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Abstract 

An analysis of 552 structures of metal complexes of alkyl and arylphosphinates in the Cambridge 

Crystallographic Database shows that the phosphinate ligating group is remarkably versatile and is 

able to adopt ten different binding motifs in both mono- and polynuclear complexes in which an 

individual phosphinate group can bind to up to five metal atoms. The majority of both homo- and 

heteroleptic complexes contain M-O-PR2-O-M units in oligomeric and polymeric structures. In many 

heteroleptic complexes ligands containing hydrogen bond donors form strong bonding interactions 

with the phosphinate, generating pseudochelated structures. Similar pseudochelates, −O-PR2=O…H-O-

PR2=O, are formed when both a phosphinate and its parent phosphinic acid are coordinated to a 

single metal atom. Such structures feature also in the solution chemistry involved in metal extraction 

processes using phosphinate ligands. As might be expected, many of the binding motifs found in 

phosphinate complexes are similar to those in carboxylate complexes but there are fewer examples 

of phosphinates being used to form metal organic frameworks. 

 

Introduction & Background 

Dialkyl and diarylphosphinates (R2PO2
−) are versatile ligands which find applications in widely differing 

areas. The facility with which they form polynuclear complexes allows them to recognise and bind 

strongly to arrays of metal atoms in the surfaces of minerals or lightly corroded metals (Figure 1) and 

they have been used extensively in surface engineering as corrosion inhibitors [1,2], lubricant 
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additives [3–6], mineral flotation agents [7–10] and as adhesion promoters [11,12]. 

Dialkylphosphinates have also been used to obtain high loadings of metals into polymers to increase 

flame retardancy [13]. It is also possible to form metal organic frameworks (MOFs) from 

polyphosphinic acids [14,15].  

 

 

 

 

 

 

Figure 1. A binding motif which allows phosphinate-attachment to a mineral surface. 

 

Their ability to form stable complexes in solution, particularly with borderline or hard metal cations, 

is exploited in extractive hydrometallurgy using solvent extraction to achieve the concentration and 

separation of particular metals [16,17]. The propensity of phosphinic acid proligands to form dimers 

in the water-immiscible solvents used in these processes (usually high boiling hydrocarbons), retaining 

inter-ligand hydrogen bonding in metal complexes (Figure 1) [18,19] and their tendency to form 

polynuclear complexes [20] at high metal loadings makes the determination of the structures of the 

complexes formed challenging.  It is even more difficult to determine the structures formed at the 

surfaces of metals and minerals.  In order to define what structures are possible and to provide input 

structures for computational modelling of the complexes formed in solution and at interfaces, we 

have analysed the solid-state structures of phosphinates deposited in the Cambridge Structural 

Database [21].  
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Figure 2. Monomeric and dimeric forms of phosphinic acid proligands, LH  (see also Figure 27), 
showing the retention of interligand H-bonding on formation of a tetrahedral complex, [ML2(LH)2], 
with a M(II) [18,19,22]. 

The aim of this review of solid-state structures is to identify the preferred types of coordination shown 

by simple phosphinates in which the metal-binding mode is not constrained by the group being 

present in chelating units containing other types of donor groups. For this reason complexes 

containing multidentate/macrocyclic ligands and polyphosphinic acids were not included in the 

structural analysis. In the discussion of the various structural motifs found in the CSD, we focus on 

complexes of phosphinates containing at least one P-C (alkyl or aryl) bonds. Complexes of mono alkyl 

or aryl phosphinates RXPO2
− with X = H are included but not those where X is an electronegative atom 

because this is likely to influence the mode of coordination of the O=P-O− unit in “simple” 

organophosphinates.   

 

Given the versatility of phosphinate ligands, a number of different binding modes might be expected. 

The more obvious motifs involving monomeric phosphinate ligands (R2PO2
−) are shown in Figure 3 and 

those for the monoanionic dimeric form (R2PO2H. R2PO2
− - see Figure 2) are displayed in Figure 4.  
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Figure 3. Twelve different coordination modes of phosphinate ligands classified using the Harris 
notation [23]: In “n.xy”, “n” defines the number of metals bound to each ligand and the subsequent 
two digits, “x” and “y”, indicate how many metal atoms are bonded to each of the two oxygen 
atoms.  
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Figure 4. Six different coordination modes of dimeric forms of phosphinate ligands in which an intra-
ligand H-bond is retained (see Figure 2). In these motifs “n.wxyz” is used to define the total number 
of metals bound (“n”) and “w”, “x”, “y” and “z” indicate how many metal atoms are bonded to each 
of oxygen atoms labelled “1”, “2”, “3” and “4” in the proligand shown at the top-right of the figure. 

Structural motifs in which a metal ion is bound to an oxygen atom carrying a proton (an example is 

shown in Figure 5) are not included in Figures 3 and 4. It is unlikely that a phosphinate oxygen atom 

can bond effectively to both a proton and a metal cation and indeed no example of such a motif is 

found in the CSD. 
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Figure 5. Motifs of this type, in which a metal ion is bound to an oxygen atom carrying a proton, are 

not found in the CSD.   

 

Occurrences of the various motifs in the CSD 

 

Ten of the eighteen possible modes of coordination shown in Figures 3 and 4, those enclosed in boxes, 

were found in the 552 metal phosphinate complexes retrieved from the Cambridge Structural 

Database (CSD).  

 

By far the most common binding mode is the dinucleating form, 2.11, marked as motif E in Figure 3. 

This is present in both discrete molecular complexes and in oligomeric and polymeric structures. The 

number of occurrences of each motif is displayed in Figure 6 for simple complexes. As many complexes 

containing phosphinate ligands display more than one binding mode, the total number of occurrences 

(358) exceeds the number of complexes analysed or discussed in this review which is limited to “simple 

complexes” which do not contain the phosphinate group in a chelating unit or in a polyphosphinate 

(see introduction). A list showing which CSD entries contain the different binding motifs is provided in 

the appendix at the end of the review.  
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Figure 6. The number of occurrences in the CSD of the different phosphinate binding motifs A to L in 

“simple complexes” (see introduction) which do not contain the phosphinate group in a chelating unit 

or in a polyphosphinate. Motifs M and N involving dimeric forms of the ligand are included in counts 

of complexes containing their components, A and D.    

 

 

The binding mode 1.1001 (motif M, Figure 4) contains an 8-membered pseudochelate ring and is 

thought to be a common form in solution [18,19,22] when phosphinic acids are used in metal-recovery 

by solvent extraction. However, it is not a particularly common occurrence in the solid-state structures 

recorded in the CSD. This may in part be a consequence of the reagents most commonly used in 

solvent extraction, which have large multiply branched alkyl groups to enhance solubility in 

hydrocarbons, but which in turn militates against the isolation of crystalline solids needed for single 

crystal X-ray structure determination. Consequently, this motif may be under-represented in the data 

set. 

 

The phosphinate binding mode found in solid-state structures depends greatly on the nature of the 

metal in the complex and on what other ligands are present. Structures are reviewed below in order 

of increasing size and complexity, considering differences between homo- and heteroleptic complexes 

and any unusual features imposed by having the phosphinate as part of a multidentate ligand. 

 

 

 

Mononucleating motifs: 

The simplest mode of binding, using the monodentate (mononucleating) 1.10 motif (A in Figure 3), is 

commonly found in complexes which also contain phosphinates with binding motifs that bridge metal 

ions, resulting in the formation of polynuclear complexes. This scenario, along with motif A H-bonding 

to another neutral phosphinic acid (motif 1.1001, M in Figure 4), are discussed below. Mononuclear 

complexes containing only motif A are found exclusively in heteroleptic complexes such as 

[Sb(L1)Me3(OH)] [24]-NEYWAP, [Ru(L1)2X] [25]-FIMMUK, [Pd(L1)Me(diphos)] [26]-IQEMIB, [Zn(L1)2(DMPZ)2] [27]-

XAXKAJ and [Al(L1)(MeOH)(salen{tBu})] [28]-YEGRIM (Figure 7).  The monodentate coordination expressed 

by motif A places minimal restrictions on the coordination geometry adopted by the metal, and 

consequently a wide range of geometries around the metal (including trigonal bipyramidal, square 

pyramidal, square planar, tetrahedral and octahedral structures, Figure 7) is observed.   
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Figure 7. Heteroleptic complexes [Sb(L1)Me3(OH)] [24]-NEYWAP, [Ru(L1)(Ph3P)2((R,R)-dach)] [25]-FIMMUKa, 

[Pd(L1)Me(diphos)] [26]-IQEMIB, [Zn(L1)2(DMPZ)2] [27]-XAXKAJ and [Al(L1)(MeOH)(salen{tBu})] [28]-YEGRIM 

containing the monodentate motif A. The structures of L1H, (R,R)-dach, diphos, DMPZ and salen{tBu}H2 

are also shown. aOnly one of the two crystallographically independent complexes is shown. 

 

The 1.10 motif (A) is also found in unusual heteroleptic complexes [M(L2H2)2Cl2(H2O)2]Cl2 [29]-ALEJOQ, 

ALEJUW, ALEKAD, ALEKUX, ALELAE, ALELIM which contain a cationic form of the proligand L2H in which the two 

pendant amine groups are protonated (see Figure 8).  Complexes were isolated from the reaction of 
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bis(aminomethyl)phosphinic acid hydrochloride with metal(II) chloride hydrate in 6 M HCl, and have 

chloride ions in both the inner- and outer-coordination spheres, charge-balancing the ammonium 

groups, see for example [Co(L2H2)2Cl2(H2O)2]Cl2 (Figure 8). Similar structures are formed by Ca(II), 

Mn(II), Ni(II), Zn(II) and Cd(II). The complex [Mn(L3H)2Cl2(H2O)2] [30]-AMPMNC formed by the monoamino-

substituted proligand (Figure 8) is charge-neutral because the ligand L3H is present as a zwitterion. 

 

 
 

Figure 8. The mononuclear octahedral complexes [Co(L2H2)2Cl2(H2O)2] [29]-ALEKAD and 
[Mn(L3H)2Cl2(H2O)2] [30]-AMPMNC

  formed by the protonated zwitterionic form of L2H (L2H2
+ inset) and 

the zwitterionic form of L3H (also inset) in which the phosphinate groups display motif A. 

 

A feature of motif A binding is that an oxygen atom is available as a hydrogen-bond acceptor, providing 

a source of stability in heteroleptic complexes containing ligands with appropriately positioned H-

bond donors. Examples are the amine N-H to phosphinate H-bond in   [Ru(L1)(Ph3P)2(dach)] [25]-FIMMUK  

and the pyrazole N-H to phosphinate H-bonds in [Zn(L1)2(DMPZ)2] [27]-XAXKAJ (Figure 7). The 

hexanuclear manganese cluster [Mn6O2(L1)2(Me-sao)6(MeOH)4] [31]-PUWKEY contains only two (motif A) 
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diphenyl phosphinate ligands (Figure 9), and these are each strongly H-bonded to two coordinated 

methanol molecules. Together these define the caps on the two Mn3O triangles of the Mn6 cluster, 

which is otherwise typical of those showing single molecular magnetism [32,33]. Further examples of 

intracomplex H-bonding associated with other phosphinate binding motifs are shown below. These 

include the only examples of homoleptic complexes containing motif A.  

 

 
   

Figure 9. The hexanuclear manganese complex [Mn6O2(L1)2(Me-sao)6(MeOH)4] [31]-PUWKEY showing the 

H-bonding of the diphenyl phosphinate (motif A) to two capping methanol molecules. The complex is 

shown from two perspectives, and the structure of Me-sao2− is also defined. 

 

The other possible mononucleating mode for phosphinate ligands is the chelating 1.11 motif, B. Only 

three examples of this binding mode are found in the CSD, suggesting that formation of 4-membered 

metal chelates is much less favourable than other modes of coordination. An unusual feature of 
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[Bi(L4)Br(Ar)] [34]-DOXJAC (Figure 10), is that the bismuth achieves a coordination number of six by 

forming two π contacts with mesitylene groups present in both the phosphinate and aryl ligands. The 

complex [(tBu2POHOPtBu2)Pd(L5)] [35]-LANSAU (Figure 10) was prepared by oxygenation of [{Pd(μ-

PtBu2)(PtBu2H)}2], which resulted in formation of di(t-butyl)phosphinate and di(t-butyl)phosphinite 

ligands.  The latter are bound to the palladium atom via their phosphorus atoms and their oxygen 

atoms are linked by a proton.  The only other structure in the CSD containing the motif B is a very 

unusual Pd(II) complex in which the phosphinate is part of phosphacyclopentadienyl group which is 

also π-bonded to a Mn(CO)3 unit [36]-HEFBID. 
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Figure 10.  Structures of mononuclear complexes containing a motif B phosphinate: [Bi(L4)Br(Ar)] [34]-

DOXJAC showing the two π−contacts to mesitylene groups which lead to a coordination number of six 

and [(tBu2POHOPtBu2)Pd(L5)] [35]-LANSAU which contains an unusual phosphinite ligand. The structures 

of Ar, L4H and L5H are also shown. 

 

Dinucleating motifs: 

The only example of the 2.20 phosphinate motif (D in Figure 3) is part of the more complicated motif 

N (Figure 4) in which it is hydrogen-bonded to a neutral phosphinic acid ligand [37]-KAMXUS. This 

structure and examples of the related motif M are discussed in more detail below.  

 

The symmetrical µ2-bridging motif 2.11 (E in Figure 3) is the most prevalent in the CSD and is present 

in many clusters and polymers and networks showing a wide range of structural forms. 

 

The only dinuclear complex in the CSD which contains just one motif E bridge between two metal 

atoms is [(iPrO)3Zr(μ2-
iPrO)2(μ2-L1)Zr(L1H)(iPrO)2] [38]-QAXWOB. This is atypical of dinuclear structures, 

being unsymmetrical and having a neutral phosphinic acid coordinated to one of the zirconium atoms 

(L1H, in Figure 11). This allows both Zr(IV) atoms to have an octahedral O6 donor set in a neutral 

complex.   Figure 11 also provides examples of dinuclear complexes which contain two ([Al2(L1)2Cl4] 

[39]-VELMEE and [Ni2(L5)2(2,2’-dipy)2]2+ [40]-ABEQIJ) and three ([Co2(L6)3Cl] [41]-GAWPEB) phosphinate bridges 

between the metal atoms. In [Al2(L1)2Cl4] [39]-VELMEE and [Ni2(L5)2(2,2’-dipy)2]2+ [40]-ABEQIJ, the metal 

atoms show tetrahedral and octahedral geometry respectively, whilst [Co2(L6)3Cl] [41]-GAWPEB, is more 

unusual in having cobalt(II) atoms with different coordination numbers (six and four) at either end of 

the dinuclear complex. Octahedral O6-donor sets are present in the Mo(VI) complex [(L1)MoO2(μ2-

O)(μ2-L1)2MoO2(L1)]2- [42]-TIXKEQ which has an O2− and two diphenylphosphinate anions bridging the 

MoO2
2+ units and a monodentate (motif A) phosphinate completing the coordination sphere of each 

metal.   
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Figure 11.  Examples of structures of dinuclear complexes which contain one, [(iPrO)3Zr(μ2-
iPrO)2(μ2-

L1)Zr(L1H)(iPrO)2] [38]-QAXWOB, two, [(L1)MoO2(μ2-O)(μ2-L1)2MoO2(L1)]2- [42]-TIXKEQ and [Cl2Al(μ2-

L1)2AlCl2],[39]-VELMEE  [(2,2’-dipy)Ni(μ2-L6)2Ni(2,2’-dipy)]2+ [40]-ABEQIJ, and three, [(py)3Co(μ2-L7)3CoCl] [41]-

GAWPEB, bridging, motif E, phosphinates. 

 



14 
 

The two trinuclear complexes shown in Figure 12 have very different structures. In [F3Zr(μ2-L1)3Zr(μ2-

L1)3ZrF3] [43]-XEPRUF, the triple (motif E) phosphinate bridges between pairs of zirconium atoms defining 

a linear structure, whilst in [(μ3-O)(μ2-OH)2 (μ2-L1)(tBu2Sn)3]+ [44]-IPACUX,  the single μ2-L1− unit fulfils a 

similar role to the two bridging hydroxides to complete a metallocycle.   

 

 

Figure 12.  Linear and metallocyclic  trinuclear complexes [F3Zr(μ2-L1)3Zr(μ2-L1)3ZrF3] [43]-XEPRUF, and 

[(μ3-O)(μ2-OH)2 (μ2-L1)(tBu2Sn)3]+ [44]-IPACUX,  which contain bridging (motif E) phosphinate units, and in 

the tin complex also a μ3-O and two μ2-OH bridges. 

 

In the tetranuclear tin complex [Cl2Sn(Bu)(μ2-L1)2(μ2-OH)Sn(Bu)(μ2-L1)2Sn(Bu)(μ2-L1)2(μ2-OH)Sn(Bu)Cl2] 

[45]-JUMKOR (Figure 13) the outer pairs of n-butyltin units are linked by two motif E diphenyl 

phosphinates and a bridging hydroxide ion whilst the central pair has the just two motif E diphenyl 

phosphinate bridges. Such an arrangement allows all four tin atoms to adopt similarly distorted 

octahedral geometries.   
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Figure 13.  The linear zig-zag structure of the tetranuclear complex  [Cl2Sn(Bu)(μ2-L1)2(μ2-OH)Sn(Bu)(μ2-

L1)2Sn(Bu)(μ2-L1)2(μ2-OH)Sn(Bu)Cl2] [45]-JUMKOR  

 

The dinucleating motif E is also found in a large variety of cluster structures. These frequently contain 

single atom μ2-O and μ3-O linkages between the metal atoms. In cubane-like structures (a in Figure 

14), examples can be found where two, four or six of the O…O diagonals of the cube are bridged by 

phosphinates. There are only a few complexes containing just two diagonal-spanning phosphinates. 

These have complicated structures in which bulky bidentate or tridentate ligands compete with 

phosphinate for the diagonal sites as in [(μ3-{Aux1})4(μ2-L1)2Mn4]2+ [46]-NOJMUW. The occurrence of a 

variety of different ligands on the faces of the M4O4 cubes makes it difficult to display such structures. 

In Figure 14 the two diphenylphosphinates are located on opposite faces of the Mn(II)4O4 cube (see 

b). The four tridentate 2-bis(1-methyl-1H-benzimidazol-2-yl)ethanolate ligands provide the μ3-O 

corners of the cube and two of their imidazole nitrogen donor atoms form Mn…Mn bridges of the 

faces of the cube (see b).   
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Figure 14.  The M4O4-unit present in cubane-like structures (a) and examples of complexes in which 

two, four or six phosphinates (motif E) span the diagonals of the faces in [(μ2-L1)2(μ3-{Aux1})4Mn4]2+ 

[46]-NOJMUWa, (b) [(μ2-L8)4(μ3-O)4(MoO)4] [47]-AQOJAS (c) and [(μ2-L1)6(μ3-O)4Mn4] [48]-NAYSUBb (d). aThe 

dispositions of the four auxiliary ligands and the two phosphinates are shown separately (left and 

right). bFour crystallographically independent molecules have very similar structures.  

 

The tetranuclear complex [(μ2-L7)4(μ3-O)4(MoO)4] [47]-AQOJAS shown in Figure 14 has four of the cubane 

faces occupied by the phosphinate anion, 2,3-dihydro-1H-isophosphindole-2,2-dioxidate. The two 
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“bare” faces have Mo...Mo distances (see Figure 15) consistent with metal-metal bonding and the 

presence of oxo groups on all the metal atoms allows these to be assigned as Mo(V). This feature is 

common to seven other phosphinato-Mo4O4 clusters [47]-AQOHUK, AQOJAS, [49]-GACTAI, [50]-KAPTOM, KAPTUS, [51]-

NOBZAG, [52]-RAMXIN, RAXMIN01, [53]-SEBLAM, [54]-YAYXED. Despite having considerably different phosphinate 

ligands bridging the pairs of molybdenum atoms, the unbridged diagonals on the cubane unit have 

short Mo…Mo contacts distances falling in a fairly narrow range: 2.609 – 2.647 Å (see Figure 15). 

CSD code Composition Short Mo…Mo contact 

distances/Å 

AQOHUK [(μ2-L9)4(μ3-O)4(MoO)4] 2.629(2) & 2.624(2) 

AQOJAS [(μ2-L8)4(μ3-O)4(MoO)4]c 2.6433(7) & 2.6263(9) 

GACTAI [(μ2-L1)4(μ3-O)4(MoO)4]c 2.6395(6)a 

KAPTOM [(μ2-L7)4(μ3-O)4(MoO)4]c 2.6091(5) & 2.6158(5)b 

2.6197(5) & 2.6266(5) 

KAPTUS [(μ2-L7)4(μ3-O)4(MoO)4]c 2.6261(4) 

NOBZAG [(μ2-L10)4(μ3-O)4(MoO)4] 2.6230(9) & 2.6237(9) 

RAMXIN01 [(μ2-L1)4(μ3-O)4(MoO)4]c 2.642(2) & 2.639(2)b 

2.647(2) & 2.640(2) 

SEBLAM [(μ2-L1)4(μ3-O)4(MoO)4]c 2.635(6) & 2.635(4) 

YAYXED [(μ2-L11)4(μ3-O)4(MoO)4] 2.6110 & 2.6362 

 
Figure 15.  The two short Mo…Mo distances in the Mo4O4 cubane tetraphosphinate complexes 

AQOHUK [47], AQOJAS [47], GACTAI [49], KAPTOM [50], KAPTUS [50], NOBZAG [51], RAMXIN [52], 

RAMXIN01 [52], SEBLAM [53], YAYXED [54] and the structures of the phosphinate ligands present. 
aThe two Mo…Mo distances are symmetry related. b These structures have two cubane molecules per 

asymmetric unit. c Structures of L1H, L7H and L8H are given in Figures 7, 11 and 14. 

 

In the tetranuclear manganese complex, [(μ2-L1)6(μ3-O)4Mn4], (d in Figure 14) the Mn…Mn distances 

are too long to be associated with any significant bonding interactions. An analysis of the structure led 

the authors to conclude that the compound is an example of a “mixed-valence Mn(III)/Mn(IV) 
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complex” [48]-NAYSUB. Complexes of this type are of considerable interest as they have the potential to 

act as single molecule magnets (see below).  

 

There are several other cubane-type and related phosphinate structures in the CSD and examples of 

some of the variations of structures of this type are shown in Figure 16. In the tetranuclear complex 

[(μ2-L1)2(μ2-{Aux2})4(μ3-OMe)2Ni4(MeOH)6] [21]-FIQKUM (a) the Ni atoms lie in a plane. Two phosphinates 

provide motif E bridges between pairs of Ni atoms and the two methoxide groups provide μ3-linkages 

as in the cubane structures described above, but there are also four μ2-6-chloropyridin-2-olate units 

linking pairs of nickel atoms. 

 

The Mn12 cluster [(μ2-L1)8(μ2-acetate)8(μ3-O)12Mn12(H2O)4] [55]-VOQGAJ (b) is part of the family of Mn 

clusters which functions as single molecule magnets [56,57] and was studied to establish how 

replacement of carboxylate groups by phosphinate in previously well studied SMMs, e.g. [(μ2-

carboxylate)8(μ3-O)12Mn12(H2O)4], influence their structures and magnetic properties. The central 

MnIV
4O4 cubane core is retained and the remaining eight MnIII atoms (marked with an asterisk in Figure 

16) are attached via μ3-oxo bridges either to single Mn atoms on the vertices or to pairs of Mn atoms, 

spanning faces as shown in the diagram (c). The phosphinate and acetate ligands provide motif E 

bridges between pairs of Mn atoms but only the acetate ligands form bridges from the MnIV atoms of 

the cubane core to peripheral MnIII atoms. The shorter MnIV…MnIII distances (2.76 -2.78 Å) are 

presumably better suited to the O…O span (2.19 -2.29 Å) in the carboxylate than that in the 

phosphinate (3.38 – 3.62 Å). The eight peripheral Mn atoms are either linked by a single phosphinate 

bridge or by a phosphinate and acetate bridge (see c, Figure 14). The four water molecules in the 

cluster form stronger H-bonds to phosphinate oxygen atoms (O…O distances 2.64 - 2.90 Å) than to 

carboxylate oxygen atoms (O…O distances 3.36 – 3.40 Å). An analogous Mn12 cluster [(μ2-L1)9(μ2-

benzoate)7(μ3-O)12Mn12(H2O)4] [58]-AKIRAN with nine diphenylphosphinate and seven benzoate ligands 

has a very similar structure, suggesting that in general that dialkyl/arylphosphinates phosphinates are 

able to perform similar capping and bridging functions to carboxylates in metal cluster formation.  

When phenylphosphinic acid, PhHPO2H (L5H), was used to displace propionate groups from [(μ2-

propionate)16(μ3-O)12Mn12(H2O)4] it was oxidised in situ to phenylphosphonate and incorporated into 

a Mn22 cluster and a polymeric material containing Mn22 repeat units.[59]  
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Figure 16.  Tetranuclear, [(μ2-L1)2(μ2-{Aux2})4(μ3-OMe)2Ni4(MeOH)6] [21]-FIQKUM (a) and dodecanuclear, 

[(μ2-L1)8(μ2-acetate)8(μ3-O)12Mn12(H2O)4] [55]-VOQGAJ, (b) clusters containing motif E phosphinate. Only 

the ipso carbon atoms of the phenyl rings in the latter are shown and in (c) the acetate ligands have 

been removed and the outer Mn atoms labelled with asterisks.  

 

The versatility of the bridging motif E is manifest by numerous examples of it being present in 

polymeric and network structures. The double bridges between Co atoms in the [(μ2-L6)2Co]n [21]-PATKUR 
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and the alternating sequence of single and triple bridges between Be atoms in [(μ2-L9)Be((μ2-

L9)3Be]n[60]-HICZAU (Figure 17) allows the metal atoms to achieve their preferred tetrahedral 

coordination geometry in these linear homoleptic polymeric complexes. There are many other 

examples of chain structures containing one or two bridging (motif E) phosphinates between pairs of 

metal atoms but none which involve triple bridging between all pairs of adjacent metal atoms in linear 

polymers. 
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Figure 17. The homoleptic linear polymers [(μ2-L6)2Co]n [21]-PATKUR and [(μ2-L12)Be((μ2-L12)3Be]n [60]-HICZAU 

and a heteroleptic analogue, [(μ2-L1)2SnEt2]n [61]-NAGKAH viewed perpendicular to and down the chains. 

All contain motif E phosphinate. Only the α-carbon atom of the butyl groups in L12H and the ipso 

carbon atom of the phenyl groups in L1H are shown.   

 

The are no examples of large “wheel-type” oligomeric complexes similar to those formed by 

carboxylates [62–66] The largest cyclic phosphinate structure in the CSD is complex is [(μ2-L1)SnMe3]4 

[67]-PELZUB, shown in Figure 18, in which E-motif diphenylphosphinate bridges between pairs of tin 

atoms, occupying the axial sites in the metal's trigonal bipyramidal geometry. 

 

 
Figure 18. The heteroleptic cyclic tetramer [(μ2-L1)SnMe3]4 [67]-PELZUB. 
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Trinucleating motifs: 

Eleven compounds in the CSD contain simple trinucleating phosphinates. Only one, [(μ3-L1)Na(thf)]n 

[68]-QAJDEK, has the symmetrical 3.22 coordination mode (motif F), forming the linear polymeric sodium 

complex shown in Figure 19.   

 
 

Figure 19. The polymeric structure of [(μ3-L1)Na(thf)]n [68]-QAJDEK
, viewed perpendicular to and down 

the chain, showing the trinucleating (motif F) mode of coordination of diphenylphosphinate, [L1]−. For 

clarity only the ipso C atoms of the phenyl rings are shown. 

 

The unsymmetrical trinucleating motif G is more common. Examples of homo- and heteroleptic 

complexes, [(μ3-L9)2(μ2-L9)4Cu3]n [69]-RUQHUG and [{(μ3-L9)(CO)2Ru}2]n [70]-NULZOJ, formed by 

dimethylphosphinate are shown in Figure 20. The copper complex also contains dinucleating 

phosphinates. The compactness and multidenticity of the phosphinates, along with the plasticity [71] 

of the Cu2+ ions facilitates the formation of a “thick” linear polymer which contains both four and five 

coordinate copper atoms. 
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Figure 20. Homoleptic and heteroleptic complexes, [(μ3-L9)2(μ2-L9)4Cu3]n [69]-RUQHUG and [{(μ3-

L9)(CO)2Ru}2]n [70]-NULZOJ  in which dimethylphosphinate acts as a trinucleating (motif G) ligand. 

 

Tetranucleating motifs: 

The only examples of phosphinates functioning as tetranucleating ligands are found in the silver(I) 

complexes [(μ4-L1)2(μ2-{Aux3)2Ag4(BF4)2] [72]-ECESAI, and [(μ4-L1)2(μ2-{Aux4)2Ag4(CF3CO2)2] [73]-IDATAK. 

These involve the symmetrical 4.22 motif (I in Figure 3) which allows each phosphinate to address two 

metal-metal bonded Ag2
2+ units (Figure 21), with Ag…Ag distances falling in the range 3.0670(2) – 

3.523(1) Å. Different bisphosphines, Aux3 and Aux4, and the anions, BF4
− and CF3CO2

- also bridge the 

Ag2
2+ units in the two structures. 
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Figure 21. The tetranuclear silver(I) complexes [(μ4-L1)2(μ2-{Aux3)2Ag4(BF4)2] [72]-ECESAI, and [(μ4-L1)2(μ2-

{Aux4)2Ag4(CF3CO2)2] [73]-IDATAK, in which the deprotonated form of L1H exhibits motif I binding (only 

the ipso carbon atoms of its phenyl groups are shown).   

 

Pentanucleating motifs: 

 A phosphinate functioning as a pentanucleating ligand is found in three complexes [74]-FEQFEN, [75]-

DUGHIY, [76]-YEGLON in the CSD. In [(μ5-L1)(μ3-Aux5)2(μ2-Aux5)2Li6] [74]-FEQFEN (Figure 22) the 

diphenylphosphinate displays the 5.32 motif (K in Figure 3). The complex was obtained when a Horner-

Wittig reagent, the lithium derivative of (Ph2P=O)2CH2, was exposed to oxygen. The 

diphenylphosphinate formed is bound to five lithium atoms in the centre of the cluster and the 

bis(diphenylphosphinoyl)methanido carbanions which were present in the parent Horner-Wittig 

reagent are attached to either three or two lithium atoms.    
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Figure 22. The hexalithium cluster in [(μ5-L1)(μ3-Aux5)2(μ2-Aux5)2Li6].C6H6. [74]-FEQFEN For clarity only the 

ipso-carbon atoms of the phenyl groups in both the phosphinate and the bis(diphenylphosphinoyl)-

methanido ligands (Aux5) are shown; on the right the latter have been removed to allow the 

pentanucleating (motif K) attachment of the phosphinate to be seen more clearly. 

 

Diphenylphosphinate also displays motif K binding in the homoleptic polymer [(μ5-L1)2Ag2]n [75]-DUGHIY 

shown in Figure 23. 



26 
 

 

  

 

Figure 23. The linear polymer [(μ5-L1)2Ag2]n [75]-DUGHIY containing pentanucleating (motif K) 

diphenylphosphinate ligands. For clarity, only the ipso-carbon atoms of the phenyl groups are shown.  

 

Complexes formed by polyphosphinic acids. 

As mentioned earlier, we have chosen not to discuss at length the structures of complexes formed by 

potentially chelating diphosphinic acids such as L13H2 and L14H2 (Figure 24) because the mode of 

coordination of the phosphinate groups in these is likely to be constrained by the formation of chelate 

rings or by the strain induced in the ligand backbone by complexation of more than one phosphinate 

group. In many cases, the expected simple chelates are formed by diphosphinates which can form 6- 

or 7-membered rings. In [L13Be(H2O)2] [77]-AJOQEV both phosphinate groups display the simplest 1.10 

binding motif A and do not make contacts with other Be atoms, whilst in [(μ2-L14)2(2,2’-dipy)2Cu2] [78]-

BODVIA one of the phosphinate groups uses motif E binding to link to another Cu, forming the dinuclear 

complex shown in Figure 24.   
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Figure 24. Diphosphinic acids which form 6- and 7-membered chelate rings in the mononuclear 

[Be(L13)(H2O)2] [77]-AJOQEV and the dinuclear [(μ2-L14)2(2,2’-dipy)2Cu2] [78]-BODVIA complexes.   

L15H2 (Figure 25) is a phosphonic acid anhydride analogue of L13H2. It forms both the conventional 

mononuclear vanadium(V) complex [VO(L15)2]- [79]-RARZIT in which all [L15]− units display a 

mononucleating binding motif (A), whereas in the unusual tetranuclear spherical cluster [(μ3-L15)VO]4 

[80]-LICNOA they are dinucleating (motif E), creating the “ball-like structure”.  
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Figure 25. Mono- and tetra-nuclear complexes, [VO(L15)2]- [79]-RARZIT and [(μ3-L15)VO]4 [80]-LICNOA of the 

phosphonic anhydride L15H2  analogous to the bisphosphinic acid L13H2 .  

In many complexes of polyphosphinates the individual phosphinate groups also fulfil bridging roles 

and display many of the polynucleating motifs listed in Figure 3. Unusual networks and metal organic 

frameworks (MOFs) can result. When L13H2 is used in conjunction with the non-chelating auxiliary 

ligand bpye (see Figure 26) a tubular 1D MOF, [(μ2-L13)2(μ2-bpye)Cu2]n
 [81]-CEKHEH results which can be 

obtained in both micro- and nano-crystalline forms. The rate of CO2 uptake is much greater in the 

latter.   
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Figure 26. Views of [(μ2-L13)2(μ2-bpye)Cu2]n

 [81]-CEKHEH showing the tubular 1D MOF and the 

dinucleating (motif E) binding of each phosphinate in [L13]2− (right). In the latter, only the ipso- carbon 

atoms of the phenyl groups in L13 are shown.  

 

The incorporation of two phosphinic acid groups in the non-chelating framework of L16H2 (Figure 27) 

is more interesting because, when used in conjunction with the non-chelating 4,4’-dipyridyl ligand, it 

generates polymeric complexes with 2-D and 3-D networks. In the copper complexes shown, the 

phosphinate groups are mononucleating (motif A) in {[(μ2-L16)(μ2-4,4'-bipy)Cu(H2O)2].2H2O}n [15]-

QUTXIN, resulting in a two dimensional network, whilst in [(μ4-L16)(μ2-4,4'-bipy)Cu]n [15]-QUTXOT they are 

dinucleating (motif E) and crosslink sheets to generate a three dimensional structure. The latter 

resembles a metal organic framework [82–84] but the pores are not large enough to incorporate guest 

molecules.   
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Figure 27. The two- and three-dimensional network structures {[(μ2-L16)(μ2-4,4'-bipy)Cu(H2O)2].2H2O}n 

[15]-QUTXIN and [(μ4-L16)(μ2-4,4'-bipy)Cu]n [15]-QUTXOT with the motif A coordination of the phosphinate 

marked in the former and the motif E (bridging mode) in the latter. For clarity, the waters of 

crystallisation are omitted from the former.   

 

Complexes of H-bonded phosphinic acid/phosphinate units. 

 

The 1.1001 motif (M in Figure 4) allows phosphinic acid dimers to retain an intermolecular hydrogen 

bond when one of the acidic hydrogen atoms is replaced by a metal cation (see Figure 2). Phosphinic 

acids form one of the most stable types of organic acid dimers [85], both in solution [86] and the gas 

phase [87,88]. The high dimerization enthalpy determined for dimethyl phosphinic acid (100 kJ mol-1) 

has been reproduced using DFT calculations with large basis sets,3 and helps to account for the 
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retention of a H-bond on formation of metal complexes (see Figure 2). In the solid state, metal-free 

phosphinic acids exist in polymeric H-bonded forms such as (L1H )n [89]-DPPHIN01, see Figure 28, as well 

as 8-membered ring dimers such as (L5H)2 [90]-DTBUPA01. 

 

 
Figure 28. Examples of the two structural types, polymers and dimers, shown by phosphinic acid 

proligands: (L1H )n [89]-DPPHIN01, and (L5H)2
 [90]-DTBUPA01. 

 

Whilst motif M is relatively uncommon in the solid-state structures (there are 7 occurrences in the 

CSD), it is thought to be an important form in the hydrocarbon solvents used in commercial metal 

solvent extraction processes [16,17]. Three examples of heteroleptic complexes [Hg(L1.L1H)2py2] [91]-

UDAKEQ, [Co(L1.L1H)2(DMF)2] [92]-GEPBEI and [Ni(L1.L1H)2(DMF)2] [93]-SAXPEN are shown in Figure 29. These 

have the two monodentate ligands in a trans arrangement with the two (L1.L1H)− anions defining an 

approximately planar MO4 unit in which the disposition of the four oxygens atoms deviates 

considerably from a square. The bite angles defined by the (L1.L1H)− chelating units are 85.0,[91]-UDAKEQ 

91.6 [92]-GEPBE Iand 91.5º [93]-SAXPEN in [Hg(L1.L1H)2py2], [Co(L1.L1H)2(DMF)2] and [Ni(L1.L1H)2(DMF)2] 

respectively.        
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Figure 29. Mononuclear  heteroleptic complexes [Hg(L1.L1H)2py2] [91]-UDAKEQ, [Co(L1.L1H)2(DMF)2] [92]-

GEPBEI and [Ni(L1.L1H)2(DMF)2] [93]-SAXPEN containing the 1.1001 motif (M in Figure 4) with an 

intermolecular H-bond between coordinated ligands.  

 

Homoleptic complexes containing the 1.1001 (motif M) are formed by the bulky proligand 

biscamphorylphosphinic acid, L17H. Three examples are shown in Figure 30. The cobalt(II) complex, 

[Co(L17.L17H)2] [94]-IHAJUX, is tetrahedral with O-Co-O angles falling in the range 99.2-115.7o.  In the 

pseudo-octahedral nickel(II) complex [Ni(L17.L17H)2] [94]-IHAKAE the two M motif units define an NiO4 

plane with mean Ni-O lengths 2.033 ± 0.008 Å and camphoryl oxygen atoms lie in axial sites with Ni-O 

distances of 2.153 Å. A much less regular geometry is observed in the complex [[Pb(L17.L17H)2] [94]-

IHAKEI  with O-Pb-O angles falling in the range 80.7-92.7o.  
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Figure 30. Mononuclear homoleptic complexes [Co(L17.L17H)2] [94]-IHAJUX (upper left), [Ni(L17.L17H)2] 

[94]-IHAKAE (upper middle) and [[Pb(L17.L17H)2] [94]-IHAKEI (upper right) containing the 1.1001 motif (M in 

Figure 4) with an intermolecular H-bond between coordinated ligands. The structures of L17H (lower 

left) and (L17.L17H) (lower right) are also shown. 

 

There is one other binding motif which can be found in the CSD for a dimeric form of a phosphinic 

acid. As in the 1.1001 motif discussed above, the 2.2001 motif (N in Figure 4), has a phosphinate H-

bonded to phosphinic acid, but in this case the phosphinate is dinucleating. There are only two 

examples in the CSD, both of which are dilithium complexes, [(μ2-L1)2(thf)2(μ2-L1H)2Li2] [95]-ALUGEU, and 

[(μ2-L1)2(acetone)2(μ2-L1H)2Li2] [37]-KAMXUS, differing only in in the nature of a monodentate neutral 

ligand, thf or acetone (X in the connectivity diagram shown on the top right of Figure 31).  
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Figure 31.  The dilithium complexes [(μ2-L1)2(thf)2(μ2-L1H)2Li2] [95]-ALUGEU,  and [(μ2-L1)2(acetone)2(μ2-

L1H)2Li2] [37]-KAMXUS, showing the H-bonds between the phosphinic acid and phosphinate ligands (motif 

N). Only the ipso-carbon atoms of the phenyl groups in L1 are shown. 

 

The association of coordinated phosphinic acid and phosphinate molecules in metal complexes is 

favoured by the strong H-bond donor/acceptor capabilities of the former/latter. As mentioned earlier, 

many heteroleptic complexes which contain ligands with appropriately positioned H-bond donor 

groups, are stabilised by these bonding to phosphinate oxygen atoms (see for example 

[Ru(L1)(Ph3P)2((R,R)-dach)], and [Zn(L1)2(DMPZ)2], in Figure 7).  

 

The strong H-bond acceptor capability of phosphinates also allows them to act as “outer sphere” 

ligands. An example [96]-BUNFAS is shown in Figure 32 in which the three μ2-hydroxy groups in the 

cationic [(μ3-O)(μ2-OH)3(μ2-L18)(PhSn)3]+ molecule all form hydrogen bonds with the phosphinate 

counter anion, [L18]−. 
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Figure 32.  [(μ3-O)(μ2-OH)3(μ2-L18)3(PhSn)3][L18] [96]-BUNFAS, showing the “outer sphere coordination” of 

the phosphinate counter anion [L18]− via H-bonding to three μ2-hydroxy ligands. The inner sphere 

phosphinates all display motif E binding.   

 

Conclusions 

An analysis of the 552 structures of complexes in the CSD has revealed that phosphinate ligands show 

10 different modes of coordination to metal ions. Their versatility is manifest by their ability to form 

complexes with metal cations from all regions of the periodic table. High nuclearity complexes are 

more prevalent with “hard” s- and p-block metals but pentanuclear Ag(I) complexes are also known.    

 

Bridging to generate oligomeric or polymeric complexes is more common than the formation of 

mononuclear complexes. There are only 3 examples of the latter in which a phosphinate forms a 4-

membered chelate (a in Figure 33). Non-chelating monodentate binding is more common and this is 

often stabilised by the uncoordinated oxygen atom of a phosphinate interacting with a H-bond donor 

group in an adjacent ligand as illustrated in (b) in Figure 33.  Examples of such behaviour include 

neutral phosphinic acid molecules, and this is thought to facilitate transport into a water-immiscible 

solvent in liquid:liquid extraction processes by generating hydrophobic complexes in which the outer 

sphere is largely composed of the alkyl or aryl groups on the ligands.  
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Figure 33. Mononucleating motifs in which the phosphinate ligand is chelated to the metal ion (a) or 

is monodentate and accepts a H-bond donor from an adjacent ligand (b). Also shown is the most 

common dinucleating motif (E) in which the metal atoms are also bridged by a μ2-hydroxy or μ2-oxo 

group (c).  

 

The most common binding mode, motif E, is frequently found in phosphinate complexes that also 

have a μ-hydroxy or oxo group bridging the metal centres (see (c) in Figure 33, examples of which can 

be found in Figures 11, 12, 13, 14, 16 and 32 above).  Such subunits provide very plausible models for 

the attachment of phosphinates to oxidised metal surfaces or to metal oxides, accounting for their 

uses as corrosion inhibitors, lubricant additives, adhesion promoters and pigment dispersants.    

 

The structural motifs of phosphinate ligands listed in Figures 3 and 4 are very similar to those which 

are possible for carboxylate ligands [97,98] and consequently there are similarities in their 

coordination chemistry.  However, based on the occurrence of structures in the CSD, the propensity 

to form polymeric complexes using M-O-X-O-M links (based on motif E etc.) appears to be more 

pronounced for phosphinates. It is possible that the tendency to form “high density” polynuclear 

clusters partly accounts for the relatively few examples of “open” polynuclear (MOF-type) structures, 

but it is also possible that there have been fewer attempts to synthesise phosphinate-containing MOFs 

than carboxylate analogues.      
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Appendix. A listing of the CSD codes of complexes containing phosphinates with the binding motifs A 
– L shown in Figure 3. Structures containing motifs M and N involving dimeric ligands (Figure 4) are 
included in the counts of complexes containing their components, A and D.  Some CSD codes appear 
more than once in the table because these structures contain phosphinates with more than one 
binding motif.   
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