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Detecting Bipolar Depression from Geographic
Location Data

N. Palmius, A. Tsanas, K. E. A. Saunders, A. C. Bilderbeck, J. R. Geddes, G. M. Goodwin, and M. De Vos∗

Abstract—Objective: This work aims to identify periods of
depression using geolocation movements recorded from mobile
phones in a prospective community study of individuals with
bipolar disorder (BD).

Methods: Anonymised geographic location recordings from 22
BD participants and 14 healthy controls (HC) were collected over
3 months. Participants reported their depressive symptomatology
using a weekly questionnaire (QIDS-SR16). Recorded location
data were pre-processed by detecting and removing imprecise
data points and features were extracted to assess the level
and regularity of geographic movements of the participant.
A subset of features were selected using a wrapper feature
selection method and presented to (a) a linear regression model
and a quadratic generalised linear model with a logistic link
function for questionnaire score estimation; and (b) a quadratic
discriminant analysis classifier for depression detection in BD
participants based on their questionnaire responses.

Results: HC participants did not report depressive symp-
toms and their features showed similar distributions to non-
depressed BD participants. Questionnaire score estimation us-
ing geolocation-derived features from BD participants demon-
strated an optimal mean absolute error rate of 3.73 while
depression detection demonstrated an optimal (median±IQR) F1
score of 0.857±0.022 using 5 features (classification accuracy:
0.849±0.016; sensitivity: 0.839±0.014; specificity: 0.872±0.047).

Conclusion: These results demonstrate a strong link between
geographic movements and depression in bipolar disorder.

Significance: To our knowledge this is the first community
study of passively recorded objective markers of depression in
bipolar disorder of this scale. The techniques could help individ-
uals monitor their depression and enable healthcare providers to
detect those in need of care or treatment.

Index Terms—Bipolar disorder, depression, classification, com-
munity study, geolocation.
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I. INTRODUCTION

B IPOLAR disorder is a common mental disorder estimated
to affect 2–4 % of the general population [1][2][3][4].

Standard descriptions characterise the disorder as one of peri-
ods of elation (mania) and depression interspersed with periods
of stability (euthymia) [5]. In reality, the clinical picture is
far more complex. Mood instability [6][7] and sub-syndromal
symptoms persist in euthymia [8][9], which have a significant
impact on functional outcomes for patients [7]. Depressive
episodes are both longer in duration [10] and more common
[1] than manic episodes. Individuals with bipolar disorder can
spend up to a third of their lives suffering with syndromal
or sub-syndromal depressive symptoms [8]. Depression is the
leading cause of functional impairment in bipolar disorder [11]
and contributes to the elevated mortality rates in this patient
group [12]. Bipolar depression is challenging to treat because
of the absence of specific treatments [13] and the risk of
precipitating a mixed or manic episode [14][15].

Early identification and intervention for emergent mood
episodes is a key aspect of managing the disorder. Edu-
cating patients to identify early symptoms of relapse has
been shown to be associated with clinical improvements in
time to first manic relapse and social functioning [16]. The
ubiquity of mobile technologies has facilitated developments
in longitudinal monitoring of mood states in bipolar disorder
[17][18][19][20][21]. Early initiatives focussed on regular self-
reporting by patients [17][18][19] but such approaches rely on
the engagement of individuals to actively participate, some-
thing that may become impaired as an individual becomes
more unwell. There is increasing interest in the use of passive
data streams that require no active user input in the monitoring
of mood states, such as activity levels [20]; phone use [20][21];
or physiological measurements [22]. Measurable differences
in activity levels in bipolar disorder, especially during mania,
have been shown in both mouse and controlled human studies
[23]. Translating this to a wider scale, a number of features of
bipolar depression have behavioural manifestations that may
be detectable using passive data streams from mobile devices.
For example anhedonia, poor concentration and low energy
may all be manifest in changes in geographic movements such
as spending less time away from home, visiting fewer places
or disruption to daily routines.

Grünerbl et al. [20], as part of the wider MONARCA
project, explored the relationship between clinician-rated
mood states and movement using a combination of accelerom-
etry and global positioning system (GPS) traces in a small
cohort of hospitalised patients with bipolar disorder. Classi-
fication based on these features varied between participants
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TABLE I
DEMOGRAPHIC DATA FOR PARTICIPANTS WHO PROVIDED SUFFICIENT DATA FOR ANALYSIS

HC BD with only QIDS score < 11 BD with QIDS score ≥ 11

Participants 14 15 7
Gender 2 male; 12 female 5 male; 10 female 2 male; 5 female
Age (mean ± sd) 42± 14 46± 14 41± 15

BMI (mean ± sd) 24.5± 4.6 26.4± 3.4 29.3± 1.9

Employment status

6 full-time employed;
3 part-time employed;
3 unemployed;
1 student; and
1 retired

6 full-time employed;
6 part-time employed;
2 students; and
1 unknown

2 full-time employed;
2 part-time employed; and
3 unemployed

Weeks of data (mean ± sd) 8.9± 3.2 8.4± 2.8 8.6± 3.6

with a mean of 81 %. However, movement was restricted to
some extent because of the hospitalised nature of the cohort.

In a community cohort of individuals recruited over the
internet, Saeb et al. [21] reported classification accuracy of
86.5 % for detecting mild depression as measured using the
Patient Health Questionnaire-9 (PHQ-9) [24]. The participants
in this sample were not diagnosed with any mental disorder
and as such the generalisability of these findings is unclear.

In this study we aim to detect clinically significant levels of
depression using features extracted from geographic location
recordings in a community cohort of bipolar patients.

II. METHODS

A. Data Collection

Data for this study were collected from 49 participants
between May and July 2015 in the ongoing Automated Moni-
toring of Symptom Severity (AMoSS) study1 at the University
of Oxford [25]. The AMoSS study uses a custom open source
smartphone app to collect behavioural data from participants
and self-reported clinically validated questionnaires to collect
psychiatric state. Participants in the study are either healthy
controls (HC) without symptoms of any mental disorder or
patients diagnosed with bipolar disorder (BD) or borderline
personality disorder (BPD). In this study we focus exclusively
on BD and HC participants while our findings from BPD
participants will be reported in a follow-up study. Participants
were recruited from the area around Oxford, UK for an initial
three-month period, with an option to remain in the study for
12 months. Many of the BD participants were recruited from
previous studies and the remainder were recruited through
local community advertising and word-of-mouth. All partic-
ipants were screened by an experienced psychiatrist using the
Structured Clinical Interview for DSM IV.

Location data were collected from 20 HC and 29 BD
participants. The recorded data were split into calendar-week
epochs and manually inspected and labelled as described
below. This resulted in 310 weeks of labelled data for analysis
where there were sufficient data available to calculate features
(124 HC; 186 BD) from 36 participants (14 HC; 22 BD). Table
I shows demographic data for these participants.

1The AMoSS study was approved by the East of England NHR research
ethics committee (REC reference 13/EE/0288) and all participants provided
written informed consent.

Participants were asked to complete the self-report 16-item
quick inventory of depressive symptomatology (QIDS-SR16)
questionnaire [26] on a weekly basis through the True Colours
monitoring system [18][19]. The QIDS-SR16 questionnaire is
a 16 question diagnostic and monitoring tool for depression
covering all nine DSM-IV symptom criterion domains of (1)
sad mood; (2) concentration; (3) self-criticism; (4) suicidal
ideation; (5) loss of interest; (6) energy/fatigue; (7) sleep dis-
turbance; (8) changes in appetite/weight; and (9) psychomotor
agitation/retardation. QIDS-SR16 returns a score between 0 (no
symptoms) and 27 (severe symptoms), with defined thresholds
[26] of no depression (0–5); mild depression (6–10); moderate
depression (11–15); and severe depression (≥ 16). Participants
were prompted to complete the questionnaire through a weekly
email sent at a time convenient to them. The questionnaire
could be completed at any time before the next weekly prompt,
and the value was recorded at the time of their response.

Because participants may forget, or be unable, to respond,
each calendar week of data was labelled using either a re-
sponse within 3.5 d either side of the week if there was only
one such response; or the mean of the linear interpolation
between all responses within 7 d either side of the week,
calculated for each day during the week.

QIDS scores for labelled weeks were distributed as shown
in Fig. 1. Of the 186 labelled weeks from 22 BD participants,
43 weeks (23.1 %) from 7 participants had a QIDS score ≥
11 (the accepted clinical threshold of moderate depression).
None of the HC participants had a QIDS score ≥ 11, therefore
analysis was only performed on the BD participants.

Participants were also provided with an Android-based
Samsung GALAXY S III or S4 smartphone with a custom
app installed that records the anonymised geographic location
of the phone. The data were anonymised relative to a random
location on earth to protect the participants’ privacy.

B. Data Pre-Processing

Location data recorded on Android is a fusion of different
location data sources including GPS, nearby wireless network
access points and triangulation of the distance to any nearby
cellphone towers [27][28], each of which have different ad-
vantages and disadvantages in terms of availability, accuracy
and power requirements. When requesting the current location
from the Android operating system, the location returned can
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Fig. 1. Stacked QIDS score distribution in labelled weeks. The height of each
bar shows the total number of weeks labelled and the shading indicates how
many are from each group.

originate from any of the above sources depending on the
resource availability on the device at the time.

In practice, it was found that the Android operating system
would often provide inaccurate location values interspersed
between what would appear to be more accurate location
values. The inaccurate location values were often provided at
a higher sample rate (around 350 samples per hour rather than
the more usual 250). This is demonstrated in the sample data
from two participants shown in Fig. 2(a) and Fig. 2(d). These
graphs show location coordinates recorded from participants
over a weekend and weekday day and the route that they most
likely took. The dark orange star indicates the assumed home
location of the participant (determined as described in sub-
section II.C.2, Clustering Stationary Locations below) and the
surrounding ellipse represents the 95 % confidence interval
of the data points recorded at this location modelled as a
multivariate normal distribution. The three clusters south-west
of the ellipse in Fig. 2(a) and south of the home location in
Fig. 2(d) are samples that appear to be of low accuracy. This
can be seen more clearly in Fig. 2(b) and Fig. 2(e) where the
vertical axis is now the Euclidean distance from home to each
location sample and the horizontal axis is time. This provides
a convenient way to visualise the change in location over time.

Many participants had sections of missing data in the
locations recorded, perhaps because the phone was switched
off (either intentionally or because the battery was depleted)
or because the phone was unable to obtain a GPS location
or connect to the Internet to process data. This has also
been found in previous studies. For example Saeb et al. [21]
excluded over 50 % of participants (22 out of 40) from their
analysis of GPS locations due to insufficient data and Grünerbl
et al. [20] reported that of the daily location data recorded for
each of their 12 participants, a mean of 31 % of days recorded
from each participant were insufficient for analysis.

To reduce the effects of these data issues, the pre-processing
described below was developed.

1) Filtering: The recorded data were filtered to extract the
true paths shown in Fig. 2(c) and Fig. 2(f).

In order to filter the recorded data D, it was observed that
the low-accuracy data values commonly have exactly the same
location coordinates, and are geographically located far from
the high-accuracy data points while being temporally close,
thus resulting in a high d

dtD. Data were therefore filtered by
detecting data points that had d

dtD > 100 km h−1, either from
the previous point, or to the next point. Where there were
unique locations that had many such points detected, they were
removed from the data set.

2) Data Down-Sampling: The unevenly sampled filtered
data were down-sampled to a sample rate of 12 samples per
hour using a median filter to remove any remaining spurious
values. The whole data stream was split into 1 h epochs. If
the standard deviation of the recorded data in both latitude
and longitude within an epoch was less than 0.01 km then
all samples within the hour were set to the mean value of the
recorded data, otherwise a 5-minute median filter window was
applied to the recorded latitude and longitude in the epoch.

3) Data Imputation: Missing data were imputed in sections
where the participant was recorded at a location within 500 m
either end of the missing section, and where the missing
section had a length of 1) 2 h or less any time; or 2) 12 h
or less after 9 P.M. The missing section was filled with the
mean latitude and longitude of the coordinates on either end.

C. Extracting Location Clusters

Many of the features described below rely on extracting the
distinct locations where the participant was spending time.

1) Extracting Stationary Locations: The filtered location
points were split into stationary locations and transitioning
points from the differential of the data. 10 min moving aver-
ages were calculated for each sample at time t as follows.

x̄cen
t =

1

|τ |
∑
τ

d

dτ
D(τ) t− 5 min ≤ τ ≤ t+ 5 min (1)

x̄back
t =

1

|τ |
∑
τ

d

dτ
D(τ) t− 10 min ≤ τ ≤ t (2)

x̄fwd
t =

1

|τ |
∑
τ

d

dτ
D(τ) t ≤ τ ≤ t+ 10 min (3)

A threshold of d was applied where the location at time t
was considered to be a transitioning location if(

x̄cen
t > d

)
∨
(
x̄back
t > d

)
∨
(
x̄fwd
t > d

)
. (4)

For this study, a threshold of d = 1.5 km h−1 was applied.
2) Clustering Stationary Locations: The stationary loca-

tions extracted above were clustered to determine the unique
locations visited by an individual. This utilised an adaption
of the common K-means clustering algorithm called K-
means++ [29]. K-means attempts to extract K optimal cluster
centres from multidimensional data. K-means++ improves
the performance of K-means by choosing the inital cluster
centers to be evently distributed throughout the training data
set. Because the expected number of clusters, K, is unknown
for the location data used here, the same approach as Saeb
et al. [21] was used where K is set to 1 and incremented
while the Euclidean distance between all the clusters remains
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(a) Raw data coordinates with inaccurately recorded noise (weekend)
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(b) Original data with noise (weekend)
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(c) Filtered data (weekend)
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(d) Raw data coordinates with inaccurately recorded noise (weekday)
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(e) Original data with noise (weekday)
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(f) Filtered data (weekday)

Fig. 2. Filtering of inaccurate data for a typical weekend (top, a-c) and weekday (bottom, d-f) day from different participants. Plots (a) and (d) on the left
show the coordinates where the participant was recorded relative to their home location. The dark orange star represents (0, 0) which is assumed to be the
home location of the participant from which other distances are computed. The surrounding ellipse shows the 95% confidence interval of the points recorded
at the assumed home location modelled as a multivariate normal distribution. The purple points are accurate location readings with the path between them
joined by the blue arrows. The broken arrow in (a) indicates that there is a gap of longer than 15min where no data were recorded between the two points
and therefore the location of the participant cannot be accurately determined. The yellow points are inaccurate noise recorded at the same time as the accurate
recordings. This can also be seen in the graphs (b) and (e) on the right that show the Euclidean distance from where the participant is recorded to their
assumed home location over the duration of the day. The colours of the markers in graphs (b-c) and (e-f) correspond to the locations with the same colour
shown in plots (a) and (d). The blue shaded areas in (d) and (f) are showing rapid transitions between the purple (accurate) and yellow (inaccurate) locations
(these transitions were excluded from plots (a) and (d) for clarity). It can clearly be seen that the yellow points are inaccurate because they are located far
from what appears to be a reasonable path in the plots on the left and that they occur concurrently with the locations in the reasonable path in the graphs on
the right. The size of the point in the plots on the left indicates the length of time spent in each location, scaled between 10min and 1h. Plots (c) and (f)
show the pre-processed data traces used for further analysis.
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TABLE II
FEATURE OVERVIEW

Feature Name Abbr. Description

Entropy ENT

A measure of the variability in the time that participants spend in the different locations recorded, defined as

ENT = −
N∑
i=1

pi log pi

where i = 1, . . . , N is the index of each location cluster extracted, N is the total number of clusters and pi
is the percentage of time recorded cluster i.

Normalised Entropy NENT
A variant of the ENT feature scaled to be in the range [0, 1], defined as

NENT = ENT/ logN.

Location Variance LV

An indication of how much the individual is moving between different locations based on the sum of statistical
variances in the latitude and longitude, defined as

LV = log
(
σ2

lat + σ2
lon

)
.

Home Stay HS The percentage of time that the participant is recorded in their home location.

Transition Time TT The percentage of all the time spent travelling between stationary locations in the data recorded.

Total Distance TD

The sum of Euclidean distances between the consecutive location points recorded in the data, calculated as

TD =

N∑
i=2

√(
xi − xi−1

)2
+
(
yi − yi−1

)2
where i = 1, . . . , N is the index of each of the total N pre-processed data points for the participant, and xi
and yi are the distance east and north respectively from the assumed home location at coordinates (0, 0).

Number of Clusters NC The number of distinct location clusters extracted in the week-long data sections using the K-means method.

Diurnal Movement DM

A measure of daily regularity quantified using the Lomb-Scargle periodogram to determine the power in
frequencies with wavelengths around 24h. The power spectral density (PSD) of the signal in selected
frequencies with wavelengths between 23.5h and 24.5h is calculated and averaged as

E =
N∑
i=1

psd (fi) /N

where psd (f) is the PSD of the data at frequency f and fi for i = 1, . . . , N is the range of frequencies to
use with wavelengths between 23.5h and 24.5h. This gives a measure of the energy in the spectrum with
wavelengths around 24h. The diurnal movement feature is defined as

DM = log (Elat + Elon)

where Elat and Elon are the energy values for the latitude and longitude of the recorded data respectively.

Diurnal Movement on
Normalised Coordinates

DMN Similar to the DM feature but calculated on a normalised set of coordinates, where the latitude and longitude
are both scaled to have zero mean and unit variance within the period being classified.

Diurnal Movement on the
Distance From Home

DMD Similar to the DM and DMN features but calculated using the Euclidean distance from home, rather than
latitude and longitude, normalised to have zero mean and unit variance within the period being classified.

above a threshold distance l apart. For this study, a threshold
of l = 400 m was used.

The assumed home location was determined by calculating
the mode location recorded between 2 A.M. and 7 A.M. for every
day j, denoted ĥj in vector ĥ. The global home location
was calculated as ĥg = mode(ĥ) and all the data for each
participant was subtracted by ĥg to leave location coordinates
(0, 0) as the assumed home location.

D. Feature Extraction

Features were extracted from the pre-processed location data
as described in Table II.

The location variance; home stay; transition time; total
distance; and number of clusters features provide an indication
of the overall behaviour of participants, focussing on factors
around how active the person is.

The entropy (ENT) and normalised entropy (NENT) fea-
tures are based on information-theoretical entropy [30], which
has been proposed as a measure of signal variability [31] and
was used by Saeb et al. [21] and de Montjoye et al. [32] to in-
dicate variability in the time that participants spend in different
locations. As an entropy measure, the maximum value of ENT
is where the data is least predictable, i.e. where the proportion
of time spent in each of the N locations is equal. This is
counter-intuitive because it would be indicative of a regular
daily routine, but from an information theory perspective the
location at each time t would be a random draw from an N -
dimensional categorical distribution with equal probabilities,
i.e. the least predictable. In this case ENT = logN which
means that the entropy is highly correlated with the number of
clusters recorded. The NENT feature reduces this correlation
by scaling the feature value to the range [0, 1].
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Additionally, regularity in daily routine has long been
indicated as a factor in depression [33] and BD [34][35] where
circadian2 rhythm disruption is considered by some to be
a “core feature” [37]. The three diurnal movement features
(DM, DMN, and DMD), based on the feature developed by
Saeb et al. [21] provide a measure of regularity using the
Lomb-Scargle periodogram [38][39] frequency transform to
get the power in the frequencies with wavelengths around
24 h. The Lomb-Scargle periodogram fits sinusoids to data
using a least squares fit, which has advantages over the usual
fast Fourier transform (FFT) because it enables extraction
of frequency information from unevenly sampled data, and
because it does not limit the transform to specific frequencies.
The power spectral density of the signal in selected frequencies
with wavelengths between 23.5 h and 24.5 h was used to
calculate the DM features. The Lomb-Scargle periodogram is
not affected by DC offset in the signal, but assumes stationarity
and is severely affected by the magnitude of the signal.

The basic DM feature can be highly affected by outliers and
by the distance travelled from home. For example, an individ-
ual with a highly regular diurnal pattern but only travelling
a short distance from home would appear to have a low DM
while someone who spends most of their time at home but
with one day spent very far from home will have a large DM
due to the least squares fit overcompensating for the outlier
day. The diurnal movement on normalised coordinates (DMN)
feature attempts to counteract this by using a normalised set of
coordinates, where the latitude and longitude are both scaled
to have zero mean and unit variance.

Both the DM and DMN features above are also influenced
by sum of energy in latitude and longitude, which may hide
important subtleties in the data. For example, consider an
individual with a regular routine, but who works in a job
that requires travelling to many different locations, often in
different directions from home. The differences in direction
mean that the power in either latitude or longitude will be
low, even though there is clear regularity in routine. Similarly,
consider two individuals who both regularly travel the same
distance from home each day for the same duration and at the
same times, one travelling directly north, and one travelling
north-east. The two individuals will show very different values
in the DM and DMN features due to the sum of the power in
latitude and longitude. The diurnal movement on the distance
from home (DMD) feature was developed to counteract this
by operating on the Euclidean distance from home, normalised
to have zero mean and unit variance, rather that latitude and
longitude. In many cases, this will give a more accurate
representation of diurnal movement because the time and
distance is more important than the direction.

2The term “circadian” strictly refers to the internal 24h biological clock
that guides our daily routines based on environmental factors such as light and
temperature [36]. Since it would not be possible to measure these biological
processes using only geographic location data, for the remainder of this article
the term “diurnal” has been used instead to indicate that we are only providing
a measure of daily regularity, which may not be driven by the underlying
circadian clock.

E. Feature Calculation on Data Subsets

Calculating features over the whole data set being analysed,
i.e. single calendar weeks in the results presented here, may
not accurately represent the characteristics of the individual.
For example, someone who works Monday to Friday will
likely exhibit very different feature values during the week and
at weekends. For this reason, the features were all calculated
over several feature subsets.

1) Base Subset: The base subset calculates the features over
the whole week being analysed.

2) Weekday Subset (WD): The weekday subset calculates
the features over only the data recorded Monday to Friday.

3) Weekend Subset (WE): Conversely, the weekend subset
calculates the features only over Saturday and Sunday.

4) Median Subset: The median subset calculates the fea-
tures over the following subsets of the data and then calculates
the median value over these feature values: 1) the base,
weekend and weekday subsets described above; and 2) the
full week with each of the 7 days removed in turn.

5) Optimised Daily Exclusion Subset: Some features such
as the diurnal movement and location variance are particularly
sensitive to outlier days where the individual travels much
further than on other days. The optimised daily exclusion
subset was developed to exclude days where the individual
travelled a greater distance from home than usual.

The general principle is that the maximum Euclidean dis-
tance reached from home, di, is calculated for each each day,
i = 1, 2, . . . , 7, in set D = {d1, d2, . . . , d7}. The standard
deviation σD = SD (D) is calculated and any days where

di > median(D) + ασD (5)

are removed. The value of α was optimised per feature to
maximise the classification accuracy using a logistic regression
classifier, which was found to provide the most accurate and
consistent classification results in a single-feature setting.

F. Feature Extraction Summary

A total of 50 features (10 features for each of the 5 data
subsets) were extracted from all 310 labelled weeks of data
(124 HC; 186 BD) with no missing values. As described
above, analysis was only performed on the BD participants.

G. QIDS Score Estimation and Depression Classification

Mental health questionnaires such as QIDS or PHQ-9 are
commonly used as tools to assess patient depression, and
objective metrics using behavioural data could provide an
additional clinical tool. This could be through estimation of the
questionnaire score or by providing an indication of whether
the patient is depressed or not.

Questionnaire responses were estimated from the features
described above using two models. The first model is a
standard linear regression model [40] of the form

Q̂i = β0 + β1f (6)

where Q̂i is the estimated QIDS score for participant i, f is a
feature value, β1 is the feature weight and β0 is the intercept.
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The second model is a generalised linear model (GLM) [40]
with an underlying quadratic model and logistic link function,

Q̂i =
a

1 + e−(β0+β1f+β2f2)
(7)

which limits the range of Q̂i smoothly between 0 and a. The
GLM has the advantage of limiting the output values and
allows greater complexity in the model, at the risk of over-
fitting the training data.

Classification of whether the participant is depressed (i.e.
reports a QIDS score ≥ 11) was performed on the features
described above using a quadratic discriminant analysis (QDA)
model, which models the data from each class as a multi-
variate normal distribution. The distributions from each class
are allowed to have different covariances which results in
a quadratic decision boundary between classes (where the
probability density functions of the two classes cross).

1) Model Validation: Leave-one-participant-out cross-
validation was used to validate the models, where all the
labelled weeks for a participant were used for testing while
the model was trained on the labelled weeks for the remaining
participants. This was repeated for all participants to give an
overall result. For depression detection, 10-fold and 5-fold
cross-validation were also used to validate the models where
the labelled weeks from 10 % and 20 % of participants were
used for testing while the model was trained on the labelled
weeks for the remaining participants. Finally, 3-fold cross-
validation was used for depression detection, but instead of
leaving whole participants out, the data for each participant
was split into the three partitions and cross-validation per-
formed like usual, hence allowing data for a participant to be
used for both training and testing.

2) Group Equalisation: For depression detection where the
classes being classified were not equally sized, the training
data was adjusted by sub-sampling the over-represented class
so that the results were not biased by the class proportions.
This was applied to all cross-validation methods.

In each iteration of cross-validation, the training data had
n1 samples from group G1, and n2 samples from group G2. In
the case where n1 6= n2, nmin = min(n1, n2) samples were
chosen from both G1 and G2 to form GT (i.e. all samples
from the under-represented group were used, and the same
number of samples were randomly chosen from the over-
represented group). GT was used as the training data to train
the model and performance was tested on the left-out weeks.
The selection of GT was repeated M times for each fold or
left out participant. Where k-fold cross-validation was used,
the random generation of the k partitions was also repeated
dN/ke times where N is the number of participants.

3) Model Evaluation: The regression models for question-
naire score estimation are evaluated using the mean absolute
error (MAE) from the true QIDS score Qi calculated by

MAE =
1

N

N∑
i=1

∣∣∣Qi − Q̂i∣∣∣. (8)

The results from the binary classification of depression
(QIDS score ≥ 11 vs QIDS score < 11) are presented as

accuracy (Ac), sensitivity (Se), specificity (Sp) and F1 score
(F1). The F1 score is defined as

F1 =
2 · Se · Sp
Se + Sp

(9)

which combines the sensitivity and specificity with equal
weighting to provide a single score [41].

Classification performance is also presented using the re-
ceiver operating characteristic (ROC) curve, which is defined
as a plot of the false positive rate (FPR) against the true
negative rate (TPR) of the classifier. The different values of
FPR and TPR between 0 and 1 are generated by adjusting the
class acceptance threshold for the classifier. The area under
this curve (the AUC) is also presented as an indicator of the
performance of the model to different inputs.

H. Feature Selection Using a Wrapper

Most regression and classification models are sensitive
to the combination of features presented to them. Feature
selection can maximise model performance and improve in-
terpretability by choosing an optimal combination of features
from the whole feature set.

Feature selection wrapper methods use the final classifier or
regression model as part of the feature selection process, which
means that they can make use of the particular properties
of the classifier being used, as well as subtle properties
of the individual features that may be missed with more
general methods. A simple wrapper method was created that
incrementally selects features based on the performance of
each feature individually, then each remaining feature with
the first selected feature etc. Regression feature selection
was performed using the two regression models with leave-
one-participant-out cross-validation. Features were selected
using the MAE of the QIDS score estimation. Classification
feature selection was performed using the QDA classifier with
leave-one-participant-out or k-fold cross-validation with group
equalisation. Features were selected using the the median F1
score of the classification result.

III. RESULTS

A. QIDS Score Estimation

All features were calculated on each of the 5 data sub-
sets from the recorded data as described above. Depression
classification was performed on each feature individually on
the BD participants and the feature distribution statistics for
each feature from the data subset with the highest median
F1 score are shown in Fig. 3. This shows BD participants
with depressive symptoms (QIDS score ≥ 11), BD participants
without depressive symptoms (QIDS score < 11) and HC
participants, none of whom exhibit depressive symptoms. This
demonstrates that there are clear differences in most of the
features between BD participants with depressive symptoms
and those without. It also shows that BD participants without
depressive symptoms have feature distributions very similar to
the HC participants, which suggests that while it is possible
to distinguish depression, it is not possible to distinguish non-
depressed BD from HC participants.
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Fig. 3. Feature distributions for features calculated on data subsets with optimal individual classification results. Feature abbreviations are given in Table II;
WD: weekday data subset; OPTIMISED: optimised daily exclusion data subset; MEDIAN: median data subset.

HC Data BD Data QIDS = 11 Linear Quadratic Logistic GLM

0 0.5 1

Q
ID

S
 S

co
re

0

5

10

15

20

25

(a) Normalized entropy (weekdays)
0 0.5 1

Q
ID

S
 S

co
re

0

5

10

15

20

25

(b) Home stay (weekdays)

Fig. 4. Features extracted from the geolocation data from HC and BD participants. The standard linear regression model in (6) and GLM with a quadratic
model and logistic link function in (7) calculated on the BP participants only are shown overlaid on each of the features. The dashed line shows the moderate
depression threshold where the QIDS score is 11.

TABLE III
REGRESSION MODEL ERROR RATES ON OPTIMAL DATA SUBSET

Feature Baseline Linear Model Quadratic Logistic GLM

MAE Data Subset MAE Data Subset MAE

ENT 4.724 Weekday 4.432∗∗∗ Weekday 3.968∗∗∗

NENT 4.724 Optimised 4.207∗∗∗ Weekday 4.125∗∗∗

LV 4.724 Optimised 4.276∗∗∗ Optimised 4.205∗∗∗

HS 4.724 Weekday 4.602∗∗∗ Weekday 4.197∗∗∗

TT 4.724 Weekend 4.530∗∗∗ Weekend 4.520∗∗

TD 4.724 Base 4.664∗∗ Median 4.666

NC 4.724 Weekend 4.516∗∗ Weekend 4.576∗

DM 4.724 Optimised 4.262∗∗∗ Optimised 4.215∗∗∗

DMN 4.724 Optimised 4.629∗∗ Optimised 4.618∗

DMD 4.724 Optimised 4.491∗∗∗ Optimised 4.503∗∗∗

Combined 4.724 10 Features 3.748∗∗∗ 14 Features 3.737∗∗

Significance of fitted model from the baseline model indicated by asterisks: ∗ < 0.05; ∗∗ < 0.01; ∗∗∗ < 0.001.
Feature abbreviations are given in Table II; MAE: mean absolute error.
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To explore this in greater detail, the relationship between the
QIDS score and normalised entropy and home stay features
calculated on the weekday data subset are shown in Fig. 4(a)
and (b). The standard linear regression model (6) and the GLM
with quadratic model and logistic link function (7) were both
calculated on each feature for the BD participants and are
shown overlaid. Both of these models demonstrate a correla-
tion with the QIDS score, and the differences in feature values
recorded above and below the cut-off for moderate depression
are notable. Due to an insufficient range of QIDS scores
reported by the HC participants it is not possible determine if
they follow the same model as the BD participants.

The error rates from the two regression models fitted to each
feature on the BD participants are shown in Table III evaluated
using the MAE (8). This shows the error rate for each feature
calculated on the optimal data subset, i.e. the one with the
lowest MAE for that feature and model. The MAE from the
baseline constant-value model of the mean value of all the
recorded QIDS scores is also shown. Combined results show
the first n features selected by the wrapper feature selection
method for each model that resulted in the optimal MAE. The
significance level was evaluated using an F-test of the model
against the baseline constant-value model, which evaluates the
increase in performance against the increase in complexity of
the model. The results in Table III are shown from leave-one-
participant-out cross-validation and presented results are from
all the left out weeks over all iterations. The lowest MAE
using the standard linear model is 4.21 with the normalised
entropy feature on the optimised daily removal data subset.
The lowest MAE using the quadratic logistic GLM is 3.97
with the entropy feature on the weekday data subset. Both of
these results are significant against the baseline constant-value
model at a p < 0.0001 significance level. Combining features
selected using the wrapper feature selection method resulted
in the lowest MAE of 3.75 (p < 0.0001) for the standard
linear model and 3.74 (p = 0.007) for the quadratic logistic
GLM using the first 10 and 14 selected features respectively.
Given that the QIDS score ranges between 0 and 27, this
demonstrates that regression on any of the features does not
provide a good QIDS score prediction.

B. Depression Classification

Results from classification of depression in the BD par-
ticipants based on labelled QIDS score ≥ 11 are shown
in Fig. 5 for the first 10 features selected. The model was
trained using leave-one-participant-out cross-validation and
group equalisation as described above.

The highest F1 score is achieved with 5 features where the
accuracy (median±IQR) is 0.849±0.016 (Se: 0.839±0.014;
Sp: 0.872±0.047). The confusion matrix for the test data in
this optimal model with 5 features is shown in Fig. 6(a) and the
ROC curve is shown in Fig. 6(b). The ROC curve demonstrates
that it is possible to reach approximately 80 % true positive
rate with minimal false positives.

Full results from leave-one-participant out, 10-fold and 5-
fold cross-validation are shown in Table IV. The robustness of
the model is demonstrated by the close match in the accuracy

from all three methods of cross-validation. The accuracy
from the 3-fold cross-validation where the data from each
participant is split into three groups for training and testing is
also shown. Unsurprisingly the results from the 3-fold cross-
validation improve on the other methods because the data for
each participant is not independent over time.

To explore the potential effects of employment status on the
results, Fig. 5 also shows the classification accuracy of only
the full-time employed and unemployed BD participants. The
classification of employed participants is generally better than
unemployed participants, which is notable given the reliance
on features indicating the level of regularity in routine and
levels of geographic activity seen from participants.

IV. DISCUSSION

In this study we have demonstrated that it is possible to
detect depressive episodes in individuals with bipolar disorder
with 85 % accuracy using geographic location recordings
alone. While classification based on a single feature was not
sufficient for maximal accuracy, the high correlation between
features meant that maximum classification performance was
achieved with 5 features. The choice of classifier was also
found to be be important with initial experiments using logistic
regression performing much worse than the presented results
using QDA. Objective features were, however, not accurate in
providing an estimate of the total QIDS score.

These findings are consistent with those previously reported
[21] and extend them to a more generalizable clinical sample
in a community study. This demonstrates that geographic
location movements can provide a useful metric for the
identification of depressive symptoms in bipolar patients in
community settings.

The misclassifications are most likely to have occurred
because the nature of the relationship between mood and
movement data may differ between individuals. In other words,
not everyone will experience depression in the same way. For
example, while staying at home and visiting fewer locations
were both shown to be strong indicators of depression (see
Fig. 3), someone in full time employment may be constrained
to a routine, even when unwell. Conversely, some people will
have non-pathological reasons for choosing to stay at home,
or not visit many locations.

Additionally the causality between the mood and the ob-
jective measures is unclear. For example, a decline in move-
ment may result from the presence of depressive symptoms
but given the positive effects of exercise and social interac-
tion/occupation upon mood the reverse relationship may also
be present (or both). Whether this would impact classification
is unknown, but there is a limit to how effective population-
level models (as presented here) can be. To improve the results
further, personalised modelling of features is likely to be
required, as demonstrated by the improvement in performance
seen when using 3-fold cross-validation, where the training
data may come from the same participant as the test data.

Although this study has produced promising results, a
number of other limitations have been identified as follows:

1) The performance of the method described is highly
dependent on the data quality, which was found to be un-
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Fig. 5. Classification results for depression detection model (based on labelled QIDS score ≥ 11) trained on BD participants only. Classification was performed
using quadratic discriminant analysis with the leave-one-participant-out with group equalisation method with 100 folds of group equalisation for each left
out participant. Features were presented to the classifier in the order selected by the feature selection wrapper method. Results are summarized in the form
of box plots showing the median and interquartile range with outliers denoted with crosses. The classification accuracy for only the full time employed and
unemployed participants is also shown in the dashed traces. Feature abbreviations are given in Table II; WD: weekday data subset; WE: weekend data subset.

TABLE IV
DEPRESSION CLASSIFICATION RESULTS

Features LOO Cross-Validation 10-fold Cross-Validation 5-fold Cross-Validation 3-fold CV

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

1 0.747± 0.016 0.810± 0.014 0.747± 0.016 0.811± 0.017 0.753± 0.027 0.812± 0.028 0.758± 0.022

2 0.785± 0.016 0.833± 0.016 0.780± 0.011 0.837± 0.016 0.780± 0.027 0.825± 0.026 0.785± 0.022

3 0.806± 0.005 0.867± 0.012 0.801± 0.016 0.867± 0.014 0.801± 0.022 0.859± 0.021 0.817± 0.022

4 0.839± 0.016 0.882± 0.014 0.828± 0.016 0.871± 0.023 0.844± 0.022 0.878± 0.022 0.833± 0.016

5 0.849± 0.016 0.878± 0.013 0.833± 0.022 0.876± 0.016 0.860± 0.022 0.889± 0.015 0.876± 0.011

6 0.844± 0.016 0.871± 0.017 0.844± 0.016 0.879± 0.016 0.849± 0.022 0.887± 0.024 0.887± 0.016

7 0.844± 0.016 0.869± 0.014 0.833± 0.016 0.869± 0.021 0.839± 0.054 0.885± 0.078 0.892± 0.011

8 0.849± 0.016 0.879± 0.015 0.839± 0.016 0.869± 0.018 0.833± 0.027 0.882± 0.024 0.882± 0.022

9 0.844± 0.016 0.867± 0.015 0.839± 0.016 0.872± 0.018 0.817± 0.027 0.855± 0.042 0.876± 0.016

All values are presented as median± IQR. Classification was performed using 100 iterations of group equalisation for each left out participant or fold.
3-fold cross-validation was performed by splitting all the data for each participant into the three partitions to use for cross-validation.
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Fig. 6. Performance metrics of leave-one-participant-out classifier trained with the 5 features providing optimal classification accuracy. The confusion matrix
(a) shows the classification of test samples of each class. Each row is the true class, and each column is the classification. The ROC graph (b) shows how the
classifier performs on positive and negative test samples as the classification threshold is adjusted. The grey traces are the results from the individual models
trained in cross-validation and the thicker red trace is the mean value. FPR: false positive rate; TPR: true positive rate.
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predictable on the Android platform used. The pre-processing
methods developed were therefore crucial for extracting useful
information about the behaviour of the individual from the
data available. Data collection in this study was relatively
well controlled given that in most cases participants were
provided with specific smartphones. Using different phones in
a real-world setting might exacerbate this problem, however
it was observed that newer models with increased processing
capabilities generally provided higher quality data and so data
issues are likely to become less significant in the future.

2) Geolocation recorded from smartphones only provides
data as to the location of the handset and not necessarily its
owner. There may have been times when the phone was not
carried or lent to someone else, however given the widespread
reliance on mobile technologies for daily life, the impact of
this upon our findings is unlikely to be significant.

3) Weekday and weekend patterns were used as proxies for
working and non-working days, which in many cases is likely
to not be entirely accurate. The effect of this on the results is
unclear, but again more personalised methods may help.

4) Self-reporting of mood symptoms also has a number
of limitations given the inherent bias in retrospective recall
of mood states [42], however QIDS is a well validated and
widely used measure for assessing mood in bipolar disorder.

5) Finally, only 7 participants in the studied cohort exhib-
ited depressive symptoms and therefore these results need to
further validated on a larger scale.

V. CONCLUSION

To our knowledge this is the first study of the utility of
using geolocation data to detect depressive symptoms in a
community sample of bipolar patients. Our findings suggest
that features of geolocation may be a useful proxy for mood
states. They need to be extended to explore mood changes
within individuals but may prove to be useful tools in the
early identification of depressive episodes and in guiding self-
management.
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