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Abstract 

 

Despite the fact that synaesthetes experience additional percepts during their inducer-concurrent associations that 

are often unrelated or irrelevant to their daily activities, they appear to be relatively unaffected by this potentially 

distracting information. This might suggest that synaesthetes are particularly good at ignoring irrelevant perceptual 

information coming from different sensory modalities. To investigate this hypothesis, the performance of a group 

of synaesthetes was compared to that of a matched non-synaesthete group in two different conflict tasks aimed at 

assessing participants’ abilities to ignore irrelevant information. In order to match the sensory modality of the task-

irrelevant distractors (vision) with participants’ synaesthetic attentional filtering experience, we tested only 

synaesthetes experiencing at least one synaesthesia subtype triggering visual concurrents (e.g., grapheme–colour 

synaesthesia or sequence–space synaesthesia). Synaesthetes and controls performed a classic flanker task (FT) and 

a visuo-tactile cross-modal congruency task (CCT) in which they had to attend to tactile targets while ignoring 

visual distractors. While no differences were observed between synaesthetes and controls in the FT, synaesthetes 

showed reduced interference by the irrelevant distractors of the CCT. These findings provide the first direct 

evidence that synaesthetes might be more efficient than non-synaesthetes at dissociating conflicting information 

from different sensory modalities when the irrelevant modality correlates with their synaesthetic concurrent 

modality (here vision). 
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1. Introduction  

 

Synaesthesia is a rare, non-pathological condition in which the experience of certain stimuli, 

known as inducers (e.g., sounds, shapes, or meanings), automatically and involuntarily trigger 

the perception of additional stimuli, called concurrents (e.g., Ward, 2013). Inducer-concurrent 

associations are arbitrary and highly specific, and they tend to remain constant over time. For 

specific groups of synaesthetes, such as sound–colour synaesthetes, who experience automatic 

colour sensations elicited by sounds or music (e.g., Ward et al., 2006), only the presentation of 

highly specific perceptual inducers activates synaesthetic concurrents (e.g., Arnold et al., 2012; 

Witthoft and Winawer, 2006). However, for a large majority of synaesthetes, the experience of 

the concurrent is triggered by the general concept regardless of the sensory modality which it 

is internally or externally activated (Chiou and Rich, 2014; Rich et al., 2005; Simner, 2012). 

That is, for most synaesthetes, concurrents are activated both by thinking about them or by, for 

example, seeing or hearing its verbal label. For instance, in sequence–space synaesthesia for 

months (or calendar–form synaesthesia), thinking, hearing, or reading about the months of the 

year elicits a visuo-spatial representation of this ordinal sequence arranged in specific forms 

like circles or lines (e.g., Jonas and Price, 2014).     

For this reason, the quality of synaesthetic associations has often been compared to that of 

typical cross-modal correspondences experienced by the general population and links between 

synaesthesia and multisensory processes have been suggested by different lines of research. For 

example, similar associations between brightness and pitch (e.g., Ward et al., 2006), colours 

and textures (e.g., Moos et al., 2013), letters and colours (e.g., Rouw et al., 2014), or sounds 

and symbolisms (e.g., Milan et al., 2013) have been described for both synaesthetes and non-

synaesthetes. Moreover, some researchers have explicitly hypothesised strong overlaps 

between the brain mechanisms responsible for the integration of information coming from 

different sensory pathways (i.e., multisensory integration) and synaesthesia (e.g., Bankieris and 

Simner, 2015; Bien et al., 2012; Simner et al., 2011; Ward et al., 2006). Specific brain areas of 

the parietal cortex are well known to play a key role in both synaesthetic and non-synaesthetic 

multisensory integration processes. For example, increased connectivity between parietal and 

early sensory areas has been observed to facilitate reaction times to audio-visual stimuli, aiding 

multisensory binding, in typically developed individuals (e.g., Brang et al., 2013). Similarly, 

integration of synaesthetic associations has been suggested to be mediated by the parietal lobe 

(either through excessive connections with other brain areas responsible for sensory processing 

— cross-activation hypothesis, Ramachandran and Hubbard, 2001; or through reduced 
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inhibitory mechanisms — disinhibited-feedback hypothesis, Grossenbacher and Lovelace, 

2001). Furthermore, transient disruption of parietal areas has been observed to directly hinder 

synaesthetes’ abilities to experience inducer-concurrent associations (Esterman et al., 2006; 

Rothen et al., 2010). Taken together, these studies provide initial converging evidence that 

synaesthesia and multisensory integration might share a common neural substrate.  

A defining feature of synaesthesia is the automatic experience of irrelevant percepts elicited 

by the inducers. Once the triggering stimulus has been processed, the perception of the 

synaesthetic concurrent is involuntary (e.g., Chiou et al., 2013). This means that synaesthetes 

frequently and unpredictably experience irrelevant and potentially distracting percepts. For 

example, number–colour synaesthetes cannot avoid constantly perceiving numbers, which are 

a common — and, often, random — occurrence in daily life, as specific colours. However, 

phenomenological reports suggest that many synaesthetes do not consider their inducer-

concurrent associations as a source of cognitive interference. For example, in a study conducted 

by Rich et al. (2005) on the implications of grapheme–colour synaesthesia, participant KP 

illustrated this point reporting that: “It’s kind of like looking at your own nose — if you try, 

you can see it clearly, but you don’t walk around the whole time ‘seeing’ your nose” (see Day, 

2005 for other phenomenological testimonies). This observation might indicate that, although 

synaesthetes cannot avoid experiencing their synaesthetic associations, they are able to ignore 

the concurrents whenever necessary. Thus, synaesthetes are likely to be particularly effective 

at rejecting irrelevant information coming from their synaesthetic associations. One interesting 

question is whether this ‘special’ filtering ability is extended beyond their specific synaesthetic 

associations. Or, in other words, do synaesthetes have enhanced filtering or selective attention 

abilities? 

Evidence in this respect is limited. The majority of attention studies on synaesthesia have 

focussed on the role of attention in synaesthetic perception (see Rich and Mattingley, 2013 for 

an extensive review on the topic), and not on synaesthetes’ general attentional skills. The impact 

of task-irrelevant information on performance is typically measured in the lab with classic 

conflict tasks such as the Stroop task (Stroop, 1935), the Eriksen flanker task (Eriksen and 

Eriksen, 1974), or the Simon task (Simon and Wolf, 1963), providing a measure of participants’ 

attentional abilities. Only a few investigations have directly compared synaesthetes and non-

synaesthetes’ performance on these tasks, obtaining contrasting results. Van der Veen and 

colleagues (2014) measured synaesthetes’ behavioural and blood-oxygen level dependent 

(BOLD) responses in the classic Stroop task and observed that they were less sensitive than 

controls to the interference caused by the task-irrelevant stimuli, suggesting increased 
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attentional abilities. However, other studies have failed to observe behavioural differences 

between synaesthetes and non-synaesthetes in several classic conflict tasks (Stroop task: 

Mattingley et al., 2001; 2006; Rouw et al., 2013; flanker task: Rouw et al., 2013).  

One possible reason for these conflicting results is that the classic conflict tasks used to 

assess selective attention in synaesthetes do not engage the same filtering mechanisms that 

allow synaesthetes to ignore their irrelevant concurrents. If the activation of the synaesthetic 

concurrent engages multisensory mechanisms, then the attentional filtering of these irrelevant 

percepts might involve intermodal attention, which is responsible for the filtering of 

information coming from an irrelevant sensory modality. Importantly, neuroimaging evidence 

has shown that attention to specific features such as stimulus location and attention to stimuli 

of specific sensory modalities are mediated by different mechanisms with intermodal attention 

operating by selective modulation of modality-specific areas (e.g., Eimer and Schröger, 1998; 

Macaluso et al., 2002; Talsma and Kok, 2002). Thus, rather than general selective attention 

abilities, synaesthetes might have enhanced intermodal filtering abilities. 

Indirect support for the hypothesis that synaesthetes might be better than controls at 

ignoring an irrelevant sensory modality emerged from recent studies investigating synaesthetes’ 

multisensory integration processes. In two different studies (Neufeld et al., 2012; Sinke et al., 

2014), synaesthetes and controls were asked to experience well-established multisensory 

illusions. Specifically, the Double-Flash Illusion (Shams et al., 2000), which consists of the 

presentation of a flash accompanied by two beeps creating the false perception of two flashes 

instead of one; and the McGurk Illusion (McGurk and MacDonald, 1976), which arises when 

two different visual and auditory semantic stimuli that are shown simultaneously are perceived 

fuse into a new percept. The illusions occur when incongruent information from different 

sensory modalities is presented approximately at the same time and from the same location. 

Stronger multisensory integration typically results in stronger and more frequent illusory 

perceptions and thus synaesthetes were expected to show stronger susceptibility to the illusions. 

However, both studies found that synaesthetes experienced fewer double-flash (Neufeld et al., 

2012) and McGurk illusions (Sinke et al., 2014) than non-synaesthetes.  

Whilst these results might suggest weaker multisensory integration in synaesthetes, 

reduced rates of illusory perception could also be explained by enhanced intermodal filtering 

attention abilities. Multisensory integration processes in general (see Koelewijn et al., 2010; 

Talsma et al., 2010; and Tang et al., 2015 for in-depth reviews), and (at least some) 

multisensory illusions, are known to be modulated by attention. For example, examination of 

the early occipito-temporal PD110/PD120 ERPs components showed that the perception of the 
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double-flash illusion was diminished when endogenous spatial attention was directed away 

from the stimuli (e.g., Mishra et al., 2010). Susceptibility to the same illusion was also reduced 

when transcranial magnetic stimulation (TMS) was applied to disrupt extrastriate regions 

involved in selective attention (especially the right cortex) (e.g., Kamke et al., 2012). Even 

though perceptual illusion tasks have been typically used to measure the strength of 

multisensory integration (e.g., Stevenson et al., 2014), participants are explicitly instructed to 

ignore one sensory modality while completely focusing on the other. Hence, it is possible that 

the reduced illusory susceptibility observed in synaesthetes might have been the consequence 

of increased intermodal filtering abilities rather than reduced integration capacities (Neufeld et 

al., 2012).  

The aim of the present study was to directly investigate this hypothesis. If synaesthetes are 

especially efficient at ignoring irrelevant distractors in a different sensory modality, this 

advantage should be evident in tasks that are typically used to measure intermodal selective 

attention (i.e., the ability to select a relevant sensory modality over another). To address this 

issue, we compared the performance of a group of synaesthetes to that of a matched group of 

non-synaesthetes in the cross-modal congruency task (CCT; Spence et al., 1998), which is a 

well-known paradigm used to measure multimodal interactions in typically developed 

individuals as well as clinical populations (e.g., schizophrenia — Stekelenburg et al., 2013; 

autism spectrum disorder — Foss-Feig et al., 2010; dyslexia — Facoetti et al., 2010; dyspraxia 

— Bair et al., 2012). In one version of this task (Pavani et al., 2000; Spence et al., 2004), 

participants are asked to make speeded judgements regarding the elevation of tactile stimuli 

(i.e., vibration bursts) presented to the index finger (top location) and thumb (bottom location) 

of either hand, whilst ignoring concurrent visual flashes presented close to the same top–bottom 

body locations. The visual and tactile stimuli are either shown at the same location (congruent; 

top flashes –index finger bursts or bottom flashes–thumb bursts) or at different locations 

(incongruent; top flashes–thumb bursts or bottom flashes–index finger bursts). Responses are 

faster and more accurate on congruent than incongruent trials giving rise to a consistent 

congruency effect (CE). Thus, the CE can be considered a measure of the strength of intermodal 

selective attention abilities: the smaller the CE, the stronger the capacity to filter out irrelevant 

stimuli in a second sensory modality.  

In an attempt to keep the congruency task as close as possible to the type of attentional 

filtering synaesthetes might naturally experience, we matched the sensory modality of the task-

irrelevant distractors in the CCT with the sensory modality of synaesthetes’ concurrents. Since 

the most common forms of synaesthesia involve visual concurrents, only synaesthetes with at 
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least one synaesthesia subtype involving vision as the concurrent modality (e.g., synaesthetes 

with grapheme–colour synaesthesia or sequence–space synaesthesia; from now on labelled as 

–visual synaesthetes) were tested on a multimodal conflict task in which vision was the task-

irrelevant modality. The CCT was therefore aimed at measuring the same cognitive components 

engaged during synaesthetic filtering. We predicted that if synaesthetes’ constant need to 

disregard their automatic and irrelevant synaesthetic associations is generalised to other non-

synaesthetic multimodal stimuli, they should show a smaller CE in the CCT compared to non-

synaesthetes, reflecting enhanced intermodal selective attentional abilities. 

In addition, to assess general filtering skills differences between synaesthetes and non-

synaesthetes, we asked participants to perform the Eriksen flanker task (FT; Eriksen and 

Eriksen, 1974). The FT is a well-established paradigm that has been widely used to assess 

distractor inhibition and response competition (see Eriksen, 1995 for an historical review) and 

a variation of this task is part of the attention network task (ANT), which is routinely used to 

measure the executive control network of attention in developmental and clinical settings (e.g., 

MacLeod et al., 2010). Participants are typically asked to make speeded choice responses to a 

central target whilst ignoring the irrelevant distractors (flankers) presented at the periphery. 

Targets and distractors are mapped to congruent and incongruent conditions and the flanker 

effect (FE) (i.e., difference in mean reaction times and error rates between incongruent and 

congruent trials) reveals the difficulty to ignore the irrelevant distractors and thus the strength 

of participants’ filtering abilities. If the cognitive mechanisms activated during the management 

of irrelevant synaesthetic sensations and irrelevant information in the flanker task are at least 

partially overlapping, synaesthetes should also show an advantage at distractor filtering in the 

FT. 

 

 

 

 

 

 

2. Material and methods  

 

2.1. Participants 
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Sixteen –visual synaesthetes and 18 age-matched non-synaesthetes participated in the study 

(demographics are reported in Table 1). All synaesthetes experienced at least one synaesthesia 

subtype involving vision as the concurrent modality. Two additional synaesthetes were 

excluded from the study for failing this criterion. All participants reported no known 

neurological illness and normal or corrected-to-normal vision. The study was approved by The 

University of Edinburgh’s Psychology Research Ethics Committee and followed the ethical 

guidelines laid down in the Helsinki Declaration. Participants were recruited via the 

University’s employment website and convenience sampling, and they received a small 

monetary compensation (£7–12). Informed consent was obtained from all participants.  

 

Table 1. 

Descriptives and chi-square (χ2) and t-statistics of the groups’ demographics. 

 
Synaesthetes Non-synaesthetes Statistics 

N (male) 14 (2) 14 (4) χ2(1) = 0.55,  p = 0.46 

Age (SD) 25.7 (2.77) 24.1 (2.34) t(32) = 1.86, p = 0.072 

Handedness (left) 15 (1) 18 χ2(1) = 1.16, p = 0.28 

Nº of native languages* (SD) 1.13 (.34) 1.22 (.55) t(32) = 0.61, p = 0.545 

Level of education** (SD) 3 (.73) 2.83 (.62) t(32) = 0.72, p = 0.48 

 

N = Sample size; SD = Standard Deviation.  

* Nº of native languages: 1 = Monolingual, 2 = Bilingual, 3 = Polylingual. 

** Level of education: 1 = High School, 2 = Undergraduate, 3 = Master, 4 = PhD, 5 = Postdoc. 

 

Almost all of the synaesthetes reported multiple types of synaesthesias. The majority of 

them experienced synaesthesias related with –colour (as the concurrent) and/or sequence–space 

synaesthesias. Some of them also experienced ticker-tape synaesthesia (i.e., seeing spoken 

words or thoughts as ‘subtitles’; e.g., Chun and Hupé, 2013), mirror synaesthesias (i.e., 

experiencing tactile sensations in response to other people being touched or getting hurt; e.g., 

Ward and Banissy, 2015), or ordinal–linguistic personification synaesthesias (i.e., attribution 

of personalities and/or genders to linguistic sequences such as numbers or letters; Simner and 

Holenstein, 2007) (see Table 2 for a detailed summary of the types of synaesthesias presented 

by each participant).  

Table 2. 

Detailed summary of the types of synaesthesias and Synesthesia Battery scores (when applicable) presented 

by each participant of the synaesthete (S) group. 

Participant –colour SSS Other –visual Mirror– OLP 

S1 emotions months   letters  



ENHANCED CROSS-MODAL ATTENTION IN SYNAESTHETES                                             DOI:10.1163/22134808-00002566 

 

8 

 

flavours 

odours 

personalities 

notes 

weeks 

numbers 

S2 months (0.69) 

weekdays (0.70) 

years 

months 

numbers 

weeks 

years 

   

S3  alphabet 

months 

notes 

numbers 

weeks 

years 

   

S4 letters (0.52) 

months (0.75) 

 

 

  letters 

numbers 

S5 months (0.33) 

numbers (0.98) 

    

S6  alphabet 

months 

numbers 

weeks 

years 

music–patterns   

S7 months (0.59) 

numbers (0.49) 

weekdays (0.78) 

years 

alphabet 

hours 

months 

numbers 

weeks 

years 

  numbers 

S8  months 

numbers 

weeks 

   

S9 letters (0.38) 

letters — Chinese (0.50) 

numbers (0.38) 

weekdays (0.48) 

    

S10 pain months 

numbers 

weeks 

   

S11  months    

S12 months (0.72) 

weekdays (0.74) 

  touch 

pain 

 

S13  months 

years 

ticker-tape   

S14 weekdays (0.55)     

S15 letters (0.43) 

music (0.605) 

numbers (0.43) 

words 

alphabet  

months 

notes 

numbers 

weeks 

years 

music–patterns 

voices–patterns 

  

S16 personalities 

voices 

weekdays 

numbers 

years 

  letters 

 

Numbers in brackets correspond to the scores obtained in the Synesthesia Battery (Eagleman et al., 2007) by each 

participant. SSS = Sequence–space synaesthesias, OLP = Ordinal linguistic personifications. 

Participants were divided into synaesthetes and non-synaesthetes following the completion 

of an ad-hoc synaesthesia screening interview adapted from Banissy et al. (2009) and Kusnir 

and Thut (2012). The interview thoroughly explored all currently known types of synaesthesia 

(Day, 2014) inquiring about the frequency, constancy, location, and stability people self-
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reportedly experienced each type of synaesthetic association. Participants who manifested some 

type of grapheme–colour or sound–colour synaesthesia further completed the Synesthesia 

Battery (SB) (Eagleman et al., 2007). The SB is a standardised battery which measures the 

internal consistency of the synaesthetic experience for colour for several triggers including 

letters, numbers, weekdays, months, piano scale, chords, and instruments. Scores below 1.0 

indicate the presence of synaesthesia, whereas scores of 1.0 or above indicate the absence of it. 

Synaesthetes who completed the test obtained, on average, a score of 0.60 points (the specific 

scores obtained by each participant who completed the SB can be found in Table 2). Following 

the methodological procedures of previous studies (e.g., Havlik et al., 2015; Price, 2009; Rizza 

and Price, 2012), participants who responded yes to the interview question “Do you see any of 

the following items as being arranged in specific patterns in space? I.e., the alphabet, the days 

of the week, the months, the numbers, the musical notes, and/or other”, were further prompted 

to describe (i.e., “How often do you see it?”, “Does the arrangement always have the same 

pattern?”, “Where do you see it?”, “When did you start seeing it?”, etc.) and to draw their 

sequences. The descriptions and drawings were analysed in detail and their phenomenology 

was established consistent with the proprieties of synaesthesia in general and of space–sequence 

synaesthesias in particular (e.g., Cytowic, 2002; Price and Mentzoni, 2008; Sagiv et al., 2006). 

All synaesthetes were classified as ‘associators’ (i.e., perception of the synaesthetic sensations 

in their ‘mind’s eye’ — as opposed to ‘projectors’, who experience them outside their body; 

Dixon et al., 2004), after being specifically asked about the locus of their synaesthetic 

perceptions through relevant questions adapted from previous studies (e.g., Rouw and Scholte, 

2007; Skelton et al., 2009): e.g., “Do you see the colours superimposed on the letters? Or are 

the letters not coloured, but you are aware that they have specific associated colours?” 

  

2.2. Experimental Process 

 

The study took place in a dimly lit, sound attenuated room. Participants sat in a comfortable 

chair and rested their heads in a chinrest to maintain a constant distance from the stimuli 

displays. Stimuli presentation for both tasks was controlled and responses were recorded via E-

Prime 2.0® software and hardware (Serial Response Box 200A®, Psychology Software Tools). 

Each participant performed the two tasks: the cross-modal congruency task (CCT) and the 

flanker task (FT). The order of the tasks, as well as the stimulus-to-response mapping for the 

CCT task (see Section 2.2.1), were counterbalanced between participants. Before the beginning 
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of each task, participants completed a practice block (12 trials) which was repeated if necessary. 

The study lasted approximately 60 minutes. 

 

2.2.1. Cross-Modal Congruency Task (CCT) 

The CCT task was based on Pavani et al.’s (2000) and Spence et al.’s (2004) studies. A black 

rectangular cuboid (70 × 35 × 35 mm) was positioned on the table in front of the participants 

(23 cm from the table edge where the chinrest was attached) and aligned with their body 

midline. Participants held the cuboid with the index finger and thumb of their dominant hand 

(placed on the top and bottom ends of the cuboid, respectively). Two tappers used to deliver 

the tactile targets were attached to the participants’ hand, one to the index finger and one to the 

thumb (Miniature Solenoid Tappers-3 and Miniature Solenoid Controller-3.4® hardware, 

Mechanical and Electronic Solve). To mask the sound of the tappers, white noise (44.1 kHz 

frequency) was presented via headphones throughout the task at 60 dB(A). Two LED lights 

(diameter = 2 mm), used to present the visual distractors, were attached to the cuboid, one at 

the top and one at the bottom, next to the participants’ fingers (controlled via Heijo Basic Visual 

Controller 291VISB® hardware, Heijo Research Electronics). A white pin at the centre of the 

cuboid served as fixation point.  

Tactile and visual stimuli were presented in this task. On each trial, a tactile target was 

presented either to the top or bottom finger and consisted of three 50 ms onset periods during 

which a rod made contact with the skin, interleaved by two 50 ms offset periods. The visual 

distractor (illumination of the top or bottom LED) consisted of three successive 50 ms green 

flashes separated by two 50 ms offset periods (250 ms total duration). Each trial started with 

the presentation of the stimuli (250 ms), followed by a 1,550 ms empty interval in which 

responses were collected (total response window of 1,800 ms following stimulus onset), and by 

a variable inter-trial interval (ITI) randomly selected between 100 and 500 ms. Three different 

types of trials were presented: congruent, incongruent, and neutral. The tactile target and the 

visual distractor were simultaneously presented from the same location (top or bottom) on 

congruent trials, and from opposite locations (tactile stimulus top and visual stimulus bottom 

location, or vice-versa) on incongruent trials. On neutral trials, only the tactile target was 

presented (top or bottom location) (Fig. 1).  

Participants were instructed to perform an elevation discrimination task reporting via pedal 

press the location (top/bottom) of the tactile targets while ignoring the visual distractors when 

present. Half of the participants had to press the left pedal with their toes to indicate top location 

and the right pedal with their heel to indicate bottom location, and the other half followed the 
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opposite mapping. Participants were also instructed to continuously keep their gaze on the 

fixation point and to answer as rapidly and accurately as possible. Participants completed three 

experimental blocks of 96 trials. Within each block, congruent, incongruent, and neutral trials 

were equally likely (32 trials per type) and randomly intermixed.   

 

 

Figure 1. Display, type of trials, and time line of the cross-modal congruency task (adapted from Pavani et al., 

2000; Spence et al., 2004); ITI: Inter-trial interval. 

 

2.2.2. Flanker Task (FT) 

The FT experimental task was based on Eriksen and Eriksen’s (1974) design. Visual stimuli 

were presented on a computer monitor situated at a distance of 100 cm from the participant and 

consisted of black arrows (pointing left and right) and diamonds of 11.5 × 11.5 mm (0.66° of 

visual angle) on a light grey background.  

The centrally presented left or right arrow (target) was flanked by two additional stimuli 

on each side (distractors). Distractors were diamonds on neutral trials, whereas they were left 

or right arrows on congruent and incongruent trials pointing to the same or opposite direction, 

respectively, as indicated by the target. Each trial started with the presentation of a central 

fixation cross (6 × 6 mm black cross) for a duration randomly selected between 300 and 500 

ms, followed by the display of the stimulus array for 100 ms. There was a total response window 
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of 1,000 ms following stimulus onset and a variable ITI randomly selected between 500 and 

700 ms (Fig. 2). 

Participants were instructed to report via button press (keys 1 and 2 of the Serial Response 

Box, operated by the left and right index fingers) the direction (left versus right) of the target 

(central arrow) while ignoring the distractors (flanking stimuli). Participants completed three 

blocks of 96 trials and within each experimental block, congruent, incongruent, and neutral 

trials were equally likely (32 trials per type) and presented in a randomised order. 

 

 

Figure 2. Type of trials and time line of the flanker task (adapted from Eriksen and Eriksen, 1974); ITI: Inter-trial 

interval. 

 

 

2.3. Data Analyses 

 

For both tasks, separate error rates (ER) and reaction times (RT) analyses were conducted. 

Responses exceeding ±3 standard deviations from the mean (calculated separately for each 

participant; e.g., Igarashi et al., 2007) were considered as outliers and excluded from both ER 

and RT analyses. In the error analyses, ERs reflected the percentage of choice errors in each 

task after removal of omissions (i.e., no response trials) and outliers. In the RT analyses, mean 
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responses were calculated after omissions, outliers, and choice errors were excluded. Mean ER 

and RT were then calculated for each type of trial and participant and analysed with mixed 

analyses of variance (ANOVAs) with ‘Trial type’ (neutral, congruent, and incongruent) as 

within-subjects factor and ‘Group’ (synaesthetes and non-synaesthetes) as between-subjects 

factor (Note 1). Further pairwise comparisons and independent t-tests were carried out as 

appropriate following significant effects. Whenever necessary, p-values were adjusted for 

multiple comparisons with the Bonferroni correction, and the Greenhouse–Geisser estimates of 

sphericity were used to report the results of the mixed ANOVAs when Mauchly’s tests indicated 

that the assumptions of sphericity had been violated.  

 

3. Results 

 

3.1. Cross-Modal Congruency Task (CCT) 

 

Outliers and omissions were excluded from the analysis (3.10% of the total trials). Overall, low 

ER were observed in both groups (M = 3.24, SD = 4.16 for synaesthetes and M = 3.43, SD = 

3.38 for non-synaesthetes) and the analysis revealed no statistical differences between them 

[F(1,32) = 0.022, p = 0.88]. The main effect of ‘Trial type’ [F(1.04,33.25) = 21.4, p < 0.001, 

ηp
2 = 0.40] indicated the presence of higher ER on incongruent (M = 8.39, SD = 9.83) than 

congruent [M = 0.63, SD = 1.19; t(33) = 4.925, p < 0.001; d = 1.11] or neutral trials [M = 1.01, 

SD = 1.37; t(33) = 4.56, p < 0.001; d = 1.05)], and no differences were found between congruent 

and neutral trials [t(33) = 1.48, p = 0.15]. The interaction between ‘Trial type’ and ‘Group’ was 

not significant [F(1.04,33.25) = 0.17, p = 0.69] (see Fig. 3A, bar graph).  

The RT analysis revealed a main effect for the factor ‘Group’ [F(1,32) = 4.26, p = 0.047], 

indicating that, overall, synaesthetes were faster than non-synaesthetes [M = 555, SD = 102 and 

M = 633, SD = 118, respectively; t(32) = 2.01, p = 0.047; d = 0.71]. As expected, significant 

differences emerged also between trial types [main effect of ‘Trial type’, F(1.16,37) = 118, p < 

0.001, ηp
2 = 0.79]. Follow-up pairwise comparisons showed that RT were significantly slower 

for incongruent (M = 686, SD = 148) than for congruent [M = 550, SD = 108; t(33) = 11.1, p < 

0.001; d = 1.05] and neutral trials [M = 553, SD = 104; t(33) = 10, p < 0.001; d = 1.04]. No 

significant differences were found between congruent and neutral trials [t(33) = 0.77, p = 0.45]. 

Importantly, a significant interaction was observed between ‘Trial type’ and ‘Group’ 

[F(1.16,37) = 5.60, p = 0.019, ηp
2 = 0.15]. Follow-up independent t-tests conducted separately 

for each type of trial revealed significant differences between synaesthetes and non-



ENHANCED CROSS-MODAL ATTENTION IN SYNAESTHETES                                             DOI:10.1163/22134808-00002566 

 

14 

 

synaesthetes on incongruent trials [M = 624, SD = 115 and M = 741, SD = 155, respectively; 

t(32) = 2.48, p = 0.019; d = 0.86], but not on congruent [M = 518, SD = 103 and M = 579, SD 

= 107, respectively; t(32) = 1.69, p = 0.10] or neutral trials [M = 523, SD = 100 and M = 580, 

SD = 103, respectively; t(32) = 1.65, p = 0.11] (Fig 3A, line graph; Note 2).  

To further investigate this finding and to quantify our effect of interest, the congruency 

effect (CE) (i.e., incongruent minus congruent trials average RT) was calculated for each 

subject (the individual scores can be consulted in Table 3). This measure was then submitted to 

a separate one-way ANOVA with ‘Group’ as between-subjects factor. The CE analysis showed 

a main effect of ‘Group’ [F(1,32) = 6, p = 0.020, ηp
2 = 0.16], revealing a reduced CE in 

synaesthetes compared to non-synaesthetes (M = 106, SD = 60.2 and M = 162, SD = 71.4, 

respectively; d = 0.85) (Fig. 3A, line graph).  

  

3.2. Flanker Task (FT) 

 

After removing omissions and outliers (1.41% of the total trials), the ER analysis revealed no 

reliable differences between groups [F(1,32) = 2.45, p = 0.12]; overall ER: M = 3.94, SD = 4.63 

for synaesthetes and M = 2.03, SD = 2.06 for non-synaesthetes. The main effect of ‘Trial type’ 

[F(1.04,33.2) = 20.8, p < 0.001, ηp
2 = 0.39] reflected the presence of a Flanker effect (FE). 

Specifically, ER were significantly higher on incongruent (M = 7.48, SD = 9.37) than congruent 

[M = 0.43, SD = 1; t(33) = 4.47, p < 0.001; d = 1.06] and neutral trials [M = 0.86, SD = 1.79; 

t(33) = 4.50, p < 0.001; d = 0.98]. No significant differences were found between congruent 

and neutral trials [t(33) = 1.65, p = 0.11]. No ‘Trial type’ × ‘Group’ interaction emerged to be 

significant [F(1.04,33.2) = 1.57, p = 0.22] (see Fig. 3B, bar graph). 

In the RT analysis, the presence of the FE was confirmed by the significant main effect on 

‘Trial type’ [F(1.33,42.5) = 285, p < 0.001, ηp
2 = 0.90]. Follow-up pairwise comparisons 

indicated that RT were significantly slower for incongruent trials (M = 397, SD = 40.1) 

compared to congruent [M = 336, SD = 35.4; t(33) = 18.6, p < 0.001; d = 1.63] and neutral trials 

[M = 342, SD = 34.9; t(33) = 16.4, p < 0.001; d = 1.48]. Neutral trials were also found to be 

significantly slower than congruent trials [t(33) = 4.08, p < 0.001; d = 0.18]. No differences 

were found between groups, as indicated by the lack of a significant ‘Group’ main effect 

[F(1,32) = 2.29, p = 0.14] or a ‘Trial type’ × ‘Group’ interaction [F(1.33,42.5) = 1.40, p = 0.25] 

(Fig. 3B, line graph). 

A further one-way ANOVA assessing directly whether our theoretical measure of interest, 

the FE (i.e., incongruent minus congruent trials average RT), differed between groups, 
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confirmed statistically similar FEs in synaesthetes and non-synaesthetes [F(1,32) = 1.10, p = 

0.30) (Fig. 3B, line graph) (the specific FE scores for each participants can be consulted in 

Table 3).  

 

 

 

Figure 3. (A) CCT Mean reaction times (RT; lines) in ms and mean error rates (ER; bars) in percentages, and their 

corresponding SEM (error bars), for congruent and incongruent trials of the cross-modal congruency task; 

separately for each group. Both the ER and RT analyses revealed a main effect of the factor ‘Trial type’ (p < 

0.001), evidencing a typical congruency effect (CE) (i.e., incongruent trials presented slower RT and higher ER 

than congruent trials). There was also an interaction between ‘Trial type’ and ‘Group’ (p = 0.019) in the RT 

analysis (and showed a similar tendency in the ER analysis). Specifically, synaesthetes presented faster RT for 

incongruent trials compared to non-synaesthetes. The determination of a significant smaller CE for synaesthetes 

(p = 0.020) confirmed this difference. (B) FT Mean reaction times (RT; lines) in ms and mean error rates (ER; 

bars) in percentages, and their corresponding SEM (error bars), for congruent and incongruent trials of the flanker 

task and for each group. There was only a main effect of the factor ‘Trial type’ (p < 0.001), reflecting the presence 

of a classic congruency effect (i.e., incongruent trials presented slower RT and higher ER than congruent trials). 

 

 

 

 

Table 3. 

Congruency effects (CE) (reaction time differences in milliseconds between incongruent and congruent 

trials) for the cross-modal congruency task (CCT) and the flanker task (FT) obtained by each participant. 

 

Synaesthetes CE  Non-Synaesthetes CE 

 CCT FT   CCT FT 

S1 56.03 97.1  NS1 315 92.2 

S2 162 51.3  NS2 209 64.2 

S3 77.45 18.4  NS3 53.1 78.1 

S4 156 61.6  NS4 156 50.7 
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4. Discussion 

 

To investigate whether synaesthetes have enhanced distractor filtering abilities, we measured 

different aspects of their attentional skills in two separate conflict tasks. First, we compared 

synaesthetes and controls’ performance on the cross-modal congruency task (CCT), in which 

the relevant tactile target is always accompanied by an irrelevant visual distractor. In this task, 

participants have to prioritise one sensory modality over the other and the extent to which visual 

distractors interfere with the processing of the tactile target can be considered a measure of their 

intermodal selective attention abilities. In addition, we also measured participants’ attentional 

filtering abilities with the classic Eriksen flanker task (FT). This allowed us to measure their 

general distractor filtering abilities with a standard task typically used to engage the executive 

control network of attention, thus contributing to the current debate regarding synaesthetes’ 

general executive skills. Importantly, only –visual synaesthetes were tested in this study (i.e., 

synaesthetes with at least one synaesthesia subtype triggering visual concurrents, such as 

grapheme–colour synaesthesia or sequence–space synaesthesia) to ensure that their 

synaesthetic attentional filtering experience matched the sensory modality of the task-irrelevant 

distractors in our tasks. 

The results of the FT revealed no difference between the congruency effects measured in 

–visual synaesthetes and controls. A robust flanker effect was observed in both groups with 

S5 206 74.7  NS5 271 70.5 

S6 206 47.3  NS6 110 61 

S7 120 85.7  NS7 140 61.1 

S8 48 49.5  NS8 103 70.6 

S9 75.6 56.1  NS9 187 69.8 

S10 5.25 67  NS10 146 17.95 

S11 27.4 59.6  NS11 49 42.8 

S12 148 102  NS12 124 58 

S13 139 65.3  NS13 182 47.7 

S14 113 86.3  NS14 268 64.7 

S15 98.6 61.5  NS15 118 22.3 

S16 63.7 62.5  NS16 182 64.9 

    NS17 128 53.45 

    NS18 182 61.6 
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slower responses on incongruent than congruent trials, but the task-irrelevant distractors slowed 

participants’ performance on incongruent trials in a similar way in both groups. Thus, the 

sample of synaesthetes and non-synaesthetes selected to take part in this study had comparable 

general executive control as measured in the FT. This result (or lack thereof) is in line with 

previous studies that used different classic conflict task (e.g., Stroop task, flanker task) to 

measure synaesthetes’ attentional abilities and failed to report reliable differences with controls 

in the majority of cases (Mattingley et al., 2001; 2006; Rouw et al., 2013). Importantly, 

however, a very different pattern of results emerged in CCT, in which a reduced congruency 

effect (CE) was observed in –visual synaesthetes compared to controls. The difference between 

the CEs in the two groups was driven by faster response times on incongruent trials in 

synaesthetes than in non-synaesthetes, while no difference was observed for congruent or 

neutral trials. This specific pattern of results indicates that –visual synaesthetes were able to 

select and execute the correct response more quickly than controls when conflicting information 

coming from different sensory modalities was presented, suggesting that they were better at 

ignoring the irrelevant visual stimuli of the CCT. This finding is consistent with other studies 

that investigated synaesthetes’ susceptibility to multisensory illusions (double-flash illusion — 

Neufeld et al., 2012; McGurk illusion — Sinke et al., 2014), showing that synaesthetes 

experienced fewer multisensory illusions than non-synaesthetes (but see Whittingham et al., 

2014 and Brang et al., 2012 for different outcomes). Our findings expand the existing literature 

and provide the first direct evidence that –visual synaesthetes are more efficient than controls 

at dissociating conflicting information from different sensory modalities in a cross-modal task 

in which the irrelevant sensory modality matches their synaesthetic concurrents. 

Taken together, the results of the present study support the hypothesis that synaesthetes’ 

constant need to ignore their irrelevant synaesthetic percepts is associated with enhanced 

selective attentional skills. This attentional ability seems to impact synaesthetes’ cognitive 

skills beyond the person’s immediate synaesthetic experiences. Crucially, however, this 

advantage seems to only extend to other types of non-synaesthetic multisensory stimuli, as 

revealed by the significant advantage observed in a cross-modal congruency task and the lack 

of effects found in the FT, which measures participants’ general executive efficiency. The 

different pattern of results observed in two seemingly similar conflict tasks might suggest that 

while the mechanisms responsible for synaesthetic attentional filtering (that is, those underlying 

the inhibition of irrelevant synaesthetic sensations) are at least partially overlapping with the 

mechanism engaged during our cross-modal congruency task, they are mostly independent 

from the mechanisms responsible for the management of other types of perceptual conflict such 
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as those involved in flanker tasks. Indeed, several lines of research seem to suggest that similar 

mechanisms might be responsible for multisensory perception in the general population and 

inducer-concurrent associations in synaesthetes (e.g., Sagiv and Ward, 2006). If this is the case, 

experiencing a synaesthetic concurrent would be equivalent to perceiving a stimulus in an 

irrelevant sensory modality and synaesthetes might be particularly capable to focus on a certain 

stimulus modality while ignoring another (intermodal attention). Interestingly, intermodal 

attention is independent from other attentional mechanisms based on spatial selectivity (e.g., 

Eimer and Schröger, 1998; Hötting et al., 2003). This could explain why no synaesthetic 

advantages were observed in the FT, in which spatial mechanisms are primarily used to select 

the target from the distractors (e.g., Fan et al., 2003). 

 This study represents a first attempt to investigate synaesthetes’ intermodal attentional 

abilities. One relevant question which remains to be explored concerns the exact mechanisms 

responsible for the differences observed between synaesthetes and controls. Does synaesthetes’ 

constant need to ignore their automatic synaesthetic percepts cause a ‘synaesthetic attentional 

training’? Or is the synaesthete’s attentional profile intrinsically distinct from the general 

population? Changes over the life span in synaesthetes’ intermodal attentional abilities might 

support the ‘training’ hypothesis. In particular, one might expect that these attentional abilities 

depend on the amount of synaesthetic interference to which synaesthetes are exposed. Older 

synaesthetes, which have experienced irrelevant percepts for a longer period of time, should be 

better than younger ones at filtering out irrelevant information. According to this hypothesis 

then, a negative correlation should be expected between age and CE. While the age range of 

synaesthetes in the present study was too narrow (21 to 31 years old) to provide meaningful 

insight into this question, it is worth noting that there is evidence showing that the number of 

audio-visual double-flash illusions experienced by synaesthetes is negatively correlated with 

age (Neufeld et al., 2012). Furthermore, evidence from the other end of the age spectrum shows 

that children with grapheme–colour synaesthesia experience difficulties in numerical tasks due 

to cognitive interference caused by digits presented in colours incongruent to their synaesthetic 

associations (Green and Goswami, 2008). These findings might suggest that synaesthetes 

attentional abilities are improved over time in a use-dependent fashion. That is, synaesthetes 

learn to deal with their synaesthetic concurrents. However, indirect evidence from associative 

learning studies in synaesthetes casts some doubts about the ‘training’ hypothesis (Bankieris 

and Aslin, 2016a, b). In these studies, while synaesthetes performed better than non-

synaesthetes in an explicit associative learning task, they seemed to experience greater 

interference during an implicit associative learning task. If synaesthetes learn to ignore their 
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synaesthetic concurrents, they should be particularly able to train their attentional systems to 

ignore other irrelevant information (i.e., they should be less affected by interference). Future 

studies in this area are necessary to further evaluate these alternative hypotheses. 

These considerations are linked to another critical question: Can synaesthetes intermodal 

filtering abilities be generalised beyond the modality of their synaesthetic concurrents? As 

described, in the present study –visual synaesthetes were better than non-synaesthetes at 

ignoring a task irrelevant visual stimulus that was presented simultaneously to a target in a 

different sensory modality. Because we tested –visual synaesthetes is unclear whether 

synaesthetes which experience non-visual concurrents would show analogous advantages for 

visual stimuli. If synaesthetic attentional abilities are learned, they might be generalised to other 

sensory modalities. In contrast, if synaesthetes’ attentional system is intrinsically different for 

the sensory modality of their concurrent, no generalisation to other modalities should be 

observed. Neuroimaging evidence suggests that the recruitment of parietal areas is shared by 

different types of synaesthesias (e.g., see Rouw et al., 2011 and Specht, 2012 for reviews). 

However, specific brain areas are also involved in particular synaesthetic sensations, such as 

the activation of the colour region V4 in synaesthetic colour experience (e.g., Hubbard et al., 

2005; Nunn et al., 2002; Sperling et al., 2006; Steven, 2006; Van Leeuwen, 2010). Future 

studies should directly address this point by assessing the filtering abilities of –visual and non-

visual synaesthetes in different attentional tasks in which the task-irrelevant distractor matches 

and does not match the sensory modality of their concurrents.  

While all our synaesthetes had visual concurrents, they experienced different types of 

synaesthesia. Following a reviewer’s suggestion, we explored the interesting possibility that 

different types of –visual synaesthetes might show different degrees of filtering abilities. Given 

that the synaesthetes tested in the present study presented either a –colour or a sequence–space 

synaesthesia (or both) and that previous research observed systematic differences in the visual 

ability of these two types of synaesthetes (Ward et al., 2016), synaesthetes were in three groups: 

only-colour (subjects who only experienced synaesthesias producing –colour concurrents; e.g., 

grapheme–colour synaesthesia), only-SSS (participants who only experienced sequence–space 

synaesthesias; e.g., calendar–forms), and colour&SSS (subjects who experienced both previous 

types). An orthogonal 2 × 2 between-subjects factorial design (–colour: yes/no; SSS: yes/no) 

was used — the no-colour and no-SSS group corresponding to non-synaesthetes. The CE 

measured in the CCT (RT differences in milliseconds between incongruent and congruent trials) 

was submitted to a two-way ANOVA. Interestingly, the analysis revealed a significant main 

effect of SSS [F(1,30) = 5.075, p = 0.032, ηp
2 = 0.145], but not of colour [F(1,30) = 0.52, p = 
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0.475] nor a –colour × SSS interaction [F(1,30) = 0.020, p = 0.89]. This analysis showed that 

the CE was significantly reduced in participants with SSS compared to non-SSS participants 

(M = 91.2, SD = 60.7 and M = 157, SD = 66.8, respectively). These findings suggest that a 

specific subgroup of synaesthetes, namely those with SSS, was the one with strongest 

intermodal attentional filtering advantages. While this appears to be a promising line for future 

research, it should be highly stressed that this was a post-hoc analysis and that the samples were 

not only small, but also unbalanced (11 subjects with SSS and 23 without). For this reason, the 

question of possible differences between different synaesthete group subtypes should be further 

confirmed in future studies with appropriate samples. 

Finally, it is relevant to note that all the synaesthetes tested in this study were associators. 

Whilst associators experience their synaesthetic concurrents ‘in the mind’s eye’, projectors 

report these experiences in external space (Dixon et al., 2004). There is contradictory evidence 

regarding behavioural advantages of projector over associator synaesthetes (e.g., Dixon et al., 

2004; Rothen and Meier, 2009; Ward et al., 2007) or about the existence of neural 

differentiation between the two groups (e.g., Rouw and Scholte, 2007; 2010). Nonetheless, 

different synaesthetic experiences could potentially imply different attentional processing 

strategies: Do projectors’ ostensibly stronger synaesthetic interference cause stronger filtering 

abilities compared to associators? Or does this special synaesthetic experience make them less 

successful at ignoring their percepts and, hence, they have weaker filtering abilities? Future 

studies assessing different types of synaesthetes and different types of stimuli should clarify all 

these points. 

In sum, the present study has provided the first evidence that –visual synaesthetes are less 

affected than non-synaesthetes by the presentation of task-irrelevant visual stimuli when they 

have to focus on a different sensory modality (as measured in a cross-modal congruency task). 

This finding suggests that synaesthetes might have enhanced intermodal attentional abilities 

which allow them to ignore or supress the irrelevant information coming from their synaesthetic 

concurrents. The present results broaden our understanding of synaesthesia’s effects on 

cognition in a research area which remains largely unexplored.  
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Notes 

 

1. Due to technical problems with the stimuli presentation software, only trials in which a left-

pointing target was presented could be included in the analyses (differences between left and 

right trials were previously checked and rejected). 

2. Following a reviewer’s suggestion, an additional mixed ANOVA for the median RT of the 

CCT was carried out to confirm the robustness of the effects observed for the mean RT 

analyses across different measures of central tendency. The results revealed an analogous 

interaction between ‘Trial type’ and ‘Group’ [F(1.09,34.9) = 6.41, p = 0.014, ηp
2 = 0.17], 

equally driven by the faster RT for synaesthetes compared to non-synaesthetes on 

incongruent trials [M = 611, SD = 113 and M = 734, SD = 151, respectively; t(32) = 2.67, p 

= 0.012; d = 0.92]. The main effects of ‘Trial type’ and ‘Group’ were also ratified 

[F(1.09,34.9) = 107, p < 0.001, ηp
2 = 0.77 and F(1,32) = 4.425, p = 0.043, ηp

2 = 0.12, 

respectively]. Specifically, incongruent trials (M = 676, SD = 146) were slower than both 

congruent [M = 535, SD = 107; t(33) = 10.2, p < 0.001; d = 1.10] and neutral trials [M = 535, 

SD = 107; t(33) = 9.575, p < 0.001; d = 1.08]; and synaesthetes showed overall faster RT 

compared to non-synaesthetes (M = 542, SD = 103 and M = 620.5, SD = 114, respectively; 

d = 0.73). 
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