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Abstract 22 

The v-rel oncoprotein encoded by reticuloendotheliosis virus T strain (Rev-T) is a member of 23 

the rel/NF-κB family of transcription factors capable of transformation of primary chicken 24 

spleen and bone marrow cells. Rapid transformation of avian haematopoietic cells by v-rel 25 

occurs through a process of deregulation of multiple protein-encoding genes through its direct 26 

effect on their promoters. More recently, upregulation of oncogenic miR-155 and its 27 

precursor pre-miR-155 were demonstrated in Rev-T-infected chicken embryo fibroblast 28 

cultures as well as Rev-T-induced B-cell lymphomas. Through electrophoresis mobility shift 29 

assay and reporter analysis on gga-miR-155 promoter, we show that the v-rel-induced miR-30 

155 overexpression occurs by the direct binding to one of the putative NF-κB binding sites. 31 

Using v-rel-induced transformation model on chicken embryonic splenocyte cultures, we 32 

could demonstrate dynamic increase in miR-155 levels during the transformation. 33 

Transcriptome profiles of lymphoid cells transformed by v-rel showed upregulation of miR-34 

155 accompanied by downregulation of a number of putative miR-155 targets such as Pu.1 35 

and CEBPβ. We also show that v-rel can rescue the suppression of miR-155 expression 36 

observed in Marek’s disease virus-transformed cell lines, where its functional viral homolog 37 

MDV-miR-M4 is overexpressed. Demonstration of gene expression changes affecting major 38 

molecular pathways including organismal injury and cancer in avian macrophages transfected 39 

with synthetic mature miR-155 underline its potential direct role in transformation. Our study 40 

suggests that v-rel-induced transformation involves complex set of events mediated by the 41 

direct activation of NF-κB targets together with the inhibitory effects on miRNA targets.    42 

Keywords: v-rel , NF-κB, miR-155, transformation 43 

44 



Page | 3 
 

Introduction 45 

The rel/NF-κB family of transcription factors (1, 2) play a key role in the control of cell 46 

proliferation and apoptosis, two functions critical in cancer. The involvement of rel/NF-κB in 47 

malignancy is best demonstrated by the acute oncogenicity of their viral derivative, v-rel, 48 

first identified in reticuloendotheliosis virus T (Rev-T) strain (3, 4). Rev-T is an acutely 49 

transforming variant of REV, the aetiological agent of reticuloendotheliosis in birds, carrying 50 

the viral oncogene v-rel, a variant of the turkey cellular proto-oncogene c-rel (5-7). Because 51 

of the rapidity and efficiency of transformation of the cells, the v-rel provides a valuable 52 

model for studying the role of rel/NF-κB family in neoplastic transformation and cancer. The 53 

v-rel-mediated transformation occurs predominantly through the modulation of transcription 54 

of rel/NF-κB targets (8-10), the examples of which include AP-1 (11, 12), IRF-4 (13), 55 

SH3BGRL (14), TGFβ/Smad (15) and telomerase reverse transcriptase (TERT) subunit (16). 56 

More recently, repression of BLNK and BCAP proteins (17) and a novel interaction of 57 

CAPERα and the transactivating domain of v-rel (18) were shown to be important for 58 

lymphocyte transformation by the v-rel oncoprotein.  59 

Several studies have also implicated microRNAs (miRNAs) as key mediators of a number of 60 

cell regulatory processes including the induction of cancer (19-21). Among the numerous 61 

miRNAs expressed in hematopoietic cells, miR-155 was shown to have the most wide 62 

ranging effects on the biology of lymphocytes (22-25). It is processed from a primary 63 

transcript, known as ‘Bic’ (B-cell integration cluster), whose upstream region was originally 64 

found to be a frequent site of integration of the avian leukosis virus in lymphomas (26). A 65 

number of recent miRNA profiling studies have shown elevated levels of miR-155 in a wide 66 

array of cancers including lymphomas (27-30).  67 

In a recent study on chicken embryo fibroblast (CEF) cultures infected with 68 

reticuloendotheliosis virus (Rev) HA1101 strain, differential expression of a number of genes 69 
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leading to changes in several  signalling pathways were reported (31). We and others have 70 

shown upregulation of miR-155 in Rev-T-transformed cell lines and CEF (32, 33). For 71 

further analysis of the global changes in miRNA profiles induced by v-rel, we used an in 72 

vitro model of v-rel-induced transformation of embryonic splenocytes to demonstrate the 73 

sequential upregulation of miR-155 during the transformation process. Our studies confirm 74 

that v-rel-mediated upregulation of gga-miR-155 occurs through the direct binding to at least 75 

one of the putative NF-κB sites on the Bic/miR-155 promoter. Analysis of the gene 76 

expression changes in the v-rel-transformed cells further demonstrated downregulation of a 77 

number of known miR-155 targets potentially affecting a number of important biological 78 

pathways. Demonstration of the targeting of a number of cancer-related genes in chicken 79 

macrophages overexpressing miR-155 demonstrated the importance of this miRNA as a 80 

major regulator of v-rel-induced transformation. 81 

  82 

Results 83 

Upregulation of miR-155 in Rev-T transformed cell lines. During the analysis of the 84 

global changes in miRNA expression in chicken lymphocyte lines transformed by avian 85 

oncogenic viruses, we observed that miR-155 is overexpressed in v-rel-transformed chicken 86 

lymphocytes, compared to the normal spleen cells and MDV-transformed cell lines (32). For 87 

confirmation of the higher expression of miR-155 in v-rel-transformed cells, we examined 88 

Rev-T-transformed cell lines AVOL-1, AVOL-2, AVOL-3 and RIR-Rev-T cells by Northern 89 

blot analysis. An ALV transformed B-cell line HP45 was used as positive control where miR-90 

155 is upregulated due to insertional activation and normal spleen cells which doesn’t express 91 

detectable levels of miR-155 was used as negative control. High levels of miR-155 transcripts 92 

were readily observed in all Rev-T transformed cell lines (Fig 1).  93 
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v-rel binds to the NF-κB sites in the Bic/miR-155 promoter. Having demonstrated the 94 

upregulation of miR-155 in Rev-T transformed cells, we examined the potential mechanisms 95 

of miR-155 overexpression by v-rel. Analysis of the chicken Bic/miR-155 promoter sequence 96 

for potential transcription factor binding sites using the program TFSEARCH (34) identified 97 

a number of transcription factor binding sites, including two putative NF-κB sites (NF-κB1 & 98 

NF-κB2) located at positions -581 and -66 respectively (relative to the transcription start site). 99 

In order to establish that v-rel binds directly to the putative NF-κB sites in the Bic/miR-155 100 

promoter, electrophoresis mobility shift assay was carried out using recombinant GST-v-rel 101 

fusion protein. Briefly, purified GST-v-rel protein was incubated with dsDNA 102 

oligonucleotides probe spanning the two putative NF-κB sites. The intense shifted bands 103 

were observed with incubation of GST-v-rel and wild type labelled probes for both sites (lane 104 

2, Fig 2A). The bands are competed by an excess of cold competitor (lane 3, Fig 2A), but not 105 

the same amount of a mutant competitor that is not bound by v-rel protein (lane 4, Fig 2A).   106 

NF-κB site 2 in Bic/miR-155 promoter is required for miR-155 activation.  Having 107 

demonstrated the direct binding of v-rel to the NF-κB sites, we next examined the possible 108 

contribution of these elements in mediating Bic regulation. To this end, we carried out 109 

reporter assays to examine the ability of v-rel to drive the expression of renilla luciferase 110 

reporter gene using constructs containing the wild type or the mutant chicken Bic/miR-155 111 

promoter. For this, the chicken Bic/miR-155 promoter region extending from -1829 to +3 112 

nucleotides from transcription start site (+1) was cloned upstream renilla luciferase gene of 113 

psiCHECK™-2 vector (Promega) to replace the SV40 promoter generating the reporter 114 

construct pBic-WT. Mutagenesis of the two NF-κB sites was carried out by overlapping PCR 115 

generating pBic-M1, pBic-M2 and pBic-M1M2 constructs, where the NF-κB1, NF-κB2 or 116 

both sites respectively, were mutated (Fig 2B). For the reporter assay, each of the reporter 117 

and pcDNA3-v-rel constructs were co-transfected into DF-1 cells and the luciferase 118 
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expression was assayed 48 hours later using the Dual-Glo Luciferase Assay System 119 

(Promega) following manufacturer’s instructions. As shown in Fig 2C, mutation of the first 120 

NF-κB site (pBic-M1) did not show obvious changes in the luciferase levels compared to the 121 

wild type promoter (pBic-WT) construct. In contrast, mutation of the second NF-κB site 122 

(pBic-M2) decreased the promoter activity by 63% compared to that of the pBic-WT, 123 

suggesting that the v-rel-mediated transactivation occurs mainly through this NF-κB site.  124 

The promoter activity of double mutant pBic-M1M2 construct was similar to that of pBic-M2 125 

further confirming that the second NF-κB site in the Bic/miR-155 promoter is important for 126 

the v-rel-mediated upregulation of miR-155.   127 

v-rel relieves the inhibition of miR-155 expression in MSB-1 cells. We have previously 128 

shown that miR-155 is consistently downregulated in MDV-transformed tumours and cell 129 

lines (32). Although the mechanisms for this downregulation are not known, this could be 130 

due to the complementation of miR-155 functions by the high levels of the viral homolog 131 

MDV-miR-M4 expressed in these cells. We wanted to examine whether the downregulation 132 

of miR-155 in MDV transformed cell lines can be rescued by expressing v-rel in these cells. 133 

RCAS(A)-v-rel-GFP virus stocks were used for transduction of v-rel into MSB-1 and 265L, 134 

where the GFP marker allowed sorting of the infected cells. Analysis of the sorted cells by 135 

Western blotting showed expression of v-rel-GFP in both infected MSB-1 and 265L but not 136 

in uninfected cells (Fig 3A). Expression of v-rel increased the level of miR-155 expression 137 

by approximately 700-fold in MSB-1 cells and by about 900-fold in 265L cells which is 138 

much higher than the miR-155 level in untransformed CD4+ cells (Fig 3B), demonstrating 139 

that ectopic expression of v-rel can induce expression of miR-155 in avian lymphoid cells.  140 

Induction of miR-155 is accompanied by downregulation potential targets. For further 141 

analysis of the dynamic global changes in miRNA profiles during v-rel-induced 142 

transformation, we examined the changes in RCAS(A)-v-rel-infected chicken embryonic 143 



Page | 7 
 

splenocytes undergoing transformation. Induction of v-rel in these cells resulted in rapid 144 

transformation resulting in the appearance of continuously proliferating cell lines usually in 145 

8-10 days. The dynamic changes of miR-155 expression during the transformation process of 146 

splenocytes measured by qRT-PCR are shown in Fig 4A. Quite clearly, miR-155 is 147 

significantly upregulated during the time-course of v-rel transformation, with levels showing 148 

increases of 5 fold (day 1), 6 fold (day 4), 50 fold at day 7,  150 fold at day 9 and nearly 1500 149 

fold at day 14, as compared with the level at day 0.  150 

In order to assess the simultaneous changes in gene expression during transformation, we 151 

carried out the transcriptome analysis using the chicken Affymetrix platform on the RNA 152 

samples extracted from these cells.  To focus on miRNA-induced repression of gene 153 

expression, we used the Bioconductor package Limma (35) to extract 1242 genes that showed 154 

significant downregulation at day 14 compared to day 0.  Table 1 shows the top 20 155 

statistically enriched predicted miRNA targets in this list.  Of the 1242 downregulated genes, 156 

73 are predicted targets of gga-miR-155 (Fig 4B) making it the top hit of the most enriched 157 

miRNA targets.  Analysis also showed that the enrichment of the targets of other miRNAs 158 

such as gga-miR-9*, gga-miR-217, gga-miR-19a and gga-miR-23b were also significant. 159 

These data highlighted the importance of miR-155 and other miRNAs in v-rel induced 160 

transformation. MiR-155 is a well-studied oncogene of hematopoietic cells. Considering the 161 

complexity of targets analysis in v-rel induced transformation system as lots of miRNAs and 162 

mRNAs are affected by v-rel, we overexpressed miR-155 in chicken macrophages derived 163 

from line 0 chicken by transfection of miR-155 mimics into bone-marrow derived 164 

macrophages. ‘Allstars’ negative control (Qiagen) was used as control in an attempt to get a 165 

cleaner result on miR-155 targets. The RNA extracted from transfected cells were analysed 166 

by deep sequencing. The significant down regulated genes with miR-155 target sites in 167 

3’UTR were subject to the pathway analysis using Ingenuity Pathway Analysis tool. As 168 
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shown in Fig 5, several potential miR-155 targets are involved in a number of diseases and 169 

cellular processes. The number of cancer-related genes targeted by miR-155 ranks the second 170 

implicating the importance of miR-155 as a regulator in disease pathogenesis, particularly in 171 

tumorigenesis.   172 

 173 

Discussion 174 

The Rev-T avian retrovirus encodes the v-rel oncoprotein, which is a member of the Rel/NF-175 

κB transcription factor family. Although Rel/NF-κB transcription factors have been 176 

associated with oncogenesis in mammals, v-rel is the only member of this family that is 177 

oncogenic in animal systems. Due to its pervasive role in oncogenesis, there is great interest 178 

in NF-κB signalling, and v-rel provides a valuable model for studying NF-κB signalling in 179 

lymphoid cell cancers because of its ability to transform chicken lymphoid cells (12, 15).  In 180 

this study, we demonstrate that v-rel can readily induce transformation of lymphocyte 181 

populations, and the establishment of CD4+ T-cell (AVOL-1) and B-cell (AVOL-2) lineages 182 

suggested that v-rel-induced transformation function is not restricted to specific lineages.  183 

In addition to the changes in protein-coding genes, many changes in the miRNA profiles also 184 

occur in v-rel transformed cells, and one of the miRNAs expressed at significantly higher 185 

levels in v-rel-derived tumor cell lines such as KBMC and CM758 is gga-miR-155 (33). 186 

Higher expression of miR-155 is reported in a number of haematopoietic malignancies (36-187 

40). The precursor of miR-155, termed c-Bic, was first observed to co-operate with myc in 188 

chicken B-cell lymphomas induced by avian leukosis proviral integrations (26, 41). Southern 189 

blot hybridization of genomic DNA from AVOL-1 and AVOL-2 cells showed no evidence of 190 

genomic rearrangements in Bic loci (data not shown) discounting insertional activation of 191 

miR-155 in these cell lines. It is known that miR-155 can also be induced by a variety of 192 

immune cell stimuli such as TLR ligands, TNF-α, IFN-β and other antigens (41-45). A 193 
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conserved AP-1 element in the human Bic/miR-155 promoter was shown to be essential for 194 

some of these functions (46). Transcriptional regulation of miR-155 by TGF-β/Smad4 195 

pathway using the Smad response elements in the human miR-155 promoter has also been 196 

reported (47). Epstein–Barr virus (EBV) latent membrane protein-1 (LMP1) is a potent 197 

inducer of miR-155 and the NF-κB sites in the Bic/miR-155 promoter have been shown to be 198 

pivotal for this function (48, 49). 199 

Both Northern blotting and microarray data showed that miR-155 is significantly increased in 200 

v-rel-transformed T and B lymphocytes compared to the normal spleen cells. These 201 

observations are similar to the findings reported previously (33). Despite the consistent 202 

demonstration of transformation of B and T-lymphocytes by v-rel, the precise mechanisms 203 

have not been demonstrated. As an NF-κB homolog (8), the most likely mechanism of miR-204 

155 upregulation would be through the direct activation of the miR-155 promoter through the 205 

NF-κB binding sites. EMSA showed that v-rel binds directly to both NF-κB binding sites. To 206 

assess the ability of v-rel to activate transcription from miR-155 promoter, we performed 207 

reporter assays using the miR-155 promoter and its derivative lacking each of the NF-κB 208 

binding sites. Our results demonstrated that indeed v-rel controls miR-155 through one of the 209 

NF-κB binding sites in the Bic/miR-155 promoter.  210 

A number of previous studies have demonstrated robust expression of Bic in EBV-infected 211 

cells (50, 51). It has been shown later that EBV-encoded latent membrane protein-1 (LMP-1), 212 

a functional homologue of the tumor necrosis factor receptor family, upregulates the 213 

expression of miR-155 mainly by activating the NF-κB pathway (48). The data here is the 214 

first evidence showing miR-155 being regulated by an NF-κB transcription factor, the v-rel 215 

oncogene encoded by Rev-T in avian systems.  It has been shown previously that v-rel exerts 216 

downstream effects through the transcription factor AP-1 (12, 46). AP-1 sites are present in 217 
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chicken Bic/miR-155 promoter sequences and the contribution of AP-1 in regulation of miR-218 

155 expression in v-rel-transformed lymphocytes remains to be determined. 219 

Interestingly, while miR-155 was upregulated in Rev-T transformed cell lines, it was 220 

consistently downregulated in MDV-transformed lymphocytes (52). Although miR-155 221 

functions are probably rescued by the high level expression of the MDV1-miR-M4 homolog 222 

in these cells (53), the precise molecular mechanisms of downregulation of miR-155 in 223 

MDV-transformed cells are not clear. RCAS-mediated transduction of v-rel did rescue the 224 

expression of miR-155 in two of the MDV transformed cell line MSB-1 and 265L. The 225 

increased level of miR-155 expression after introduction of v-rel into these cells indicated 226 

that the upregulation of miR-155 is a direct effect. It is interesting to know that common 227 

occurrence of MDV with REV in chickens could lead a part or entire genome of REV 228 

integrating into MDV genome (54, 55). Although a number of field MDV isolates with REV 229 

insertion have been characterized, the precise molecular mechanisms for the altered 230 

pathogenic properties and the increased virulence are still not clear (55, 56). 231 

A number of targets of miR-155 have been identified previously. C-Maf (43), AID (57, 58), 232 

Pu.1 (59), SOCS1 (60), interleukin-1 (61) and IKKε (49, 62) have been implicated in 233 

mediating functions of miR-155 in the immune system. Ets-1 and Meis1 mediate 234 

megakaryopoiesis (63). SHIP1 and C/EBP have been implicated in myeloproliferative 235 

disorders (64, 65), Peli1 controls the generation and function of T follicular helper cells 236 

through promoting the degradation of the NF-κB family transcription factor c-Rel (66), tumor 237 

protein p53 inducible nuclear protein 1 (Tp53INP1) is involved in pancreatic cancer (67) and 238 

SOCS1 in promoting γ-chain cytokine signalling to ensure effector and memory CD8+ T cell 239 

differentiation (68). Additionally, miR-155 targets JARID2, a cell cycle regulator and part of 240 

a histone methyltransferase complex, to promote cell survival (33). From microarray data on 241 

RNA of v-rel transformed cells, 73 out of 1242 significantly downregulated genes are 242 
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potential targets of miR-155. Not only was miR-155 the most statistically enriched target 243 

within the list of significantly down-regulated genes, but members of the miR-17-92 cluster 244 

are also implicated, a cluster which is known to be involved in cancer (69-72), this further 245 

emphasized the role of oncogenic miRNAs in transformation.   246 

The oncogenic effects of miR-155 are mediated through its target mRNAs. The known miR-247 

155 targets Pu.1, CEBPβ are present in the down regulated genes from microarray analysis in 248 

v-rel transformed cells. Together with the evidence that the potential miR-155 targets in 249 

macrophages involved in cancer are standing out of other diseases and functions related 250 

targets, demonstrating the important role of miR-155 in v-rel induced transformation. 251 

Although the precise roles and molecular pathways of miR-155 in v-rel induced 252 

transformation are not fully known, its repressive function on transcriptional factors such as 253 

Pu.1 and CEBPβ can have wide-ranging effects on the cellular milieu and the global gene 254 

expression profiles seen for lymphocytes. Further studies will be required to ascertain the 255 

involvement of Pu.1, CEBPβ and/or other miR-155 regulated transcription factors in the 256 

regulation of miR-155-inhibited genes. Similarly, the repression of some of the other target 257 

genes is also likely to contribute to the induction of hematopoietic cell malignancy. Although 258 

upregulation of miR-155 appears to add complexity to regulation of gene expression in v-rel–259 

induced malignant transformation, the downstream network of miR-155 targets or the 260 

importance of those target genes in v-rel induced transformation could be an interesting area 261 

to explore. 262 

  263 

Materials and methods 264 

Transformed cell lines  265 

  266 
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Rev-T-transformed cell lines AVOL-1 (CD4+ T-cell line) (32), AVOL-2 (B-cell origin), 267 

AVOL-3, RIR-RevT (a transformed cell line derived from outbred Rhode Island Red 268 

chickens) and avian leukosis virus (ALV) HPRS F42 strain-transformed B-cell line HP45 269 

(73) were used. MDV cell lines MSB-1 (74) and 265L (32) were used to study the effects of 270 

induction of v-rel. All the cell lines were grown at 38.5	°C in 5 % CO2 in RPMI 1640 medium 271 

containing 10 % fetal calf serum, 2 % chicken serum, 10 % tryptose phosphate broth, 0.1 % 2-272 

mercaptoethanol and 1 % sodium pyruvate. CEF-derived cell line DF-1 was grown using 273 

methods described (75).  274 

Chicken splenocytes, CD4 + T cells and magnetic cell sorting.  275 

Single-cell suspensions of lymphocytes were prepared from spleen tissues of uninfected birds 276 

by using Histopaque-1083 (Sigma-Aldrich) density-gradient centrifugation. CD4 + T cells 277 

were isolated by magnetic cell sorting using mouse anti-chicken CD4 antibodies (Chan et al., 278 

1988) and goat anti-mouse IgG microbeads (Miltenyi Biotec). After each antibody treatment, 279 

cells were washed three times with PBS containing 0.5 % bovine serum albumin. At each 280 

wash, the cell suspension was centrifuged at 450 g for 10 min. Positively stained cells were 281 

sorted through an AutoMACS Pro Separator (Miltenyi Biotec). Purity of the sorted cells was 282 

confirmed to be >99 % by flow cytometry after labelling with monoclonal anti-goat/sheep 283 

IgG–fluorescein isothiocyanate (Sigma) antibody (data not shown). 284 

Plasmid constructs  285 

The construct pcDNA3.1-v-rel was used for reporter assay. For electrophoresis mobility shift 286 

assay, recombinant v-rel fused in-frame with GST in pGEX2T (GE Healthcare) vector was 287 

used.  RCAS(A) retroviral vector (Replication Competent ALV LTR with a Splice acceptor) 288 

(76) with v-rel cloned into the ClaI site was used for in vitro transformation of embryonic 289 

splenocytes. The orientation of the insert was verified by restriction enzyme digestion and 290 
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sequencing. RCAS (A)-EGFP-v-rel construct with the N-terminal enhanced green fluorescent 291 

protein (EGFP) tag was used for the expression of v-rel in MSB-1 and 265L cells.  292 

Cloning and mutagenesis of Bic/miR-155 promoter 293 

The chicken Bic/miR-155 promoter region extending from -1829 to +3 nucleotides from 294 

transcription start site (+1) was amplified by PCR from the genomic DNA prepared from 295 

CEF. The isolated fragments were digested with BglII and NheI and cloned into BglII and 296 

NheI cut psiCHECK™-2 vector (Promega) to replace the SV40 promoter driving the renilla 297 

luciferase gene to generate the pBic-WT reporter construct. Mutagenesis of the two NF-κB 298 

sites on the pBic promoter was carried out by overlapping PCR using primers 5299-׳ 

CCACATATTTCCTTGCTGGCTCGAGACATAAATTTTTCTGAG-3׳ and 5300-׳ 

CTCAGAAAAATTTATGTCTCGAGCCAGCAAGGAAATATGTGG-3׳ for NF-κB site 1, 301 

 302-׳and 5 ׳GAAAAGGAAAGCAGGCTCGAGACTCAAGACGGTTAG-3-׳5

CTAACCGTCTTGAGTCTCGAGCCTGCTTTCCTTTTC-3׳ for NF-κB site 2. The mutant 303 

constructs were used to replace the corresponding fragment in the pBic-WT vector to 304 

generate pBic-M1, pBic-M2 and pBic-M1M2 constructs, where the 1st, 2nd and both NF-κB 305 

sites respectively, were replaced. In each case, the XhoI restriction site introduced during the 306 

replacement of the NF-κB motifs allowed the screening of the constructs by XhoI digestion. 307 

The sequences of the promoter region of all the constructs were confirmed by sequence 308 

analysis. 309 

Dual Luciferase reporter assay 310 

Transfection of DF-1 cells was carried out with Lipofectamine 2000 (Invitrogen) as per 311 

manufacturer's protocols. Approximately 3 × 104 DF-1 cells were seeded in each well of a 96-312 

well plate. Each of the reporter and pcDNA3-v-rel constructs were co-transfected into DF-1 313 

cells and the luciferase expression was assayed 48 hours later using the Dual-Glo Luciferase 314 

Assay System (Promega) following manufacturer’s instructions. The relative expression of 315 
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renilla luciferase was determined with the normalised levels of firefly luciferase. For each 316 

sample, values from four replicates representative of at least two independent experiments 317 

were used in the analysis. 318 

Electrophoresis mobility shift assay (EMSAs) 319 

Recombinant full length v-rel from pGEX2t-v-rel plasmid in BL21 (DE3) induced with 0.5 320 

mM isopropyl-b-D-thiogalactopyranoside (IPTG) for 3h was purified by Glutathione 321 

Sepharose 4 Fast Flow (GE Healthcare) according to the manufacturer’s instructions. EMSAs 322 

were performed using gel shift assay system (Promega) according to the manufacturer’s 323 

instructions. Double-stranded synthetic oligonucleotides were radiolabeled using [γ32P] ATP 324 

(Amersham) and T4 polynucleotide kinase. For each binding reaction, 3µg of purified protein 325 

was incubated with 0.25µg/µl poly[dI-dC] containing 50,000cpm of  radiolabelled probes and 326 

a 50-fold molar excess of unlabelled competitor oligonucleotide when indicated. DNA-327 

binding reactions were carried out for 30 min at room temperature. Competition experiments 328 

were performed by pre-incubation with protein in binding buffer for 10 min, after which 329 

labelled probe was added for a further 20-min incubation at room temperature. The DNA-330 

protein complexes were resolved on 6% DNA Retardation Gel (Invitrogen) and detected by 331 

autoradiography. 332 

Immunoblotting and Northern blotting 333 

For Western blotting, cells were lysed in protein gel sample buffer (8	M urea, 2 % SDS, 10	334 

mM Tris/HCl pH	6.8, 0.05 % bromophenol blue) and separated on a NuPAGE 4–12 % Bis 335 

Tris gel (Invitrogen) and transferred onto nitrocellulose membranes using an iBlot gel 336 

transfer system (Invitrogen). Western blotting was performed with c-rel and v-rel-specific 337 

HY87 mouse monoclonal antibody (77), followed by anti-mouse IgG–peroxidase conjugate 338 

(Sigma-Aldrich). Membranes were developed with an ECL Western blotting analysis system 339 

(Amersham). For Northern blot analysis, total RNA was extracted from cultured cells with 340 
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miRNeasy Mini Kit (Qiagen), and 20	µg total RNA resolved using a 15 % polyacrylamide-341 

1×Tris-borate-EDTA-8	M urea gel was blotted to a GeneScreen Plus membrane (Perkin-342 

Elmer). DNA oligonucleotides with sequences complementary to candidate miRNAs, end-343 

labelled with [γ-32P]ATP (Amersham) using T4 polynucleotide kinase (New England 344 

Biolabs), were used as high-specific-activity probes. Hybridization, washing and 345 

autoradiography were carried out as previously described (78).   346 

RCAS virus infection 347 

Virus stocks generated from DF-1 cells transfected with RCAS(A)-v-rel and RCAS(A)-v-rel-348 

EGFP constructs approximately 5 days after transfection, when nearly 100% cells were 349 

EGFP positive in the case of the latter construct. For in vitro transformation assay, one ml 350 

(~106 TCID50) of RCAS(A)-v-rel virus was used to infect 5x106 of embryonic splenocytes, 351 

and harvested at day 0, 1, 4, 7, 9 and 14 days post infection for mRNA microarray analysis 352 

and miR-155 quantitation. EGFP-expressing RCAS(A)-v-rel-EGFP-infected MSB-1 and 353 

265L cells were also sorted and examined for v-rel and miR-155 expression.  354 

Stem-loop qRT-PCR for miR-155 355 

The expression levels of miR-155 were analysed using the TaqMan MicroRNA Assay 356 

System (Applied Biosystems) using 10 ng of total RNA as a template for reverse 357 

transcription. Each reverse transcription reaction was performed twice independently, and 358 

each reaction was tested by PCR in triplicates. All values were normalized to the expression 359 

of the endogenous let-7a, and levels calculated as fold-expression change relative to those 360 

from uninfected 265L cells.  361 

Microarray Analysis 362 

Triplicate RNA samples for each of the six time-points (0, 1, 3, 4, 7 and 14 dpi) were 363 

analysed using the Affymetrix GeneChip Chicken Genome Array.  Expression values were 364 

calculated using the Robust Multi-Array Average (RMA) function within the Affy 365 
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bioconductor package (79).  Affymetrix probes were linked to Ensembl genes using Ensembl 366 

(v70) and genes linked to microRNA predicted targets data from the MicroCosm targets 367 

database (80) 368 

For the naïve prediction of miRNAs involved in the activation of genes from the mRNA 369 

expression data, the following analysis was performed: down-regulated probes at 14 DPI 370 

compared to 0 DPI were determined using Limma (35), with a FDR<=0.01 (81) and log fold 371 

change <= -1 (two-fold down-regulated).  Statistical enrichment of miRNA targets within the 372 

down-regulated gene list was calculated using the CORNA package (82).  Fisher’s exact test 373 

was used to calculate p-values for statistical enrichment, and adjusted for multiple testing 374 

(81). Heatmaps were drawn in R using the Pearson correlation coefficient as a similarity 375 

measure (83). 376 

In order to analyse the behaviour of predicted gga-miR-155 targets, expression data from 377 

Affymetrix probes representing genes predicted to be targets of gga-miR-155 were extracted 378 

and analysed as a set.   379 
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Table 1 Top 20 enriched miRNA targets in the list of 1242 downregulated genes 614 

microRNA 
Numbers of miRNA target genes in the population 

FDR4 
Predicted1 Expected2 Observed3 

gga-mir-155 581 45 73 0.002** 

gga-mir-9* 504 39 65 0.002** 

gga-mir-217 603 46 69 0.033** 

gga-mir-19a 648 50 72 0.045** 

gga-mir-23b 633 49 70 0.045** 

gga-mir-106 685 53 74 0.055 

gga-mir-137 570 44 63 0.065 

gga-mir-20a 727 56 77 0.065 

gga-mir-124b 557 43 61 0.065 

gga-mir-190 549 42 60 0.069 

gga-mir-19b 629 48 67 0.069 

gga-let-7k 623 48 66 0.077 

gga-mir-466 806 62 82 0.080 

gga-mir-17-5p 732 56 75 0.095 

gga-mir-302b 652 50 67 0.114 

gga-mir-135a 646 50 66 0.115 

gga-mir-29b 692 53 70 0.115 

gga-mir-124a 577 44 60 0.115 

gga-mir-153 621 48 64 0.115 

gga-mir-146b* 490 38 24 0.122 

1Predicted: The total number of genes predicted to be targets of the microRNA in the 615 

population; 2Expected: The number we would expect to see in our sample by random chance 616 

based on our sample size; 3Observed: The number we actually observed; 4FDR: The 617 

Benjamini and Hochberg adjusted p-value from a two-tailed Fisher's exact test.  **indicates 618 

FDR <= 0.05 619 

620 
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Figure legends 621 

Figure 1. Northern blotting analysis for determining miR-155 expression. Twenty 622 

micrograms of total RNA extracted from the indicated cells was separated on a 15 % 623 

denaturing polyacrylamide gel, blotted and hybridized with end-labelled antisense 624 

oligonucleotide probes to gga-miR-155. Size markers to indicate the positions of the pre-625 

miRNA and the mature miRNA are shown. The cellular U6 small nuclear RNA served as the 626 

loading control. 627 

 628 

Figure 2. Activation of miR-155 by v-rel occurs through the NF-κB pathway.  (A) 629 

Electrophoresis mobility shift assay using purified v-rel on the two putative NF-κB binding 630 

sites NF-κB1 (−581) and NF-κB2 (−66) on the chicken Bic/miR-155 promoter. WT = 50-fold 631 

molar cold wild-type competitor, mu = 50-fold molar cold mutant competitor. (B) Schematic 632 

diagram of luciferase reporter constructs carrying the wild type (WT) and mutant (M1, M2 633 
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and M1M2) chicken Bic/miR-155 promoter. (C) Relative levels of luciferase in DF-1 cells 634 

co-transfected with pcDNA3-v-rel and the reporter constructs. Error bars represent the data 635 

from 4 replicates. 636 

 637 

Figure 3. Upregulation of miR-155 in MDV-transformed cell lines by v-rel. (A) Cell 638 

lysates from MSB-1 and 265L infected with RCAS(A)-v-rel-GFP were analysed by Western 639 

blot using HY87 antibody for v-rel expression. Uninfected MSB-1 and 265L were included 640 

as negative control and AVOL-1 cells were included as positive control. (B) Expression 641 

levels of miR-155 in RCAS(A)-v-rel-GFP infected and uninfected MSB-1 and 265L. 642 

RCAS(A)-GFP infected cells were also included as a control. 643 



Page | 25 
 

 644 

Figure 4. Upregulation of miR-155 during v-rel transformation is associated with 645 

downregulation of targets. (A) Expression levels of miR-155 in RCAS(A)-v-rel 646 

transformed embryonic splenocytes on RNA samples harvested on day 0, 1, 4, 7, 9 and 14 647 

days post infection. (B) Heatmap of 73 down-regulated genes predicted to be targets of gga-648 

miR-155.  Affymetrix probes were analysed using Limma, comparing d14 to d0 and those 649 

with an FDR<=0.01 and fold-change <= -1 (two-fold) selected.  The list was further filtered 650 

for those genes predicted to be targeted by gga-miR-155.  Heatmap was drawn in R using the 651 

Pearson correlation coefficient as a distance measure. 652 
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 653 
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Figure 5. The potential miR-155 targets are involved in a number of dieases and 654 

functions. Top 20 functions (sorted by p-value) of the miR-155 targets identified in primary 655 

avian macrophages transfected with miR-155 mimics.  The grey bars indicate the number of 656 

potential target genes for each disease or function. 657 

 658 


