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ORIGINAL ARTICLE
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of within family data
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Abstract Sitka spruce (Picea sitchensis (Bong.) Carr) is the
most common commercial plantation species in Britain and a
breeding programme based on traditional lines has been in
operation since the early 1960s. Rotation lengths of 40-years
have led breeders to adopt a process of indirect selection at
younger ages based on traits well correlated with final selec-
tion, but still the generation interval is unlikely to reducemuch
below twenty years. Recent successful developments with ge-
nomic selection in animal breeding have led tree breeders to
consider the application of this technology. In this study a
RAD sequence assay was developed as a means of investigat-
ing the potential of molecular breeding in a non-model spe-
cies. DNAwas extracted from nearly 500 clonally replicated
trees growing in a single full-sibling family at one site in
Britain. The technique proved successful in identifying 132
QTLs for 5-year bud-burst and 2 QTLs for 6-year height. In
addition, the accuracy of predicting phenotypes by genomic
selection was strikingly high at 0.62 and 0.59 respectively.
Sensitivity analysis with 200 offspring found only a slight fall
in correlation values (0.54 and 0.38) although when the train-
ing population reduced to 50 offspring predictive values fell
further (0.33 and 0.25). This proved an encouraging first

investigation into the potential use of genomic selection in
the breeding of Sitka spruce. The authors investigate how
problems associatedwith effective population size and linkage
disequilibrium can be avoided and suggest a practical way of
incorporating genomic selection into a dynamic breeding
programme.

Keywords Sitka spruce . genome selection . RADseq .

molecular breeding . height . bud-burst

Introduction

Sitka spruce (Picea sitchensis (Bong.) Carr) is native to a
narrow range of coastline stretching nearly 3,000 km along
the seaboard of the Pacific North West from mid-Alaska to
northern California. The species plays an important role in
plantation forestry in northern Europe (Hermann 1987), and
is currently the most widely planted conifer in Great Britain
and Ireland, where it occupies over one million hectares of
land. It also makes a commercial contribution to forestry in
Denmark, France and more recently, Sweden (Lee et al.
2013). Both within and beyond its native range, it is mainly
used for construction timber and wood pulp (Bousquet et al.
2007). Great Britain has an active Sitka spruce breeding pro-
gramme in which the main objective has been to increase the
end-of-rotation value to the construction grade timber industry
by selecting parents combining good growth rate, with im-
proved stem straightness, branching qualities and wood stiff-
ness (Lee and Connolly 2010).

Final selection goals for Sitka spruce in genetic trials are
increases in final rotation volume and the proportion of quality
construction grade timber. In an attempt to accelerate the se-
lection process in genetic trials, breeders have adopted indirect
selection. This involves selection at a young age on the basis
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of traits which are well correlated with the final selection
goals. For example 6-year height in Sitka spruce is a surrogate
for final rotation volume, and pin penetration of a Pilodyn gun
at 12-15 years correlates well with mid-rotation whole-tree
wood density which is a good indicator of timber strength
(Lee et al. 2002a, b). Indirect selection has met with some
success since the start of the programme in 1963 and has
allowed good progress to be made in the re-selection of supe-
rior parent trees based on early progeny test data (backward
selection) to construct the first generation breeding popula-
tion. In some species, early indirect selections in progeny trials
(forward selection) along with development of techniques
such as grafting scions from those selections onto the upper
crown areas of established, mature trees (known as top-
grafting; Goading et al, 1999) and chemical treatment of sub-
sequent grafts have advanced the age of flowering which fur-
ther reduces the generation interval

Tree breeders are always looking for ways to reduce oper-
ational costs and generation intervals. Molecular tools offer a
potential solution to reduce the cost and time required to com-
plete these selection cycles and during the last decade there
has been considerable interest and some notable progress in
their development for forest tree species. In addition to reduc-
ing the length of the breeding cycle molecular approaches
may provide the opportunity to increase selection intensity
and reduce field testing effort (Grattapaglia, 2014). Early at-
tempts to use genetic markers involved in association studies
with phenotypic traits did not fulfil their promise in forest trees
either when targeting candidate genes or the development of
dense SNP panels in genome wide association studies
(GWAS; Beaulieu et al. 2011). This is because (i) these ap-
proaches only explained a small percentage of the variation in
the traits under investigation and (ii) associations identified
did not transfer well across populations or environments
(Pelgas et al. 2011; Ritland et al. 2011). This experience re-
flects those found in much larger genome-wide association
studies involving domestic animals where exploitation of sin-
gle markers has occurred (Houston et al. 2008) but is an ex-
ception (Meuwissen et al. 2016). For these reasons tree
breeders found the GWAS techniques of little practical use
although they did help to identify QTL, and causative variance
which remains of interest to the scientific community.

Recently, emphasis has shifted towards the concept of ge-
nomic selection (GS) first proposed by Meuwissen et al.
(2001) for use in animal breeding. GS techniques do not set
out to validate markers associated with causative variants, but
instead use all SNP markers simultaneously to maximise the
accuracy of an estimated breeeding value. GS uses a ‘training’
population which is both genotyped using a large number of
markers and phenotyped for the traits of interest. These data
are then used to create a prediction model (G-BLUP) based on
the construction of genomic relationships among individuals
in the population, which can then be used to predict breeding

values of individuals for which there is only SNP genotypic
information. The benefit of this approach is that once a panel
of SNP markers has been obtained, GS can be used for any
trait i.e. it does not involve trait specific markers such as those
employed in GWAS.

The GS approach is attractive as it has the potential to
improve selection accuracy and facilitate greater selection in-
tensity, whilst reducing the generation interval substantially
(Grattapaglia and Resende 2011). A study of GS by
Beaulieu et al. (2014) showed training sets of less than
2,000 individuals could provide prediction accuracies compa-
rable to traditional field-based evaluations for open-pollinated
white spruce (P. glauca) families.

A prerequisite for both GWAS and GS approaches is the
availability of large numbers of SNP markers. For livestock,
extensive international sequencing initiatives have facilitated
large-scale SNP discovery, and the availability of these
markers has enabled the development of a range of SNP
panels ranging in size from 60k in pigs, to in excess of 700k
for cattle and sheep (Van Raden et al. 2013). Such panels have
also been developed in crop plants and a 60k SNP array is
currently available for rice and maize (Gupta et al. 2008). In
contrast, conifer sequencing has been challenging due to the
large size and highly repetitive nature of their genomes. The
recently published draft genomes of white spruce (Birol et al.
2013) and Norway spruce (Picea abies; Nystedt et al. 2013)
are each estimated to be ~20Gb long compared to ~3Gb for
the human genome (Venter et al. 2001), and 485Mb for poplar
(Tuskan et al. 2006). There has been only limited sequencing
effort for Sitka spruce and this has hampered the development
of the necessary genomic tools for implementing GS.

In a species where an assembled genome sequence is not
yet available, reduced representation libraries such as those
employed in RAD sequencing (Restriction-site Associated
DNA Sequencing or RADseq; Davey et al. 2011) offer a rel-
atively cheap alternative method for identifying the large
numbers of SNPs necessary for both GWAS and GS ap-
proaches (Andrews et al. 2016). To date RADseq has been
applied to tree species such as Eucalyptus and Norway spruce
as well as perennial plants such as grass (Grattapaglia et al.
2011; Slavov et al. 2014).

Even with appropriately designed SNP libraries of suffi-
cient size to cope with large conifer genomes there are further
challenges for implementation. Neale and Savolainen (2004)
suggest that due to their relatively large effective population
size (Ne), linkage disequilibrium (LD) between loci in some
conifer species will only extend over relatively short distances
compared to domesticated livestock species. This has led to
the conclusion that GS is only likely to be successful in pop-
ulations in which Ne is much reduced such as highly selected
breeding sub-groups or seed orchards. (Thavamanikumar
et al. 2013, Beaulieu et al. 2014). However, one advantage
that forest trees do have over livestock is that very large full-
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sib families can be generated through controlled pollination
followed by the collection of large quantities of cones and
seed. In a single full-sib family, LD extends for long distances
in contrast to open-pollinated populations and this could be
exploited in the development of operational approaches to GS
targeted towards selection of individuals within family.

Initial experiments based on forest tree species were con-
ducted in Pinus taeda (Resende et al. 2012a and 2012b) and in
several Eucalyptus species (Resende et al. 2012c) to test the
performance of GS in estimating breeding values for a range
of selection traits in forest trees using populations with re-
stricted effective population size, several thousand markers
and large training populations. For example, using a popula-
tion of 61 full-sib crosses based on 32 parents, training popu-
lations of either 800 or 951 individuals and ~4,853 SNP
markers Resende et al. (2012a and b) obtained prediction ac-
curacies of between 0.17-0.74 for nine selection traits in Pinus
taeda. Although prediction accuracies dropped sharply when
models were applied to a new, unrelated population the loca-
tion of the genomic regions for the traits was consistent sug-
gesting that the loci responsible were conserved across the two
populations. One of the perceived benefits of GS in forest
trees is the ability to practice multiple trait selection. This is
because GS can be used to estimate individual breeding values
for each selection trait which could then be combined into a
single overall selection index if required.

This study investigates the potential for genomic ap-
proaches in Sitka spruce by:

i. Exploring the feasability of using RAD sequencing tech-
nology to develop a SNP panel of practical utility in mo-
lecular breeding;

ii. Applying the GWAS approach to identifying potential
Quantitative Trait Loci (QTL) for 6-year height and 5-
year bud burst;

iii. Estimating the accuracy of within-family selection using
GS methodology, and;

iv. Discussing how these genomic approaches might be ap-
plied in a non-model species.

Materials and Methods

Sample collection

In spring 2005, Forest Research (FR) established large Sitka
spruce field trials consisting of the same 1,500 offspring from
each of three full-sib families clonally replicated across three
climatically contrasting sites in Britain. In what follows, the
term offspring will represent a genotype, and a ramet will
represent a clonal copy of an offspring. The three full-sib
families were based on crosses involving six unrelated parents

from the Forest Research Sitka spruce breeding population.
Each site was partitioned into four complete randomised
blocks and each individual offspring is represented by four
ramets at a single site, one ramet per block; 12 ramets in total
across all three sites. This study concentrates on one of these
full-sib families at a single site located in south-west (SW)
England (lattitude 50.59N; longitude 4.06W; 140m above
sea level; accumulated temperature above 5oC (AT5) 1,769).

Trait assessments

The four ramets of each of the 1,500 offspring at the SW
England site were measured for (i) timing of bud-burst on a
1 to 8 scale according to Krutzsch (1973) at the start of their
fifth growing season, and (ii) height (cm) after six growing
seasons. For bud-burst, all ramets in the trial were assessed on
three occasions over a three week period and the occasion
which provided the greatest variance of scores among off-
spring was used in the analysis. Mortality on the site was
low (0.2% or 120 trees at five years; 0.3% or 130 trees at six
years), with none of the offspring having more than one loss
amongst its four representative ramets.

RADseq in Sitka spruce

DNA was extracted from the needles of one representative
ramet of each genotype. The needles (100mg) from each sam-
ple were finely chopped and placed in a 2ml Eppendorf tube
containing two stainless-steel ball bearings (3mm). The sam-
ples were frozen in liquid nitrogen, ground to a very fine
powder using a Reitch mixer-mill and stored at -80oC. DNA
was extracted using the Qiagen DNeasy Plant mini-kit. The
Qiagen protocol was modified in a number of different ways
to maximise DNAyield. For the lysis step, 600μl lysis buffer
were used and the incubation period was extended to 45 mins.
For the neutralisation step, 195μl neutralisation buffer was
used and the period on ice increased to 20 mins. The elution
incubation was increased to 15 mins and the elution-product
was re-applied to the column and spun through a second time.
The quality and concentration of DNA extractions were
checked using a PicoGreen spectrophotometer (Invitrogen)
and only those extracts which contained at least 2.5μg of
DNAwere taken forward for RAD analysis.

Primary digestion: selection of restriction enzyme

The first step of a RADseq study is the selection of the most
appropriate restriction enzyme(s) since this determines the
number of genetic markers obtained. All genotyping projects
operate within a restricted budget and therefore selection of
the appropriate restriction enzyme(s) involves a necessary
compromise between the number of markers genotyped, the
number of individuals multiplexed and the depth of coverage
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required per locus per genotype. A pilot study to inform the
choice of restriction enzyme(s) was therefore carried out in
which the DNA of two parents and 20 offspring from the
full-sib family was digested using the following four restric-
tion enzymes; two 8-base pair (bp) (Sbfl and SgrAl) and two
6-bp (Pstl and Xmal). Using the methods described by Etter
et al. (2011) RADseq libraries were prepared for each enzyme
using the size range selection of 300 to 700-bp. To get a better
coverage of the parents, we used a ratio of five times the
amount of parental DNA relative to offspring DNA in order
to achieve a 5-fold increase in the number of Illumina reads for
the parental samples compared to those for each offspring.
The RADseq libraries were sequenced in High Output lanes
on the Illumina HiSeq 2000 instrument. Libraries from the
four enzymes were sequenced in separate lanes, with an addi-
tional lane for the library relating to PstI due to lower than
expected number of reads observed in the first lane.

Second digestion RAD (SD-RADseq)

Of the four enzymes tested the 6-bp PstI enzyme (restriction
site CTGCAG) came closest to providing our target number of
mappable markers but it exceed it by around 24% (results not
shown). In order to reduce the number of markers further a
novel complexity-reducing step was developed in which the
products of the primary digestion with Pstl were subjected to a
second digestion with an additional enzyme. Since the
smallest DNA fragments in the library were 300-bp long, the
additional enzyme was selected on the basis that it would cut
24% of the markers within the first 300-bp beyond the restric-
tion site in order to remove such fragments from the library. In
order to be conservative, the length was lowered to 250-bp.

The techniques employed to achieve this reduction via the
choice of the most appropriate second restriction enzyme in-
volved extracting the paired-end reads associated with each
marker across all individuals in the library, and assembling
them using IDBA-UD (Peng et al. 2012), with a minimum
contig size of 700-bp. We then checked the frequency of cut-
ting sites within the first 250-bp for all commercially available
restriction enzymes using the application restrict from the
EMBOSS suite (Rice et al. 2000) excluding those with cutting
sites in any of the RAD adapters used. The enzyme ‘Alw1’
(restriction site GGATC) was chosen since it showed presence
of cutting sites within the first 250-bp in 24.6% of the paired-
end contigs (see ‘Results’).

To test the reduction in total number of markers using the
Alw1 enzyme, a new RADseq library was created based on
just the two parents. A second digestion (SD) RADseq library
was prepared by digesting the new Pst1 RADseq library with
the AlwI restriction enzyme for 30 mins at 37oC, followed by
a heat inactivation step of 10 mins at 65oC. To reduce the
sequencing costs, the second digestion library was sequenced
in an Illumina MiSeq run (50-bp single end (SE)). We

evaluated the effectiveness of the AlwI SD-RADseq library
as follows: first, we obtained our reference 50-bp set of undi-
gested segregating markers by running the RADseq analysis
(as explained below) on the reads from the PstI RADseq li-
brary trimmed to 50-bp; second, we obtained the AlwI SD-
RADSeq markers of the parents running the RADseq analysis
with the same parameters; finally, we mapped the observed
RADSeq markers of the SD-RADSeq digested parents to the
catalogue of markers from the undigested parents and counted
the number of undigested markers hit.

Subsequently, using this secondary digestion process,
RADseq was performed on 622 randomly chosen progeny
from the full-sib family. A total of 48 offspring were se-
quenced per Illumina HiSeq 2000 lane (High Output, SBS
chemistry v1). Costs per sample were further reduced by se-
quencing to 50-bp single-end reads rather than the 100bp
paired-end used for the pilot libraries.

Processing of RADseq data

RADseq reads for each sample within libraries were de-
multiplexed using the software RADtools v1.2.4 (Baxter
et al. 2011) with parameter –fuzzy_MIDs (this allows one
base mismatch in the barcode). Prior to further analysis,
Illumina adapters were removed from the reads using
scythe v0.994 (Buffalo 2014), and reads were filtered with
a minimum quality threshold of Q20 using Sickle v1.33
(Joshi and Fass, 2011). Reads from the pilot study librar-
ies were trimmed to 96-bp to remove the last few cycles
where read quality drops in Illumina longer reads, but left
untrimmed at 50-bp in SD-RADseq libraries (cycle qual-
ity remains high in short read lengths). De novo clustering
of RADseq markers and sample genotyping were carried
out using the Stacks software v0.9996 (Catchen et al.
2011). First, RADseq reads for each sample were grouped
in ‘stacks’ of reads (roughly corresponding to markers)
using the ustacks module, with a maximum of two SNPs
between tags (Balleles^ within a stack (parameter -M = 2),
deleveraging (-d) enabled, and a minimum number of
reads per stack (-m) of two for the pilot study. A value
of m = 2 maximises the number of stacks at the expense
of grouping PCR and sequencing errors into stacks, but
for the pilot we wanted to obtain a rough estimate to the
total number of markers for each enzyme. For the final
SD-RADseq libraries we used a value of m = 2 for the
offspring but m = 12 for the parents (to remove low cov-
erage markers originated from PCR and sequencing errors
in the samples used as references for the mapping). A
catalogue of markers was constructed from the stacks ob-
served for the parents using the module cstacks with a
maximum number of mismatches between sample tags
or alleles of zero (-n = 0); this is the recommended value
by Catchen et al. (2011) for a F1 pseudo-test cross.
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Genotypes were calculated comparing the markers in each
sample with the alleles in the catalogue using the
genotypes module, selecting markers appearing in a min-
imum of four progeny samples (-r = 4) and with a mini-
mum stack depth of five reads (-t = 5), and the map type
option –CP for Bcross-pollination^. Genotypes were
exported in a JoinMap 3 format (Van Ooijen and
Voorrips, 2001) for linkage mapping analysis.

Quality control and linkage maps

A set of 34,347 markers were detected by the ‘Stacks’
software. Following filtering out those markers which
showed evidence of non-Mendelian segregation and those
which were missing in more than 300 individuals, this
number was reduced to 8,397. Custom software
implementing the method of minimum recombinations
(Olson and Boehnke 1990) was used to obtain the linkage
groups and maps for each group. Linkage groups were
confirmed by repeating the analysis using JoinMap 3
(Van Ooijen and Voorrips, 2001) in which 8,132 markers
were larranged into 12 linkage groups.

Statistical analysis

The statistical analysis of the height and bud-burst data was
based on the mean performance of the ramets representing
each offspring. Since only a single family was genotyped,
with data from one site, and each offspring had one ramet
per block, the genomic analysis was free of nuisance factors
and family stratification. In the single non-genomic model
described below, all ramets were included.

Genetic variation in height & bud-burst

Variance was estimated using two different approaches, either
with or without information from genomics. Ignoring the ge-
nomics data, a mixed linear model was fitted to 5,987 ramets
(5 year bud-burst) or 5,982 ramets (6 year height) of the form:

y ¼ Xβþ Zuþ e ð1Þ

Here, y is the vector of observations for each offspring
ramet; β is the vector of nuisance fixed effects
representing the mean (1 d.f.) and blocks (3 d.f.); u is
the vector of random Multi-Variate Normal (MVN) effects
for each of the 1,500 offspring; X, Z are design matrices
relating observations to effects; and e is a vector of MVN
residuals for each offspring ramet. It was assumed u ~
MVN(0, σM

2 IO) and e ~ MVN(0, σE
2 IR) where IO is

the identity matrix for offspring, and IR is the identity
matrix for ramets. The components were estimated using
ASReml 3 (Gilmour et al. 2009). The variance σM

2

includes all genetic variance found within full-sib families
which, in the absence of selection is expected to be ½ of
the additive genetic variance (σ2

A) and ¾ of the domi-
nance variance (σ2

D) plus other fractions of the epistatic
variances. For each trait, the phenotypic variance was es-
timated as σ2

W = σM
2 + σE

2 and a broad heritability
within family as H(1)

2 = σM
2/σ2

W. A further estimate
was derived of the fraction of the genetic variance in
means of 4 ramets, H(2)

2 which replaced σE
2 by σE

2/4.
Variances were estimated for the genomic information by

using a G-BLUPmodel. A genomic relationship matrixGwas
constructed from the SNP information following Amin et al.
(2007), where the genomic relationships between animals i
and j is given by:

gi j ¼ n−1
Xn

k¼1

xik−2pkð Þ x jk−2pk
� �

= 2pk 1−pkð Þ½ �

gii ¼ 1 þ n−1
Xn

k¼1

HE;k−Hik
� �

=HE;k

where xik is the genotype of the i
th individual at the kth SNP

when coded as 0, 1 and 2, for the reference allele homozygote,
the heterozygote and alternative homozygote, respectively; pk
is the frequency of the reference allele, n is the number of
SNPs used for estimating relationships, HE,k is the expected
heterozygosity at locus k, and Hik is the observed heterozy-
gosity in animal i at locus k. Pairs of offspring had differing
arrays of genotypes used to calculate relationships since with
RADseq there is a randomness in the compliment of loci
which achieved the necessary thresholds to be assigned. In
this study, all offspring are full-sibs and so the expected pair-
wise relationships (based upon sampling of alleles) are iden-
tical, but the genotype data allow the actual similarity and
dissimilarity in the true relationships to be quantified. The
following mixed linear model was fitted to the means over
the 4 blocks for the 622 offspring which were considered to
have sufficient genotypic data:

y ¼ 1μ þ Zuþ e ð2Þ

Here, y is the vector of mean phenotype for each offspring;
1 is a vector 1’s; μ is the population mean; u and e are vectors
of genetic and residual effects respectively for each of the
offspring included in the genomic analysis. Z is the design
matrix for the genetic effects, which here ie equal to IO. It
was assumed u ~ MVN(0, σG

2 G) and e ~ MVN(0, σR
2 IO).

In this model σR
2 is the variance of the deviations averaged

over the four blocks. The model was fitted using ASReml 3
(Gilmour et al.2009). For each trait, the phenotypic variance
was estimated as σ2

T = σG
2 + σR

2 and genomic heritability
was calculated as h2 = σG

2/σ2
T. The variance σG

2 is an esti-
mate of the additive genetic variance in the set of full-sibs
contained within G.
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QTL detection in a single full-sib family for height
and bud-burst

The balance of the design, and the use of a single family,
removed the need to consider nuisance factors and cryptic
family stratification in the analysis. Therefore, GWAS analy-
ses were carried out on the 622 genotyped offspring with
custom software using the GRAMMAR approach implement-
ed in an in-house bespoke programme (Pong-Wong
pers.comm). This involved 8,132 loci, but with different sub-
sets of offspring available per locus. Significance was
assessed from 10,000 permutations, where the phenotypes of
the 622 offspring were randomly re-assigned to the sets of
genotypes to establish 5% genome wide significance levels
which is the only significance level reported below.
Significant SNPs were assigned to the syntenic groups as de-
scribed previously.

Genomic evaluations to predict phenotypes and breeding
values

The potential accuracy of genomic evaluations within family
for height and bud burst were examined using model (2) and
five-fold cross-validation. The 622 genotyped offspring were
divided independently of the phenotype and genetic informa-
tion into five sets, each containing either 124 or 125 offspring.
In five cycles of analyses, the phenotypes of each 124 or 125
tree set were masked in turn and model (2) was fitted to the
remaining 497 or 498 phenotypes. In each cycle, the accuracy
of predicting the masked phenotypes was calculated as the
correlation of predicted value and phenotype, along with the
bias measured by the regression of y on ŷ. A genomic predic-
tor cannot be directly correlated to breeding values here since
the true breeding value is unknown, therefore the predicted
breeding value is correlated with the phenotype. The
phenotype has added noise from the environment so in geno-
mic predictions of breeding value the correlation cannot be
one. The maximum value that may be expected (t) was calcu-
lated from heritability estimates after adjusting for variance
within families and means of four ramets, using t = √[½h2/
(½h2 + ¼(1-h2))] = √[2h2/(1 + h2)]. Correlations with pheno-
type were divided by t to approximate the correlation with
breeding value. The values of h2 used were 0.8 (Hannertz
et al. 1999) and 0.3 (Lee et al. 2002a) for bud-burst and height
respectively.

Sensitivity analyses for prediction accuracy were investi-
gated in two ways using a sub-set of the 250 offspring chosen
to have the greatest number of genotyped markers and re-
randomised into five equal sets. The predictive accuracies
were re-assessed by cross-validation using (i) 200 offspring
in five folds as training sets to predict the remaining 50, and
similarly (ii) 50 as a training set to predict the remaining 200.

Results

Development of RADSeq markers

Evaluation of restriction enzymes for RADseq libraries
in the pilot population

The four restriction enzymes tested on the parental trees and
20 offspring produced very different numbers of markers
(Supplementary Table S1). In all cases, the number of ob-
served markers was lower than expected assuming the restric-
tion sites were randomly distributed and if we consider a ge-
nome size of 19.6Gb and GC content of 37.9% (values for the
closely related species P. abies; Nystedt et al. 2013). All en-
zymes produced >100,000 markers although, as expected, the
number of markers obtained using the two 8bp cutters (aver-
age number markers on the parents: Sbfl = 161,627; SgrAl =
155,185) was much lower than that with the 6-bp cutters (Pstl
= 592,684; Xmal = 941,751). Nonetheless, the number of
markers for mapping was much lower, ranging from ~2,000-
3,000 for SbfI and SgrAI to ~32,000 for XmaI and ~56,000
for PstI. The larger reduction in mapping markers for XmaI
compared to PstI is due to a much lower average coverage per
marker in the samples despite having similar number of reads
(Supplementary Table S2), due to (i) larger number of markers
in the XmaI vs. PstI libraries, and (ii) markers with very high
coverage probably located in high copy repetitive elements
found in the genome (e.g. in parent 1 the maximum marker
coverage is 169,611 reads for PstI and 777,918 reads for
XmaI) (Supplementary Table S2).

Second Digestion RADseq for complexity reduction
of RADseq libraries

Of the total number of identified markers, ~80% exhibited
expected Mendelian segregation (Supplementary Table S1).
The number of segregating markers for the 8-bp cutters SbfI
and SgrAI was too low to provide a high resolution linkage
map in the nearly 20Gb genome of P. sitchensis. Although the
frequent cutter (XmaI) produced a more appropriate number
of segregating markers (~25,000), overall the XmaI library
presented low coverage per marker (see above). A large se-
quencing effort would be required to get enough coverage for
the segregating markers if XmaI were to be used to produce
RADseq markers in a large progeny. The evidence indicated
that the PstI cutter was the most appropriate enzyme for our
purposes, but even by using this enzyme it would have been
too costly to genotype our set of 622 offspring.

In order to genotype all progeny within our budget we
estimated that we needed a further reduction of ~25% in the
number of loci. In silico restriction of the paired-end assem-
blies of PstI RADseq markers produced a list of potential
restriction enzymes (Supplementary Table S3). From that list,
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AlwI showed an in silico reduction of markers of 24.6%. This
enzyme is commercially available so we chose AlwI for our
SD-RADseq approach. For the PstI undigested library of the
pilot family (with 50bp-trimmed reads) we observed 37,902
mapping markers. From those, we observed 28,976 markers
on the AlwI digested parents. This corresponds to a 23.5%
reduction in the number of markers, very close to the expected
24.6%, indicating that our SD-RADseq approach was valid.

The list of number of reads and marker coverage for the
AlwI SD PstI-RADseq libraries of the full family is shown in
Supplementary Table S4. After processing the samples with
‘Stacks’ we obtained a final number of mapping markers of
34,347 that were present in at least four individuals from the
progeny. This number is larger than the 28,976 markers from
our validation analysis above. The pilot family included only
20 offspring compared to 622 in the final dataset. Considering
that only markers present in at least four offspring were se-
lected, the larger number of markers observed in the full prog-
eny set is likely to be the result of the larger number of
samples.

Variances components for bud-burst and height

Table 1 shows the estimates of variance observed within and
between offspring together with standard errors. It is clear
from H2

(1) that the correlation among ramets of the same off-
spring is notably higher for bud-burst than for height. H2

(2) is
the value that is most analogous to the estimates obtained from
analyses using genomics since these correspond most closely
to expectations from averaging over the four ramets for each
offspring. It should be remembered that these estimates are
from within a single full-sib family and therefore the herita-
bilities underestimate the fraction of variance shared by
offsping as it excludes all genetic variation among full-sib
families.

Estimates of variance using the genomic data are shown in
Table 2. The matrix G used for estimation is built assuming
additive SNP effects and so genetic components are additive
genetic variance. The estimates given are statistically very
significant and, as in Table 1, bud burst has a higher heritabil-
ity than height. Comparison with Table 1 also suggests that the
genetic variance detected using genomics is less thanmight be

expected if the variance between offspring was solely additive
genetic variance. If this were true, then h2(1) would be compa-
rable to H2

(2) derived from the ramets in Table 1. Comparisons
of genetic variances using G-BLUP are difficult since the
interpretation of σG

2 depends on assumptions of Hardy
Weinberg equilibria within all marker loci, but one appropriate
comparison is σ2

E/4 and σR
2 in Tables 1 and 2 respectively, as

these measure the variance not explained by the genetic
models used for analysis. This shows that the genomic model
(Table 2) has more unexplained variance, particularly for bud-
burst, which may be due to the presence of non-additive ge-
netic variance and other sources of variance among full sibs
(e.g. any epigenetic effects) or the density of markers being
insufficient to capture the full additive genetic variance.

Detection of Quantitative Trait Loci (QTL)

For height, only two significant SNP markers were identified
as having genome-wide significance located on linkage
groups 4 and 9 (see supplementary Figure S1). The difference
between the homozygotes was predicted to be 35 cm (SE
0.076) and 36.8 cm (SE 0.075) respectively, representing
10.4% and 10.9% of the mean height of 335.8cm

For bud-burst, a much larger number of 132 SNP markers
was identified as being of genome-wide significance. These
occurred in five of the 12 linkage groups, distributed as shown
in Table 3 (see also supplementary Figure S2). The distribu-
tion of the these SNPs within the linkage groups was clustered
on the linkage maps although such correspondence would be
expected due to the linkage disequilibrium information that
was used to develop both the maps and detect the QTL.
Examination of the clustering on the maps suggests 13 distinct
QTL; with seven appearing on linkage group 10.

Accuracy of predicting phenotypes with GS

Table 4 shows the estimated genomic evaluation for the full
data set (622 trees with 124 or 125 masked trees) and the two
sensitivity analysis (200 trees with 50 masked, and 50 trees
with 200 masked). The accuracy of prediction of the pheno-
types within the family for the full dataset was moderately
high and consistent across all five sets giving a mean of 0.58

Table 1 The total variance
within offspring and between
offspring (σW

2 = σM
2+ σE

2) and
heritabilities for bud-burst at 5
years of age and height in metres
at 6 years of age, from analyses
using only ramet phenotypes

Trait Total Variance Heritabilities Residual Variance

σW
2 H2

(1) H2
(2) σE

2 σE
2/4

Bud Burst 0.542 (0.014) 0.57 (0.012) 0.84 (0.007) 0.236 (0.005) 0.059 (0.001)

Height (m) 0.364 (0.007) 0.25 (0.014) 0.57 (0.018) 0.273 (0.005) 0.068 (0.001)

The heritabilities calculated are: observed broad-sense heritability, H2
(1) = σM

2 /(σM
2 + σE

2 ); broad-sense heri-
tability of offspring performance if averaged over 4 ramets/offspring, H2

(2) = σM
2 /(σM

2 + σE
2 /4). Standard errors

are given in parentheses. Variance components are defined in the Materials & Methods.
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for bud-burst and 0.40 for 6-year height. The higher value for
bud-burst was not unexpected due to the apparently greater
heritability. Using estimates of h2 = 0.80 for bud-burst (in
Norway spruce using the same assessment technique;
Hannertz et al. 1999) and 0.3 for 6-year height (Lee et al.
2002a) estimated the accuracy of prediction of the breeding
values within the family as 0.62 for bud-burst and 0.59 for
height. The estimated accuracies were greater, 0.92 and 0.73,
when the estimates of genomic heritability in Table 2 were
used. Such values are strikingly high, but note that these are
accuracies of predictions within a single full-sib family at a
single site, and using means of four ramets for each of the 497/
498 offspring in the training set.

When 200 offspring were used to predict phenotypes of the
other 50 trees in the sensitivity analysis, the correlation be-
tween predicted breeding value and phenotype fell only slight-
ly, to 0.54 for bud burst and 0.38 for 6 year height (Table 4).
However the reduction in correlation was much greater when
only 50 offspring were used in the training set to predict the
breeding values of the other 200, reducing to 0.33 for bud-
burst and 0.25 for 6 year height. So whilst it is good to push
the extremes when testing a model, the low size of the training
popualtion relative to the much larger predicted breeding
values population seemed to be of little value on this occasion.

Discussion

Development of a SNP panel of markers using RADseq

RADseq provided a successful and cost effective means of
achieving the initial objective of the study, which was to de-
velop a set of SNP markers targeted at Sitka spruce sufficient

to study the possibilities of genomic selection for improved
performance. The technique enabled the discovery of large
numbers of SNP markers in preliminary trials using different
restriction enzymes. However the major challenge was to re-
duce the number of SNPs identified by the restriction enzyme
to a level that allowed a cost-effective study, i.e. one that gave
adequate coverage per locus per individual and yet allowed a
large numbers of individuals to be genotyped within the re-
sources available. The flexibility of RADseq is evident in that
the compromise was achieved by using the ‘Pst1’ enzyme
incorporating an extra digestion with the ‘Alw1’ enzyme to
reduce numbers of loci further.

A shortcoming of this study is that the segregating SNPs
are restricted to a single family. It remains unknown to what
degree other families would exhibit the same segregating
SNPs using the same enzyme digestion protocol, and also to
what extent these would be in common between families. At
present it is unclear if RADseq is the way to proceed for
routine genotyping as the cost of developing custom SNP
chips using the discovered SNP markers continues to fall.
The lack of a Sitka spruce whole genome sequence assembly
remains a problem when using the SNPs generated in the
development of a linkage map. Showing order within a link-
age group was only satisfactorily addressed in this study using
custom minimum-recombination software; consequently the
quality of the map remains unknown.

Identifying QTL

The study identified two significant QTLs for height located
on two distinct linkage groups from the 12 available. In con-
trast, the number was much higher for bud-burst with 132
significant QTLs clustered on five of the linkage groups.
The reason for the greater number of QTLs for bud-burst
compared to height is unclear but differences in the
heritability and the genetic architecture of the traits could be
contributory factors. The ability to map the position of SNP
markers will be improved once an assembled whole genome
sequence for Sitka spruce becomes available in the future. Our
results contrast with those of Pelgas et al. (2011) working with
white spruce who found a total of 33 distinct QTLs for bud-
burst and 52 for height growth across four saturated individual
linkage maps representing two unrelated mapping popula-
tions. Corresponding numbers for the composite map were
11 and 10 QTL. The reasons for the greater number of
QTLs in their study are unclear although it is worth noting
that they adopted a low stringency in their QTL identification.
Difference in the structure of the white spruce and Sitka spruce
genomes is unlikely to be the main reason as the two species
are very close taxonomically. Indeed we were able to match
about 80% of our SNP containing RAD sequences to the
publicly available assembly of white spruce provided by
Birol et al. (2013).

Table 2 The total variance (σT
2 = σG

2 + σR
2) and estimates of

heritability when using G-BLUP for bud-burst at 5 years of age and
height in metres at 6 years of age

Trait Total Variance Residual Variance Heritability
σT

2 σR
2 h2(1)

Bud-burst 0.328 (0.019) 0.237 (0.018) 0.40 (0.012)

Height (m) 0.171 (0.010) 0.122 (0.001) 0.30 (0.017)

The heritabilities calculated are h2 (1) = σG
2 /(σG

2 + σR
2 ). Standard errors

are given in parentheses. Variance components are defined in the
Materials & Methods.

Table 3 Distribution of the 122 genome wide significant markers for
bud-burst at 5 years of age, across the 12 Sitka spruce linkage groups

Linkage Group 1 6 8 10 12 Total

Significant SNPs 7 6 4 99 16 132

Informal QTL 2 2 1 7 1 13
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Accuracy of selection using GS methodology

Genomic evaluations using G-BLUP do not depend on se-
quence or marker order, although an assumption is often made
that the SNPs used to build relationship matrices are scattered
randomly across the genome. The accuracies presented in this
study are strictly within families and show that moderate to
high predictions of breeding value within a single full-sib
family are attainable with training sets consisting of only 50
offspring, albeit using four ramets per offspring which in-
creased the genetic information in the training data. In this
study the accuracy of the predictions of phenotype are unam-
biguous, and support good predictions of breeding value.
However, more precise estimates of the accuracy of predicting
a breeding value are indirect and less clear. Two routes of
assessment were taken: firstly, using literature estimates of
h2 to overcome the problem that the clonal structure of the
population generates only an estimate of broad-sense herita-
bility (without using genomic data); secondly, by using the
estimates of h2 from the genomic data obtained, but where
the results left open the question of whether or not the geno-
mic data were sufficient to capture all the genetic variance
segregating within the family. The putative accuracies of
predicting breeding values were greater using the second op-
tion; however these estimates are likely to be optimistic as
they will be inflated by any underestimate of the genetic var-
iance. However, the results do indicate that larger training sets
were capable of accurately predicting the genetic variance that
was captured by the markers.

There are reasons why genetic variance may be missed in
this study when usingG. FirstlyGwas constructed in a simple
fashion which used genotype assignments including some de-
gree of error since the genotypes were assigned based on a
minimum number of markers. If an assembled sequence had
been available, specifically a linkage map, then it would be
feasible to impute genotypes across all offspring (since

coverage of parents was >60 reads per locus) with consider-
able accuracy, and so greatly reduce both the genotype errors
and missing genotypes. It would be anticipated that a more
accurate G-matrix would result in greater accuracy in predic-
tion. Evidence for this was that the training sets using the 200
most reliably genotyped individuals gave accuracies of
predicting phenotypes only very slightly lower than using
the training sets of nearly 500 trees. The ability to impute from
low density genotyping is important to opening up larger
training sets.

The predictions reported here are strictly within a single
family that cannot be extrapolated to between families.
Beaulieu et al. (2011) examined the possibility of marker
transferability between families in white spruce. They found
predictions within family to be more precise than between
families. When the validation involved families not in the
training group; the accuracies obtained were small, sometimes
negative, and typically not statistically different from zero. It
is not clear from their study how much between family pre-
dictions depended on the ability to predict some of the sibs
within-family that were within the validation set. As with
Sitka spruce, the large effective population size of white
spruce would restrict the potential to predict across families.
Therefore, the evidence to date would suggest the major ben-
efit of genomic selection would be in its potential to predict
breeding value within large full-sib families of trees.

The accuracy of our breeding value for height was 0.59
which compares to previous GS estimated accuracies of the
same trait in Pinus taeda of 0.64-0.74 (Resende et al. 2012a)
and 0.47-0.52 (Zapata-Valenzuela et al. 2012). It is not possi-
ble to attribute the underlying reasons for the differences in the
accuracies since the family structure, size of the training pop-
ulations and number of markers analysed differed between the
studies. It must be remembered that our results provide the
prediction accuracies obtained when using only a single full-
sib cross; the simplest possible population structure. short-

Table 4 Estimated predictive
accuracy of 5 year bud-burst and
6 year height phenotypes and
breeding values (BV) derived
from 5-fold cross-validation using
different numbers of trees in the
training set (n)

Trait Training Set Correlation with Phenotype Correlation with BV

n Min Max Mean (a)a (b)b

Bud Burst 497/498 0.50 0.65 0.58 0.62 0.92

200 0.48 0.59 0.54 0.57 0.85

50 0.17 0.34 0.33 0.35 0.52

Height 497/498 0.32 0.46 0.40 0.59 0.73

200 0.27 0.50 0.38 0.56 0.69

50 0.21 0.28 0.25 0.37 0.46

The correlations with phenotypes shown are the minimum, maximum and mean values obtained across the five
validation sets. The correlations with BVare estimates obtained by scaling the mean correlation with phenotype
by its upper bound either (a) by t derived from the heritabilities of Lee et al. (2002a) as shown in Materials and
Methods, or (b) the square root of the heritabilities shown in Table 2.
a Values of t used were 0.94 and 0.68 for bud-burst and height respectively.
b Values used for scaling were 0.63 and 0.55 for bud-burst and height respectively.
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coming of this study was the lack of resources to investigate
marker transferability between even a sub-set of the other two
full-sib families planted in 2005. However, since this is the
first published study investigating the association of markers
and any phenotypic characteristics in Sitka spruce, it is a
worthwhile starting point for future comparisons.

Application in the breeding of Sitka spruce

As explained earlier, temperate-zone tree breeding can be time
consuming and costly due to the long generation intervals and
expression late in life of important commercial traits. Tree
breeders try to circumvent these problems by employing indi-
rect selection techniques measured early in life that are genet-
ically well correlated with final selection goals. This reliance
on progeny testing slows generation turnover and progress.
Recent developments in breeding of dairy cattle have seen
traditional progeny testing being replaced with very early
age GS in a bid to reduce generation intervals whilst increas-
ing selection intensity and at the same time, reducing overall
operating costs. The slight reducion in accuracy per geneotype
evaluation is more than compensated by the increase in annual
genetic gain and financial benefits.

Critical analysis shows some important differences in the
population structure of dairy cattle and Sitka spruce. The Sitka
spruce breeding programme has completed just one cycle of
selection and testing and compared to crops and animals, is
undomesticated. This results in a large effective population
size (Ne) and low linkage disequilibrium (LD) at the popula-
tion level. A deliberate re-design of the breeding programmes
to reduce the Ne of Sitka spruce can have benefits within a
generation (van Heerwaarden, pers comm.) but the biological
restrictions of the generation interval of Sitka spruce means
the LD impact will not disappear in the next decade. In con-
trast, dairy cattle are highly domesticated, have had much
lower Ne for generations and consequently LD extends over
much longer distances. A new model is required for Sitka
spruce and likely most other tree species.

An alternative approach for Sitka spruce breeders may be
provided by the example of Atlantic salmon (Salmo salar) as
described by Lillehammer et al. (2013). In common with tree
breeding, salmon has a greater Ne than dairy cattle, and an
ability to generate large numbers of individuals per family.
Salmon breeders have turned this to their advantage in a form
of full-sib testing and generation of familiy specific DNA-
markers to enable GS within the family. If Sitka spruce
breeders followed this model, it would involve creating a
number of single-pair matings (full-sib families) through con-
trolled pollination, and planting in the field of a restricted
number of offspring (around 50 per family) appropriate to
assessing the importance of GxE. Selection between the fam-
ilies would continue to be based on traditional assessment of
phenotypes in the field. A set of family-specific DNA-markers

could be generated by measuring and sequencing the initial
few offspring once they have reached suitable phenotypic
indirect-selection ages. Very intensive within family selection
could then follow by use of the bespoke family-specific pre-
diction equations to reduce hundreds, perhaps thousands of
embryos from repeat pollination of the same parents, to just
a few selected superior genotypes for either further field test-
ing, multiplication and direct deployment or (following mat-
uration) involvement if further breeding work with similar but
unrelated early selections. The intensity and commitment to
the two-stage selection process will likely decline with time as
confidence increases in the accuracy of such early marker-
based selection for a wide suite of traits including adaptability
and disease resistance, negating the need for further field test-
ing. Also with time, knowledge may grow in applying
markers across unrelated families i.e. transferability of
markers may become possible, but that is not currently envis-
aged. Following final selection, genotypes could be directly
deployed to the field perhaps using advanced tissue culture
techniques. Reduction of the the generation interval however
will still not be possible until the next bottleneck preventing
earlier generation turn-over in Sitka spruce which currently is
the relatively late flowering age (around 15-years old) of the
species.

The advantage for Sitka spruce breeding now, is that al-
though accuracy of genotype prediction is reduced slightly,
generation gain is likely to be more due to the much increased
selection intensity and reducing generation interval. As found
in cattle breeding there is the additional advantage that overall
field trials costs are reduced. The proposed Sitka spruce model
does still rely on field trials to a certain extent but the
assumption is made that whilst field trial costs will at best
stay constant, genotyping accuracies are likely to increase as
marker density increases and genotyping costs reduce. See
Isik (2014) for a likely application of GS in loblolly pine in
which the generation interval is predicted to half whilst genet-
ic gain per year is doubled.

Conclusion

This has been the first study to investigate the potential of
molecular breeding in Sitka spruce, a non-model species for
which there is currently no whole genome assembly. The
study found that RADseq technology was successful in gen-
erating a large number of randomly located markers that could
be developed into a SNP panel. Applying the GWAS ap-
proach to identify potential QTL proved encouraging for
5 year bud-burst with 132 significant SNPs identified, albeit
clustered, but only two for 6 year height. The prediction of
phenotypes using GS methodology resulted in encouraging
accuracies and demonstrated potential for use of this technol-
ogy, although it is challenging to extrapolate beyond the
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limitation that the data were generated from a single full-sib
family, clonally replicated over a single site. Nevertheless,
family-specific predictions could be used to increase within-
family selection intensity to achieve annual gain commensu-
rate with traditional Sitka spruce breeding, with lower overall
operational costs due to reduced field testing requirements.
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