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Abstract 51 

Angiogenesis contributes in multiple ways to disease progression in tumors and reduces 52 

treatment efficiency. Molecular therapies targeting Vegf signaling combined with 53 

chemotherapy or other drugs exhibit promising results to improve efficacy of treatment. 54 

Dopamine has been recently proposed to be a novel safe antiangiogenic drug that stabilizes 55 

abnormal blood vessels and increases therapeutic efficacy. Here, we aimed to identify a 56 

treatment to normalize tumoral vessels and restore normal blood perfusion in tumor tissue 57 

with a Vegf receptor inhibitor and/or a ligand of dopamine G protein-coupled receptor D2 58 

(D2R). Dopamine, via its action on D2R, is an endogenous effector of the pituitary gland, and 59 

we took advantage of this system to address this question. We have used a previously 60 

described Hmga2/T mouse model developing haemorrhagic prolactin-secreting adenomas. In 61 

mutant mice, blood vessels are profoundly altered in tumors, and an aberrant arterial 62 

vascularization develops leading to the loss of dopamine supply. D2R agonist treatment 63 

blocks tumor growth, induces regression of the aberrant blood supply and normalizes blood 64 

vessels. A chronic treatment is able to restore the altered balance between pro- and anti-65 

angiogenic factors. Remarkably, an acute treatment induces an up-regulation of the stabilizing 66 

factor Angiopoietin 1. An anti-Vegf therapy is also effective to restrain tumor growth and 67 

improves vascular remodeling. Importantly, only the combination treatment suppresses 68 

intratumoral hemorrhage and restores blood vessel perfusion, suggesting that it might 69 

represent an attractive therapy targeting tumor vasculature. Similar strategies targeting other 70 

ligands of GPCRs involved in angiogenesis may identify novel therapeutic opportunities for 71 

cancer.  72 

 73 

 74 

 75 
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Introduction 76 

Pathological angiogenesis, generated by an imbalance of pro- and antiangiogenic 77 

factors, provides oxygen and nutrients to tumors, and is a hallmark of many benign and 78 

malignant diseases 1, 2. New blood vessels within tumors are impaired in their function and 79 

structure, and this abnormal vascular network causes alterations in blood flow and 80 

oxygenation that can further increase tumor growth and alter the anti-tumor efficiency of 81 

cytotoxic drugs 3, 4. Results from clinical trials using anti-Vegf agents have revealed that 82 

efficacy of anti-angiogenic monotherapy can be inadequate in term of response or survival 83 

rates 5. To improve treatment efficiency, novel combinations of anti-Vegf therapy with 84 

chemotherapy or radiation have been developed, with promising results 5, 6. Thus, a recent 85 

study performed by Jain's group investigating a combination treatment with anti-Vegf and 86 

chemotherapy, showed that early vessel normalization improves tumor perfusion and survival 87 

in a subset of glioblastoma patients 7. Of interest, another option is to combine Vegf-signaling 88 

inhibitors with antiangiogenic agents targeting alternative pathways. In this regard, the use of 89 

inhibitors targeting Vegf and Angiopoietin 2 has shown complementary actions on tumor 90 

growth and angiogenesis 8, 9.  91 

Alternative strategies for normalizing vessels and blood flow in tumoral tissues are 92 

based on the use of ligands for G protein-coupled receptors (GPCRs) 10. Among the recently 93 

discovered candidates, D2 receptors and their natural ligand dopamine (DA) are of particular 94 

interest as, in addition to its major role as a neurotransmitter within the brain, DA controls 95 

vascular tone and blocks Vegf-dependent increase in vascular permeability 11, 12. DA 96 

influences tumor behavior as well, especially by controlling cell proliferation and processes 97 

leading to angiogenesis 13, 14. DA is not only an anti-tumoral and anti-angiogenic drug, it also 98 

normalizes abnormal tumor blood vessels by acting on pericytes and endothelial cells, and 99 

therefore improves tumor perfusion by increasing blood flow, decreasing hypoxia and 100 

Page 5 of 34 International Journal of Cancer



 6 

enhancing the concentration of anti-cancer drug in tissue 15. A recent study showed that DA 101 

therapy also prevents 5-fluoracil mediated neutropenia 16. Hence, DA has been proposed to be 102 

a novel therapy for the treatment of cancer and chemotherapy-induced disorders 15-17. 103 

In this context, we examined whether an anti-Vegf therapy combined with D2 receptor 104 

ligands could exert additive effects to normalize blood vessels in tumors. We tested this 105 

hypothesis on the pituitary gland since DA is also an endogenous effector of this master gland 106 

and plays a central role in tonically inhibiting prolactin (PRL) release via D2 receptors located 107 

on lactotrophs 18. Blood perfuses the normal pituitary via incoming vessels from the pituitary 108 

portal circulation at the base of the brain. Previous studies have reported that prolactinomas in 109 

rats 19 and in humans 20 are associated with the development of a direct arterial blood supply, 110 

which may lead in turn to an escape from inhibitory hypothalamic regulation since systemic 111 

blood contains very low DA levels in comparison with portal blood. Prolactinomas are in 112 

general treated by medical therapy with DA agonists, and an anti-angiogenic strategy using 113 

anti-Vegf agents has been recently proposed to treat aggressive human pituitary tumors 21. 114 

These tumors are therefore an excellent model for investigation of the use of DA and Vegf for 115 

tumor therapy through modification of vascular defects. 116 

We have used the Hmga2/T mouse model, which develops PRL-secreting adenomas 22 117 

and has been previously used to test the efficacy of new drugs for the therapy of human 118 

pituitary tumors 23, to investigate the status of endogenous DA during tumoral development 119 

and the effects of a D2R agonist on tumor growth and vasculature. Moreover, we have 120 

examined whether DA and anti-Vegf agent could exert complementary effects on structural 121 

and functional properties of tumoral blood vessels. We show that a loss in endogenous DA 122 

inhibitory tone is concomitant with tumor progression and is associated with aberrant growth 123 

of blood vessels. D2R agonist treatment inhibits tumor growth and normalizes abnormal 124 

blood vessels. Molecular mechanisms induced by D2R agonist are able to reverse the 125 
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profound alterations of the angiogenic profile in tumoral glands and involve an up-regulation 126 

of the stabilizing factor Angiopoietin1. Strikingly, although anti-Vegf treatment is also able to 127 

normalize tumoral blood vessels and prevents tumor growth, only the combination treatment 128 

suppresses intratumoral hemorrhage and restores blood vessel perfusion. 129 

 130 

Materials and Methods 131 

Mouse model 132 

All animal studies complied with the animal welfare guidelines of the European 133 

Community. They were approved by the Direction of Veterinary departments of Herault and 134 

the Languedoc Roussillon Institutional Animal Care and Use Committee (#CEEA-LR-135 

12119). Animals were housed in light (12-hour light, 12-hour dark cycle) and temperature 136 

(22-24°C) controlled rooms and fed a normal diet with free access to tap water. 137 

Experiments were performed on mixed 129/SVJ x C57BL/6 female mice, either wild-138 

type (WT) or overexpressing ubiquitously a truncated form of Hmga2 protein 24 (Hmga2/T 139 

mice). In this model, pituitaries from females exhibited an extended period of hyperplasia, 140 

starting around 3 months of age, followed by tumor onset between 9 to 11 months 141 

(Supporting Information Fig. 1). These tumors appeared very hemorrhagic and 142 

immunohistochemical experiments showed that they were prolactinomas. A strong correlation 143 

was observed between circulating PRL levels and tumor weight (R2 = 0.936), as reported in 144 

human prolactinomas 25, 26. We thus decided to monitor hormone output for each mouse once 145 

a week to follow tumor initiation and progression. Unless otherwise specified, the majority of 146 

experiments were performed on cohorts of mice with circulating PRL concentrations between 147 

400 and 800 ng/ml and corresponding to tumors of 13-18 mg.  148 

 149 

ELISA assay for PRL 150 
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Blood levels of PRL were measured using an ultra-sensitive ELISA method recently 151 

established in the laboratory 27. Briefly, whole blood (4 µl) was collected from the tail vein of 152 

conscious mice, immediately diluted (1/30) in PBS-T (PBS, 0.05% Tween20), and then 153 

frozen at –20°C until use.  154 

 155 

Injection or administration of drugs in mice 156 

The dopaminergic inhibitory tone was evaluated by an intraperitoneal (ip) injection of 157 

the D2R antagonist domperidone (20 mg/kg, Abcam) and measurement of circulating PRL 3 158 

times before (basal) and then 30 min and 45 min after the injection. The DA inhibitory tone 159 

was determined by the maximum fold increase in PRL blood levels and corresponds to the 160 

ratio between the maximum secretion and the basal level (mean of PRL blood concentration 161 

of the 3 points preceding domperidone injection).  162 

Bromocriptine mesylate implants (60 days, 10 mg pellet, Innovative Research of 163 

America) were placed under the skin of the neck of Hmga2/T mice harboring pituitary 164 

tumors, for 6 weeks. Some mice received ip injections of bromocriptine (6 mg/kg, Sigma-165 

Aldrich) twice a day over the course of 48 h. 166 

Axitinib (20 mg/kg, Abmole Bioscience Inc.) or sucralose were given to the mice by 167 

voluntary oral administration, twice a day for 6 weeks, after training of the mice 168 

(http://www.nature.com/protocolexchange/protocols/2099).  169 

 170 

Immunohistochemistry  171 

Immunohistochemical analyses were performed as previously reported 28. Briefly, 172 

pituitary tissue sections from WT and Hmga2/T mice with and without various treatments 173 

were prepared with a vibratome and then stained with a sheep polyclonal tyrosine 174 

hydroxylase antibody (TH, 1:1000, Ab113, Abcam), with a rabbit polyclonal phosphorylated 175 
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TH antibody (pTH, 1:1000, AB5423, Milipore), or with a rat monoclonal endomucin antibody 176 

(1:500, sc-53941, Santa Cruz) as a marker for pituitary endothelial cells. In one set of 177 

experiments, pituitary paraffin sections were stained with a rat monoclonal endomucin 178 

antibody (1:500, sc-53941, Santa Cruz). Sections were observed with an epifluorescence 179 

(Carl-Zeiss Axio Imager Z1) or a confocal microscope (LSM510 Zeiss). Four parameters 180 

were evaluated using ImageJ software to characterize quantitatively pituitary 181 

microvasculature: the mean vessel area, the microvessel density, the total vessel area and the 182 

area of extravasation of red blood cells. Detailed protocol is presented in Supporting 183 

Information Material and Method section. 184 

 185 

Scanning and Transmission Electron Microscopy  186 

Ultrastructural analyses were performed as previously described 29, in WT and 187 

Hmga2/T mice receiving or not different treatments. Different parameters characterizing 188 

blood vessel structure observed by Transmission Electron Microscopy (TEM) were quantified 189 

using ImageJ software: the perimeter of the lumen, the circularity (a value of 1 indicates a 190 

perfect circle) and the solidity (defined as the ratio of an object area/area of the convex hull of 191 

the object, objects with irregular shapes have a solidity value approaching 0), reflecting the 192 

tortuosity of the vessels.  193 

 194 

Injection of microspheres in the general circulation 195 

To assess vascular supply in pituitary adenomas, fluorescent microsphere were 196 

injected in the circulation following a previously described protocol 19. Minor modifications 197 

are presented in Supporting Information Material and Methods section. 198  199 
In vivo amperometry  200 
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 A detailed protocol of in vivo amperometry is given in Supporting Information 201 

Material and Methods section. Briefly, after anaesthesia with ketamine-xylazine, mice were 202 

fixed on a stereotactic frame, and a carbon fiber microelectrode was inserted in a support 203 

guide cannula, with its tip reaching the median eminence at stereotaxic coordinates -1.3 mm 204 

rostro-caudal; 0 mm medio-lateral; 6.1 mm ventral. After at least one week of recovery, mice 205 

were transferred to the recording cages and connected to an electrical swivel to enable free 206 

movement. The microelectrodes were maintained at 700 mV to detect secretion of DA, and 207 

oxidation currents were recorded at 1 kHz. 208 

 209 

In vivo imaging of pituitary gland 210 

Cellular in vivo imaging of the pituitary gland allows determination of microvascular 211 

organisation and blood flow in the same region of the gland, and a detailed protocol has been 212 

previously reported 30. Injections of 150 kDa FITC-labeled dextran (Sigma-Aldrich) were 213 

performed via the jugular vein in WT and Hmga2/T mice. Fluorescence emission was 214 

captured by an EM-CCD camera 512 x 512 C9100 (Hamamatsu) and acquired with 215 

MetaMorph software (Molecular Devices). 216 

 217 

Blood vessel perfusion  218 

WT or Hmga2/T mice were anesthetized by inhalation of isoflurane (1.5% in O2) and 219 

a catheter was inserted in the jugular vein. Perfusion of blood vessels was evaluated after an 220 

intravenous injection of 1 mg of fluorescent 500 kDa dextran (dextran fluorescein, lysine 221 

fixable, Molecular Probes). After circulation for 15 min, a thoracic lethal dose of 222 

pentobarbital was administrated to the mice and pituitaries were fixed in 4% PFA. Tissue 223 

sections were prepared using a vibratome, and blood vessels were immunostained using an 224 
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endomucin antibody. Volocity software was used to measure overlap coefficient (M1) 225 

according to Manders et al. 31 reflecting the portion of blood vessels filled with dextran. 226 

 227 

Real-time RT-PCR 228 

Adenohypophysis were dissected from terminally anaesthetized mice. Total RNA was 229 

extracted and then reverse-transcribed as previously described 28, 32. Specific primers for qRT-230 

PCR were designed using the Primer Express 3.0 software, the sequences are shown in 231 

Supporting Information Table 1. PCR reactions are presented in Supporting Information 232 

Material and Method section. 233 

 234 

Statistics 235 

 Values represent mean ± SEM. Statistical tests were performed with Prism (GraphPad 236 

software). Normality was assessed using D'Agostino-Pearson test. Non-parametric statistical 237 

tests were used for some data sets, as indicated in figure legends. Multiple comparisons tests 238 

were selected when the number of data sets were >2. Statistical difference between groups 239 

was assumed when P<0.05. 240 

 241 

Results 242 

Aberrant blood supply leads to loss of dopaminergic inhibitory tone, associated with 243 

tumor progression 244 

We first characterized the vascular network in pituitary tumors by 245 

immunohistochemistry, scanning electron microscopy (SEM) and TEM (Fig. 1). The results 246 

demonstrate remodeling of the microvasculature in the tumors and structural abnormalities. 247 

The vascular density was decreased in tumors compared to WT, and tumoral blood vessels 248 

were dilated, tortuous and structurally altered (Fig. 1A and B) since blood lakes were present 249 
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(Fig. 1B and J). Changes in the organization of the vascular architecture in tumors were also 250 

confirmed at the ultrastructural level (Fig. 1 C to J). The endothelium of the blood vessels was 251 

irregular, discontinuous and damaged, presenting numerous protrusions into the lumen of the 252 

vessels, as described for other tumor types 33.  253 

To test whether tumorigenesis in our model was associated with the development of a 254 

direct arterial blood supply, we injected in the systemic circulation fluorescent microspheres 255 

with a diameter which is too large to pass through the primary portal capillaries in the median 256 

eminence (Supporting Information Fig. 2). Whilst in WT animals microspheres were 257 

restricted to the median eminence (Supporting Information Fig. 2A and B), in mice harboring 258 

tumors microspheres were also localized in the tumoral region (Supporting Information Fig. 259 

2C and D). The development of such an aberrant growth of blood vessels in tumors was 260 

directly visualized by in vivo imaging of the pituitary after an intravenous injection of 261 

fluorescent dextran. In WT mice (Fig. 1K), as expected, blood flow arrived from the median 262 

eminence through the portal system, and filled capillaries from the entire gland in a rostro-263 

caudal direction in less than 30 s. Although arteries from meninges surrounding pituitary were 264 

rapidly filled (t = 2 s), they never branched with the adenohypophysis blood vessels. By 265 

contrast, in Hmga2/T mice with a tumor beginning to develop (Fig. 1L), the blood flow from 266 

the portal system in the hyperplastic area was strongly slowed, while the tumoral region was 267 

perfused by vessels derived from dural arteries (Fig. 1L, arrow heads).  268 

The development of this aberrant direct vascularization induced a loss of endogenous 269 

DA inhibitory tone, although DA was still produced and released by tuberoinfundibular 270 

dopamine (TIDA) neurons (Fig. 2). By determining circulating PRL after an injection of a 271 

D2R antagonist, domperidone, in WT and hyperplastic glands, we found that the endogenous 272 

DA inhibitory tone was high (Fig. 2A). By contrast, it was decreased in 7-20 mg tumors, and 273 

very low, albeit still present, in tumors ≥ 20 mg. In addition, phosphorylated tyrosine 274 
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hydroxylase (the key enzyme involved in DA synthesis) was still present in neurons from the 275 

arcuate nucleus from Hmga2/T mice with pituitary tumors (Fig. 2B), suggesting that DA was 276 

produced in TIDA neurons. Accordingly, DA was released in vivo by TIDA neurons in the 277 

median eminence where it normally diffuses into the capillaries of the pituitary portal blood 278 

vessels. We performed in vivo amperometric measurements of DA secretion (Fig. 2C). 279 

Episodic secretion of DA was still detectable in animals with pituitary tumors, and did not 280 

appear grossly different from that in WT animals (Nicola Romanò, personal communication). 281 

Furthermore, the frequency of amperometric events did not decrease during tumor 282 

development (Fig 2C).  283 

Overall, these findings show that establishment of an aberrant blood supply leads to the 284 

loss in DA inhibitory tone, secondary to tumor onset, without major hypothalamic 285 

dysfunction.  286 

 287 

D2R agonist blocks aberrant blood supply, tumor progression and restores angiogenic 288 

balance 289 

To evaluate the impact of restoring DA on blood supply, we treated mice harboring 290 

pituitary tumors (Tumors t0), with subcutaneous implants of a D2R agonist bromocriptine for 291 

6 weeks (Bromocriptine 6 wks), and then analyzed the presence of the aberrant growth of 292 

blood vessels (Fig. 3). Of note, bromocriptine was able to inhibit PRL secretion: 24 hours 293 

after the implantation circulating PRL concentrations were low and remained controlled until 294 

sacrifice (< 50 ng/ml, data not shown), indicating that the Hmga2/T model had the ability to 295 

respond to bromocriptine treatment. This treatment totally blocked tumoral growth compared 296 

to untreated tumors (Tumors 6 wks, Fig. 3B). Pituitary weight was similar to that measured in 297 

Tumors t0 (Fig. 3B), and pituitaries appeared less hemorrhagic (Fig. 3A). Strikingly, 298 

bromocriptine treatment inhibited the progression of the aberrant vascularization as revealed 299 
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by a drastic decrease in the number of microspheres in pituitaries from bromocriptine-treated 300 

animals compared to untreated mice (Fig. 3C). The 5-fold decrease in the number of 301 

microspheres quantified between Tumors t0 and bromocriptine-treated tumors suggests that 302 

the D2R agonist induced a partial regression of the pre-existing aberrant vascularization. 303 

Immunostaining for D2R showed that D2R was present as expected in lactotrophs, but it was 304 

also detected in pituitary blood vessels (Supporting Information Fig. 3), suggesting that DA 305 

could exert its effects directly on blood vessels.   306 

We then investigated whether this chronic D2R agonist treatment could affect the 307 

expression of a panel of pro- and anti-angiogenic factors. Fig. 3D shows that the angiogenic 308 

profile, assessed by qPCR, was affected in tumors: angiogenic factor expression was up- or 309 

down-regulated, whilst during the period of hyperplasia, modulations were modest 310 

(Supporting Information Fig. 4A). Interestingly, bromocriptine treatment for 6 weeks was 311 

able to reverse these alterations (Fig. 3E) and restored an angiogenic signature close to that 312 

observed during hyperplasia (Supporting Information Fig. 4B).  313 

We next assessed the kinetics of bromocripine action on the angiogenic gene expression 314 

profile. After 2 days of treatment, among the set of genes studied, only 2 were rapidly 315 

regulated by bromocriptine (Fig. 3F; Supporting Information Fig. 4C): angiopoietin 1 316 

(Angpt1) and Prok1 (also named EG-Vegf) an angiogenic mitogen specific to endocrine 317 

glands 34. The mRNA levels for Angpt1 were low in tumors and an acute bromocriptine 318 

treatment restored its expression totally since the mRNA levels were similar to that found in 319 

WT animals (relative expression for Angpt1: 2.37 ± 0.32 in WT vs 2.41 ± 0.47 in 320 

bromocriptine-treated mice). Prok1 expression was partially restored by an acute 321 

bromocriptine treatment: relative expression for Prok1 was 1.68 ± 0.13 and 0.98 ± 0.46 in 322 

WT and bromocriptine-treated mice, respectively. Vegfa expression was not affected by 323 

bromocriptine treatment. Altogether, these results show that the D2R agonist blocked tumor 324 
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growth, induced regression of the aberrant vascularization and up-regulated the expression of 325 

Angpt1 and Prok1. 326 

 327 

Vegf contributes both to aberrant blood supply and tumoral growth 328 

Vegf has been shown to be involved in normal and tumoral vascular remodeling 5, 35 and 329 

has been reported to contribute to pituitary tumor progression in a murine model 36. We 330 

investigated whether Vegf could participate in the occurrence and development of the 331 

aberrant vascularization in tumors. We first established that aberrant direct vascularization 332 

starts to develop in mice with circulating PRL between 75 and 100 ng/ml (data not shown). 333 

We treated mice exhibiting such concentrations of PRL for 6 weeks with axitinib, a potent 334 

inhibitor of tyrosine kinase and selective from VegfR 37. Axitinib-treated tumors appeared 335 

less hemorrhagic than control tumors (Fig. 4A) and the antiangiogenic agent partially blocked 336 

tumor progression (Fig. 4B). The number of microspheres quantified in axitinib-treated 337 

tumors was significantly lower than in those of controls, demonstrating that Vegf contributes 338 

to the establishment of the aberrant blood supply in tumors (Fig. 4C). The effects of axitinib 339 

on expression of pro- and anti-angiogenic factors (Fig. 4D) showed that the angiogenic gene 340 

profile was differentially affected by axitinib compared to bromocriptine treatment (Fig. 3E), 341 

although some genes were regulated in a similar way by both treatments such as Rgs5 and 342 

Cspg4 for example. Importantly, the expression of Angpt1 and Prok1, which was up-regulated 343 

in response to bromocriptine treatment, was unchanged and remained low after axitinib 344 

treatment (Fig. 4D). These results suggest that D2R agonist treatment and anti-Vegf therapy 345 

could involve common as well as independent effects on angiogenic pathways.  346 

 347 

Bromocriptine or axitinib correct the structural abnormalities of tumoral vessels while 348 

the combination treatment restores blood vessel perfusion 349 
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We further addressed the complementary effects of D2R agonist and anti-Vegf therapy 350 

on blood vessel normalization (Fig. 5 and Supporting Information Fig. 5). Figure 5A shows 351 

that the combination treatment greatly reduced intratumoral hemorrhage. Analysis of pituitary 352 

vasculature in various conditions and morphometric measurements of blood vessels 353 

demonstrate that D2R agonist or axitinib had an equivalent capacity to improve structural 354 

defects present in tumoral blood vessels and that the combination treatment did not lead to a 355 

significant advantage (Fig. 5B and C and Supporting Information Fig. 5). Whilst vascular 356 

density was maintained in presence of D2R agonist treatment compared to untreated-tumors, 357 

axitinib notably decreased vascular density. In addition, blood vessel dilatation and tortuosity 358 

were improved by the different treatments (Supporting Information Fig. 5).  359 

Leakiness of tumoral blood vessels is of particular functional significance and 360 

intratumoral hemorrhage constitutes an indicator of this leakiness 33. Importantly, the 361 

combination treatment dramatically reduced leakiness of blood vessels (Fig. 5D). 362 

Quantification of the area of extravasation in various conditions showed that intratumoral 363 

hemorrhage in tumors represented more than 7% of the total surface area. Although it was 364 

significantly reduced by both bromocriptine or axitinib, only the combination treatment was 365 

able to prevent vessel leakiness since intratumoral hemorrhage was almost absent in 366 

bromocriptine + axitinib-treated tumors.  367 

Because of the highly disorganized epithelium lining endothelial cells, blood vessel 368 

perfusion is severely impaired in tumors 38. We assessed whether the positive effects of the 369 

combination treatment also included an improved vessel perfusion (Fig. 6). The portion of 370 

blood vessels filled with FITC-dextran was significantly decreased in tumors compared to 371 

WT (Fig. 6A and B), indicating that perfusion within the tumors was strongly affected and 372 

inappropriate. Bromocriptine- and axitinib-treatment improved partially vessel perfusion, and 373 

the combination treatment restored this almost entirely. Together, these results show that, 374 
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whilst bromocriptine and/or axitinib were able to correct structural abnormalities of tumoral 375 

vessels with a similar efficacy, only the combination treatment restored their function. 376 

 377 

Discussion 378 

We report here that a combination of D2R agonist treatment with anti-Vegf therapy 379 

specifically suppresses intratumoral hemorrhage and restores the perfusion of blood vessels. 380 

PRL-secreting pituitary adenomas undergo profound vascular remodeling along with 381 

formation of an aberrant arterial blood supply resulting in an escape from inhibitory 382 

hypothalamic regulation by DA. D2R agonist treatment blocks tumor growth and remarkably 383 

ameliorates abnormal blood vessel function. In addition, the altered balance between pro- and 384 

anti-angiogenic factors in tumors is restored by D2R agonist administration. An anti-Vegf 385 

therapy is also able to inhibit tumor growth and improves vascular remodeling. Furthermore, 386 

we show for the first time that a combination of anti-Vegf and GPCR ligand therapy exerts 387 

complementary effects on tumoral blood vessel normalization. 388 

Dual effects of dopamine on angiogenesis process. We show, in accordance with 389 

previous studies 35, 36, that anti-Vegf therapy induced a drastic reduction in vascular density. 390 

This anti-angiogenic effect was effective both on capillaries of the portal system and the 391 

extra-portal aberrant vascularization. By contrast, D2R agonist effects specifically induced the 392 

regression of the extra-portal aberrant vascularization. These antiangiogenic effects might be 393 

mediated in part via DA action on Vegf signaling 11, 39, 40. Notably, both treatments strongly 394 

down-regulated the angiogenic factor Rgs5, whose expression is closely associated with 395 

tumor-induced neovascularization and drastically reduced in vessels normalized under 396 

therapy 41. Despite the regression of this extra-portal blood system, the maintenance of the 397 

vascular density in D2R agonist-treated tumors may be due to the formation of de novo 398 

capillaries derived from the portal system, suggesting that DA could exert dual effects on 399 
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vascularization. Endothelial cells display a strong heterogeneity in terms of structure, function 400 

or gene expression 42. It is now well established that in tumors endothelial cells show multiple 401 

phenotypes that can vary during tumor progression and are mainly determined by the 402 

microenvironment 43. It is possible that D2R agonists act on both the extraportal and the portal 403 

blood system by distinct mechanisms, and these effects are probably mediated via different 404 

combinations of effectors. In this respect, Prok1 (also named EG-Vegf) is an interesting 405 

candidate to mediate specific DA actions. In humans, Prok1 has been shown to have a highly 406 

tissue-specific pattern of expression, and was proposed to be a mitogen that could regulate 407 

tissue-specific proliferation and differentiation of endothelial cells 34, in particular in 408 

endocrine glands. We show that its expression is down-regulated in prolactinomas and rapidly 409 

restored by D2R agonist treatment. Thus, this angiogenic factor could play a role in DA-410 

induced vasculature remodeling, especially in the formation of de novo blood vessels from the 411 

portal system. 412 

Vascular normalization by D2R agonist and Vegf inhibition. Although anti-Vegf 413 

specific monotherapy may not be as effective as initially expected in term of response and 414 

increase survival in patients with cancers, its combination with modulation of other signaling 415 

pathways may have promise 5, 6. We show that anti-Vegf and D2R agonist treatments given 416 

alone displayed partial and similar efficiency on blood vessel perfusion and intratumoral 417 

hemorrhage. Remarkably, D2R agonist and blockade of Vegf together had additive effects on 418 

vascular perfusion and leakage, suggesting complementary modes of action. This is supported 419 

by analysis of angiogenic factors rapidly regulated by DA, which highlighted Angpt1 as a 420 

putative candidate normalizing blood vessels. Up-regulation of Angpt1 was also maintained 421 

during long term D2R agonist treatment, while after anti-Vegf monotherapy Angpt1 levels 422 

remained low. Angpt1 and 2 are ligands of the vascular endothelial Tie2 receptor and bind to 423 

Tie2 with similar affinities, however they behave as mutual antagonists 44. Therefore, the 424 
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balance of Angpt1 and Angpt2 is critical for control of vascular normalization or angiogenesis 425 

via the same Tie2 receptor 45. Of note, in the present study, the Angpt1/Angpt2 ratio was 426 

decreased in tumors, and this ratio was reversed with the administration of D2R agonists. 427 

Vegf and Angpt1 exert antagonist effects on endothelial barrier function since Vegf increases 428 

vascular permeability, an effect which is inhibited by Angpt1, which also promotes blood 429 

vessels stabilization 44. Recent studies show that targeted Angpt1 monotherapy in pathological 430 

conditions is highly effective to suppress vascular leakage 46, 47. Moreover, DA-normalization 431 

of blood vessels in murine orthotopic models of colon and prostate cancers involved up-432 

regulation of Angpt1 15. We show here that DA effects on Vegf signaling is not sufficient to 433 

abrogate vascular leakage and concomitant Vegf blockade is required to totally suppress 434 

intratumoral hemorrhage. 435 

In summary, the present study demonstrates that D2R agonist and anti-Vegf therapy 436 

exert complementary actions on tumoral vessel normalization. This combinatorial approach 437 

might constitute an interesting option in treatment of prolactinomas, especially in cases where 438 

current therapy is ineffective or poorly tolerated. We anticipate that the novel combination 439 

treatment proposed in the present study could treat different tumor types in which DA exerts 440 

anti-angiogenic effects or normalizes tumoral blood vessels, such as ovarian carcinoma, lung 441 

cancer or colon cancer 15, 16, 48, 49. Growing evidence implicates GPCRs and their downstream 442 

signaling pathways in cancer pathology, especially angiogenesis 50. Since the GPCRs are 443 

excellent drug targets, a similar combinatorial strategy extending to different ligands of 444 

GPCRs involved in angiogenesis may identify novel therapeutic opportunities for cancer.  445 
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 615 

Figure Legends 616 

Figure 1: Aberrant growth of blood vessels in Hmga2/T tumors. 617 

(A and B) Representative sections of pituitary from WT (A) and pituitary tumors from 618 

Hmga2/T (B) mice immunostained with endomucin, a marker of blood vessels. Vascular 619 

density was lower in tumors and tumoral blood vessels were structurally altered, exhibiting 620 

dilation and strong tortuosity (arrows). Extravasation of red blood cells was present in tumors 621 

(double arrows). Scale bar: 50 µm. (C-G) Blood vessels visualized by SEM in pituitary 622 

sections from WT (C) and Hmga2/T mice (D-G). Vessels were enlarged and disorganized in 623 

tumors (D and F). Endothelial cells in tumor vessels overlapped one another with abnormal 624 

connections (E, arrows). (G) Higher magnification of F showing endothelial cells protruding 625 
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into the lumen (asterisk). Scale bar: 5 µm in C; 10 µm in D-G. (H-J) Ultrastructural 626 

visualization of blood vessels by transmission electron microscopy in pituitary from WT (H) 627 

and Hmga2/T mice (I and J). A capillary from normal pituitary, surrounded by endocrine 628 

cells, displayed a regular and smooth endothelium, a perivascular space with collagen fibers. 629 

By contrast, in tumors, vessels were large and disorganized. The endothelium was damaged, 630 

protrusions into the lumen were observed (arrows, I), and numerous red blood cells were 631 

present outside the vessels (asterisks, I and J). Scale bar: 5 µm in H-J. (K and L) In vivo 632 

imaging of pituitaries from WT (K) and Hmga2/T (L) mice after iv injection of fluorescent 633 

labeled-dextran. In WT, fluorescence was first detected in dural arteries from meninges 634 

surrounding the pituitary (arrows). Fluorescence was present in the adenohypophysis after 4 s 635 

and the whole pituitary vasculature was filled after 24 s. In Hmga2/T mice, in the tumoral 636 

region, the fluorescence was observed in vessels derived from dural arteries (arrowheads). 637 

Note that detection of fluorescence in the adenohypophysis through the portal system started 638 

at 21 s. Filling of the portal capillaries was complete after 1 min and 49 s.  Letters C and R 639 

indicate the caudal-rostral orientation of the animal. 640 

 641 

Figure 2: The direct arterial blood supply in tumors impedes the dopaminergic 642 

inhibitory tone without major hypothalamic dysfunction. 643 

(A) Dopaminergic inhibitory tone in WT and Hmga2/T mice at various stages. PRL blood 644 

concentrations were measured in basal conditions and after an injection of the D2R antagonist 645 

domperidone. The DA inhibitory tone (ratio between maximal and basal PRL secretion ± 646 

sem) was high in wild-type mice and during hyperplasia while tumors displayed a 647 

significantly lower tone. WT: n = 7; Hyperplasia: n = 7; Tumors 7-20 mg: n = 6; Tumors 648 

>20mg: n = 8. (B) Confocal images showing immunofluorescence labeling of hypothalamus 649 

sections from WT (left) and Hmga2/T mice (right) with TH (top) and phosphorylated TH 650 
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(pTH, bottom) antibodies. The staining obtained with TH or pTH antibody was similar in the 651 

arcuate nucleus and median eminence region in WT and Hmga2/T mice, showing that TIDA 652 

neurons were present and still produced DA in animals harboring tumors. Scale bar: 100 µm. 653 

(C) Amperometric measurements of DA secretion in the median eminence in vivo before the 654 

onset of tumors and during tumoral progression assessed by PRL concentration in blood.  655 

 656 

Figure 3: Bromocriptine prevents tumoral progression, aberrant vascular supply, and 657 

restores angiogenic balance. 658 

(A) Photographs of pituitary adenomas from Hmga2/T mice with (Bromocriptine 6 wks) and 659 

without (Tumor 6 wks) treatment with bromocriptine implants for 6 weeks, compared to 660 

pituitary tumor at the beginning of the treatment (Tumor t0). Scale bar: 2 mm. (B) Weight of 661 

pituitaries from Hmga2/T mice at the beginning of the treatment (Tumors t0, n = 6), or 662 

receiving or not (Tumors 6 wks, n = 6) bromocriptine for 6 weeks (Bromocriptine 6 wks, n = 663 

5). Tumoral progression was inhibited by bromocriptine. Kruskal-Wallis test followed by 664 

Dunn's multiple comparisons test, ** P<0.01. (C) Quantification of microspheres present in 665 

the adenohypophysis of Hmga2/T mice at the beginning of the treatment, or receiving or not 666 

bromocriptine for 6 weeks. The number of microspheres was significantly lower in 667 

bromocriptine-treated mice (n = 5) compared to untreated mice (n = 6). Kruskal-Wallis test 668 

followed by Dunn's multiple comparisons test, *** P<0.001. (D) Expression of pro- and anti-669 

angiogenic factors in tumoral Hmga2/T compared to WT mice. Angiogenic factor mRNA 670 

levels were quantified in Hmga2/T mice harboring pituitary tumors (n = 7) and WT of similar 671 

age (n = 5) by qPCR. Angiogenic profiles were altered in pituitary adenomas. Mann-Whitney 672 

test, * P<0.05, ** P<0.01. (E) Long-term effects of bromocriptine on angiogenic profiles in 673 

pituitary tumors. Angiogenic factor mRNA levels were quantified by qPCR in Hmga2/T mice 674 

harboring pituitary tumors and treated (n = 4) or not (n = 7) with implants of bromocriptine 675 
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for 6 weeks. Results are presented as ratio of gene expression in bromocriptine-treated tumors 676 

to untreated-tumors and show that bromocriptine restored the expression of angiogenic factors 677 

in tumors. Mann-Whitney test, * P<0.05, ** P<0.01. (F) Angpt1, Prok1 and Vegfa mRNA 678 

expression in pituitaries from Hmga2/T mice harboring tumors that received an acute 679 

treatment with bromocriptine (n = 5) or vehicle (n = 5). While Vegfa expression was not 680 

modified by bromocriptine, the D2R agonist increased Angpt1 and Prok1 mRNA levels. 681 

Mann-Whitney test, * P<0.05.  682 

 683 

Figure 4: Involvement of Vegf in the establishment of aberrant blood supply and tumor 684 

growth. 685 

 (A) Photographs of pituitary adenomas from Hmga2/T mice treated after tumor onset for 6 686 

weeks with vehicle or the anti-angiogenic agent axitinib. Axitinib-treated tumors appeared 687 

less hemorrhagic and tumor growth was reduced. (B) Weight of pituitaries from Hmga2/T 688 

mice receiving vehicle or axitinib for 6 weeks. Tumoral growth was decreased by axitinib. 689 

Mann Whitney test, ** P<0.01. (C) Quantification of microspheres present in the 690 

adenohypophysis from Hmga2/T mice receiving vehicle or axitinib for 6 weeks. The number 691 

of microspheres was significantly lower in axitinib-treated mice (n = 5) compared to vehicle-692 

treated mice (n = 6). Mann Whitney test, ** P<0.01. (D) Long-term effects of axitinib on 693 

angiogenic profiles in pituitary tumors. Angiogenic factor mRNA levels were quantified by 694 

qPCR in Hmga2/T mice harboring pituitary tumors and treated (n = 4) or not (n = 6) with 695 

axitinib for 6 weeks. Results are presented as ratio of gene expression in axitinib-treated 696 

tumors to untreated-tumors and show that axitinib did not restore the expression of Angpt1 697 

and Prok1 in tumors. Mann-Whitney test, * P<0.05, ** P<0.01. 698 

 699 
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Figure 5: Complementary effects of bromocriptine and axitinib on intratumoral 700 

hemorrhage. 701 

(A) Photographs of pituitary adenomas from Hmga2/T mice harboring untreated-tumors, or 702 

tumors treated for 6 weeks with either bromocriptine or axitinib, or combined bromocriptine 703 

and axitinib. (B) Paraffin embedded pituitary sections from WT mice, hyperplastic Hmga2/T 704 

mice, and Hmga2/T mice with pituitary tumors receiving various treatments for 6 weeks. 705 

Tissue sections were immunostained with endomucin, a marker of blood vessels. Scale bar: 706 

50 µm. Arrows: blood lakes. To better illustrate vascular density and defects, corresponding 707 

binary images obtained for quantification of blood vessel structural parameters are shown. (C) 708 

Ultra-structural visualization of pituitary blood vessels by TEM from WT and Hmga2/T mice 709 

exhibiting untreated-tumors, or tumors treated for 6 weeks with various therapies. Scale bar: 5 710 

µm. (D) Quantification of extravasation area in pituitary sections from WT and Hmga2/T 711 

mice receiving various treatments. Combination treatment with bromocriptine and axitinib 712 

almost totally abolished intratumoral hemorrhage.  n = 4 mice per condition.  Kruskal-Wallis 713 

test followed by Dunn's multiple comparisons test, * P<0.05, ** P<0.01, *** P<0.001. 714 

 715 

Figure 6: Restoration of blood vessel perfusion by bromocriptine and axitinib 716 

combination treatment. 717 

 (A) Blood vessel perfusion was assessed by intravenous injection of FITC-dextran in WT and 718 

Hmga2/T mice receiving various treatments. Pituitary sections were stained with endomucin 719 

(red) to visualize microvasculature. Poorly perfused blood vessels appeared in red and are 720 

particularly numerous in images obtained from untreated tumors. By contrast, the majority of 721 

blood vessels from tumors treated with both bromocriptine and axitinib exhibited green 722 

fluorescence. Scale bar: 200 µm. (B) Quantification of the overlap coefficient M1 reflecting 723 

the fraction of blood vessels filled with FITC-dextran in WT and Hmga2/T mice. 724 
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Combination treatment with bromocriptine and axitinib restored blood vessel perfusion, 725 

which was strongly impaired in untreated tumors, more effectively than each therapy alone. n 726 

= 4 mice per condition. Kruskal-Wallis test followed by Dunn's multiple comparisons test, 727 

*** P<0.001.  728 

 729 

 730 
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Figure 1: Aberrant growth of blood vessels in Hmga2/T tumors.  
Figure 1  
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Figure 2: The direct arterial blood supply in tumors impedes the dopaminergic inhibitory tone without major 
hypothalamic dysfunction.  

Figure 2  
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Figure 3: Bromocriptine prevents tumoral progression, aberrant vascular supply, and restores angiogenic 
balance.  
Figure 3  
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Figure 4: Involvement of Vegf in the establishment of aberrant blood supply and tumor growth.  

Figure 4  
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Figure 5: Complementary effects of bromocriptine and axitinib on intratumoral hemorrhage.  
Figure 5  
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Figure 6: Restoration of blood vessel perfusion by bromocriptine and axitinib combination treatment.  
Figure 6  
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