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Antiderivative Antialiasing for Memoryless
Nonlinearities

Stefan Bilbao, Senior Member, IEEE, Fabián Esqueda, Graduate Student Member, IEEE, Julian D. Parker, and
Vesa Välimäki, Fellow, IEEE

Abstract—Aliasing is a commonly-encountered problem in
audio signal processing, particularly when memoryless nonlinear-
ities are simulated in discrete time. A conventional remedy is to
operate at an oversampled rate. A new aliasing reduction method
is proposed here for discrete-time memoryless nonlinearities,
which is suitable for operation at reduced oversampling rates.
The method is based on higher order antiderivatives of the
nonlinear function used. The first antiderivative form of the new
method is equivalent to a technique proposed recently by Parker
et al. The second and third order cases of the new method
offer considerable improvement over the first antiderivative
method, improving the signal-to-noise ratio in comparison to a
straightforward implementation. The proposed methods can be
implemented with fewer operations than oversampling and are
applicable to discrete-time modeling of a wide range of nonlinear
analog systems.

Index Terms—Aliasing, harmonic distortion, nonlinear sys-
tems, signal denoising, signal processing algorithms.

I. INTRODUCTION

ALIASING is a fundamental problem in nonlinear signal
processing. When a digital signal undergoes a nonlinear

operation, its bandwidth is expanded, leading to the spurious
mirroring of components back to the baseband. Such aliasing
behavior is particularly problematic in audio applications. This
letter proposes a general approach to aliasing suppression
suitable for the simulation of memoryless nonlinearities in
discrete time.

A commonly used general method to reduce aliasing in
memoryless nonlinearities is oversampling [1], [2], [3], [4],
[5], [6], [7]. In audio applications, the input signal is typically
upsampled by a factor of 8 or 16, for example, using an
appropriate interpolation filter. When the nonlinear function
is applied at the oversampled rate, distortion components will
appear at frequencies well above the original Nyquist limit.
Under a downsampling/lowpassing operation, such compo-
nents are suppressed, and aliasing will be negligible. The
main disadvantage of oversampling is the increase in the
operation count, which is proportional to the oversampling
factor. Additionally, the interpolation and decimation filters
add to the workload per sample.
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Other approaches to antialiasing have been proposed for
memoryless nonlinearities. Schattschneider and Zölzer [8]
introduced a harmonic mixer model for polynomial nonlin-
earities of finite order. In the harmonic mixer, the nonlinearity
is divided into a parallel structure in which each branch has
a nonlinear function of a single order only and the branch
input signals are lowpass filtered to assure that no aliasing
can occur [8], [5]. Fernández-Cid and Casajús-Quirós modified
this method to a filterbank form [9]. Thornburg suggested that
a memoryless nonlinear function could be approximated with a
lower-order polynomial to reduce aliasing [1]. However, these
methods only apply for polynomial functions, but many of the
useful nonlinear functions, such as the hard clipper [10], [2],
[11], [12] and saturating functions [13], [14], [15], [16], [17],
[18], cannot be approximated well with a polynomial. Recent
work has applied bandlimited correction functions commonly
used in oscillator synthesis to reduce the aliasing introduced
by hard clipping and rectification [19], [20], [21].

Antialiasing methods of a fundamentally different character
have been recently proposed by Parker et al. [22]. This method
is based on approximating the underlying continuous-time
input signal with a piecewise linear function, applying a
nonlinear function to it, and convolving the resulting signal
with the continuous-time impulse response of a lowpass filter.

In this letter, we present a new discrete-time aliasing reduc-
tion method for memoryless nonlinearities, based on discrete
differentiation of higher order antiderivatives. The first-order
method is equivalent to that in [22]. However, the use of
higher antiderivatives leads to increasing levels of aliasing
suppression; such methods are distinct from e.g. the second-
order method presented in [22]. Such methods are applicable
regardless of the particular form of the nonlinear function.

The proposed idea of differentiating antiderivatives is re-
lated to previous antialiasing synthesis methods called the
differential polynomial waveform [23], [24], [25], [26], [27],
and integrated wavetable/sampling synthesis [28], [29]. In
these synthesis methods, the waveform is first integrated
w.r.t. time one or more times, either analytically [23], [25],
[26] or using an integrating digital filter [28], [29], [30], and
is finally differentiated as many times. This helps remarkably
to reduce aliasing in signal synthesis, but such methods are not
directly applicable to nonlinear processing of arbitrary signals.

This letter is organized as follows. Sec. II discusses the con-
text of this work and the first-order antiderivative antialiasing
method [22], which is the starting point for this work. Sec. III
derives the new method using higher order antiderivates of
the nonlinear function. Sec. IV evaluates the proposed method
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Fig. 1. Input–output relationships for (a) the hard clipper and (b) the
hyperbolic tangent.

in terms of signal-to-noise ratio and compares it with the
trivial, oversampled, and first-order methods using a hard-
clipping and a hyperbolic tangent function as examples. Sec. V
concludes this letter and lists ideas for further work.

II. BACKGROUND

This letter deals with memoryless nonlinearities of the form

y(t) = F0 ((x(t)) . (1)

Here, x(t) is an input signal, and y(t) is an output signal; both
are assumed defined for t ∈ R. F0 is a real-valued mapping,
assumed continuous, but not necessarily differentiable, and in
most cases of interest is nonlinear. Two typical examples of
memoryless nonlinear mappings are the saturator, defined by

F0(x) =
1

2
(|x+ 1| − |x− 1|) , (2)

and the soft-clipping nonlinearity, defined by

F0(x) = tanh (x) . (3)

Fig. 1 shows the input–output relationships for these functions.
In the discrete setting, consider a real-valued input sequence

xn, for n ∈ Z. Such a sequence could represent samples of
the continuous function x(t), for t = nT , where T is a sample
period (and fs = 1/T is the sample rate), or could be entirely
synthetic. A direct approach to discrete-time emulation of (1)
is to simply compute an output sequence yn as

yn = F0 (xn) . (4)

As is well-known, such a trivial implementation generates
aliased components, of strength depending on the smoothness
of the mapping F0, and the amplitude of the input signal xn

[1], [19], [20]. The usual approach to reducing aliasing is to
operate at an oversampled rate, as discussed in Sec. I.

A. First-Order Antialiasing

In a recent paper, Parker et al. presented a novel algorithm
for the reduction of aliasing in discrete-time memoryless
nonlinearities, and suitable for operation at a non-oversampled
rate [22]. It takes on a particularly simple form:

yn =
Fn
1 − Fn−1

1

xn − xn−1
. (5)

Here, Fn
1 = F1 (xn) represents the first antiderivative of F0

evaluated at xn. The approximation (5) is arrived at after

a number of steps. In particular, the input sequence xn is
assumed drawn from samples of a piecewise linear underlying
function x(t), which is then convolved with a box function
of one sample duration, and then resampled. The convolution
operation mentioned above requires the evaluation of the
antiderivative of F0, leading directly to the form in (5).

In the case of the saturator (2) and the soft-clip nonlinearity
(3) the antiderivatives can be given, respectively, as

F1(x) =
1

4

[
(x+ 1)2sgn(x+ 1)− (x− 1)2sgn(x− 1)− 2

]
,

(6)
where sgn(·) is the sign function, and

F1(x) = ln (cosh(x)) . (7)

III. HIGHER-ORDER ANTIDERIVATIVE ANTIALIASING

Though it is derived using signal processing considerations
in [22], one observation that can be made about the antialiasing
method (5) is that it represents an approximation to

y(x) =
dF1

dx
or y(t) =

dF1/dt

dx/dt
. (8)

It is natural to examine extensions of the method (5),
based on repeated antidifferentiation. In particular, consider
the extension to pth order of (5):

y(x) =
dpFp

dxp
= DpFp where D =

1

dx/dt

d

dt
, (9)

where Fp is the pth antiderivative of F0 to within a polynomial
of degree p − 1. It is important to point out that except
in special cases, such as the saturator in (2), these are not
available in closed form.

A. A Numerical Method

The key operation in (9) is repeated composition with the
differential operator D. In order to construct a discrete-time
approximation to the higher order forms in (9), it is useful
to take an approach based on operator composition through
discrete time approximations to D. For an arbitrary sequence
gn, n ∈ Z, define unit forward and backward shifts e+ and
e−, and associated first difference operations δ+ and δ− as

e±g
n = gn±1 and δ± = ± (e± − 1) . (10)

Given an input sequence xn and a sequence qn = q(xn), for
some nonlinear mapping q, define the operators D− and D2,
through their action on the time series qn as

D−q
n =

δ−q
n

δ−xn
u Dq(xn) (11)

and

D2q
n =

2

(e+ − e−)xn
δ+D−q

n u D2q(xn). (12)

D− is a one-sided approximation to D, and D2 is a centered
approximation to D2.

Supposing that p = 2m + r, where m = bp/2c and r =
mod (p, 2), then a discrete-time approximation to (9) may be
written, in operator form, as

yn = em−D
r
−D

m
2 F

n
p , (13)
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where Fn
p = Fp (xn) and where the m sample unit delay

em− is used to render the approximation causal. When written
explicitly to orders p = 1, 2, and 3, the approximation yields

yn =
Fn
1 − Fn−1

1

xn − xn−1
, (14)

yn =
2

xn − xn−2

(
Fn
2 − Fn−1

2

xn − xn−1
− Fn−1

2 − Fn−2
2

xn−1 − xn−2

)
, (15)

and

yn =
1

xn−1 − xn−2
×[

2

xn − xn−2

(
Fn
3 − Fn−1

3

xn − xn−1
− Fn−1

3 − Fn−2
3

xn−1 − xn−2

)

− 2

xn−1 − xn−3

(
Fn−1
3 − Fn−2

3

xn−1 − xn−2
− Fn−2

3 − Fn−3
3

xn−2 − xn−3

)]
.

(16)
It can be seen that (14) is equivalent to (5), the method pre-
sented in [22]. However, (15) and (16) are its novel extensions.

B. Precision and Ill-Conditioning

The operations D− and D2 both include divisions by
differences of signal values; as such, there is the risk of loss
of precision or division by zero when the denominator is
small. Special approximations are thus necessary under such
conditions.

The discrete-time approximation (13) consists of a sequence
of operations of the form D− or D2. Consider a given function
G0(x) and its first and second antiderivatives G1(x) and
G2(x), as well as the sequences Gn

0 = G0(xn), Gn
1 = G1(xn),

and Gn
2 = G2(xn).

At time steps n for which |xn − xn−1| ≤ ε, for some
threshold value ε, the following approximation to D−, ob-
tained through Taylor expansion, may be used:

D−G
n
1 = G0(x̄n−

1
2 ), x̄n−

1
2 =

1

2

(
xn + xn−1

)
. (17)

This corresponds to the rule used in [22].
At time steps n for which |xn+1 − xn−1| ≤ ε, for some

threshold value ε, the following approximation to D2 may be
used:

D2G
n
2 =

2

∆

(
G1 (x̄n) +

Gn
2 −G2 (x̄n)

∆

)
, (18)

where

x̄n =
1

2

(
xn+1 + xn−1

)
, ∆n = x̄n − xn. (19)

When |∆n| ≤ ε, the further approximation

D2G
n
2 = G0

(
1

2
(x̄n + xn)

)
(20)

may be employed.
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Fig. 2. Comparison of magnitude spectra for a 1661-Hz sinusoidal signal
of amplitude 10 under hard clipping: (a) at a sample rate of 44.1 kHz,
(b) when oversampled by a factor of 6, and when oversampled by a factor
2, and employing (c) the first-order antiderivative method and, (d)–(e) the
proposed second-order and third-order antiderivative forms, respectively. The
harmonic components are indicated with circles; all other spectral components
are caused by aliasing.

IV. EVALUATION

The antialiasing characteristics of the proposed methods are
easily observed in the case of a sinusoidal input. Fig. 2(a)
shows the magnitude spectrum of a 1661-Hz sinewave (note
G#6) with peak amplitude 10 under trivial hard clipping.
A sample rate fs = 44.1 kHz was used for this example.
As a reference, Fig. 2(b) shows the spectrum of this signal
upsampled by a factor of 6 prior to clipping. To bypass the
effects of interpolation/decimation filters, the input signal was
synthesized at the target rate fs = 264.6 kHz. The nonlinearity
clearly introduces high levels of aliasing distortion throughout
the spectrum which can be reduced using oversampling.

Figs. 2(c)–(e) show the magnitude spectrum of the 1661-Hz
sinewave processed using the first-order antiderivative method
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presented in [22] and the proposed extension (13) to second
and third order. The methods were implemented using two-
times oversampling, i.e. fs = 88.2 kHz. In particular, aliasing
is suppressed more at low frequencies, which is advantageous
in audio, because at frequencies below the first harmonic,
the audibility of disturbances is limited only by the hearing
threshold whereas auditory masking makes high-frequency
disturbances between harmonics inaudible [31].

Furthermore, the performance of the proposed methods was
evaluated by measuring the caused increase in signal-to-noise
ratio (SNR) for a set of sinusoidal inputs. The SNR was
defined as the power ratio between the desired part of the
signal, and the components generated by aliasing. Following
the approach described in [23], an ideal alias-free version
of each test signal was synthesized using Fourier analysis
and additive synthesis. This bandlimited signal was subtracted
from the aliased signal to separate the harmonics from the
aliased components. The squared sum of the signal containing
only the aliases was used as the noise part in the SNR
calculation. Since in audio applications the SNR is only
meaningful at audible frequencies, all signals were lowpass
filtered up to 16 kHz prior to the SNR evaluations. As before,
algorithms (14)–(16) were implemented using an oversampling
factor of 2 (i.e. fs = 88.2 kHz). Given the high computational
costs of evaluating the hyperbolic tangent function and its
antiderivatives at every time step, these were stored in a lookup
table (LUT) and read using cubic Lagrange interpolation.
Table size was optimized by exploiting the symmetry of
these functions. Each LUT was generated by evaluating each
nonlinearity at a thousand points between 0 and 10. With
this implementation, the error relative to analytical values was
found to be in the range of 10−15.

Figs. 3(a) and (b) show the SNRs for sinusoidal signals
with fundamental frequencies between 1 and 10 kHz under
hard clipping (2) and soft saturation (3), respectively. As a
reference, trivial audio rate processing and oversampling by
factor 6 are also shown. For hard clipping, the second- and
third-order forms increase SNR by approx. 15 and 30 dB
w.r.t. oversampling by factor 6 [cf. Fig. 3(a)]. In the case of the
soft-clipper [cf. Fig. 3(b)], the third-order method outperforms
oversampling by 6 for high fundamental frequencies. At lower
fundamentals the SNRs lie above 96 dB, which can already be
considered sufficient for 16-bit audio (CD quality) [32].

The third-order form requires one LUT read and two
divisions per output sample. The remaining calculations cor-
respond to previous evaluations and can be stored in memory.
If the cost of performing an LUT read as comparable to
that of a division, and operating at twice the audio rate,
the method requires 6 LUT reads per output sample. This is
equivalent to the cost of 6-times oversampling. In practice the
additional cost of interpolation and decimation filters required
for oversampling must also be taken into account. As the costs
of these filters are proportional to oversampling factor, the
methods here are more efficient than pure oversampling.

V. CONCLUSION AND FURTHER WORK

A new approach to antialiasing for memoryless discrete-
time nonlinearities has been demonstrated in this letter. As has
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Fig. 3. SNR of sinewaves under (a) hard and (b) soft clipping implemented
trivially (fs = 44.1 kHz), oversampled by factor 6 (OS = 6), employing
oversampling by factor 2 and, the first-order method (p = 1) and the proposed
antiderivative forms (p = 2, 3).

been shown, it is of a general character, more efficient than
pure oversampling, and does not depend on the particular type
of nonlinearity, or on a simplification of its functional form. It
is presented here as a family of methods of increasing order
p of antidifferentiation in the nonlinearity, leading, ultimately,
to an increasing degree of aliasing suppression. As is natural,
computational cost also scales with the order p. There remain
many open questions and avenues of future research.

One particular series of discrete approximations to (9) is
given in (13); it has the features that a) it maintains the nested
structure of the underlying equation, and b) for a given order
p, is minimal in terms of the number of signal values used
to compute an approximation at a given time step, which is
p + 1. An inherent characteristic of this family of methods
is that of spectral shaping of the output; though aliasing is
suppressed, there can be some attenuation of the signal in
the high frequency range. Additional linear filtering is one
option in this case, as suggested in [33], [34] for antialiased
oscillators. Given that neither property a) nor b) is necessary
in the approximation of (9), the expansion of the scope of the
nested structures presented here could prove useful in finding
antialiasing methods for which such attenuation is reduced.

Only the single memoryless nonlinearity has been discussed
here. A logical extension will be to multiple such nonlinearities
in a feedback setting, as it is currently one of the main applica-
tions of virtual analog modeling in audio [35], [36], [37], [38],
[12]. A major new consideration will be the determination of
numerical stability conditions for such antialiasing methods,
and will form the basis for future investigations.
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triode models,” IEEE Trans. Audio Speech Lang. Process., vol. 21, no. 2,
pp. 313–321, Feb. 2013.
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