential of cells isolated 

from liver, blood and bone marrow were quantified in myeloid CFU assays. Data from individual 

mice are displayed with means indicated by horizontal line (n=6 per group). (D) BoyJ (CD45.1) mice 

were lethally irradiated (9Gy in 2 divided doses) and received unfractionated BM from C57Bl/6 

(CD45.2) mice followed by administration of CCl4 or MO for 8 weeks.  Higher numbers of bone 

marrow derived CD45.2
+
 KSL were found in the blood and livers of mice following CCl4 liver injury 

(n=6 per group). * p<0.05, ** p<0.01, *** p<0.001. 

 

Figure 2. Repeated injection of c-kit
+
 sca-1

+
 lin

-
 hematopoietic stem cells (KSL) reduced hepatic 

fibrosis in a model of chronic carbon tetrachloride (CCl4) liver injury. 

(A) Liver injury was induced in eight week old C57/Bl6 mice by eight weeks of twice weekly intra-

peritoneal injections of CCl4. Mice were divided into two groups of 8 and one group received 

injections of 5x10
4
 KSL cells via tail vein at weeks six, seven and eight. Representative 

photomicrograph images of Picrosirius red staining (PSR) of livers demonstrate a reduction in 

collagen staining of livers from KSL treated mice, with loss of bridging fibrosis, compared to 

untreated control mice (magnification x40). Six random, non-overlapping images were obtained 

from each section and staining was quantified as a percentage of the image positive for PSR and 

αSMA using ImageJ software. Quantitative analysis of Picrosirius red staining (B) and biochemical 

measurement of hepatic hydroxyproline content (C) verified the reduction in hepatic fibrosis 

following KSL injections. The number of activated hepatic stellate cells, as indicated by 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

 

representative photomicrograph images of αSMA staining was reduced after KSL injections (D), 

which was confirmed by morphometric analysis of hepatic αSMA staining (D) and by hepatic gene 

expression of αSMA  and col1a1 (E). Serum albumin levels were higher in mice receiving KSL 

injections (F). Hepatic oval cell numbers, as indicated by (G) Pan-CK were increased following KSL cell 

administration. Data are from n=8 per group and 3 independent experiments. * p<0.05, ** p<0.01, 

*** p<0.001 vs control. 

 

Figure 3. Impact of administered hematopoietic stem cells (HSC) on endogenous cell recruitment 

and expansion in the injured liver. 

There was a marked expansion in the number of recipient-derived Ly6G (A) and F4/80 (B) immuno-

positive cells in the livers of mice after KSL injection as indicated in representative 

photomicrographs. (A) Ly6G and (B) F4/80 cells were counted manually in 6 random, non-

overlapping fields of view (x100 F4/80, x20 Ly6G). (C) MMP9 and MMP13 expression in the liver was 

seen to increase following KSL cell administration, in association with a reduced Arg-1/iNOS 

expression ratio (D). Flow cytometric analysis of the digested livers (gating strategy in supplementary 

information) characterised the macrophage sub-sets within the liver (E). Murine monocytes were 

seen to trans-migrate towards CCL2 and HPC-7 HSC in a dose-dependent fashion (F). Migration of 

murine monocytes towards HPC-7 was chemokine dependent and inhibited by neutralising CCR2 

antibody (G). Data are from n=8 per group and 3 independent experiments, expressed as mean +/- 

standard deviation of number of cells per field of view shown or median +/- IQR. * p<0.05, ** 

p<0.01. 
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Figure 4. Committed HSC sub-sets without myeloid properties are also able to reduce liver fibrosis. 

(A) Representative plots of common myeloid progenitors and common lymphoid progenitors 

isolated using surface antigen expression (CMP: IL7Ra
-
 c-kit

+
 sca1

+
 lineage

-
, CLP: IL7Ra

+
 c-kit

lo
 sca1

lo
 

lineage
-
). (B) KSL and CMP were able to form myeloid colonies in vitro, whereas CLP lacked this 

ability. Data are expressed as mean number of colonies per 500 plated cells shown (+/- SD) from 

three separate isolations. Tail vein injections of CMP or CLP cells at weeks 6,7,8 of CCl4 injury, 

resulted in a similar reduction in hepatic fibrosis to that seen with KSL injections as assessed by 

quantitative analysis of picrosirius red staining, biochemical measurement of hepatic hydroxyproline 

content  and hepatic gene expression for col1a1 (C). Similarly CMP and CLP injections also reduced 

the number of activated hepatic stellate cells to a level seen with KSL injections, as indicated by 

morphometric analysis of hepatic αSMA staining and by hepatic gene expression of αSMA (D). 

Serum albumin levels were also increased after CMP and CLP injections (E). There were increased 

numbers of endogenous Ly6G neutrophils (F) and F4/80 macrophages (G) in the liver after CMP and 

CLP infusions. Data are from n=8 per group and 3 independent experiments. * p<0.05 vs control. 

 

Figure 5. Regulation of S1P levels in murine and human chronic liver injury. 

(A) 8 week old C57/BL6 mice received CCl4 or MO by i.p. injection twice weekly for 8 weeks. 

Sphingosine-1-phosphate (S1P) levels were higher in the livers and sera of mice following eight 

weeks of CCl4 liver injury compared with MO controls, but were unchanged in bone marrow and 

lymph (n=5 per group). (B) Hepatic expression, by qPCR, of Sphingosine kinase 1 (SphK1) was 

increased, but there were no changes in gene expression for other enzymes (SphK2, SGPL1 & SGPP1) 

involved in S1P regulation (n=6 per group). A similar pattern of gene expression was observed mice 

fed an MCD diet, an alternative model of chronic liver injury (n=6 per group). (C) Hepatic gene 

expression of SphK1, SphK2, SGPL1 & SGPP1 were quantified in normal human liver and also human 
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cirrhotic liver from patients with alcohol related liver disease (n=6 per group). (D) Analysis of cell 

populations from chronically injured murine livers demonstrated upregulation of SphK1 gene 

expression in hepatic sinusoidal endothelial cells (LSEC), but not hepatocytes or peripheral blood 

mononuclear cells when compared with MO controls (n=3 per group, 3 independent experiments). 

Gene expression was also studied in constituent cells from explanted human cirrhotic livers and 

associated peripheral blood mononuclear cells (n=6 per group). (F) There was an increase in SphK1 

protein expression in the CCl4 treated mice by Western blotting (representative of 3 independent 

experiments). Samples of liver tissue were used in an ATP depletion assay to measure the enzymatic 

activity of SphK in injured and normal liver tissue (bottom left panel). The rate of phosphorylation of 

Sphingosine to S1P was higher in CCl4 injured mice (G), as determined from the rate of depletion of 

ATP and expressed as nmol of S1P produced per minute per mg of liver protein (n=5 per group).  

Samples of human liver tissue were lysed for protein extraction and expression of SphK1 and GAPDH 

by Western blotting (representative of 3 independent experiments) demonstrated a rise in all 

cirrhotic liver samples (top right panel - F). The rate of phosphorylation of Sphingosine to S1P was 

higher in human chronic liver injury (H), as determined from the rate of depletion of ATP and 

expressed as nmol of S1P produced per minute per mg of liver protein (n=5 per group). * p<0.05, 

*** p<0.001 vs control.. 

 

Figure 6. FTY720 treatment increases the numbers of injected HSC within the liver. 

DiR labelled HPC-7 cells were administered via tail vein to CCl4 injured mice that were also treated 

with either FTY720 (1mg/kg) or vehicle control starting one day prior to cell injection and continuing 

for 7 days. (A) Representative combined photographic and fluorescence intensity images of livers 

from mice injected with HPC-7 cells treated with either FTY720 or vehicle at time points following 

cell injection. (B) The number of DiR labelled HPC-7 cells within the liver and lungs were then 

quantified using fluorescence intensity by (B) IVIS and (C) flow cytometric analysis of digested organs 
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up to 7 days after injection. Greater numbers of DiR labelled cells were detected in the liver at days 

2, 4 and 7 after injection in mice treated with FTY720 (blue line) n=3 per group, 3 independent 

experiments). (D) Greater numbers of injected DiR-labelled KSL cells were present in the livers of 

mice treated with FTY720 (n=3 per group) using both fluorescence intensity by IVIS and by flow 

cytometric analysis of digested liver (n=3 per group, 3 independent experiments). (E) To establish if 

S1P has a role in engraftment of HSC to the liver (as well as retention) CFSE-labelled HPC-7 were pre-

treated with FTY720, W146 or control media and injected into mice with CCl4 liver injury. 

Recruitment of HSC to the liver was assessed in real time by intravital microscopy. Pre-treatment of 

HPC-7with FTY720 or W146 did not alter recruitment to injured liver for 60 minutes following 

injection (p=ns by two way ANOVA with Bonferroni multiple comparison test, n=3 per group, 6 

independent experiments). (F) After completion of intra-vital microscopy experiments, liver tissue 

sections were analysed by fluorescent microscopy (FITC filter). The numbers of individual fluorescent 

cells were manually counted in 6 random, non-overlapping fields of view (x20 magnification) per 

section. No difference in numbers of injected cells within the liver was seen between cells treated 

with FTY720-P, W146 or control media (n=3 each group). * p<0.05, ** p<0.01. 

 

Figure 7. FTY720 treatment augmented the anti-fibrotic effect of repeated HSC injection. 

(A) Liver injury was induced in 8 week old C57/BL6 mice by eight weeks of twice weekly intra-

peritoneal injections of CCl4. Mice were divided into four groups; injury alone, injury and FTY720, 

injury and injection of 5x10
4
 KSL cells, or injury and injection of 5x10

4
 KSL cells and FTY720 (n=8-13 

per group). Representative photomicrograph images of PSR staining of livers demonstrate a 

reduction in collagen staining of livers from KSL (+/- FTY720) treated mice, compared to control mice 

and those receiving FTY720 only (magnification x40). (B) Quantitative analysis of picrosirius red 

staining demonstrated that FTY720 treatment with KSL cell injections reduced hepatic fibrosis more 

than KSL injections alone (n=8-13 per group, 5 independent experiments), with a commensurate 
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reduction in level of (C) hepatic hydroxyproline (n=8-13 per group, 5 independent experiments). (D) 

Representative photomicrograph images of αSMA staining (magnification x40) across the four 

groups indicated lower levels of αSMA, as confirmed by morphometric analysis (n=13 per group, 5 

independent experiments). (E) Hepatic gene expression of αSMA and col1a1 was supressed in both 

the KSL group and the KSL and FTY720 group (n=8-13 per group, 5 independent experiments). * 

p<0.05. 
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Supplementary material 

Methods 

Tissue Preparation 

Blood samples were obtained by cardiac puncture under general anaesthesia and mice were killed 

by cervical dislocation. Bone marrow cells were flushed from the medullary cavities of the femur and 

tibia with DMEM + 10% FCS using a 25G needle. A single cell suspension was prepared by passing the 

cells through a 40um filter (BD Falcon) and analysed by flow cytometry or used for cell sorting. 

Mouse tissues were harvested and perfused with PBS, dissociated and digested with 2mg/ml 

collagenase IV (Sigma). Mononuclear cells were isolated by density centrifugation using an Optiprep 

(Sigma) gradient and the resulting cell suspension used for flow cytometry.  Samples of frozen 

human liver tissue were obtained from patients of the University Hospital Birmingham with chronic 

liver disease undergoing liver transplantation or from normal organ donor liver not used for 

transplantation with written informed consent and local ethics committee approval. 

 

Immunohistochemistry 

Liver specimens were fixed in 4% paraformaldehyde, embedded in paraffin and cut into 4µm 

sections.  Slides were deparaffinised and antigen retrieval performed using a citrate buffer pH6.0. 

Primary antibody was added for 1 hour: anti-αSMA (1:400, Abcam), anti-F4/80 (1:200, AbD Serotec), 

anti-Ly6G (1:500, AbD Serotec), anti-CD45.2 (1:200, eBioscience) followed by secondary antibody 

(ImmPRESSS Peroxidase anti-rabbit IgG or anti-rat (mouse adsorbed) IgG, Vector Labs) and 

expression was visualised using ImmPACT DAB reagent (Vector Labs). Sections were counterstained 

with haematoxylin and mounted using DPX (Fisher Scientific).   

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Hydroxyproline Assay 

Frozen liver tissue samples were weighed and protein precipitated by the addition of 1:1 

Trichloroacetic Acid:Water and incubated on ice for 30 minutes.  Samples were hydrolysed with 6N 

HCl in sealed borosilicate tubes and incubated at 120
o
C for 16 hours and at 80

o
C until completely 

desiccated.  The precipitate was resuspended in water and filtered. Chloramine T solution was added 

at room temperature for 20 minutes followed by addition of Ehrlich’s solution and incubation at 

65
o
C in a water bath for 15 minutes. After cooling to room temperature, fluorescence readings at 

561nm were taken from samples and standards, and hydroxyproline content expressed as mcg per 

gram liver tissue. 

 

Flow Cytometry and Cell Sorting 

Erythrocytes were lysed using ACK red cell lysis buffer (Sigma).  After incubation with anti-CD16/32 

antibody (1:20, eBioscience) to eliminate non-specific Fc receptor binding, cell suspensions were 

labelled with the relevant primary antibodies (all 1:100): anti-CD11b-FITC (M1/70), anti-CD5-FITC 

(53-7.3), anti-CD8a-FITC (53-6.7), anti-Ter119-FITC (TER119), anti-CD45R-FITC (RA3-6B2), anti-Gr1-

FITC (RB6-8C5), anti-CD117(c-kit)-PE, anti-CD117(c-kit)-Pacific Blue, anti-CD117(c-kit)-APC-Cy7 (all 

2B8), anti-Sca1-APC (D7), anti-CD127(IL-7Ra)-PE (A7R34), anti-EDG1(S1P1)-PE (T4-H28), anti-CD45.1-

PE (A20), anti-CD45.2-APC (104)  and incubated on ice for 30 minutes.  Non-viable cells were 

excluded using LIVE/DEAD stain (Invitrogen). Absolute cell counts were determined using Trucount 

beads (Invitrogen) and data analysed using a CyAn ADP flow cytometer with Summit 4.3 software.  

Cell sorting was performed using a MoFloCell Sorter (Dako) with Summit 5.2 software. Cells to be 

injected were sorted directly into sterile PBS and used immediately, whilst cells for PCR analysis 

were sorted directly into RLT lysis buffer ready for RNA extraction. 
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Cell isolation from blood and liver and flow cytometric analysis 

Blood was collected through cardiac puncture into EDTA tubes. Red blood cells were lysed with 5min 

lysis buffer. Isolated cells were then washed twice and resuspended in MACS  buffer (2% FCS and 

1mM EDTA). Liver homogenate was filtered after being homogenised with 5ml syringe plunger. 

Single cells were then overlaid on density gradient of Opti-prep and centrifuged at 1000g for 25min 

at room temperature. After two washed isolated cells were then suspended in MACS buffer.  

 

Antibodies used for flow cytometry are listed in table below. Single-cells suspensions were blocked 

with anti-mouse FcR antibody (CD16/CD32) for 15min at 4C in MACS buffer, and stained with 

primary conjugated antibodies. For internal staining, cells were fixed and permeabilized with a 

Foxp3/Permeabilization kit (eBiosciences). Flow cytometry was performed with Fortessa (BD 

Biosciences) with forward-and side-scatter gates set to exclude non-viable cells. Data were analysed 

with Flowjo software (version 10.1). 

Antibodies Clone Conjugate Source 

live/dead APC-CY7 

e780 

Life Technology 

CD45.2 104 eFluor 

506 

Ebio 

Foxp3 FJK-16s APC Ebio 

CD3 17A2 eFluor 

450 

Ebio 

CD4 GK1.5 FITC Ebio 
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NkP46 29A1.4 PE Ebio 

CD8 53-6.7 BV 786 Biolegend 

LY6C HK1.4 PE Ebio 

LY-6G  / 

Gr-1 

1A8-

Ly6g 

APC Ebio 

CD3 17A2 BV650 Biolegend 

B220 Ra3-

6B2 

eFluor 

450 

Ebio 

CD11b M1/70 PE-e610 Ebio 

F4/80 BM8 PE-CY7 Ebio 

CD45.2 104 FITC Ebio 

CD16 93 purified Ebio 

 

 

Flow cytometric analysis showing liver macrophages (gated CD45
+
CD3

-
CD11b

+
F4/80

+
Ly-6G

-
), resident 

(res)  macrophages (gated CD45
+
CD3

-
CD11b

int
F4/80

+
), M1-macrophages (gated CD45

+
CD3

-

CD11b
+
F4/80

+
Ly-6G

-
Ly6C

hi
), M2-macrophages (gated CD45

+
CD3

-
CD11b

+
F4/80

+
Ly-6G

-
Ly6-C

lo
) 

 

 

 

CD3                                         F4/80                                    F4/80                                     F4/80 
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M2 
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qRT-PCR 

RNA extraction was performed using the RNeasy Mini (liver tissue) and Micro (isolated cells) kits 

(Qiagen) according to manufacturer’s instruction, concentration and purity were checked using a 

Nanodrop 1000 (Thermo Scientific). cDNA was transcribed from RNA using iScript  reverse 

transcriptase (Bio Rad) . RT-PCR was performed on an ABI Prism 7900HT or Stratagene MX3000p 

using Taqman assay mix pre-designed Taqman assays as detailed in supplementary information 

(Applied Biosystems). The programme consisted of activation at 95
o
C for 10 minutes followed by 40 

cycles of denaturing (95
o
C 10 seconds) and annealing (60

o
C 60 seconds) with fluorescence detection 

at the end of each cycle. Normalisation to GAPDH using the 2
-ΔΔCT

 method was performed and 

expression relative to the appropriate control calculated. 

 

Serum Albumin 

Serum albumin concentrations were determined using the Quantichrom BCG Albumin Assay 

(Bioassay Systems) according to manufacturer’s instructions. 

 

Western Blotting 

Whole liver protein extracts were quantified using Bradford reagent and 50µg used for Western 

blotting. Primary antibody was either anti-SphK1 (1:500, Abcam) or anti-GAPDH (1:2000, Sigma) 

incubated overnight and HRP conjugated goat anti-rabbit IgG antibody (1:10000, Sigma) secondary 

antibody incubated for 30 minutes.  Pierce chemiluminescent peroxidase substrate and Hyperfilm 

ECL were used to visualise protein expression. 
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Transwell migration 

Male C57/BL6 mice were culled by cervical dislocation and their tibias and femurs were dissected 

from the cadavers for monocyte isolation.  Ends of bones were trimmed and the bone marrow was 

flushed out with MACs buffer (PBS+2mM EDTA+0.5%BSA).  Following centrifugation and cell count, 

monocytes were selected from the cell suspension using magnetic labelling and separation.  After 

washing, the cells were resuspended in MACs buffer and incubated for five minutes at 4
o
C with FcR 

Blocking Reagent and Monocyte Biotin-Antibody cocktail.  The cells were then washed before being 

incubated with Anti-Biotin Microbeads for ten minutes at 4
o
C and then passed through an LS 

column.  The unlabelled cells represented the monocyte population and passed through the column. 

Monocytes were then incubated with cell tracker green for 20 minutes at room temperature (the 

cell tracker green is diluted 1:1000 to give a concentration of 5µM).  CCL2 was prepared in migration 

media (RMPI+1% PSG+0.1%BSA) to a concentration of 100ng/ml, and 150µl of this added to the 

receiver plate along with media alone, unstained monocytes and HPC-7 cells. Monocytes were 

washed and resuspended in migration media to generate a density of 2x10
5
 cells/50µl.  50µl of 

stained monocytes were then added to the transwell insert and the plate is incubated for four hours 

at 37
o
C.  After this incubation, samples were collected from the receiver plate and placed into 

separate FACS tubes.  Cells were then washed, resuspended in MACs buffer and quantified flow 

cytometrically. 

 

Near infra-red fluorescence imaging 

1,1’-dioctadecyltetramethyl indotricarbocyanine iodide (DiR, Invitrogen) was dissolved in methanol 

(1mg/ml) and stored in the dark.  5µl/ml of DiR stock solution was added to cells at 1x10
6
/ml in 

complete StemPro media and incubated in the dark for 30 minutes at 37
o
C.  Cells were washed and 

resuspended in 100-200µl sterile PBS for reinjection. 
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Near infra-red imaging was performed using the IVIS Spectrum Imaging System (auto exposure, 

medium binning, excitation wavelength 745nm, emission wavelength 800nm). Fluorescence of 

individual organs was determined by Living Image Software (Perkin Elmer) using region of interest 

(ROI) analysis after subtraction of background and expressed by as radiance efficiency (calculated as: 

radiance of subject / illumination intensity) to eliminate variability in the excitation light across the 

field of view. 

 

Intravital Microscopy 

C57BL6 mice with 8 weeks of CCl4 liver injury underwent ketamine/xylazine anaesthesia and carotid 

artery cannulation. Laparotomy was performed and the liver was exteriorised and placed on the 

stage of an Olympus IX81 inverted microscope. One x10 power field of view was selected for 

imaging. HPC-7 cells were labelled with 5µM CFSE and injected, one minute video recordings of the 

selected field of view were taken every 5 minutes until 60 minutes and analysed for adhesion 

(stationary >30 seconds) of labelled cells using Slidebook software (Intelligent Imaging Innovations). 

 

Supplementary Figure 1. Bone marrow transplantation studies 

(A) Recipient BoyJ (CD45.1) mice received Baytril antibiotic in drinking water one week prior and one 

week following irradiation with 9Gy in two divided doses on the same day. Bone marrow cells were 

obtained from donor C57BL6 (CD45.2) mice by flushing of the tibia and femurs. Six hours following 

irradiation donor bone marrow cells were infused into recipient mice by tail vein injection. After 4 

weeks recovery, transplanted mice were divided into two groups at random with one group 

receiving twice weekly intraperitoneal administration of carbon tetrachloride (1mg/kg) in mineral oil 

and the other group receiving intraperitoneal injections of mineral oil alone for a further 8 weeks. 

(B,C) Samples of bone marrow and peripheral blood were treated with red cell lysis buffer and 
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labelled with fluorescent antibodies to CD45.1 and CD45.2. Analysis of CD45 expression by flow 

cytometry revealed almost complete CD45.2 expression following transplantation compared with 

CD45.1 expression prior to transplantation. Representative flow cytometry plots of multiple 

experiments are shown. 

 

Supplementary Figure 2. Isolation of KSL cells 

Bone marrow cells were obtained from donor mice following dissection of the tibia and femurs by 

flushing the marrow cavity with DMEM + 10%FCS. Cells were treated with red cell lysis buffer and 

filtered prior to labelling with fluorescently conjugated antibodies to lineage specific markers 

(CD11b, CD8a, CD5, Ter119, Gr-1, B220), c-kit and sca-1. Cells were isolated by initially excluding 

dead cells and debris on a forward scatter – side scatter plot (A) and excluding doublets of cells on a 

forward scatter – pulse width plot (B). The lineage negative population was determined (C) and 

plotted according to expression of c-kit and sca-1 surface markers (D). HSC were defined as c-kit+, 

sca-1+ and lineage marker negative (‘KSL’) and represented 0.05% of the total bone marrow cell 

population. The purity of the isolated cells was then checked by determining lineage marker, c-kit 

and sca-1 expression on a sample of isolated cells (E). 

 

Supplementary Figure 3. Impact of administered haematopoietic stem cells (HSC) on endogenous 

peripheral blood monocytes. 

Flow cytometric analysis of peripheral blood was undertaken to characterise the macrophage sub-

sets (M1/M2) and their ratio (C). The following gating strategy was utilised:  M1-macrophages (gated 

CD45
+
CD3

-
CD11b

+
F4/80

+
Ly-6G

-
Ly6C

hi
) and M2-macrophages (gated CD45

+
CD3

-
CD11b

+
F4/80

+
Ly-6G

-

Ly6-C
lo

). Data are expressed as median +/- IQR. 
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Supplementary Figure 4. S1P gene expression in extra-hepatic organs 

Chronic liver injury was induced in age and sex matched C57/BL6 mice by twice weekly 

intraperitoneal administration of carbon tetrachloride (1mg/kg) in mineral oil for 8 weeks. Control 

mice received twice weekly intraperitoneal injections of mineral oil. Mice were sacrificed and gene 

expression of sphingosine kinase 1, sphingosine kinase 2, sphingosine lyase and sphingosine 

phosphatase relative to GAPDH was determined in (A)spleen, (B) kidney and (C) lung. Bars represent 

mean +/- SEM fold change relative to control mice. N=5 per group. 

 

Supplementary Figure 5. Hepatic gene expression across differing aetiologies of liver disease 

Samples of frozen liver tissue were obtained from either normal donor liver or explanted livers from 

patients with liver disease (ALD Alcoholic liver disease, PBC primary biliary cirrhosis, AIH 

Autoimmune hepatitis, NAFLD Non-alcoholic fatty liver disease, HCV Hepatitis C virus, POD 

Paracetamol overdose). Gene expression of sphingosine kinase 1, sphingosine kinase 2, sphingosine 

lyase and sphingosine phosphatase relative to GAPDH was determined. Bars represent mean +/- 

SEM fold change relative to normal liver (no statistical comparison, n=3 per group).  

 

Supplementary Figure 6. Characterisation of HPC-7 cell line 

(A) Cultured HPC-7 cells were labelled with fluorescently conjugated antibodies to lineage markers 

(CD11b, CD5, CD8a, Ter119, Gr-1, B220), c-kit and sca-1 and analysed by flow cytometry. Dead cells 

and debris were excluded by gating on a plot of forward scatter – side scatter and surface expression 

of lineage markers, c-kit and sca-1 measured. Representative histograms displayed (isotype control: 

grey, antibody: red line). (B) HPC-7 cells were cultured in Methocult GF media for 7 days and 

significant numbers of myeloid colony forming cell clusters were identified. Representative image of 
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CFU-GM colony shown.  (C) Gene expression of S1P receptors 1-5 in cultured HPC-7 cells relative to 

GAPDH by the 2 
-ΔCT 

method was determined. Bars represent mean +/- SEM expression in three 

independent experiments. (D) Surface S1P1 receptor expression on cultured HPC-7 cells was 

analysed by flow cytometry. After fixation and permeabilisation of the cells, total intracellular S1P1 

receptor expression was also assessed. Representative histograms of 3 independent experiments are 

displayed (grey area: isotype control, red line: S1P1 antibody). (E) 1x10
6
 HPC-7 cells were added to 

the top well of the transwell and migration to varying concentrations of S1P proceeded for 4 hours. 

Cells migrating into the bottom well were counted using flow cytometry and expressed as a 

percentage of the total number of HPC-7 cells added to the top well. Bars represent the mean +/- 

SEM of 3 separate experiments.  

 

Supplementary Figure 7. Chemokine receptor expression on KSL and HPC-7 cells 

Gene expression of chemokine receptors in (A) freshly isolated KSL cells and (B) cultured HPC-7 cells 

was determined by quantitative PCR. Expression relative to GAPDH by the 2 
-ΔCT

 method was 

determined. Bars represent mean +/- SEM expression in three independent experiments. 

 

Supplementary Figure 8. FTY720 alters HSC trafficking through modulation of S1P1 

(A) Gene expression of S1P receptors 1-5 was determined in freshly isolated KSL cells relative to 

GAPDH by the 2
-ΔCT

 method. Bars represent mean +/- SEM expression in three independent 

experiments. (B) Surface and total S1P1 receptor expression on freshly isolated KSL cells was 

analysed by flow cytometry. Representative histograms of three independent experiments are 

displayed (grey area: isotype control, red line: S1P1 antibody). (C) 1x10
5
 KSL cells were added to the 

top well of a transwell and migration to varying concentrations of S1P assessed over a 4 hour period. 

Cells migrating into the bottom well were analysed for expression of c-kit and sca-1 and quantified 
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by flow cytometry. KSL cells migrating to the lower well were expressed as a percentage of the total 

number of KSL cells added to the top well. Bars represent the mean +/- SEM of three separate 

experiments. (D) S1P receptor dependence of migration of KSL cells to S1P was assessed by placing 

cells in the upper-chamber of a trans-well and quantifying their migration to the presence or 

absence of S1P in the lower chamber. Treatment of KSL cells with either FTY720 (S1P receptor partial 

agonist) or W146 (S1P receptor 1 antagonist) inhibited their migration to S1P in trans-well assays 

(three independent experiments). (E) Administration of daily intraperitoneal FTY720 (1mg/kg) for 

seven days in CCl4 injured mice resulted in an increased number of KSL cells in the liver but 

circulating KSL cells remained unchanged (n=6 per group, two independent experiments). * p<0.05 

 

Supplementary Figure 9. Validation of DiR staining 

 (A) Fluorescence intensity of varying numbers of cells labelled with 5µM DiR was measured using 

the IVIS imaging system. n=3, mean+/-SD fluorescence shown. (B) Representative IVIS image 

(fluorescence intensity overlaid on photograph) of indicated numbers of cells labelled with 5µM DiR 

at each. Freshly isolated KSL cells were incubated with 5µM DiR for 10 minutes at room 

temperature, washed and resuspended in media. (C) Cell viability of labelled cells (black bars) was 

measured by viability dye exclusion determined by flow cytometry and compared with unlabelled 

cells (white bars). n=3, mean+/-SD % dead cells shown. (D) Colony forming ability in labelled (black 

bars) and unlabelled (white bars) cells was measured by in vitro methylcellulose assay. n=3, mean 

+/- number of colonies formed shown. (E) Loss of fluorescence over time: 1x10
6
 cultured HPC-7 cells 

were labelled with 5µM DiR for 10 minutes at room temperature, washed and resuspended in 

complete media. A cell sample was taken at each time point and MFI determined by flow cytometry. 

(F) Potential transfer of dye from labelled to unlabelled cells: 1x10
6
 cultured HPC-7 cells were 

labelled with 5µM DiR for 10 minutes at room temperature, washed and resuspended in complete 

media together with 1x10
6
 unlabelled HPC-7 cells. A cell sample was taken at each time point and 
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the percentage of fluorescent DiR labelled cells in the sample determined by flow cytometry. n=3, 

mean+/- SD % fluorescently labelled cells shown. 

 

Supplementary Figure 10. Use of FTY alone in model of chronic liver injury 

Chronic liver injury was induced in age and sex matched C57/BL6 mice by twice weekly 

intraperitoneal administration of carbon tetrachloride (1mg/kg) in mineral oil for 6 weeks, mice were 

then randomly allocated to a treatment group. Mice in the control group continued to receive twice 

weekly injections of intraperitoneal carbon tetrachloride until week 10 and were sacrificed 72 hours 

following the final injection of carbon tetrachloride. Mice in the FTY720 treatment group received 

twice weekly carbon tetrachloride in the same way as control mice but in addition received thrice 

weekly FTY720 (1mg/kg) via intraperitoneal injection from the start of week 7, mice were sacrificed 

at the start of week 10, 72 hours after the final injection of carbon tetrachloride. (A)Formalin fixed 

paraffin embedded liver tissue sections from control mice (black bars) and mice treated with FTY720 

(grey bars) were stained for picrosirius red. 6 random, non-overlapping images were obtained from 

each section and staining was quantified as a percentage of the image positive for picrosirius red 

using ImageJ software. n=12-13 each group, mean +/-SD % area stained shown, p=ns. (B) 

Hydroxyproline content in samples of liver tissue from control mice (black bars) and mice treated 

with FTY720 (grey bars) was determined and expressed as mg of Hydroxyproline per gram of liver 

tissue. n=12-13 each group, mean+/-SD hydroxyproline content shown, p=ns. RNA was extracted 

from liver tissue of control mice (black bars) and mice treated with FTY720 (grey bars) and using 

quantitative RT-PCR gene expression of (C) col1a1 and (E) SMA were determined, normalised to 

GAPDH expression and relative to control mice using the 2
- ddCT

 method. n=12-13each group, mean 

+/-SD fold change shown, p=ns. (D) Formalin fixed paraffin embedded liver tissue sections from 

control mice (black bars) and mice treated with FTY720 (grey bars) were stained for SMA. 6 

random, non-overlapping images were obtained from each section and staining was quantified as a 
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percentage of the image positive for CD45 using ImageJ software. n=12-13 each group, mean +/-SD 

% area stained shown, p=ns (F) 
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