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QoS-Driven Resource Allocation and EE-Balancing

for Multiuser Two-Way Amplify-and-Forward

Relay Networks
Keshav Singh, Member, IEEE, Ankit Gupta, and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In this paper, we study the problem of energy-
efficient resource allocation in multiuser two-way amplify-and-
forward (AF) relay networks with the aim of maximizing the
energy efficiency (EE) while ensuring the quality-of-service (QoS)
requirements and balancing the EE of the user links. We
formulate an EE-balancing optimization problem that maximizes
the ratio of the spectral efficiency (SE) over the total power dissi-
pation subject to QoS and a limited transmit power constraints.
The problem which maximizes the EE by jointly optimizing the
subcarrier pairing, power allocation, and subcarrier allocation,
turns out to be a non-convex fractional mixed-integer nonlinear
programming problem which has an intractable complexity in
general. We apply a concave lower bound on the achievable
sum rate and a series of convex transformations to make the
problem convex one and propose an iterative algorithm for
iteratively tightening the lower bound and finding the optimal
solution through dual decomposition approach. Additionally, a
low-complexity suboptimal algorithm is investigated. We then
characterize the impact of various network parameters on the
attainable EE and SE of the network employing both EE
maximization and SE maximization algorithms when the network
is designed from the energy-efficient perspective. Simulation
results demonstrate the effectiveness of the proposed algorithms.

Index Terms—Resource allocation, quality-of-service, energy
efficiency, multiuser, multicarrier, two-way, amplify-and-forward,
relay network, non-convex optimization.

I. INTRODUCTION

Cooperative communication is a promising way to enhance

the reliability, coverage and network performance of wireless

communications [1]. Various relaying schemes have been

proposed for cooperative communications, like amplify-and-

forward (AF) and decode-and-forward (DF), of which the AF

scheme is more prominently deployed due to its lower imple-

mentation complexity. Moreover, two-way relaying has been

widely investigated to overcome the drawbacks of half-duplex

relaying and to utilize the spectrum resources more efficiently

[2]–[5]. Additionally, multicarrier multiple access techniques

that allow multiple users to share the same spectrum and avoid
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severe interference from the other users, when combined with

the relay transmission, can significantly improve the system’s

performance, due to their flexibility in resource allocation and

their ability to exploit multiuser diversity, respectively.

A multi-pair two-way relay network where multiple user-

pairs exchange messages using shared relay(s), has extensive

applications in sensor networks, medical electronics, multime-

dia teleconferencing, smart homes and wearable computations

etc., where information exchange between devices is often

required. The multi-pair two-way relay networks, which is a

special class of multi-way relay networks (MWRNs), where

each user exchanges message only with its pre-defined partner,

can be generalized to incorporate multiple users in the form of

MWRNs, in which multiple users can exchange information

with the help of a single relay terminal [6], [7]. In this paper,

we focus multi-pair two-way AF relay network.

The unprecedented increase of mobile devices and escalat-

ing data rate requirements have contributed to the sharp growth

of energy consumption and greenhouse emission. It is reported

in [8], [9] that 2% to 10% of the global energy consumption

and 2% of the greenhouse gas are generated by information

and communication technologies (ICT) and, further predict-

ing that 14% of the worldwide electrical energy will be

consumed by the sector of ICT in 2020 [10]. Hence, more

recently, research focus has shifted towards designing energy-

efficient devices that not only maximize the network’s spectral

efficiency (SE) but also minimize the power consumption

of the network. Furthermore, the efficient power utilization

enables us to reduce carbon footprint and offers a green

solution. Thus, resource allocation in a multiuser relay network

that maximizes the SE while utilizing the minimum power

and simultaneously maintaining the desired QoS becomes a

challenging issue in cooperative communications [5].

Recently, a flourish of works on resource allocation in

orthogonal frequency division multiplexing (OFDM)-based

cooperative relay networks has been investigated in [11]–[14]

from the perspective of SE maximization. In [11], the authors

investigated resource allocation policies for SE maximization

in multiuser two-way AF relay networks only for high signal-

to-noise power ratio (SNR) regime, whereas power allocation

strategies with subcarrier pairing were proposed in [12] for DF

and AF multi-relay networks. The work in [13] was from sum

rate maximization for a single user pair one-way relay network

through the subcarrier pairing and power allocation subject

to a sum-power constraint. In [14], the joint optimization of

power allocation, subcarrier assignment, and relay selection
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for enhancing the end-to-end transmission rate of a single user

pair subject to individual or total power constraints was main

objective.

However, the SE maximization problems do not directly

provide the energy efficiency (EE) maximization solution.

From EE maximization perspective, there are only a few works

that have considered the EE maximization as a key metric

for designing the optimal resource allocation policies [15]–

[23]. In [15], a joint power control and antenna beamforming

algorithm was proposed to maximize the EE in very large

multiuser MIMO systems. The trade-off between the EE and

SE was studied for multiuser MIMO systems in [16], whereas

energy-efficient power optimization schemes were investigated

in [18] for interference-limited communications. However, the

relaying was not considered in [15]–[18]. In [19], the joint

optimization of the relay transmit power, user selection, and

the number of transmit antennas in a multi-pair two-hop

amplify-and-forward (AF) relay system were studied from

the EE perspective, while the authors in [20] designed the

beamforming vectors of the source and the relay to maximize

the network lifetime. The authors in [19]–[21] considered only

a single-carrier system model and optimized transmit power

from the EE point of view. A pricing-based power allocation

schemes for multiuser multicarrier AF relay networks were

investigated in [22]. However, [22] only optimized power

allocation without considering the subcarrier pairing and allo-

cation in the network. Therefore, there is a need to revisit the

design of the existing multiuser multicarrier AF relay networks

and further investigate a unified resource allocation policies

considering subcarrier permutation, subcarrier allocation, and

power optimization all together in order to maximize the EE

of the network.

In light of the above discussion, in this paper, we in-

vestigate the joint subcarrier pairing, subcarrier allocation

and power allocation algorithms for multiuser multicarrier

two-way AF relay networks for improving the EE under a

total transmit power, individual QoS, subcarrier pairing and

allocation constraints, while balancing the EE of the two-

way links. The considered network consists of multiple user

pairs and a single relay node. All the users and the relay

node are equipped with single antenna and each user pair

communicates with each other through an intermediate relay

node. Further, the relay node operates in AF manner with two-

stage transmission protocol. The distinctive contributions of

this paper are highlighted as follows:

• We formulate an EE maximization (EEM) problem in

context of a multiuser AF relay networks subject to a

limited total transmit power, minimum QoS requirement,

subcarrier pairing and allocation constraints. In contrast

to [11]–[14], [22], the main focus is to maximize EE

through optimizing the power allocation, subcarrier per-

mutation, and subcarrier allocations within a network

context. It is evident that the original problem is a non-

convex fractional mixed-integer nonlinear programming

(MINLP) [29], which is NP-hard to solve.

• To make the problem tractable, a successive convex

approximation (SCA) method, a variable transformation,

and a relaxation of the integer variables is applied. Next,

it is proven that the relaxed problem is quasi-concave on

the subcarrier pairing, subcarrier allocation, and power

allocation variables. Consequently, by employing the

fractional programming and dual decomposition meth-

ods, the optimal solution is obtained.

• Besides, a suboptimal EE resource allocation algorithm

is investigated to strike a balance between the complex-

ity and optimality as also demonstrated by the simulation

results.

The rest of this paper is organized as follows. Section II

describes the system model. The EE maximization problem

subject to a total transmit power, minimum QoS requirement,

subcarrier pairing and allocation constraints is formulated in

Section III, followed by stepwise procedure of transforming

the non-convex fractional MINLP problem into a convex one.

An iterative EE resource allocation algorithm is investigated in

Section IV. The suboptimal algorithm is presented in Section

V and the complexity of proposed and the standard algorithms

are analyzed in Section VI. Section VII presents simulation

results and the paper concludes with Section VIII.

II. SYSTEM MODEL

We consider a relay interference network where an AF

relay assists the two-way communication between K user

pairs formed by odd users denoted by 2k − 1 and even

users represented by 2k, for k ∈ {1, 2, . . . ,K}, wherein each

transmission hop has Nsc subcarriers for signal transmission

as illustrated in Fig. 1. All the nodes in the network are

assumed to have a single antenna. For simplicity, the transmit

and receive users are assumed to be well separated so that the

direct links between them can be ignored. We further consider

that all the links experience slow and frequency-flat fading

and the relay node has perfect channel state information (CSI)

knowledge. The relay operates in a half-duplex mode with two

transmission phases [1]. In the multiple access (MA) phase,

all 2K users simultaneously transmit signals to the relay node,

while during the broadcast (BC) phase, the relay node forwards

the amplified signal to the users; meanwhile, the users keep

silent. Moreover, the (2k − 1)
th

and (2k)
th

users transmit

signals on the uth subcarrier in the MA phase whereas in the

BC phase the relay node forwards the amplified signal on the

vth subcarrier to the (2k)
th

and (2k − 1)
th

users, respectively.

Define h
(u)
i as the channel coefficient from the ith user

to the relay node on the uth subcarrier, for i = 1, . . . , 2K ,

u = 1, . . . , Nsc. The received signal at the relay node on the

uth subcarrier can be expressed as

y
(u)
R =

2K∑

i=1

h
(u)
i

√

P
(u)
i s

(u)
i + n

(u)
R , (1)

where s
(u)
i is the ith user’s signal transmitted on the uth sub-

carrier with unit transmission power, i.e. E

[∣
∣
∣s

(u)
i

∣
∣
∣

2
]

= 1 and

n
(u)
R ∼ N (0, σ

(u)2

R ) is the complex additive white Gaussian

noise (AWGN) at the relay node on the uth subcarrier. The

transmit power level of the ith user on the uth subcarrier is
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Fig. 1. A relay-assisted multiuser two-way relay network with K user pairs.

denoted by P
(u)
i , for i = 1, . . . , 2K . The relay node amplifies

the received signal y
(u)
R with the normalizing factor expressed

as

α(v) =

√

W
(v)
R

/(∑2K

i=1
P

(u)
i

∣
∣
∣hi

(u)
∣
∣
∣

2

+ σ
(u)2

R

)

, (2)

where W
(v)
R denotes the transmit power of the relay node on

the vth subcarrier, for v = 1, . . . , Nsc.

The signal transmitted by the relay node on the vth subcar-

rier can be given by

x(v) = α(v)y
(u)
R = α(v)

2K∑

i=1

h
(u)
i

√

P
(u)
i s

(u)
i + α(v)n

(u)
R , (3)

Finally, the received signal at the (2k − 1)
th

and (2k)
th

users after removing self-interference from the received signals

using the well-known analogue network coding method [24],

can respectively be given as

y
(v)
2k−1 =α(v)

√

P
(u)
2k h

(v)
2k−1h

(u)
2k s

(u)
2k

︸ ︷︷ ︸

Desired Signal

+

2K∑

i=1,i6=2k−1,2k

α(v)

√

P
(u)
i h

(u)
i h

(v)
2k−1s

(u)
i

︸ ︷︷ ︸

Interference

+ α(v)h
(v)
2k−1n

(u)
R + n

(v)
2k−1

︸ ︷︷ ︸

Noise

; (4)

y
(v)
2k =α(v)

√

P
(u)
2k−1h

(v)
2k h

(u)
2k−1s

(u)
2k−1

︸ ︷︷ ︸

Desired Signal

+

2K∑

i=1,i6=2k−1,2k

α(v)

√

P
(u)
i h

(u)
i h

(v)
2k s

(u)
i

︸ ︷︷ ︸

Interference

+ α(v)h
(v)
2k n

(u)
R + n

(v)
2k

︸ ︷︷ ︸

Noise

, (5)

where n
(v)
2k−1 and n

(v)
2k are zero-mean Gaussian noises at

the (2k − 1)th and (2k)th users on the vth subcarrier with

variances σ
(v)2

2k−1 and σ
(v)2

2k , respectively.

The total power consumption in the network consists of

two terms namely: transmit power and static power, which

has remarkable impact on system’s SE. Hence, it is important

to take both the transmit and static power into consideration

[17], [25]. The transmitter’s signal processing power and the

receiver’s processing power are collectively referred as the

circuit power which is not related to the sum rate when the

users transmit or receive information and is regarded as static

value here, while the transmit power is exclusively used for

data transmission in order to attain reliable communications. In

general, the transmit power behaves dynamically with respect

to the instantaneous channel gains, but the circuit/processing

power usually remains static, irrespective of the channel con-

ditions. Therefore, the overall required power (in Watts) for

the two-way relay networks is assumed to be governed by a

constant term that covers the static power dissipation of the

nodes and other two terms that vary with the transmit powers

P
(u)
i and W

(v)
R , which can be modelled as

Pt =

2K∑

i=1

Nsc∑

u=1

P
(u)
i +

Nsc∑

v=1

W
(v)
R

︸ ︷︷ ︸

Dynamic Power≤Pmax

+ (2K + 1)Pc
︸ ︷︷ ︸

Static Power,,C

[Watts] ,

(6)

where Pmax is the maximum available transmit power budget

of the two-way relay network and Pc denotes the circuit power

of each user or relay node.

Let Λu,v ∈ {0, 1} denotes the subcarrier pairing binary

variable signifying that Λu,v = 1 if the uth subcarrier in

the MA phase is paired with the vth subcarrier in the BC

phase, while Λu,v = 0 otherwise. We further define a binary

variable Ωk,(u,v) ∈ {0, 1} for the subcarrier allocation such

that Ωk,(u,v) = 1 if the kth user pair is operating on the

(u, v)
th

subcarrier pair, while Ωk,(u,v) = 0 otherwise. Thus,

the power dissipated after subcarrier pairing and allocation is

given as

PT =

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

(

P
(u)
2k−1 + P

(u)
2k +W

(v)
R

)

︸ ︷︷ ︸

Dynamic Power≤Pmax

+C , (7)

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem.

Using (4) and (5), the average signal-to-interference plus noise

ratio (SINR) at the (2k − 1)
th

and (2k)
th

users on the (u, v)
th

subcarrier can respectively be written in (8) and (9), as shown

on the top of the next page. By substituting (2) into (8) and

(9), the SINR, Υ
(u,v)
2k−1 and Υ

(u,v)
2k , can be explicitly expanded

as in (10) and (11) shown on the top of the next page.

A. Channel capacity and EE

From (10) and (11), the minimum achievable sum rate for

the (2k − 1) → 2k and 2k → (2k − 1) links on the (u, v)th



4

Υ
(u,v)
2k−1 =

α(v)2P
(u)
2k

∣
∣
∣h

(v)
2k−1h

(u)
2k

∣
∣
∣

2

2K∑

i=1,i6=2k−1,2k

α(v)2P
(u)
i

∣
∣
∣h

(u)
i h

(v)
2k−1

∣
∣
∣

2

+ α(v)2
∣
∣
∣h

(v)
2k−1

∣
∣
∣

2

σ
(u)2

R + σ
(v)2

2k−1

; (8)

Υ
(u,v)
2k =

α(v)2P
(u)
2k−1

∣
∣
∣h

(v)
2k h

(u)
2k−1

∣
∣
∣

2

2K∑

i=1,i6=2k−1,2k

α(v)2P
(u)
i

∣
∣
∣h

(u)
i h

(v)
2k

∣
∣
∣

2

+ α(v)2
∣
∣
∣h

(v)
2k

∣
∣
∣

2

σ
(v)2

R + σ
(v)2

2k

, (9)

Υ
(u,v)
2k−1 =

W
(v)
R P

(u)
2k

∣
∣
∣h

(v)
2k−1h

(u)
2k

∣
∣
∣

2

2K∑

i=1,i6=2k−1,2k

W
(v)
R P

(u)
i

∣
∣
∣h

(u)
i h

(v)
2k−1

∣
∣
∣

2

+W
(v)
R

∣
∣
∣h

(v)
2k−1

∣
∣
∣

2

σ
(u)2

R + σ
(v)2

2k−1

(
∑2K

i=1 P
(u)
i

∣
∣
∣hi

(u)
∣
∣
∣

2

+ σ
(u)2

R

) ; (10)

Υ
(u,v)
2k =

W
(v)
R P

(u)
2k−1

∣
∣
∣h

(v)
2k h

(u)
2k−1

∣
∣
∣

2

2K∑

i=1,i6=2k−1,2k

W
(v)
R P

(u)
i

∣
∣
∣h

(u)
i h

(v)
2k

∣
∣
∣

2

+W
(v)
R

∣
∣
∣h

(v)
2k

∣
∣
∣

2

σ
(u)2

R + σ
(v)2

2k

(
∑2K

i=1P
(u)
i

∣
∣
∣hi

(u)
∣
∣
∣

2

+ σ
(u)2

R

) , (11)

subcarrier pair with unit bandwidth is given by [26]

R
(u,v)
2k−1 =

1

2
log2

(
1 + Υ

(u,v)
2k−1

)
, [bits/s/Hz] ; (12)

R
(u,v)
2k =

1

2
log2

(
1 + Υ

(u,v)
2k

)
, [bits/s/Hz] , (13)

where the factor of 1/2 accounts for the fact that transmission

completes in two hops. In the first step of transforming

the non-convex achievable sum rates in (12) and (13), we

introduce the following theorem for the lower bound on the

logarithmic function log (1 + θ):

Theorem 1: The logarithmic function log(1 + θ) has the

following lower bound

log(1 + θ) > x log(θ) + y , ∀θ > 0 ; (14)

where x > 0 and y are the coefficients that need to be

determined, and it is assumed that the bound is tight at θ = θ0,

then

x =
θ0

1 + θ0
; (15)

y = log(1 + θ0)− x log(θ0) , (16)

Proof: The proof of Theorem 1 is similar to the proof in

[22, Appendix A].

Remark 1: Using Theorem 1, we can find the lower bound of

the achievable sum rate R
(u,v)
2k−1 and R

(u,v)
2k , ∀k, (u, v), defined

in (12) and (13). These lower bound approximations will

be used for designing the energy-efficient resource allocation

algorithms.

The tightness of the lower bound is demonstrated in Fig.

2. Since a tighter lower bound markedly convergences to a

Karush-Kuhn-Tucker (KKT) point of the original non-convex

problem, we will focus on the lower bound for the considered

problem.
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Fig. 2. Lower bound (dashed) that lead to convex relaxations, with θ0 = 2.

From Theorem 1, the achievable sum rate R
(u,v)
2k−1 in the

underlying two-way relay network can be lower bounded by

R
(u,v)
2k−1 =

1

2
log2

(
1 + Υ

(u,v)
2k−1

)
;

≥
1

2

[

ρ
(u,v)
2k−1log2

(
Υ

(u,v)
2k−1

)
+ β

(u,v)
2k−1

]

, R
(u,v)
2k−1,lb , (17)

where the two coefficients ρ
(u,v)
2k−1 and β

(u,v)
2k−1 can be selected

as [27], [28]

ρ
(u,v)
2k−1 = ̺

(u,v)
2k−1/(1 + ̺

(u,v)
2k−1) ; (18)

β
(u,v)
2k−1 = log2

(
1 + ̺

(u,v)
2k−1

)
− ρ

(u,v)
2k−1log2

(
̺
(u,v)
2k−1

)
, (19)

for any given ̺
(u,v)
2k−1 > 0. The equality in (17) holds when

ρ
(u,v)
2k−1 = Υ

(u,v)
2k−1/(1 + Υ

(u,v)
2k−1) and β

(u,v)
2k−1 = log2

(
1 +

Υ
(u,v)
2k−1

)
− ρ

(u,v)
2k−1log2

(
Υ

(u,v)
2k−1

)
, and the equality holds for

(
ρ
(u,v)
2k−1, β

(u,v)
2k−1

)
= (1, 0) if Υ

(u,v)
2k−1 approaches plus infinity.

Similarly, the lower bound for achievable sum rate R
(u,v)
2k can
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be defined as

R
(u,v)
2k =

1

2
log2

(
1 + Υ

(u,v)
2k

)
;

≥
1

2

[

ρ
(u,v)
2k log2

(
Υ

(u,v)
2k

)
+ β

(u,v)
2k

]

, R
(u,v)
2k,lb , (20)

where ρ
(u,v)
2k and β

(u,v)
2k are defined similar to ρ

(u,v)
2k−1 and

β
(u,v)
2k−1, respectively. Using (17) and (20), the total achievable

minimum (worst) end-to-end sum rate after subcarrier pairing

and allocation can be written as

RT ,

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v) min
(

R
(u,v)
2k−1,lb, R

(u,v)
2k,lb

)

,

(21)

Using (7) and (21), the EE of the network is defined as follows.

Definition 1: The EE for the multiuser two-way AF relay

network is defined as the minimum achievable sum rate of the

transmitted data per unit of energy. By considering the rate

balancing between the (2k − 1) → 2k and 2k → (2k − 1)
links, the EE of the network can be defined as

ηEE =
RT

PT

=

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v) min

(

R
(u,v)
2k−1,lb, R

(u,v)
2k,lb

)

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)

(

P
(u)
2k−1 + P

(u)
2k +W

(v)
R

)

+ C

,

(22)

B. Optimization problem and transformation

In this subsection, we depict EE optimization problem for

a multiuser two-way relay networks. Here, our objective is

to maximize ηEE of the network subject to the following

constraints: 1) to limit the total transmit power, 2) to guarantee

the SINR requirements for each user, 3) to mandate that the

signal transmission does not takes place on the same subcarrier

in the MA and BC phases; and 4) to validate that a subcarrier

pair is assigned to only one user pair. The QoS-constrained

optimization problem for multiuser two-way relay can be

formulated as

(OP1) max
P,WR,Λ,Ω

ηEE

subject to

(C.1)
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

(

P
(u)
2k−1+P

(u)
2k +W

(v)
R

)

6Pmax;

(C.2)Υ
(u,v)
2k−1 ≥ Υ

(u,v)
min,2k−1, ∀ k, (u, v) ;

(C.3)Υ
(u,v)
2k ≥ Υ

(u,v)
min,2k, ∀ k, (u, v) ;

(C.4)

Nsc∑

u=1

Λu,v = 1, ∀ v ; (23)

(C.5)

Nsc∑

v=1

Λu,v = 1, ∀u ;

(C.6)

K∑

k=1

Ωk,(u,v) = 1, ∀ (u, v) ;

(C.7) Λu,v ∈ {0, 1}, ∀u, v ;

Ωk,(u,v) ∈ {0, 1}, ∀ k, (u, v) ;

(C.8) P
(u)
2k−1 > 0, P

(u)
2k > 0, W

(v)
R > 0, ∀ k, u, v ,

where P = {P
(u)
i }, WR = {W

(v)
R }, Λ = {Λu,v}, Ω =

{Ωk,(u,v)} and Υ
(u,v)
min,2k−1 and Υ

(u,v)
min,2k, ∀k are the minimum

SINR requirement for odd and even users on the (u, v)th

subcarrier pair, respectively. Physically, the constraint (C.1)

ensures that the sum of the power allocated to users P
(u)
2k−1 and

P
(u)
2k , ∀k, u, and the relay node W

(v)
R , ∀v does not exceed the

maximum power budget of the network, while the constraints

(C.2) and (C.3) ensure the minimum QoS requirement for

odd and even users over the (u, v)th subcarrier pair. Also, the

constraints (C.4) and (C.5) mandates that each subcarrier in

MA phase can be paired with one and only one subcarrier in

BC phase and vice versa; and (C.6) ensures that a subcarrier

pair (u, v) is allocated to a single user pair only. Since the

relay node is equipped with only a single antenna in this

paper, the design framework can be easily extended to the

scenario with multiple antennas. In this case, the channels from

the source nodes to the relay node and from the relay node

to the destination nodes become SIMO and MISO channels,

respectively. By designing receive and transmit beamforming

weights at the relay node, the SINR can be derived similar

to (8) and (9). In general, an increased number of antennas

can offer better interference suppression capability, but it also

requires more static power consumption, thus leading to an

EE performance tradeoff.

The optimization problem (OP1) is a non-convex fractional

MINLP problem [29], and thus we cannot solve it directly. To

find the optimal solution, an exhaustive search (ES) over all

variables is required and thus the computational complexity

becomes very high, specially for higher number of subcarriers.

The fact that the duality gap between the primal problem and

the dual problem approaches to zero for a sufficiently large

number of subcarriers [30]. Thus, [30] inspires us that instead

of solving (OP1) directly, we will solve the dual problem. By

applying an epigraph method, the (OP1) can be transformed

as

(OP2) max
P,WR,t,Λ,Ω

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)t

(u,v)
k

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)

(

P
(u)
2k−1 + P

(u)
2k +W

(v)
R

)

+ C

subject to (C.1)− (C.8) ; (24)

(C.9) R
(u,v)
2k−1,lb ≥ t

(u,v)
k , ∀ k, (u, v) ;

(C.10) R
(u,v)
2k,lb ≥ t

(u,v)
k , ∀ k, (u, v) ,

where t = {t
(u,v)
k }, ∀k, (u, v). By relaxing the binary

variables and introducing the change of variables P̄
(u)
2k−1 =

log(P
(u)
2k−1), P̄

(u)
2k = log(P

(u)
2k ), and W̄

(v)
R = log(W

(v)
R ), for
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k ∈ {1, · · · ,K}, u ∈ {1, · · · , Nsc}, and v ∈ {1, · · · , Nsc},
the optimization problem (OP2) can be equivalently trans-

formed as

(OP3) max
P̄,W̄R,t,Λ,Ω

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)t

(u,v)
k

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)

(

eP̄
(u)
2k−1 + eP̄

(u)
2k + eW̄

(v)
R

)

+ C

subject to

(C.1)
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

(

eP̄
(u)
2k−1+eP̄

(u)
2k +eW̄

(v)
R

)

6Pmax

(C.2) log
(

Ῡ
(u,v)
2k−1

)

≥ log
(

Υ
(u,v)
min,2k−1

)

, ∀ k, (u, v) ;

(C.3) log
(

Ῡ
(u,v)
2k

)

≥ log
(

Υ
(u,v)
min,2k

)

, ∀ k, (u, v) ; (25)

(C.4)− (C.6) ;

(C.8) eP̄
(u)
2k−1 > 0, eP̄

(u)
2k > 0, eW̄

(v)
R > 0 , ∀ k, v ;

(C.9) R̄
(u,v)
2k−1,lb ≥ t

(u,v)
k , ∀ k, (u, v) ;

(C.10) R̄
(u,v)
2k,lb ≥ t

(u,v)
k , ∀ k, (u, v) ,

where Ῡ
(u,v)
2k−1 and Ῡ

(u,v)
2k are respectively defined in (26)

and (27), as shown on the top of the next page, and the

corresponding lower bounded sum rates are given as

R̄
(u,v)
2k−1,lb =

1

2

[

ρ
(u,v)
2k−1log2

(
Ῡ

(u,v)
2k−1

)
+ β

(u,v)
2k−1

]

= κρ
(u,v)
2k−1log

(
Ῡ

(u,v)
2k−1

)
+

β
(u,v)
2k−1

2
; (28)

R̄
(u,v)
2k,lb =

1

2

[

ρ
(u,v)
2k log2

(
Ῡ

(u,v)
2k

)
+ β

(u,v)
2k−1

]

= κρ
(u,v)
2k log

(
Ῡ

(u,v)
2k

)
+

β
(u,v)
2k−1

2
, (29)

where κ =
1

2 ln 2
. log

(

Ῡ
(u,v)
2k−1

)

and log
(

Ῡ
(u,v)
2k

)

are explic-

itly written as (30) and (31) shown on the top of the next page.

The optimization problem (OP3) is still non-convex due

to the fractional form of the objective function, which is a

concave-over-convex. We introduce the following theorem to

transform the fraction objective function into subtractive form,

as follows:

Theorem 2: The optimal EE £
⋆ can be achieved, if and

only if the optimal allocation policy
(
P̄
⋆
, W̄

⋆

R, t⋆,Λ⋆,Ω⋆
)

satisfies the following balance equation:

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λ⋆
u,vΩ

⋆
k,(u,v)t

(u,v)⋆

k

−£
⋆

(
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λ⋆
u,vΩ

⋆
k,(u,v)

×
(

eP̄
(u)⋆

2k−1 + eP̄
(u)⋆

2k + eW̄
(v)⋆

R

)

+ C

)

= 0 . (32)

Proof: The proof is provided in Appendix A.

Remark 2: The physical meaning of Theorem 2 is that for the

fractional optimization problem (25) for given {Λ,Ω}, there

exists an equivalent objective function in subtractive form.

Thus, the optimization problem (25) with given {Λ,Ω} can

be solved using the Dinkelbach method, which is widely used

in fractional programming [31].

Apply Dinkelbach method to transform the problem (OP3)

into a subtractive form as follows:

(OP4) max
P̄,W̄R,t,Λ,Ω

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)t
(u,v)
k

−£

(
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

×
(

eP̄
(u)
2k−1 + eP̄

(u)
2k + eW̄

(v)
R

)

+ C

)

subject to (C.1) − (C.6)& (C.8)− (C.10) , (33)

where £ represents a positive penalty factor or price that is

paid by the users for the resources being utilized and can be

defined as follows:

£ =

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)t

(u,v)
k

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)

(

eP̄
(u)
2k−1 +eP̄

(u)
2k +eW̄

(v)
R

)

+C

,

(34)

For extreme cases when £ → 0 the problem reduces to sum

rate maximization (SEM) problem whereas when £→∞ no

resource allocation policy is a suitable as the penalty is very

high. The optimal penalty factor £⋆ works as the optimal EE

for the network.

Lemma 1: The objective function in (33) is concavified

by the change of variables P̄
(u)
2k−1 = log(P

(u)
2k−1), P̄

(u)
2k =

log(P
(u)
2k ), ∀k, u, and W̄

(v)
R = log(W

(v)
R ), ∀v, for a given £

and fixed subcarrier pairing Λ and subcarrier allocation Ω.

Proof: The objective function in (33) forms the summa-

tion of affine and concave terms (i.e., minus-exp functions)

for a given £ and fixed subcarrier pairing Λ and subcarrier

allocation Ω. This implies that the optimization function in

(OP4) is concavified by the change of variables and thus the

optimization problem (OP4) is a convex problem and it can

be solved by using any standard method [29].

IV. OPTIMAL EE RESOURCE ALLOCATION POLICY

A. Dual problem formulation

For given coefficients ρ
(u,v)
i , β

(u,v)
i , ∀i, (u, v), and fixed

subcarrier pairing Λ, and subcarrier allocation Ω, the op-

timization problem in (33) is a convex optimization prob-

lem, which can be efficiently solved using standard convex

optimization tools, e.g., CVX [29]. We derive an iterative

algorithm for solving this optimization problem by applying

the dual decomposition method. The main idea behind this

algorithm is to find the optimal resource allocation policy that

can maximize its lower bound for given coefficients ρ
(u,v)
i

and β
(u,v)
i , followed by an update of these two coefficients
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Ῡ
(u,v)
2k−1 =

eP̄
(u)
2k +W̄

(v)
R

∣
∣
∣h

(v)
2k−1h

(u)
2k

∣
∣
∣

2

2K∑

i=1,i6=2k−1,2k

eP̄
(u)
i

+W̄
(v)
R

∣
∣
∣h

(u)
i h

(v)
2k−1

∣
∣
∣

2

+ eW̄
(v)
R

∣
∣
∣h

(v)
2k−1

∣
∣
∣

2

σ
(u)2

R + σ
(v)2

2k−1

(
∑2K

i=1 e
P̄

(u)
i

∣
∣
∣hi

(u)
∣
∣
∣

2

+ σ
(u)2

R

) ; (26)

Ῡ
(u,v)
2k =

eP̄
(u)
2k−1+W̄

(v)
R

∣
∣
∣h

(v)
2k h

(u)
2k−1

∣
∣
∣

2

2K∑

i=1,i6=2k−1,2k

eP̄
(u)
i

+W̄
(v)
R

∣
∣
∣h

(u)
i h

(v)
2k

∣
∣
∣

2

+ eW̄
(v)
R

∣
∣
∣h

(v)
2k

∣
∣
∣

2

σ
(u)2

R + σ
(v)2

2k

(
∑2K

i=1e
P̄

(u)
i

∣
∣
∣hi

(u)
∣
∣
∣

2

+ σ
(u)2

R

) , (27)

log
(

Ῡ
(u,v)
2k−1

)

= W̄
(v)
R + P̄

(u)
2k + log

(∣
∣
∣h

(v)
2k−1h

(u)
2k

∣
∣
∣

2
)

− log





2K∑

i=1,i6=2k−1,2k

eP̄
(u)
i

+W̄
(v)
R

∣
∣
∣h

(u)
i h

(v)
2k−1

∣
∣
∣

2

+eW̄
(v)
R

∣
∣
∣h

(v)
2k−1

∣
∣
∣

2

σ
(u)2

R + σ
(v)2

2k−1

(∑2K

i=1
eP̄

(u)
i

∣
∣
∣hi

(u)
∣
∣
∣

2

+ σ
(u)2

R

))

; (30)

log
(

Ῡ
(u,v)
2k

)

= W̄
(v)
R + P̄

(u)
2k−1 + log

(∣
∣
∣h

(v)
2k h

(u)
2k−1

∣
∣
∣

2
)

− log





2K∑

i=1,i6=2k−1,2k

eP̄
(u)
i

+W̄
(v)
R

∣
∣
∣h

(u)
i h

(v)
2k

∣
∣
∣

2

+eW̄
(v)
R

∣
∣
∣h

(v)
2k

∣
∣
∣

2

σ
(u)2

R + σ
(v)2

2k

(∑2K

i=1
eP̄

(u)
i

∣
∣
∣hi

(u)
∣
∣
∣

2

+ σ
(u)2

R

))

, (31)

that guarantees a monotonic increase in the lower bound

performance.

Thus, the dual problem associated with the primal problem

(33) can be written as

min
λ,µ

odd
,µ

even

Θodd,Θeven

X (λ,µodd,µeven,Θodd,Θeven)

subject to λ ≥ 0,µodd ≥ 0,

µeven ≥ 0,Θodd,Θeven ≥ 0 , (35)

where X (λ,µodd,µeven,Θodd,Θeven) presents the dual

function expressed in (36), as shown on the top of the next

page, where L
(
P̄, W̄R, t,Λ,Ω, λ,µodd,µeven,Θodd,Θeven

)

is given in (37) shown on the next page, where λ is the

Lagrangian multiplier or the dual variable corresponding to

transmit power constraint (C.1), µodd = {µ
(u,v)
2k−1}, ∀k, (u, v),

and µeven = {µ
(u,v)
2k }, ∀k, (u, v), are the Lagrangian mul-

tiplier vectors associated with QoS constraints (C.2) and

(C.3), while Θodd = {Θ
(u,v)
2k−1}, ∀k, (u, v) and Θeven =

{Θ
(u,v)
2k }, ∀k, (u, v), are the Lagrangian multiplier vectors for

constraints (C.9) and (C.10), respectively.

In the following subsections, we solve the dual problem

(35) using dual decomposition approach [32] which alternates

between a subproblem (inner problem), updating the resource

allocation variables P̄, W̄R, t, Λ and Ω by fixing the La-

grangian multipliers, and a master problem (outer problem),

updating the Lagrangian multipliers for the obtained solution

of the inner problem1. The dual decomposition approach is

outlined as follows.

1The optimal solution obtained for the dual function in (35) is equal to that
of (33), i.e., a zero duality gap between the optimal and dual solutions [30].

B. Subproblem Solution

The optimization problem in (33) is in a standard concave

form for given subcarrier pairing and subcarrier allocation,

hence by using standard optimization techniques and KKT

conditions [29], which are first-order imperative and sufficient

conditions for optimality, the optimal solution can be found.

Thus, to obtain the optimal power allocation for (2k − 1)
th

and (2k)
th

users, and the relay node, we take the partial

derivative of (37) with respect to P̄
(u)
2k−1, P̄

(u)
2k and W̄

(v)
R and

equate the results to zero, thus the power allocation at the

(m+ 1)
th

iteration is updated as follows:

P̄
(u)
2k−1(m+ 1) =

ln

[

µ
(u,v)
2k + κΘ

(u,v)
2k ρ

(u,v)
2k

Nsc∑

v=1
Λu,vΩk,(u,v) (£+ λ) + Π1 +Π2 +Π3 +Π4

]+

;

(38)

P̄
(u)
2k (m+ 1) =

ln

[

µ
(u,v)
2k−1 + κΘ

(u,v)
2k−1ρ

(u,v)
2k−1

Nsc∑

v=1
Λu,vΩk,(u,v) (£+ λ) + Π̄1 + Π̄2 + Π̄3 + Π̄4

]+

;

(39)

W̄
(v)
R (m+ 1) =

ln







K∑

k=1

(
µ
(u,v)
2k−1 + µ

(u,v)
2k +κΘ

(u,v)
2k−1ρ

(u,v)
2k−1+κΘ

(u,v)
2k ρ

(u,v)
2k

)

Nsc∑

u=1
Λu,vΩk,(u,v) (£+ λ) + Π̃1 + Π̃2







+

,

(40)

where the relevant terms are explicitly given by (41)–(50), as

shown on the next page, where [x]
+
= max (0, x). By using a
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X (λ,µodd,µeven,Θodd,Θeven) =

max
P̄,W̄R,t,Λ,Ω

L
(
P̄, W̄R, t,Λ,Ω, λ,µodd,µeven,Θodd,Θeven

)

∣
∣
∣
∣
∣

Nsc∑

u=1

Λu,v = 1, ∀ v ,
Nsc∑

v=1

Λu,v = 1, ∀u ,

K∑

k=1

Ωk,(u,v) = 1, ∀ (u, v) ; (36)

L
(
P̄, W̄R, t,Λ,Ω, λ,µodd,µeven,Θodd,Θeven

)
=

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)t
(u,v)
k −£

(
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

(

eP̄
(u)
2k−1 + eP̄

(u)
2k + eW̄

(v)
R

)

+ C

)

− λ

(
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

(

eP̄
(u)
2k−1 + eP̄

(u)
2k + eW̄

(v)
R

)

− Pmax

)

+

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

µ
(u,v)
2k−1

(

log
(

Ῡ
(u,v)
2k−1

)

− log
(

Υ
(u,v)
min,2k−1

))

+

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

µ
(u,v)
2k

(

log
(

Ῡ
(u,v)
2k

)

− log
(

Υ
(u,v)
min,2k

))

+

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Θ
(u,v)
2k−1

(

R̄
(u,v)
2k−1,lb − t

(u,v)
k

)

+

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Θ
(u,v)
2k

(

R̄
(u,v)
2k,lb − t

(u,v)
k

)

, (37)

sub-gradient method [30], the optimal value of t
(u,v)⋆

k can be

found as

t
(u,v)
k (m+ 1) =

t
(u,v)
k (m)− ǫ(m)

(

Λu,vΩk,(u,v) −Θ
(u,v)
k

)

, (51)

where ǫ(m) is a positive step size. P̄
(u)
2k−1, P̄

(u)
2k and W̄

(v)
R

are appear in the denominator of each SINR terms, thus it

forms the basis for our iterative resource allocation solution

of the Lagrange maximization (37) whereby the right-hand

side can be used to update the power of (2k − 1)th and

(2k)
th

users on the subcarrier u, and the relay power on

vth subcarrier. The power updates in (38)–(40) reveal some

interesting interpretations: 1) the power update of the user and

the relay node not only depends on λ but also on the penalty

factor £; and 2) the transmit power is allocated in such a way

so that it takes other users into account on a subcarrier-by-

subcarrier basis, rather than a selfish allocation.

In general, when the uth subcarrier in the MA phase is

allocated to the kth user pair, the transmit power assigned on

the uth subcarrier by other user pairs practically approaches

to zero. Further, a similar explanation can be drawn for the

BC phase. Therefore, {Π2,Π4} = 0,
{
Π̄2, Π̄4

}
= 0. For

asymptotically high SNR at the end user, i.e., σ
(v)
2k−1 = σ

(v)
2k =

0 , ∀k, v, the update equations in (38)-(40) can be further

simplified as

P̄
(u)
2k−1(m+ 1) = ln

[

µ
(u,v)
2k + κΘ

(u,v)
2k ρ

(u,v)
2k

£+ λ

]+

; (52)

P̄
(u)
2k (m+ 1) = ln

[

µ
(u,v)
2k−1 + κΘ

(u,v)
2k−1ρ

(u,v)
2k−1

£+ λ

]+

; (53)

W̄
(v)
R (m+ 1) =

ln








K∑

k=1

(
µ
(u,v)
2k−1+µ

(u,v)
2k +κΘ

(u,v)
2k−1ρ

(u,v)
2k−1+κΘ

(u,v)
2k ρ

(u,v)
2k

)

£+ λ








+

,

(54)

From (52)-(54), it can be noticed that the inverse of the

Lagrangian multiplier λ plus the network price £ can be

regarded as a water-filling level which has to be chosen to

meet the total transmit power constraint.

To derive the optimal subcarrier pairing Λ, and allocation

Ω, we substitute (38)–(40) and (51) into (36), we obtain the

following optimization problem:

max
Λ,Ω

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)Yk,(u,v)

+ Z (λ,µodd,µeven,Θodd,Θeven)

subject to (C.4) − (C.7) , (55)

where Yk,(u,v) and Z (λ,µodd,µeven,Θodd,Θeven) are re-

spectively given by

Yk,(u,v) =
(

t
(u,v)⋆

k − (£+ λ)
(

eP̄
(u)⋆

2k−1 + eP̄
(u)⋆

2k + eW̄
(v)⋆

R

))

; (56)
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Π1 =

(

µ
(u,v)
2k−1 + κΘ

(u,v)
2k−1ρ

(u,v)
2k−1

)

σ
(v)2

2k−1

eP̄
(u)
2k +W̄

(v)
R

∣
∣
∣h

(u)
2k

∣
∣
∣

2 γ̄
(u,v)
2k−1 ; (41)

Π2 =
K∑

m=1
2m−16=2k−1

(

µ
(u,v)
2m−1 + κΘ

(u,v)
2m−1ρ

(u,v)
2k−1

)(

eW̄
(v)
R

∣
∣
∣h

(u)
2k−1h

(v)
2m−1

∣
∣
∣

2

+ σ
(v)2

2m−1

∣
∣
∣h

(u)
2k−1

∣
∣
∣

2
)

eP̄
(u)
2m +W̄

(v)
R

∣
∣
∣h

(v)
2m−1h

(u)
2m

∣
∣
∣

2 γ̄
(u,v)
2m−1 ; (42)

Π3 =

(
µ
(u,v)
2k + κΘ

(u,v)
2k ρ

(u,v)
2k

)
σ
(v)2

2k

eP̄
(u)
2k−1

+W̄
(v)
R

∣
∣
∣h

(v)
2k

∣
∣
∣

2 γ̄
(u,v)
2k ; (43)

Π4 =

K∑

m=1,2m 6=2k

(
µ
(u,v)
2m + κΘ

(u,v)
2k ρ

(u,v)
2k

)(
eW̄

(v)
R

∣
∣
∣h

(u)
2k−1h

(v)
2m

∣
∣
∣

2

+ σ
(v)2

2m

∣
∣
∣h

(u)
2k−1

∣
∣
∣

2 )

eP̄
(u)
2m−1+W̄

(v)
R

∣
∣
∣h

(v)
2mh

(u)
2m−1

∣
∣
∣

2 γ̄
(u,v)
2m ; (44)

Π̄1 =

(

µ
(u,v)
2k + κΘ

(u,v)
2k ρ

(u,v)
2k

)

σ
(v)2

2k

eP̄
(u)
2k−1+W̄

(v)
R

∣
∣
∣h

(u)
2k−1

∣
∣
∣

2 γ̄
(u,v)
2k ; (45)

Π̄2 =

K∑

m=1,2m 6=2k

(

µ
(u,v)
2m + κΘ

(u,v)
2m ρ

(u,v)
2k

)(

eW̄
(v)
R

∣
∣
∣h

(u)
2k h

(v)
2m

∣
∣
∣

2

+ σ
(v)2

2m

∣
∣
∣h

(u)
2k

∣
∣
∣

2
)

eP̄
(u)
2m−1+W̄

(v)
R

∣
∣
∣h

(v)
2mh

(u)
2m−1

∣
∣
∣

2 γ̄
(u,v)
2m ; (46)

Π̄3 =

(

µ
(u,v)
2k−1 + κΘ

(u,v)
2k−1ρ

(u,v)
2k−1

)

σ
(v)2

2k−1

eP̄
(u)
2k +W̄

(v)
R

∣
∣
∣h

(v)
2k−1

∣
∣
∣

2 γ̄
(u,v)
2k−1 ; (47)

Π̄4 =
K∑

m=1
2m−16=2k−1

(

µ
(u,v)
2m−1 + κΘ

(u,v)
2k−1ρ

(u,v)
2k−1

)(

eW̄
(v)
R

∣
∣
∣h

(u)
2k h

(v)
2m−1

∣
∣
∣

2

+ σ
(v)2

2m−1

∣
∣
∣h

(u)
2k

∣
∣
∣

2
)

eP̄
(u)
2m +W̄

(v)
R

∣
∣
∣h

(v)
2m−1h

(u)
2m

∣
∣
∣

2 γ̄
(u,v)
2m−1 ; (48)

Π̃1 =

K∑

k=1

(

µ
(u,v)
2k−1 + κΘ

(u,v)
2k−1ρ

(u,v)
2k−1

)
(

2K∑

i=1,i6=2k−1,2k

eP̄
(u)
i

∣
∣
∣h

(v)
i

∣
∣
∣

2

+ σ
(v)2

R

)

eP̄
(u)
2k

∣
∣
∣h

(u)
2k

∣
∣
∣

2 γ̄
(u,v)
2k−1 ; (49)

Π̃2 =

K∑

k=1

(

µ
(u,v)
2k + κΘ

(u,v)
2k ρ

(u,v)
2k

)
(

2K∑

i=1,i6=2k−1,2k

eP̄
(u)
i

∣
∣
∣h

(v)
i

∣
∣
∣

2

+ σ
(v)2

R

)

eP̄
(u)
2k−1

∣
∣
∣h

(u)
2k−1

∣
∣
∣

2 γ̄
(u,v)
2k , (50)

Z (λ,µodd,µeven,Θodd,Θeven) = −£C + λPmax

+

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

µ
(v)
2k−1

(

log
(

Ῡ
(u,v)⋆

2k−1

)

− log
(

Υ
(u,v)
min,2k−1

))

+

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

µ
(u,v)
2k

(

log
(

Ῡ
(u,v)⋆

2k

)

− log
(

Υ
(u,v)
min,2k

))

+
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Θ
(u,v)
2k−1

(

R̄
(u,v)⋆

2k−1,lb − t
(u,v)⋆

k

)

(57)

+

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Θ
(u,v)
2k

(

R̄
(u,v)⋆

2k,lb − t
(u,v)⋆

k

)

,

The first term in (56) denotes the achievable minimum sum

rate of the kth user pair for the allocated subcarrier pairing

(u, v), whereas the second term works as the penalty for

the resource dissipation. Furthermore, it is observed that

Z (λ,µodd,µeven,Θodd,Θeven) derived in (57) remains con-

stant for any subcarrier pairing Λ and allocation Ω.

To determine the optimal subcarrier allocation Ω for

given subcarrier pairing Λ and the optimal power allocation
(
P̄⋆, W̄

⋆

R

)
and a fixed Z (λ,µodd,µeven,Θodd,Θeven), we

solve the following optimization problem:

max
Ω

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)Yk,(u,v)

subject to (C.6) , (58)

Straightforwardly the optimal subcarrier allocation Ω⋆ is

the kth user pair that maximizes Yk,(u,v) for given (u, v)th
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subcarrier pair and the optimal power allocation. Thus, the

optimal subcarrier allocation Ω⋆ can be obtained as

Ω⋆
k,(u,v) =

{

1, for k = argmax
k

Yk,(u,v) ,

0, otherwise ,
(59)

Finally, to find the optimal subcarrier pairing Λ for

the optimal power allocation
(
P̄⋆, W̄

⋆

R

)
and the opti-

mal subcarrier allocation Ω⋆ given in (59) and a fixed

Z (λ,µodd,µeven,Θodd,Θeven), we rewrite the optimization

problem (55) as follows:

max
Λ

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩ
⋆
k,(u,v)Yk∗,(u,v)

subject to (C.4)& (C.5) , (60)

where Yk∗,(u,v) = max
k

Yk,(u,v) ∀ k, (u, v). Let Y be a Nsc ×

Nsc matrix such that

Y =






Yk⋆,(1,1) · · · Yk⋆,(1,Nsc)

...
. . .

...

Yk⋆,(Nsc,1) · · · Yk⋆,(Nsc,Nsc)




 , (61)

Notice that the matrix Y can be treated as a profit matrix where

rows and columns represent different operators and machines,

respectively, and each element denotes the profit gain by

operating a particular machine by a particular operator. Thus,

the maximizing the total profit gained by selecting the best

policy where each operator (u) operates only on one machine

(v) is equivalent to the solving the problem (60). Furthermore,

this optimization problem can be solved efficiently by using

the standard assignment algorithms such as Hungarian method

[33].

C. Master Problem Solution: Updating the dual variables

Since the dual problem in (35) is differentiable, the gradient-

descent method [30] can be used to update the dual variables

λ, µ
(u,v)
2k−1, µ

(u,v)
2k , Θ

(u,v)
2k−1, Θ

(u,v)
2k , ∀k, (u, v), as shown in (62)–

(66) on the top of the next page, where ǫa(m), a ∈ {1, · · · , 5},
are sufficiently small step sizes associated with calculating

the Lagrangian multipliers and m is the iteration index.

The updated Lagrange multipliers in (62)-(66) are used for

updating the power allocation policy. We repeat this process

until convergence. Next, we provide a theorem to describe

the update procedure of the network penalty factor £ as well

a theorem regarding convergence of the network penalty as

follows.

Theorem 3: If
(
P̄
⋆
(l), W̄

⋆

R(l), t⋆(l),Λ⋆(l),Ω⋆(l)
)

is the

optimal solution of the problem (OP4) with respect to £(l) at

the lth iteration and if we update £(l) as

£(l + 1) =

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λ⋆
u,v(l)Ω

⋆
k,(u,v)(l)t

(u,v)⋆

k (l)

PT

(
P̄⋆(l), W̄

⋆

R(l),Λ
⋆(l),Ω⋆(l)

) (67)

then £(l) increases monotonically with each iteration, l.
Proof: The detailed proof is relegated in Appendix B.

Theorem 4: The optimal penalty factor £⋆ is obtained when

the sequence {£(l)} has converged and £
⋆ = liml→∞£(l)

satisfies the balance equation in (32).

Proof: The proof is provided in Appendix C.

Remark 3: We update the network penalty/price £ iteratively

for obtained {P̄
⋆
, W̄

⋆

R, t⋆,Λ⋆,Ω⋆} in the last iteration. Theo-

rem 3 and Theorem 4 ensure that £ increases monotonically

and converges within a finite iteration, respectively.

We first initialize the maximum number of iteration for the

outer and inner loop as Imax1 and Imax2 with the iteration

counter l = 0 and m = 0, respectively, along with the

network penalty factor £(l) = 0.001. Then, we initialize the

step sizes ǫa(m), a ∈ {1, · · · , 5}, followed by the coefficients(

ρ
(u,v)
2k−1(0), β

(u,v)
2k−1(0)

)

= (1, 0) and
(

ρ
(u,v)
2k (0), β

(u,v)
2k (0)

)

=

(1, 0). From the sub-gradient method [30], the dual variables

λ(0), µ
(u,v)
2k−1(0), µ

(u,v)
2k (0), Θ

(u,v)
2k−1(0), Θ

(u,v)
2k (0), ∀k, (u, v),

are initialized for finding the resource allocation policy
(
P̄, W̄R, t,Λ,Ω

)
using (38)–(40), (51), (59) and (60), re-

spectively. Then with the obtained
(
P̄, W̄R, t,Λ,Ω

)
, the dual

variables at (m + 1)th iteration are updated using (62)–

(66). The coefficients
(

ρ
(u,v)
2k−1, β

(u,v)
2k−1

)

and
(

ρ
(u,v)
2k , β

(u,v)
2k

)

are updated after obtaining the optimal resource allocation
(
P̄
⋆
, W̄

⋆

R, t⋆,Λ⋆,Ω⋆
)
. The above procedure is repeated until

(

ρ
(u,v)
2k−1, β

(u,v)
2k−1

)

and
(

ρ
(u,v)
2k , β

(u,v)
2k

)

have converged or the

iteration counter m reaches to maximum limit Imax2 . In the

next step, we update the network price £(l + 1) using (67)

and increase the iteration counter by one. We continue this

procedure until the convergence or l ≤ Imax1 . The iterative

EE maximization (EEM) algorithm is briefly summarized in

Algorithm 1.

V. SUBOPTIMAL RESOURCE ALLOCATION ALGORITHM

The computational complexity of the EEM algorithm pro-

posed in Section IV becomes humongous for a large value

of Nsc (discussed in more detail in the next section). Thus,

we propose a low-complexity suboptimal algorithm, and the

stepwise procedure of the suboptimal algorithm is described

as follows:

Step 1: Optimal Subcarrier Allocation for Given Power

Allocation: In the first step, the available transmit power is

equally distributed among all the users over all the subcarriers

as

P
(u)
2k−1 = P

(u)
2k = W

(v)
R =

Pmax

(2K + 1)×Nsc

, ∀k, u, v ;

(68)

Next, we compute SINRs for the (2k − 1)
th

and (2k)
th

users

on (u, v)th subcarrier pair. Define K × (Nsc × Nsc) matrix

according to SINRs. Then, we can select the kth user pair in

the following manner:

Ω⋆
k,(u,v) =

{

1, for k = argmax
k

SINRk(u, v) ;

0, otherwise ,
(69)

Step 2: Optimal Subcarrier Pairing for Given Subcarrier

Allocation: In this step, the Nsc subcarriers of the MA phase

and BC phase are arranged in ascending order and matched
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λ(m+ 1) =

[

λ(m)− ǫ1(m) ·

(

Pmax −
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

(

P
(u)
2k−1 + P

(u)
2k +W

(v)
R

)
)]+

; (62)

µ
(u,v)
2k−1(m+ 1) =

[

µ
(u,v)
2k−1(m)− ǫ2(m) ·

(

log
(

Ῡ
(u,v)
2k−1

)

−
(

logΥ
(u,v)
min,2k−1

))]+

, ∀k ; (63)

µ
(u,v)
2k (m+ 1) =

[

µ
(u,v)
2k (m)− ǫ3(m) ·

(

log
(

Ῡ
(u,v)
2k

)

− log
(

Υ
(u,v)
min,2k

))]+

, ∀k ; (64)

Θ
(u,v)
2k−1(m+ 1) =

[

Θ
(u,v)
2k−1(m)− ǫ4(m) ·

(

R̄
(u,v)
2k−1,lb − t

(u,v)
k

)]+

, ∀k ; (65)

Θ
(u,v)
2k (m+ 1) =

[

Θ
(u,v)
2k (m)− ǫ5(m) ·

(

R̄
(u,v)
2k,lb − t

(u,v)
k

)]+

, ∀k , (66)

Algorithm 1 Iterative EEM Algorithm

1: Set the maximum number of iterations Imax1 ;

2: Initialize the iteration counter l = 0 and network penalty

£(l) = 0.001 ;

3: repeat (Outer Loop)

4: Set the maximum number of iterations Imax2 ;

5: Initialize the iteration counter m = 0 and the step

sizes ǫa(m) ;

6: Initialize
(

ρ
(u,v)
2k−1, β

(u,v)
2k−1

)

and
(

ρ
(u,v)
2k , β

(u,v)
2k

)

by

(1, 0), ∀k, (u, v) ;

7: Initialize λ(m), µ
(u,v)
2k−1(m), µ

(u,v)
2k (m), Θ

(u,v)
2k−1(m),

Θ
(u,v)
2k (m), ∀k, (u, v) ;

8: Initialize P̄(m), W̄R(m), t(m),Λ(m), and Ω(m) ;

9: repeat (Inner Loop)

10: repeat (Solving problem (OP4))
11: Update P̄, W̄R and t̄ using (38)–(40) and

(51), respectively ;

12: Update Ω and Λ using (59) and (60) ;

13: Update λ, µ
(u,v)
2k−1, µ

(u,v)
2k , Θ

(u,v)
2k−1 and

Θ
(u,v)
2k , ∀k, (u, v), using (62)–(66) ;

14: until convergence to the optimal solution

15: P̄
⋆
, W̄

⋆

R, t̄
⋆
,Ω⋆ and Λ⋆ ;

16: Update the coefficients
(

ρ
(u,v)
2k−1, β

(u,v)
2k−1

)

and

17:

(

ρ
(u,v)
2k , β

(u,v)
2k

)

, using (18) and (19) ;

18: Set P̄(m+ 1)← P̄
⋆
, W̄R(m+ 1)← W̄

⋆

R,

19: t̄
⋆
(m+ 1)← t̄

⋆
,Ω(m+ 1)← Ω⋆,

Λ(m+ 1)← Λ⋆ and m← m+ 1 ;

20: until convergence or m > Imax2 ;

21: Update £(l + 1) using (67) and l ← l+ 1 ;

22: until convergence or l > Imax1 .

in best-to-best and worst-to-worst fashion. After this arrange-

ment, we update the subcarrier pairing matrix as follows:

Λ⋆
u,v =

{

1, for uth subcarrier paired with vth subcarrier ;

0, otherwise ,

(70)

Step 3: Optimal Power Allocation for Given Subcarrier

Pairing and Allocation: For given subcarrier allocation and

pairing matrices Λ and Ω, we update the power P̄
(u)
2k−1,

P̄
(u)
2k , W̄

(v)
R and t̄

(u,v)
k using (38)–(40) and (51), and dual

TABLE I
COMPLEXITY ANALYSIS FOR DIFFERENT ALGORITHMS

Complexity Comparison

Algorithm Complexity

EEM O
(

2UGNsc(2K)̟(KNsc(V 3 + 3) +N2
sc)

)

Suboptimal O
(

2UGNsc(2K)̟(KNsc(V 3 + 2) +K + 2
)

Optimal ES O
(

2UG(2K)̟KNsc!(V 3 + 2)
)

ESPA O
(

4UGNsc(2K)̟(KNsc(V 3 + 5) +N2
sc)

)

variables λ, µ
(u,v)
2k−1, µ

(u,v)
2k , Θ

(u,v)
2k−1, and Θ

(u,v)
2k using (62)–(66),

respectively.

VI. COMPLEXITY ANALYSIS

In this section, to get a better insight into the complexity

of various proposed algorithms, we perform an exhaustive

complexity analysis, by assuming that the network penalty

factor £ convergences in U iterations.

A. EEM Algorithm

The optimization problem in (33) consists of K × N2
sc

subproblems due to K user pairs operating on Nsc subcarriers

in each hop. Since, the optimal solution
(
P̄
⋆
, W̄

⋆

R, t⋆,Λ⋆,Ω⋆
)

is obtained under the total transmit power constraint (C.1) and

the QoS constraints (C.2) and (C.3), and thus the complexity

resulted due to these three constraints is O
(
V 3 + 2

)
, where

V denotes the power level for each user and the relay node

on each subcarrier. Further, each maximization in (58) adds

a complexity of O(K) and therefore, the total complexity for

finding the subcarrier allocation Ω for each (u, v)th subcarrier

pairing is O
(
K ×N2

sc

)
. Moreover, the Hungarian method

[33] is used to obtain the subcarrier pairing matrix Λ in

(60) has complexity of O
(
N3

sc

)
and the total complexity for

updating dual variables is O (2(2K)̟) (for example, ̟ = 2
if the ellipsoid method is used [34]). Let us suppose if the

dual objective function (36) converges in G iterations, then

the total complexity for the EEM algorithm ∀k, v, v becomes

O
(
2UGNsc(2K)̟(KNsc(V

3 + 3) +N2
sc)
)
. The complexity

of the EEM algorithm under equal subcarrier power allocation

(ESPA) is O
(
4UGNsc(2K)̟(KNsc(V

3 + 5) +N2
sc)
)
.
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B. Suboptimal Algorithm

The complexity for obtaining the subcarrier allocation ma-

trix Ω in the step 1 for K user pairs is O (K ×Nsc),
whereas the complexity for finding subcarrier pairing ma-

trix Λ in step 2 is O (2Nsc). However, the power alloca-

tion and updating the dual variables add a complexity of

O
(
V 3 + 2

)
and O (2(2K)̟), respectively. Let us suppose

if the dual objective function (36) converges in G
′

itera-

tions (without loss of generality let G
′

= G), then the

suboptimal EEM algorithm produces a total complexity of

O
(
2UGNsc(2K)̟(KNsc(V

3 + 2) +K + 2
)
.

C. Optimal ES Algorithm

In this algorithm, we exhaustively search over all vari-

ables for finding the optimal resource allocation solution

for all the nodes on each subcarrier in the pool of all

the possible feasible solutions to the optimization problem

(OP4). Thus, the total complexity for this algorithm becomes

O
(
2UG(2K)̟KNsc!(V 3 + 2)

)
.

VII. SIMULATION RESULTS AND PERFORMANCE

DISCUSSIONS

In this section, we present Monte-Carlo simulation results

to demonstrate the effectiveness of the proposed resource

allocation algorithms and to show the trade-off between the

EE and SE for various network parameters.

A. Simulation Setup

In the considered multiuser two-way relay networks, the

circuit and processing power per antenna at each node is set

to be equal to 14 dBm [22], whereas the maximum available

transmit power budget is 25 dBm. In simulation, we adopt the

Third-Generation Partnership Project (3GPP) path loss model

with path loss 131.1+42.8×log10(d) dB where d is distance in

kilometers [35]. We consider both the Rayleigh fading effects

∼ CN (0, 1) and the log-normal shadowing ∼ lnN (0, 8dB).
The thermal noise density is set as −174 dBm/Hz while the

subcarrier spacing is 12 kHz. The convergence tolerance value

is set as 10−5 and the maximum number of iteration for

solving the inner and outer optimization problems is set as

10. The distance from all the odd users to the relay node is

denoted by dSR, while dRD indicates the distance from the

relay node to all the even users. The QoS requirement for each

user on (u, v) subcarrier pair is Υ
(u,v)
min,i = −20 dB, ∀i, (u, v).

As a benchmark, we also simulate the following algorithms

for comparison:

• Optimal ES algorithm: This algorithm gives the globally

optimal solution of the problem (OP1) by performing

an exhaustive search over all variables [33].

• EEM algorithm without (w/o) subcarrier pairing and

allocation (SPA) algorithm: The optimal solution of the

problem (OP1) is found without considering SPA.

• SEM algorithm: By setting £ = 0, the optimization

problem (OP1) is transformed into the sum rate maxi-

mization problem.

• ESPA algorithm: The available transmit power is equally

distributed among all the users over all the subcarriers.

B. Convergence of EEM and Suboptimal Algorithms
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Fig. 3. Convergence behavior of the proposed algorithms (K = 2, Nsc = 6
and dSR = dRD = 200 m).

Fig. 3 illustrates the convergence behavior of the proposed

EEM and suboptimal algorithms for a single channel realiza-

tion, where K = 2, Nsc = 6, and dSR = dRD = 200 m. The

maximum allowable transmit power is Pmax = {0, 10} dBm.

Due to small problem size, the exhaustive-based solution can

also be found within a reasonable computation time. It can be

observed that the EE performances of the proposed algorithms

are monotonically increased with the number of iterations,

and the proposed algorithms are converged in less than four

iterations. Even through solving the relaxed problem, the EEM

algorithm indeed finds the optimal power, subcarrier pairing

and subcarrier allocation, and it provides the performance

identical to the optimal ES.

C. Performance comparison of various resource allocation

algorithms

Fig. 4 shows the EE and SE performance comparison of

different algorithms, where K = 2, Nsc = 6, and dSR =
dRD = 200 m. As can be seen in Fig. 4(a) that our proposed

algorithms yield best performance and provide a significant

power saving compare to the SEM and EEM algorithm w/o

SPA and ESPA. The average EE performance of the SEM

algorithms significantly drops as Pmax increases. On the other

hand, in a poor power regime, i.e. Pmax ≤ 10 dBm, the

SE performance of the proposed algorithms is identical to

that of the ES and SEM algorithms as shown in Fig. 4(b).

The SE performance of the EEM and suboptimal algorithms

is gradually saturated when Pmax > 10 dBm, whereas the

performance of the SEM algorithm is continuously improved

as Pmax increases. This is because all the users utilize the

maximum resources in order to improve their sum rate. The

EEM w/o SPA exhibits worst performance than the proposed

optimal and suboptimal algorithms, while it performs better

than ESPA.
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Fig. 4. Comparison of different resource allocation algorithms (K =
2, Nsc = 6 and dSR = dRD = 200 m).

D. Effect of the number of subcarriers Nsc on the EE and SE

Fig. 5 shows the impact of increasing Nsc on the attainable

average EE and SE of the proposed algorithms for K = 2 and

dSR = dRD = 200 m. The average EE and SE performances

of both algorithms is remarkably enhanced as Pmax increases

and becomes constant in a rich power regime, e.g., Pmax > 10
dBm. Additionally, as expected, upon increasing Nsc, the aver-

age EE performance for both algorithms can be significantly

improved due to the frequency diversity. Furthermore, Fig.

5(b) shows that the average SE performance of both algorithms

decreases as Nsc increases, which shows a reverse trend as

compared with the result in Fig. 5(a), which implies that the

subcarriers are utilized effectively only from the EE point of

view, when more subcarriers are available. Both the proposed

algorithms rapidly improve the average EE at the cost of a

slight degradation in the average SE.

E. Effect of number of user pair’s K on the attainable EE

The effect of increasing user pairs K on the average EE is

depicted in Fig. 6, where Nsc = 6 and dSR = dRD = 200
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Fig. 5. Effect of number of subcarriers on the average EE and SE (K = 2
and dSR = dRD = 200 m).

m. Fig. 6 shows that the average EE performance of both

algorithms can be significantly increased upon increasing

Pmax and gradually saturates when Pmax > 10 dBm. In Fig.

6, it is noticeable that the average EE performance of the

proposed algorithms deteriorates upon increasing the number

of user pairs K from 2 to 3. The deterioration in the EE

performance occurs because of the commensurate increase in

the static power.

VIII. CONCLUSION

In this paper, we studied the problem of joint subcarrier and

power allocation for multiuser multicarrier two-way AF relay

networks in order to enhance the energy utilization among

users. The objective function was to maximize the EE of the

network through joint subcarrier pairing, subcarrier allocation,

and power allocation, subject to a total transmit power and

minimum QoS requirement for each user. The formulated

primal problem was a non-convex fractional MINLP problem

that was difficult to solve. To make it tractable, the problem

was converted into an equivalent convex optimization problem
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Fig. 6. Effect of number of users on the average EE (Nsc = 6 and dSR =
dRD = 200 m).

by applying SCA method, change of variables and a series of

transformation and then solved from the dual decomposition

techniques to attain an energy-efficient optimal solution. The

resulting optimal subcarrier and power allocation policy served

as a performance benchmark due to its high computational

complexity. In order to further reduce the complexity, a sub-

optimal EE resource allocation algorithm was also proposed.

We compared the performance of the proposed EEM and

suboptimal algorithms with that of the SEM and EEM without

SPA algorithms through computer simulations and show the

merits of the proposed EE resource allocation algorithms.

APPENDIX A

PROOF OF THEOREM 2

Let
(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

)
be the optimal solution of opti-

mization problem (OP4) with respect to the optimal EE £
⋆

and A be the feasible set of the problem, it implies that

£
⋆ = max

P̄,W̄R,t,Λ,Ω∈A

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)t

(u,v)
k

PT

(
P̄, W̄R, t,Λ,Ω

) ; (A.1)

where PT

(
P̄, W̄R, t,Λ,Ω

)
is defined as

PT

(
P̄, W̄R, t,Λ,Ω

)
=

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)

(

eP
(u)
2k−1 + eP

(u)
2k + eW

(v)
R

)

+ C .

£
⋆ =

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λ⋆
u,vΩ

⋆
k,(u,v)t

(u,v)⋆

k

PT

(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

) ; (A.2)

From (A.1) and (A.2), we have

£
⋆ ,

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λ⋆
u,vΩ

⋆
k,(u,v)t

(u,v)⋆

k

PT

(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

)

≥

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)t

(u,v)
k

PT

(
P̄, W̄R, t,Λ,Ω

) ; (A.3)

From (A.1)–(A.3), we have the following observations:

F (£) =







[
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)t

(u,v)
k

−£⋆PT

(
P̄, W̄R, t,Λ,Ω

)
≤ 0

]

;

[
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λ⋆
u,vΩ

⋆
k,(u,v)t

(u,v)⋆

k

−£⋆PT

(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

)
= 0

]

,

(A.4)

From (A.4), we can observe that the maximum of F (£) is

zero and is achieved when the optimal resource allocation

solution
(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

)
is adopted and the maximum

EE is obtained. On the other hand, let
(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

)

denotes the optimal solution of the problem (OP4) such that

it satisfies the balance equation, it yields

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λ⋆
u,vΩ

⋆
k,(u,v)t

(u,v)⋆

k

−£
⋆PT

(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

)
= 0 ; (A.5)

≥
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λu,vΩk,(u,v)t
(u,v)
k −£

⋆PT

(
P̄, W̄R, t,Λ,Ω

)
,

(A.6)

The equations (A.5) and (A.6) implies that

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λu,vΩk,(u,v)t

(u,v)
k

PT

(
P̄, W̄R, t,Λ,Ω

) ≤ £
⋆

=

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λ⋆
u,v,Ω

⋆
k,(u,v)t

(u,v)⋆

k

PT

(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

) . (A.7)

Hence, it is demonstrated that £
⋆ which fulfills the

balance equation is the optimal EE and the solution
(
P̄⋆, W̄

⋆

R, t
⋆,Λ⋆,Ω⋆

)
obtained corresponding to the optimal

EE £
⋆ is also the optimal solution of the problem (OP1). This

concludes the proof of Theorem 2.

APPENDIX B

PROOF OF THEOREM 3

Let us initialize the lower bound coefficients ρ
(u,v)
2k−1, ρ

(u,v)
2k ,

β
(u,v)
2k−1, and β

(u,v)
2k for given subcarrier pairing Λ and subcarrier
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allocation Ω at the (l − 1)th iteration. Then we get

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λ⋆
u,v(l)Ω

⋆
k,(u,v)(l)t

(u,v)⋆

k (l)

−£(l)PT

(
P̄⋆(l), W̄

⋆

R(l), t
⋆(l),Λ⋆(l),Ω⋆(l)

)

≥

(
K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λ⋆
u,v(l − 1)Ω⋆

k,(u,v)(l − 1)t
(u,v)⋆

k (l − 1)

−£(l)PT

(

P̄⋆(l − 1), W̄
⋆

R(l − 1),

t⋆(l − 1),Λ⋆(l − 1),Ω⋆(l − 1)
)

= 0

)

;

, F (£(l)) , (B.1)

From (67) and (B.1), we have

F (£(l)) =

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λ⋆
u,v(l)Ω

⋆
k,(u,v)(l)t

(u,v)⋆

k (l)

−£(l)PT

(
P̄⋆(l), W̄

⋆

R(l), t
⋆(l),Λ⋆(l),Ω⋆(l)

)

= PT

(
P̄⋆(l), W̄

⋆

R(l), t
⋆(l),Λ⋆(l),Ω⋆(l)

)

× (£(l + 1)−£(l)) ≥ 0 , (B.2)

Since PT

(
P̄⋆(l), W̄

⋆

R(l), t
⋆(l),Λ⋆(l),Ω⋆(l)

)
≥ 0, therefore,

we have £(l+1) ≥ £(l). This implies that the network penalty

increases monotonically. The proof is completed.

APPENDIX C

PROOF OF THEOREM 4

From Theorem 3, we know that the penalty factor £(l)
increases monotonically and remains bounded and the con-

verged penalty factor is the optimal penalty. Assume that the

penalty factor £(l) converges at £̄, i.e., £(l) = £(l+1) = £̄.

However, £̄ is not the optimal penalty factor. From Theorem

2, we have

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1

Λ⋆
u,v(l)Ω

⋆
k,(u,v)(l)t

(u,v)⋆

k (l)

−£(l)PT

(

P̄(u)⋆(l), W̄
(v)⋆

R (l), t
(u)⋆

k (l),Λ⋆(l),Ω⋆(l)
)

6= 0 ,

(C.1)

From (67), we know that

£(l + 1) =

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λ⋆
u,v(l),Ω

⋆
k,(u,v)(l)t

(u,v)⋆

k (l)

PT

(
P̄⋆(l), W̄

⋆

R(l), t
⋆(l),Λ⋆(l),Ω⋆(l)

) , (C.2)

According to (C.1) and (C.2), (C.3) can be obtained, given as

£(l) 6=

K∑

k=1

Nsc∑

u=1

Nsc∑

v=1
Λ⋆
u,v(l),Ω

⋆
k,(u,v)(l)t

(u,v)⋆

k (l)

PT

(
P̄⋆(l), W̄

⋆

R(l), t
⋆(l),Λ⋆(l),Ω⋆(l)

) = £(l + 1)

(C.3)

This contradicts our assumption £(l) = £(l + 1). This

concludes the proof of Theorem 4.
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