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A Heat-Transfer Rate Inducing System (H-TRIS) Test Method 

Cristian Maluk1,2,*, Luke Bisby1, Michal Krajcovic1, and Jose Luis Torero2 
1 School of Engineering, The University of Edinburgh, UK 
2 School of Civil Engineering, The University of Queensland, Australia 

ABSTRACT 

A novel fire testing method, named the Heat-Transfer Rate Inducing System (H-TRIS), is 

presented and described in this paper. The method directly controls the thermal boundary 

conditions imposed on a test specimen by controlling a specified time-history of incident radiant 

heat flux at its exposed surface. Accounting for the absorptivity and thermal losses at the exposed 

surface of the test specimen, H-TRIS can be programmed to control the net heat flux at the 

exposed surface; thus controlling the in-depth time dependent temperature distributions within 

the test specimen. H-TRIS can be used for imposing a wide range of time-histories of incident 

radiant heat flux (e.g. constant, linear, stepped), or in-depth time dependent temperature 

distributions (i.e. specified thermal gradients). Notably, this enables simulation of thermal 

boundary conditions experienced by materials or structures exposed to any source of heat – 

during a conventional fire test (e.g. standard furnace test), a large-scale fire test, a real fire, or 

some other thermal boundary conditions calculated using a fire model (e.g. zone or computational 

fluid dynamics model). H-TRIS enables complementary experimental studies with excellent 

repeatability at comparatively low economic and temporal costs relative to traditional furnace test 

methods, thus permitting multiple repeat tests and statistical studies of response to heating. 

Application of H-TRIS within a research project studying heat-induced concrete spalling is 

briefly presented and discussed, to illustrate the significance and novelty of the new fire testing 

method. 

KEYWORDS: Fire testing, H-TRIS, thermal boundary conditions, heat flux, fire safe design, 

heat-induced concrete spalling.  
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1 INTRODUCTION AND BACKGROUND 

This paper presents a novel fire test method, named the Heat-Transfer Rate Inducing System (H-

TRIS), which directly controls the thermal boundary conditions imposed on a test specimen by 

controlling a specified time-history of incident radiant heat flux at its exposed surface. This 

approach to fire testing of structural materials supports a philosophical departure from 

conventional furnace testing to define fire resistance. 

The fire safe design of structural systems has historically been based on the concept of 

compliance with standard fire test standards [1]. At present, fire safe structural performance is 

typically (but not always [2]) defined by specifying a time of standard heating for which a 

structural element (or system) can ‘survive’ a ‘severe’ compartment fire. The term ‘survive’ is 

often defined in terms of exceeding a critical value of some specific variable (e.g. temperature, 

deflection). The introductory section of this paper provides a background discussion to 

demonstrate the novelty and significance of the proposed test method, and is divided into two 

thematic segments in which (1) fire safe structural design and (2) fire testing of structures and 

structural materials are examined. 

1.1 Fire Safe Structural Design 

Findings derived from studies on full-scale tests and from real fire events have shown that 

structural failures during or after fire, while rare, are often governed by heat-induced forces and 

relative thermal deformations between elements in a structural system [3, 4, 5, 6]. There is 

therefore a growing need for physics-based ‘first principles’ tools for the fire safe design of 

structures [7] to permit structural fire safety design considering ‘full frame’ structural response. 
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The fire safe design of building structures has historically been based on demonstrating 

compliance with standard fire testing procedures and ratings, wherein the design of individual 

structural elements is required to comply with prescribed design criteria to achieve specific fire 

resistance ratings when subjected to a standard fire [8]. In circumstances where a particular 

design cannot be evaluated using the prescribed criteria, or if potential gains can be realized (e.g. 

structural optimization, cost savings, or architectural freedom) by a more rigorous assessment, a 

performance based full frame structural fire safety design approach may be taken. In such cases, 

the performance of the structure during and after fire is quantitatively evaluated, aiming to 

demonstrate ‘acceptability’ according to a range of performance criteria, or in some cases by 

demonstrating equivalence to an acceptable, deemed-to-satisfy design solution. Performance 

based full frame structural fire safety design is rightly becoming increasingly common [9, 10, 

11]. 

In practice, structural performance during fire is typically assessed following three steps [12, 13]: 

(1) definition of the design fire(s) to describe a range of credible fire scenarios, (2) analysis of the 

thermal boundary conditions and heat transfer between the fire(s) and the structural element(s), 

and (3) calculation of the thermal and mechanical response of the structural elements (or ideally, 

in the most advanced cases, structural systems) to assure appropriate levels of structural stability 

and compartmentation. 

Design Fires 

In the fire safe design of structures, the design fire(s) should represent the range of credible 

scenarios necessary to evaluate the performance of the structural element (or structure), whilst 

attempting to adequately account for the possible influences of the temporal and spatial evolution 
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of a potential fire; but without generating spurious complexity given the large number of 

unknowns and infinite number of potential fire events. Commonly prescribed structural design 

fires used around the world are defined by gas phase time-temperature curves (i.e. time-histories 

of temperatures inside a fire compartment) (see Figure 1), typically assume homogenous 

conditions inside a fire compartment [14, 15], and have in many cases been semi-arbitrarily 

defined (e.g. [16]). 

Coined in the 1970s, the term natural fires [17] was originally intended to describe alternative 

design fire scenarios that could be used for steel-framed buildings [18, 19]. The natural fire 

concept allowed calculation of more physically realistic time-temperature curves based on the 

specific ventilation, fuel type/amount, and interior lining materials in a given compartment. 

A central assumption in the standard and natural fire concepts is that uniform burning, and 

therefore uniform temperature distribution inside the fire compartment, results in the worst case 

scenario for structural performance. This last has been scrutinized by several authors (e.g. [20, 

21]) and found to be wanting in some cases; such fires do not necessarily represent the worst case 

for full structure response in real fires. As a result, researchers and designers have recently 

focused their efforts on defining temporally and spatially non-uniform (e.g. travelling) design 

fires [22, 23, 24]. 

Despite advances in understanding fully developed compartment fires (e.g. [21, 25, 26, 27, 28]), 

within the structural fire safety engineering community design fires remain almost exclusively 

defined by (or by equivalence to) standard (or in some cases natural or parametric) gas phase 

time-temperature curves [29]. 
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Thermal Boundary Conditions 

To understand the need for the novel fire testing approach described in the current paper, a brief 

review of heat transfer theory is required in this section. Regardless of the design fire selected, 

the heat transferred from the ‘fire’ to the exposed surfaces of a structure is normally expressed in 

terms of a net heat flux, !"#$%%  [30]: 

!"#$%% 	= 	−)*
+,

+- -./
 (1) 

Where )* is the thermal conductivity of the solid, and +,
+- -./

 represents the in-depth time 

dependent temperature distribution at the exposed surface. For simplicity, in the current analysis 

heat conduction through the surface is taken only in the direction of the principal heat flow. If the 

design fire is defined by a time-history of gas temperatures inside a fire compartment, simplified 

calculations can be used to correlate the gas temperature 01  with the net heat flux at the 

exposed surface of structure by considering heat transfer by radiation and convection, thus: 

ℎ3 01 − 0* 	+	51,*718019 	−	:*80*9 	= 	 !"#$%%  (2) 

Where 0* is the exposed surface temperature of the solid element (i.e. structural element). The 

absorptivity at the exposed surface and the emissivity of the gases inside the compartment are 

given by :* and 71, respectively. The Stefan-Boltzmann constant, 8, and an average convective 

heat transfer coefficient, ℎ3, are used to describe heat transferred towards the exposed surface of 

the structural element by radiation and convection, respectively. It is noteworthy that the 

formulation presented in Equation 2 assumes that the convection and radiation modes of heat 

transfer at the exposed surface are functions of a single gas temperature 01 . This assumption is 

acceptable for characterizing the boundary conditions during a fully developed compartment fire, 
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where the radiation field may be considered to be in thermal equilibrium within the compartment; 

i.e. there is no radiation exchange between the gas phase and the boundaries of the compartment, 

and thus gas temperatures can be used to establish radiative heat fluxes [31]. The view factor for 

radiation heat transfer between the gas and the exposed surface of the structural element, 51,*, is 

generally assumed as unity [30]. Under certain conditions, the absorptivity of the exposed surface 

and emissivity of the gases may be considered equal [30]; hence it can be considered that there is 

an equivalent fire emissivity (7;). Equation 2 may then be simplified as: 

ℎ3 01 − 0* 	+	7;	8	 019 − 0*9 	= 	 !"#$%%  (3) 

On the basis of Equations 2 or 3, the thermal boundary conditions can be described using a single 

time-temperature curve, along with an assumption that variations in thermal conditions at the 

surface of the structural element (i.e. absorptivity, emissivity, and convective heat transfer 

coefficient) are not significant.  

Structural Fire Behaviour 

Once the thermal boundary conditions are defined, the heat transfer problem can be treated using 

a heat conduction model (refer to Equation 1) which yields the in-depth time-dependent 

temperature distribution within a structural element. Mechanical strains due to applied loading 

and restrained thermal expansion can then be determined by considering temperature dependent 

constituent material mechanical properties. 

The complexity of existing analysis methods for structures in fire varies significantly; this can be 

as simple as designing based on a critical temperature criterion for structural elements considered 
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in isolation, or as complex as considering full structural behaviour of a structural system during 

and potentially after fire [12]. 

1.2 Fire Testing of Materials and Structures 

During the late 19th Century, an era of rapid innovation in building design brought on by novel 

structural materials and systems along with efforts to save space and build higher, led to the 

development of the concept of “fire-resistant” construction [32, 33]. So-called “fire and water” 

tests became common practice for manufacturers of emerging fire resisting structural materials 

and systems. Attempts were made to advertise new products’ and systems’ fire proof 

characteristics using various means of demonstration [34]; however this approach soon became 

untenable due to the variability of demonstration techniques used. 

By the turn of the 20th Century, efforts were made by both American and European testing 

organizations, along with other stakeholders in the building construction community, to define a 

uniform standard fire resistance test known today as the “standard furnace test” [34, 35, 36, 37, 

38]. In the United States, a standard time-temperature curve was first proposed at the 1917 NFPA 

annual meeting [16]. The actual source data behind the selected curve is unknown to the authors. 

Nonetheless, since first being adopted in 1918 [39], this standard time-temperature curve (or 

similar curves used around the world) has remained essentially unchanged, and is now widely 

used not only in contemporary fire resistance testing, but also sometimes as a design fire or a 

deemed-to-satisfy comparator in performance-based structural fire safety engineering design [29, 

40]. Presently there are a wide range of prescribed time-temperature curves available for use as 

potential design fire scenarios in various applications (see Figure 1), including: cellulosic (often 

referred to as the standard fire) [29], hydrocarbon [41], modified-hydrocarbon [42], RWS 
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(Rijkswaterstaat) [43], RABT-ZTV (railways or highways) [44], external exposure [41], and 

slow-heating (or smouldering) [41], among others. 

During the 20th Century, the establishment of government and private experimental testing 

facilities with appropriate equipment, credentials, and impartiality, led to a regulatory 

environment in which testing facilities could systematically test building materials and structural 

elements under ‘standard’ conditions based on these time-temperature curves, initially for the 

purposes of comparative testing only. With an agreed standard fire resistance testing 

methodology, subsequent decades saw considerable growth of the fire resistance testing 

community in the number and cost of standard fire testing facilities worldwide. Recognizing clear 

inconsistencies of thermal exposures amongst different fire testing furnaces, in recent decades 

efforts have been aimed at standardizing fire testing furnaces and procedures; for instance by 

regulating the furnace lining materials [45], the gauges used to control and measure the furnace 

temperature [46], and the pressure and oxygen levels inside the furnace chamber [47]. 

Considerable differences in the design, construction and operation of fire resistance testing 

furnaces remain (e.g. furnace dimensions, lining materials, the positions of burner outlets, 

procedures to control the burner operation, fuel type, gauge for temperature control), however 

with some standardization of their construction and operation [48]. It appears that the design of 

furnaces remains largely based on past experience of individual furnace manufacturers. 

The use of standard time-temperature curves and fire testing furnaces have become foundational 

principles of testing structural elements for regulatory compliance, but also for research and 

development within the structural fire engineering research community. Within the research 

community, experimental in-depth temperature distributions are widely used to validate material 

thermal properties and heat transfer models (e.g. [8]). Such work sometimes overlooks the 
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complexities associated with the thermal boundary conditions experienced during a standard fire 

resistance test (or a real fire). Possibly for this reason, the oil and gas fire safety industries 

generally define boundary conditions in fire in terms of heat fluxes rather than furnace 

temperatures [49]. The notion that a standard time-temperature curve imposed on a structural 

element in a furnace can replicate a credible worst case fire, and further that it standardises the 

thermal exposure experienced by the full range of construction materials (e.g. concrete, steel, 

timber) is at the heart of contemporary fire testing of structures and structural materials; 

notwithstanding admirable recent work in Europe to harmonize testing performed in different 

furnaces, there remains doubt regarding both claims [7, 14, 50]. 

 

Figure 1 – The wide range of prescribed time-temperature curves. 
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2 THE CONTROL VARIABLE IN FIRE RESISTANCE TESTING 

The boundary conditions of a thermodynamic system (e.g. a compartment fire, standard furnace 

test) are governed by conservation of energy [28], and are therefore typically formulated in terms 

of heat fluxes. This section presents a comparison of thermal boundary conditions defined by 

controlling the time-history of ‘a temperature’ inside a furnace (or oven), versus one defined by 

controlling the time-history of incident radiant heat flux at a specimen’s exposed surface. Despite 

controlling for the same time-temperature curve, furnace testing standards worldwide require the 

use of different types of temperature gauges to measure temperatures inside furnaces, including: 

bare thermocouples (in Europe prior to 1999 [51]), plate thermometers (currently in Europe [29]), 

or shielded thermocouples (currently in North America [40]). In the current paper, the authors 

denote the temperature inside a furnace as ‘a temperature,’ however this temperature is that being 

measured by the specific type of temperature gauge used. 

2.1  Control by Temperature 

The transient enthalpy inside a furnace can be expressed by equating the heat inputs and outputs 

in the thermodynamic system [52]. Herein, the heat input is defined by the heat of combustion at 

the burners in the furnace. The heat output is defined by the energy going into the solid 

boundaries of the system (i.e. furnace linings and specimen), along with the energy advected out 

of the furnace through hot gases leaving the furnace (extraction vents) and fresh (ambient) air 

coming into the furnace. For a thermodynamic system in which the time-history of temperature 

+,

+$
 inside the control volume (i.e. inside the furnace) is the control variable (or objective 

function), conservation of energy can be expressed as: 
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∆= − !"#$,>?"?"1
%% ∙ A>?"?"1 − !"#$,*%% ∙ A* = B1C1DE,1

+,

+$
 (4) 

Where the thermal equilibrium is defined by: 

• the differential between heat inflow and outflow in the furnace (∆=); 

• the net heat flux (!"#$,>?"?"1%% ) and exposed surface area (A>?"?"1) of the furnace lining; 

• the net heat flux (!"#$,*%% ) and exposed surface area (A*) of the test specimen; and 

• the enthalpy associated with gases inside the furnace (B1C1DE,1
+,

+$
). 

The volume inside the furnace is denoted as B1. The density and specific heat of the gases inside 

the furnace are denoted by C1 and DE,1, respectively. 

∆= is thus defined as: 

∆= = FG	∆H3.G 	−	F1	DE,1	 0 − 0JK  (5) 

Where the first term is the increased enthalpy due to the combustion process at the burners in the 

furnace, defined by the mass flow of fuel consumed by the burners (FG) and the heat of 

combustion of the fuel (∆H3,G). The second term is defined as the differential enthalpy between 

the gases leaving the furnace at temperature 0, and the gases coming into the furnace at 

temperature 0JK; where F1 and DE,1 are the mass flow and specific heat of the gases leaving and 

entering the furnace, respectively. 

The actual magnitude of the terms in Equation 5 is not relevant to the current discussion. To 

maintain +,
+$

 by controlling a time-history of temperature inside the furnace, the furnace operates 

by controlling FG (and F1 to some extent) so that ∆= compensates for the changes in the 
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thermodynamic system; for example, changes in the thermal properties of the test specimen. 

Therefore, the magnitude of the terms that define ∆= cannot be generalized. 

In practice, heating the inside of a furnace (or oven) is usually accomplished by forcing hot gases 

into the furnace using gas-fired burners (or less commonly using electrical heating coils). A 

representation of Equation 4 is given in Figure 2.  

  

Figure 2 – Simplified energy conservation schematic of thermal boundary conditions for which the time-

history of temperature is the objective function. 

Equations 4 and 5 assume: 

• homogenous temperature inside the furnace (i.e. within the control volume); 

• homogenous net heat fluxes at the exposed surfaces of the furnace linings and the specimen; 

• heat losses from hot gas extraction vents inside the furnace are neglected; and 

• the kinetic and potential energy associated with the transient mass transfer of the gases inside 

the control volume are neglected. 

The thermal boundary conditions at the exposed surfaces of a test specimen thus depend on the 

thermal state at the exposed surfaces, hence on the thermal properties (i.e. thermal inertia) of the 

materials being tested. Thus, while furnace lining materials, dimensions, temperature gauges, and 

Specimen 
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specific burner types are now reasonably standardized and regulated (e.g. [29]), the thermal 

boundary conditions at the exposed surfaces of test specimens are inevitably linked to the thermal 

properties of the test specimen itself; making the comparative usefulness of tests controlled in 

this manner questionable for materials with different thermal properties [53]. Likewise, adoption 

of the plate thermometer as the standard gauge for temperature control within testing furnaces 

[29, 46] is also governed by energy conservation inside a furnace; hence precluding the notion 

that using a specific type of temperature gauge can fully harmonize the thermal boundary 

conditions imposed when controlling by a temperature [54, 55]. 

The variability of thermal properties for typical building and furnace lining materials (refer to 

Table 1) and its influence on the thermal boundary conditions at the exposed surfaces of a test 

specimen has motivated various research studies (e.g. [52, 56, 57, 58, 59]). These have all arrived 

to the conclusion that when the time-history of a temperature inside a furnace is the control 

variable, the thermal boundary conditions at the exposed surface are considerably and inevitably 

dependent on the furnace linings, emissivity of the gases, and thermal properties the test 

specimen itself. Current testing standards limit furnace lining materials to a maximum density, 

minimum thickness, and minimum exposed surface inside the furnace (e.g. [29]). Nonetheless, 

the divergence in thermal properties of normal building construction materials can be large (refer 

to Table 1), and this reduces the chances of true standardisation of the thermal boundary 

conditions using this approach. 

Within the structural fire testing community, it is generally accepted that controlling the time-

history of temperature inside a furnace is equivalent to controlling the thermal boundary 

conditions (or thermal exposure) at the exposed surface of the test specimen. Notwithstanding 

improvements that have been realised through the introduction of plate thermometers for 
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controlling fire testing furnaces (in many jurisdictions), this still partly neglects the complex 

thermal interactions between the gases, linings, and specimen [11, 53, 60, 61]. The research 

presented in the current paper aims to address some of these shortcomings and to develop a 

complimentary fire testing method that directly controls incident radiant heat flux at the exposed 

surface of a test specimen. 

Table 1 – Thermal properties of typical building construction materials and furnace lining materials. 

  Density 
Thermal 

Conductivity 
Specific 

Heat 
Thermal 

Diffusivity 
Thermal  

Inertia 

  [kg/m3] [W/mK] [J/kgK] [m2/s × 10-9] [W s2/K2 m4] 

Typical 
Building 
Construction 
Materials [62] 

Aluminium 2,400 237 900 109,722 511,920,000 

Steel 7,800 40 466 11,005 145,392,000 

Concrete 2,000 2.5 880 1,420 4,400,000 

Plasterboard 800 0.17 1,100 193 149,600 

Expanded Polystyrene 20 0.003 1,300 115 78 

Furnace 
Lining 
Materials [63] 

BAM1 1,000 0.45 995 452 447,750 

CSTB2 1,250 0.55 1,080 407 742,500 

CSE3 2,000 1.10 1,500 367 3,300,000 

LPC4 880 0.33 1,110 338 322,344 

1 BAM: Bundesanstalt für Materialforschung und –prüfung, Germany 
2 CSTB: Centre Scientifique et Technique du Bâtiment, France 
3 CSE: Centro Studi ed Esperienze, Italy 
4 LPC: Loss Prevention Council, UK 

 
If heat from the thermodynamic system going into the test specimen can be neglected (refer to 

Equation 4), the energy conservation in the furnace becomes independent of the test specimen. In 

a furnace this might be reasonable for materials with very small exposed surface areas (relative to 

the exposed surfaces of the furnace lining) and similar thermal properties to those of the furnace 

linings; otherwise this assumption is not valid. The following section describes a thermodynamic 

system where incident radiant heat flux is directly controlled, and energy conservation is 

therefore independent of the thermal properties of the sample being tested. 
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2.2  Control by Incident Radiant Heat Flux 

For a system in which the control variable is the time-history of incident radiant heat flux !?"3%%  

at the exposed surface of the test specimen, the local energy conservation equation can be 

expressed as: 

!"#$,*%% = :*	!?"3
%% − !>\**#*

%%  (6) 

Where the net heat flux (!"#$,*%% ) is calculated accounting for the absorptivity (:*) and heat flux 

losses !>\**#*%%  at the exposed surface of the test specimen (refer to Figure 3). Hence the time-

history of incident radiant heat flux !?"3%%  is an independent control variable. The heat flux losses 

at the specimen’s exposed surface may be calculated using a direct heat transfer model (analytical 

or numerical, implicit or explicit). For instance, a simplified formulation for calculating the heat 

flux losses at the exposed surface is: 

!>\**#*
%% = ℎ3 0* − 0]^_ + 7*	8	0*9 (7) 

where constant or temperature dependent values may be considered for the convective heat 

transfer coefficient ℎ3  and emissivity 7*  (e.g. [8], [30]). 

 

Figure 3 – Simplified energy conservation schematic of a thermal exposure for which the time-history of 
incident radiant heat flux is the objective function. 

!̇>\**#*
%%  

!̇"#$,*%%  !̇?"3
%%  

Specimen 
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Control of fire science experiments by incident radiant heat flux is not a novel concept [56]; 

indeed it has been widely implemented for more than five decades in a wide variety of fire 

science studies (e.g. [64, 65, 66, 67, 68, 69, 70]). Commercially available fire testing apparatus 

such as the Cone Calorimeter [71, 72] or Fire Propagation Apparatus [73, 74] are widely used 

for small-scale tests with control by incident radiant heat flux. Furthermore, numerous authors 

have suggested replacing a prescribed time-history of temperature when describing a fire with a 

time-history of incident radiant heat flux (e.g. [11, 14, 54, 56, 61, 75, 76, 77, 78]). This is the 

approach taken in the current research. 

3 THE HEAT-TRANSFER RATE INDUCING SYSTEM (H-TRIS) TEST METHOD 

AND APPARATUS 

To address issues associated with performing fire testing by controlling a temperature rather than 

heat flux, a novel test method and apparatus was developed. The Heat-Transfer Rate Inducing 

System (H-TRIS) allows for direct and independent control of the thermal boundary conditions 

imposed on a test specimen by controlling a specified time-history of incident radiant heat flux at 

its exposed surface [79].  

The first generation apparatus, H-TRIS Mark 1, uses a mobile array of propane-fired radiant 

panels, along with a mechanical linear motion system and a rotary stepper motor (see figures 4 

and 5). The linear motion system can be programed to actively control the relative position 

between the radiant panels and the exposed surface of a test specimen.
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Figure 4 – Photograph of H-TRIS Mark 1 (side elevation). 

 
Figure 5 – Schematic of H-TRIS Mark 1 (side elevation). 
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Radiant 
Panel Array 
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Motion System 



18 

3.1  Control of the Thermal Boundary Condition 

The radiant panel array is pre-set to operate at a constant panel temperature, thus the heat output 

(=E]"#>*) is monitored by controlling the mass flow of air and propane to the panels, assuring a 

steady operation. The incident radiant heat flux at the target surface of the test specimen !?"3%%  is 

measured during a pre-test calibration procedure, by positioning a Schmidt-Boelter heat flux 

gauge [80] at an offset distance, `, from the radiant panel array (see Figure 6).  

The time-history of net heat flux at the exposed surface of the test specimen may be defined as 

shown in Equation 6 and schematically represented in Figure 7. For example, if the objective is to 

replicate a required net heat flux (!"#$,*%% ), an inverse heat transfer model may be used to calculate 

the incident radiant heat flux which yields the desired net heat flux, while also accounting for the 

thermal boundary conditions (absorptivity and heat losses) at the exposed surface of the test 

specimen (refer to Section 4). 

H-TRIS is operated to ensure sufficient spatial separation between the radiant panels and the 

exposed surface of the test specimen to avoid imposition of vitiated air near the surface of a 

specimen, thus supporting the assumption used in the inverse modelling procedures that heat gain 

is by radiation, and gases at the exposed surface of the test specimen are not directly influenced 

by convective currents from the radiant panels themselves [65].  
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Figure 6 – Simplified schematic of H-TRIS during pre-test calibration, and energy conservation at the 

exposed surface of the Schmidt-Boelter heat flux gauge used in calibration. 

 

Figure 7 – Simplified schematic of H-TRIS during testing and energy conservation at the exposed surface of 

the test specimen. 
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Using this approach, H-TRIS is able impose a controlled net heat flux, and thus the in-depth time 

dependent temperature distribution in solid media can be directly controlled during testing. This 

is a non-trivial advantage for the fire safe characterization of building construction materials, 

since unlike traditional fire testing furnaces, it allows explicit control and quantification of the 

heating rates within thermally thick materials (e.g. concrete, timber, polymer foams, etc.). Figure 

8 shows the time-history of incident radiant heat flux imposed with H-TRIS during a study of 

heat induced concrete spalling. These boundary conditions aimed at yielding an equivalent time-

history of net heat flux to that experienced by specific concrete test specimens during a fire 

resistance test in a furnace. The details of this study are presented in Section 4. 

 
Figure 8 – Time-history of net heat flux during a standard fire resistance test and calibrated incident radiant 

heat flux imposed using H-TRIS, yielding an equivalent net heat flux at the exposed surface of a concrete test 

specimen. 
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3.2  Technical Aspects 

This paper presents the heat transfer theory behind the H-TRIS testing methodology, while also 

providing a detailed description of the technical aspects of the H-TRIS Mark 1 test apparatus (see 

figures 4 and 5). In collaboration with the authors, other testing laboratories (e.g. The University 

of Queensland, Australia and the Technical University of Denmark, DTU) are currently 

developing similar H-TRIS apparatus. These, while following the same fundamental approach, 

are intended to allow for multiple and/or larger exposed surfaces and higher heat fluxes. 

3.2.1 Radiant Panel Array 

Four high-performance propane-fired radiant panels are mounted to a metal frame to form a 200 

× 400 mm2 array of radiant panels (Figure 9). The commercially available radiant panels operate 

using a combustion process that takes place within a 3.5 mm (± 0.2 mm) thick sintered metal 

fibre medium. This results in a lightweight radiant panel with rapid thermal response (during both 

heating and cooling), high and stable operational temperature, and thermal homogeneity at the 

emitting surface. 
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Figure 9 – Photo and schematic showing propane-fired radiant panels for H-TRIS Mark 1 (front elevation). 

3.2.2 Heat Flux Gauge 

Incident radiant heat flux measurements at the target surface of test specimens are calibrated 

using a Schmidt-Boelter heat flux gauge (see Figure 10). It is known that hot gases accumulated 

around heat flux gauges significantly influence their incident irradiation measurements [81, 82], 

and that this may result in an underestimation of up to 20% when the gauge is placed flush with a 

target surface; this is due to free convective flows that are created by heating of the surface. 

Given that water-cooled heat flux gauges are calibrated under natural convection conditions, or 

alternatively in a vacuum [83], to minimise the influence of hot gases around the gauge, it is 

recommended that this type of heat flux gauge should not be mounted flush to a surface [81]. 

When calibrating H-TRIS the heat flux gauge was mounted on a self-cooling probe (Figure 10). 
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Figure 10 – Schmidt-Boelter heat flux gauge mounted on a self-cooling probe system designed to minimise the 

influence of convective flows near the gauge.  

3.2.3 Linear Motion System 

A mechanical linear motion system is used to hold the radiant panel array and supporting frame, 

and to control the array’s relative position with the target surface, ` b . A threaded rod is fixed to 

a computer-controlled stepper-motor, and aligned within the metallic frame holding the radiant 

panel array. This system was designed to automatically control the position of the radiant array 

with high speed and accuracy.  

3.3  Testing Operation of H-TRIS 

3.3.1 Pre-test Calibration Procedure 

Pre-test calibrations are performed periodically to obtain the correlation between relative position 

of the radiant panels and the incident radiant heat flux at the target surface, ` !?"3%% . Calibrations 

can be repeated to account for specific changes in setup or conditions on any given day (e.g. 

panel performance and wear), thus ensuring repeatability between tests. 

During calibration the heat flux gauge is placed at the intended target surface location, and the 

relative position of the radiant panel array is automatically varied from the maximum to the 

minimum distance to the heat flux gauge. Incident radiant heat flux readings obtained in this 
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manner are then used to generate a curve of incident radiant heat flux versus distance from the 

radiant panels (for example Figure 11). The heat flux gauge is placed at the centre of the target 

surface. In its current incarnation, H-TRIS Mark 1 has a range yielding minimum and maximum 

incident radiant heat fluxes of 5 and 130 kW/m2, respectively (see Figure 11). 

 

Figure 11 – Typical calibration results for incident radiant heat flux at the centre of the target surface versus 

stand-off distance of the radiant panel array. Error bars show range of deviation for spatial distribution of 

measured incident radiant heat flux relative to measurements taken at the centre of the target surface. 
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3.3.2 Testing Procedure 

The time-history of the stand-off distance of the radiant panel array (i.e. relative distance between 

the array and the target surface) is expressed as ` b , and is calculated by inputting the desired 

time-history of incident radiant heat flux function,	!?"3%% b  into the pre-test calibration function, 

` = c !?"3
%% . Hence, the formulation of the time-history of relative position of the radiant panels 

is calculated as: 

` b 	= 	c !?"3
%% b  (8) 

The above can either be described as a continuous function or as discrete values. Using this 

approach, a wide range of time-histories of incident radiant heat flux can be recreated. This 

makes H-TRIS considerably more versatile than a fire testing furnace, and is limited only by the 

range of incident radiant heat fluxes achieved during the calibration process. In turn, this is 

defined by the size and type of radiant panels used, the minimum and maximum distances 

between radiant array and the target surface, and the speed of the linear motion system. 

3.3.3 Spatial Distribution of Thermal Boundary Conditions 

An assessment of the spatial distribution of incident radiant heat flux at the target surface is 

periodically measured to ensure uniformity of the imposed heat flux. This procedure is performed 

in the same manner as that described for the pre-test calibration; however, the procedure is 

repeated for various locations on the target surface (refer to Figure 11). For example, for the 

study presented in this paper, it was intended for concrete specimens having an exposed surface 

area of 200 × 400 mm2. Thus, the spatial distribution of incident radiant heat flux was assessed at 

the locations shown in Figure 11. The spatial distribution of incident radiant heat flux was better 
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than 90% uniform. The spatial distribution of heat flux at the target surface is will obviously 

depend on the ratio between the area of the target surface and that of the radiant panel array. 

4 APPLICATION TO STUDIES ON HEAT-INDUCED CONCRETE SPALLING 

A number of research-driven and product development projects have already been undertaken 

using the H-TRIS test method for studying fire-related aspects for a range of building 

construction materials and system assemblies (e.g. highly optimized prestressed concrete slabs 

[84], lightweight structural concrete sandwich elements [85], concrete tunnel lining segment 

materials [86], intumescent coatings [87], cross laminated timber [88], non-metallic dowelled 

timber connections [89], and building insulation materials [90]). This section illustrates 

application of H-TRIS within a project studying heat-induced concrete spalling. 

A thorough review of past experimental work studying heat-induced concrete spalling [79] is 

avoided here, but highlighted the wide range of factors that have previously been suggested as 

influencing the propensity for concrete spalling in fire. Maluk [79] has shown that the many prior 

studies on concrete spalling have yielded somewhat contradictory results. For instance, some 

studies have shown that higher heating rates result in greater propensity for spalling (e.g. [91]), 

however in some cases slower heating has actually shown more severe spalling (e.g. [92]). 

Heat-induced explosive concrete spalling occurs when the exposed surface of concrete is heated, 

and it flakes away in a more or less violent manner [84]. As a consequence, the concrete cover to 

the internal reinforcement may be reduced, possibly resulting in rapid temperature increases in 

the internal reinforcement and within the core of the structural element in addition to a direct 

influence on load bearing capacity due to the loss of physical or effective cross sectional area. 

Heat-induced concrete spalling presents a potentially serious concern in the context of the 
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historical approach to fire safe structural design of concrete structures, and the fire resistance 

community continues to investigate the causes and implications of the apparent increased 

propensity for spalling of modern concrete mixes [79], particularly those with high strength 

and/or self-consolidating properties. 

Numerous experimental studies have shown that inclusion of polypropylene (PP) fibres in fresh 

concrete can reduce concrete’s propensity for heat-induced spalling [79]. Polypropylene fibres 

are theorised to alter the transient moisture migration and/or evaporation processes within heated 

concrete, thus mitigating spalling (particularly when a thermo-hydraulic – i.e. pore pressure – 

spalling mechanism is dominant). The relative importance of the physical mechanisms that may 

explain the effectiveness of PP fibres in reducing concretes’ propensity for heat-induced concrete 

spalling remains a matter of debate [93]. Regardless of this debate, current design and 

construction guidance for mitigation of spalling is based on adding a typical dose of PP fibres 

(i.e. mass of PP fibres per volume of concrete) for concrete mixes or end use conditions in which 

spalling is considered likely to occur [94]. Physical mechanisms aside, it is reasonable to assume 

that an optimum (or most ‘effective’) PP fibre type and dose will exist to mitigate spalling under 

a given set of mechanical and thermal conditions [95]. Since it is not currently possible to model 

the occurrence of spalling, and due to the complexity of and uncertainty of the various 

mechanisms possibly contributing to spalling and the potential mechanisms behind PP fibres’ 

effectiveness, an experimental study on the effectiveness of PP type and dose was performed 

using the H-TRIS testing method and apparatus. 
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4.1  Aims of the Study on Spalling 

H-TRIS was used to test a large number of medium-scale concrete specimens during severe 

heating. This was accomplished at a low economic and temporal cost, and with outstanding 

repeatability as compared with testing multiple samples in a traditional fire testing furnace. The 

propensity for heat-induced spalling was examined for eleven high-performance, self-

consolidating concrete (HPSCC) mixes for which PP fibre type, cross-section, length, supplier, 

and dose were systematically varied. Rather than seeking to unravel and understand the precise 

mechanisms contributing to spalling or defining the fire resistance (in the time domain) of 

structural elements incorporating these specific concrete mixes, the study described herein aimed 

to evaluate the propensity for spalling of the concrete mixes tested under repeatable heating 

exposures and mechanical conditions; simulating the thermal conditions experienced by concrete 

specimens during a standard furnace test. Since the concrete mixes evaluated within this study 

were developed to be used in slender, highly optimized concrete elements, there was a need to 

completely avoid spalling. Heating of the specimens was therefore terminated as soon as the first 

significant spalling event occurred. 

4.2  Spalling Tests using H-TRIS 

The thermal exposure imposed with H-TRIS for the spalling study aimed to replicate that 

experienced by concrete specimens measured during large-scale fire resistance tests of similar 

specimens and concrete mixes [96]. These were the first experiments ever performed using H-

TRIS to simulate the net heat flux at the exposed surface, and hence the in-depth time dependent 

temperature distributions within concrete specimens, during a standard fire resistance test. The 

time-history of incident radiant heat flux imposed with H-TRIS yielding an equivalent time-
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history of net heat flux (see Figure 8) to that experienced by concrete test specimens during a fire 

resistance test, was calculated using an inverse heat conduction model developed by the authors 

[79]. Is noteworthy that, unlike a traditional direct heat conduction model in which the thermal 

boundary conditions are assumed and used as an input to calculate the in-depth time dependent 

temperature distribution within a solid, an inverse heat conduction model uses measured in-depth 

time dependent temperature distributions as inputs to calculate the thermal boundary conditions. 

A thorough description of the inverse heat conduction model is presented elsewhere [79]. 

Due to the maximum proximity of the radiant panel array with respect to the exposed surface of 

the specimens in the spalling study (refer to Figure 4), the maximum possible incident radiant 

heat flux was 100 kW/m2. Thus, the desired time-history of incident radiant heat flux (shown in 

Figure 8) was imposed until an incident radiant heat flux of 100 kW/m2 was reached; beyond this 

point the incident radiant heat flux was maintained constant at 100 kW/m2. If no spalling 

occurred within 60 minutes of heating the test was halted, since heat-induced explosive spalling 

is unlikely to occur at such a late stage [84]. 

Figure 12 shows a comparison of in-depth temperature measurements recorded for concrete 

specimens during a large-scale standard fire resistance test on otherwise identical specimens in 

the thermal domain [96] against those measured at the same locations during tests using H-TRIS 

(with H-TRIS programmed on the basis of the inverse model described in [77] to simulate the 

furnace exposure). Test specimens were considered to be identical in the thermal domain, given 

that the boundary conditions and parameters that control the heat conduction processes were 

effectively identical (cross-section of the test specimens and thermal properties of the concrete). 

The shaded areas in Figure 12 represent the spread of in-depth temperature measurements in five 

large-scale concrete test specimens tested simultaneously during a single standard furnace test, 
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whereas the black lines represent the equivalent measurements taken during a series of individual 

tests on effectively identical (in the thermal domain) specimens tested with H-TRIS (three 

individual thermocouple readings are shown for each specimen at 10, 20 and 45 mm from the 

exposed surface). The solid lines terminate at the instant that the individual tests in H-TRIS were 

stopped. Figure 12 shows that the H-TRIS methodology is able to accurately replicate the in-

depth time dependent temperature distribution experienced by concrete specimens during a 

standard fire resistance test. H-TRIS also appears to be more accurate and repeatable, both within 

individual tests and across multiple repeat tests. The temperature deviation of the measurements 

taken from the eight plate thermometers inside the standard furnace was compliant with the 

testing standard [29]. 

Given that the end use application for the specific HPSCC mixes examined in this study involves 

highly optimized prestressed concrete systems [96], there was a need to examine the effect of 

pre-compressive stresses acting on the concrete during testing. Mechanical loading and boundary 

conditions were imposed using a purpose built loading rig, designed to impose a sustained axial 

compressive load to the test specimens during heating [79]; hence reproducing the pre-

compression experienced by the specimens in service. 
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Figure 12 – In-depth temperature measurements taken during a standard fire resistance test [96] compared 

against those made with H-TRIS (shaded areas show the spread of the measurements during the furnace test, 

black lines show measurements with H-TRIS). 

4.3  Spalling Test Programme 

Constrained by requirements on minimum strength and self-compaction of the concrete mixes, 

the concrete compressive strength (C90 according to [94]) and workability (slump flow of 750 

mm according to [97]) were maintained constant for all concrete mixes examined in the spalling 

study. Parameters assessed amongst the concrete mixes were: 

• PP fibre cross-section (18 or 32 µm diameter circular cross-sections, and 37 × 200 µm2 

rectangular cross-sections); 

• PP fibre length (3, 6, 12, or 20 mm); 

• PP fibre type (monofilament, multifilament, or fibrillated); 

• PP fibre supplier (three manufacturers: Bekaert, Propex, and Vulkan); and 

• PP fibre dose (between 0.68 and 2.34 kg per m3 of concrete). 
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While only the abovementioned concrete mix parameters were intentionally varied, other mild 

variations were required during concrete mixing so as to attain the minimum required slump flow 

of 750 mm. This was mainly attributed to inclusion of various types and amounts of PP fibres; 

however these variations are not considered relevant within the context of the current work [79]. 

Medium-scale unreinforced and unstressed concrete specimens were tested using H-TRIS in a 

vertical orientation with heating from one side. Recognising that scaling of test specimens in 

structural fire resistance testing is debated on various grounds [79], the dimensions in the 

direction of the principal heat flow were taken as the same as used in prior standard furnace tests 

of large-scale specimens [96]. Thus, medium-scale specimens were cast with identical cross-

sections as the large-scale fire resistance test specimens: 45 × 200 mm2. The length of the H-

TRIS specimens was limited to 500 mm due to space limitations, with cold overhangs (i.e. 

unheated ends) of 50 mm in length; the thermally exposed surface was 400 × 200 mm2. 

Specimens were tested either under a free-to-expand (unrestrained) condition or under sustained 

compressive load to give a concentric axial compressive stress of 12.3 MPa [79]. Load was 

applied using notionally rotationally fixed-fixed end conditions, and held constant for the 

duration of the tests using a hydraulic load control system (i.e. the applied compressive load was 

maintained constant, partly counteracting potential effects from thermal expansion and elastic 

modulus changes of the test specimen during heating). Unloaded test specimens were left free-to-

expand (under notionally rotationally pinned-pinned end conditions) during heating. All tests 

were performed in triplicate. 
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4.4  Results and Discussion 

Sixty-six precisely controlled and repeatable spalling tests were performed during a period of 30 

days; thus demonstrating the low temporal cost of the H-TRIS approach. It is noteworthy that 

contrary to expectations based on prior heat-induced concrete spalling experimental studies [79], 

when spalling occurred for a given mix it occurred for all three identical repeat tests and at 

similar heating exposure times. Likewise, if no spalling was observed for a particular mix then 

this was true for all three repeat tests. During testing, spalling occurred for four of the 11 concrete 

mixes assessed. Spalling occurred for concrete mixes including: 

• no fibres; 

• PP fibres of 32 µm diameter circular cross-section, 3 mm long, multifilament, at a dose of 

1.20 kg per m3 of concrete; 

• PP fibres of 37 × 200 µm2 rectangular cross-sections, 20 mm long, fibrillated, at a dose of 

1.20 kg per m3 of concrete; and 

• PP fibres of 37 × 200 µm2 rectangular cross-sections, 20 mm long, fibrillated, at a dose of 

2.00 kg per m3 of concrete. 

None of the other mixes experienced any spalling whatsoever for the full duration of the 60 

minutes test. Figure 13 shows typical post-test photographs of three specimens demonstrating 

increasing severities of spalling (i.e., surface spalling, mild spalling, and destructive spalling). 
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Figure 13 – Typical specimens after tests using H-TRIS, demonstrating (a) surface, (b) mild, and (c) 

destructive spalling. 

A complete description and analysis of the results from this experimental study are presented 

elsewhere [79, 84]. The following observations were made based on the parameters varied 

between specimen sets:  

• PP fibre cross section – Inclusion of PP fibres with smaller cross sections appeared to have a 

positive influence in mitigating spalling for both loaded and free-to-expand specimens. 

• Fibre length – Concrete mixes cast with relatively short (3 mm long) monofilament PP fibres 

exhibited a higher risk of spalling than practically identical mixes (equivalent PP fibre doses) 

with longer fibres (6 or 12 mm long). Thus, longer PP fibres (presumably up to some as yet 

unknown optimal length) appeared to be more effective at mitigating heat-induced spalling. 

(a) Surface spalling (b) Mild spalling (c) Destructive 
spalling 
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• Fibre supplier – The PP fibre supplier has no obvious influence on test results, all other 

factors being equal. 

• Fibre type – Because the dimensions (cross section and length) of monofilament or 

multifilament, and fibrillated PP fibres assessed in this study diverged significantly, it is not 

possible to independently assess the influence of PP fibre type on the occurrence of spalling. 

Nonetheless, no obvious influence was observed for mixes cast with monofilament or 

multifilament PP fibres, all other factors being equal. Fibrillated PP fibres were less effective 

than monofilament PP fibres.  

• Fibre Dose – As expected, high doses of PP fibres had a positive influence in mitigating the 

occurrence of spalling; however, some very low doses (0.68 kg of PP fibres per m3 of 

concrete) of the smaller cross sections PP fibres (18 µm diameter) were also effective at 

mitigating spalling. The reasons for this are not yet clear. 

• Sustained Pre-Compressive Stress – Tested specimens for which spalling occurred under 

sustained compressive load also suffered from spalling when tested under free-to-expand 

conditions. The exception to the above was for one of the mixes that included 2.00 kg of 

fibrillated PP fibres per m3 of concrete; this mix spalled only when tested under sustained 

compressive load. Thus, a possible influence of pre-compressive stress was observed. 

Using H-TRIS it was possible to accurately quantify the time-to-spalling and the mass spalled. 

Spalling consistently occurred between 7 and 25 minutes from the start of heating. The 

occurrence of heat-induced concrete spalling for specimens tested with H-TRIS was in 

reasonable agreement in terms of time-to-spalling (i.e. ±2 minutes) with specimens cast from 

identical concrete mixes and tested during prior standard furnace tests [84]. This result provides 
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further evidence of H-TRIS’ ability to accurately replicate not only the in-depth time dependent 

temperature distribution experienced by concrete specimens during a standard fire resistance test 

(see Figure 12), but also the time-to-spalling during repeat testing of effectively identical (from a 

thermal perspective) specimens under the same thermal boundary conditions. 

4.5  Conclusions from the Study on Spalling 

PP fibre dose is currently the primary parameter prescribed by design guidance (e.g. [94]) to 

mitigate spalling; however, the large number of experiments and repeatability of test results of 

this study reveals that fibre cross section and individual fibre length may also influence PP fibre 

effectiveness. These conclusions are strictly only valid for the heating conditions experienced by 

concrete specimens during tests with the specific standard furnace used to define the H-TRIS 

boundary conditions in the current study [96]. 

The current study represents the first attempt to use the H-TRIS testing method to replicate the 

thermal boundary conditions experienced by concrete specimens in a standard furnace test 

through medium-scale testing with mobile radiant panels. Additional research is needed to better 

understand the necessary mix design parameters to reliably prevent heat-induced concrete 

spalling under a range of service conditions and design fire exposures. However, the capability of 

H-TRIS to inexpensively, accurately and repeatable quantify the thermal conditions during a fire 

resistance test has been demonstrated. 

5 CONCLUSIONS 

This paper has presented a novel test method and apparatus, named H-TRIS (Heat-Transfer Rate 

Inducing System), that was first conceived for fire testing of construction materials and systems 
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at medium-scale by directly controlling the thermal boundary conditions at an exposed target 

surface; this is accomplished by imposing a time-history of incident radiant heat flux. H-TRIS 

presents a complimentary test method to conventional material and structural fire testing in 

furnaces (or ovens), in which thermal boundary conditions are indirectly controlled by imposing 

a time-history of temperature.  

H-TRIS is capable of imposing any desired time-history of incident radiant heat flux (within the 

bounds of the minimum and maximum flux that can be achieved), or of reproducing the in-depth 

time dependent temperature distributions within a solid for materials heated during a traditional 

fire test, large-scale fire test, real fire, or resulting from outputs from a fire model. Besides the 

scientific advantages associated with direct control of the thermal boundary conditions at the 

exposed surface of test specimens, other advantages of the method include: 

• The ability to impose a range of thermal exposures – alongside the development of H-TRIS, 

an inverse heat conduction model was developed to calculate the time-history of incident 

radiant heat flux which yields an equivalent in-depth time dependent temperature distribution 

in a solid material during potentially any heating scenario. 

• Repeatability – calibration runs are repeated periodically to account for specific changes in 

setup or environmental conditions, thus allowing a high level of repeatability between tests. 

Consequently, good statistical confidence for research studies carried out with multiple 

repeat tests, as is required for probabilistic assessment of materials that is needed in support 

of explicit structural fire safety design. 

• Operation at low economic and temporal costs – experimental fire resistance research and 

development has historically been somewhat limited by the comparatively high economic 
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and temporal costs associated with standard fire resistance testing in furnaces, thus a limited 

number of tests are typically performed for each test variable of interest. H-TRIS allows for 

multiple repeat tests to be performed at comparatively low cost, and to develop a stochastic 

understanding of material and element response to heating. 
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