

Edinburgh Research Explorer

Hindi CCGbank: CCG Treebank from the Hindi Dependency
Treebank

Citation for published version:
Ambati, BR, Deoskar, T & Steedman, M 2017, 'Hindi CCGbank: CCG Treebank from the Hindi Dependency
Treebank', Language Resources and Evaluation, pp. 1-34. https://doi.org/10.1007/s10579-017-9379-6

Digital Object Identifier (DOI):
10.1007/s10579-017-9379-6

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Language Resources and Evaluation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322479114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/mark-steedman(15b544ff-f14e-4393-bee6-0aa38f4361b6).html
https://www.research.ed.ac.uk/portal/en/publications/hindi-ccgbank-ccg-treebank-from-the-hindi-dependency-treebank(e317e2d0-ef38-414c-b351-f4b0c8d54d05).html
https://www.research.ed.ac.uk/portal/en/publications/hindi-ccgbank-ccg-treebank-from-the-hindi-dependency-treebank(e317e2d0-ef38-414c-b351-f4b0c8d54d05).html
https://doi.org/10.1007/s10579-017-9379-6
https://doi.org/10.1007/s10579-017-9379-6
https://www.research.ed.ac.uk/portal/en/publications/hindi-ccgbank-ccg-treebank-from-the-hindi-dependency-treebank(e317e2d0-ef38-414c-b351-f4b0c8d54d05).html

ORI GIN AL PA PER

Hindi CCGbank: A CCG treebank from the Hindi
dependency treebank

Bharat Ram Ambati1 • Tejaswini Deoskar2
•

Mark Steedman1

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this paper, we present an approach for automatically creating a com-

binatory categorial grammar (CCG) treebank from a dependency treebank for the

subject–object–verb language Hindi. Rather than a direct conversion from depen-

dency trees to CCG trees, we propose a two stage approach: a language independent

generic algorithm first extracts a CCG lexicon from the dependency treebank. An

exhaustive CCG parser then creates a treebank of CCG derivations. We also discuss

special cases of this generic algorithm to handle linguistic phenomena specific to

Hindi. In doing so we extract different constructions with long-range dependencies

like coordinate constructions and non-projective dependencies resulting from con-

structions like relative clauses, noun elaboration and verbal modifiers.

Keywords Combinatory categorial grammar � CCG � Treebank �
Hindi � Non-projective dependencies

1 Introduction

Combinatory categorial grammar (CCG) (Steedman 2000) is an efficiently

parseable, yet linguistically expressive grammar formalism. In addition to

predicate-argument structure, CCG elegantly captures the unbounded dependencies

& Bharat Ram Ambati

bharat.ambati@ed.ac.uk

Tejaswini Deoskar

t.deoskar@uva.nl

Mark Steedman

steedman@inf.ed.ac.uk

1 ILCC, School of Informatics, University of Edinburgh, Edinburgh, UK

2 Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The

Netherlands

123

Lang Resources & Evaluation

DOI 10.1007/s10579-017-9379-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10579-017-9379-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10579-017-9379-6&domain=pdf

found in grammatical constructions like relativization, coordination etc. Availability

of the English CCGbank (Hockenmaier and Steedman 2007) has enabled the

creation of several robust and accurate wide-coverage CCG parsers for English,

both graph-based and transition-based, that are being used extensively for broad-

coverage parsing, and especially for tasks requiring deep linguistic analysis such as

semantic parsing and question-answering (Hockenmaier and Steedman 2002; Clark

and Curran 2007; Auli and Lopez 2011; Lewis and Steedman 2014; Zhang and

Clark 2011; Xu et al. 2014; Ambati et al. 2015). Creation of CCGbanks in other

languages, especially languages typologically far from English is beneficial both for

the development of CCG analyses for linguistic phenomenon in these languages,

and also for the development of deep NLP tools for these languages.

Different grammar formalisms like phrase structure grammar, combinatory

categorial grammar, and dependency grammar have different advantages. But

developing treebanks manually in each formalism is a very expensive and time

consuming task. Automatic conversion of treebanks from one formalism to another

significantly reduces the manual annotation effort. We develop an algorithm for

automatically creating CCGbanks from dependency treebanks. We apply this

approach to automatically creating a Hindi CCGbank from an existing manually

created Hindi dependency treebank (Bhatt et al. 2009). The approach is applicable

for creating CCGbanks for other languages with existing dependency treebanks, and

is especially relevant for other Indian languages.

As compared to English, many Indian languages, including Hindi, while basically

verb final, have a freer word-order and are morphologically richer. All of these

characteristics pose challenges to statistical parsers. In the Hindi dependency treebank

there are around 20% of dependency trees with at least one non-projective arc which

are problematic for vanilla shift-reduce parsing algorithms like arc-eager and arc-

standard (Nivre et al. 2007b). In this work, we show that CCG can capture these

phenomena elegantly, essentially by making such dependencies projective—that is,

covered by the grammar. Our approach can be adapted to extract CCGbanks for other

typologically similar languages with existing dependency treebanks, such as other

Indic languages. The rest of the paper is organized as follows. Section 2 gives a short

introduction to the CCG formalism. Section 3 describes related work regarding the

automatic creation of CCGbanks for English and other languages. A brief summary of

the Hindi dependency treebank is provided in Sect. 4. In Sects. 5 and 6, we first show

how we extract a CCG lexicon from the Hindi dependency treebank and then use it to

create a Hindi CCGbank. Details of different long-range dependencies arising from

coordination and other non-projective constructions are presented in Sects. 7 and 8.

Finally, an analysis of CCG categories and combinators present in the Hindi CCGbank

is provided in Sect. 9. We conclude with possible future directions in Sect. 10.

2 Combinatory categorial grammar

Combinatory categorial grammar (CCG) is a strongly lexicalized grammar

formalism, in the sense that all language-specific information including linear

order is defined at the level of the lexicon. It is ‘‘nearly context-free’’ in expressive

B. R. Ambati et al.

123

power, in the sense of being among a group of formalisms for natural language

grammars that are at the lowest level of the language hierarchy above context-free

grammar (CFG) that is known (Joshi et al. 1991; Kuhlmann et al. 2015). It has a

completely type-transparent interface between syntactic derivation and composi-

tional assembly of the underlying semantic representation, including predicate-

argument structure, quantification and information structure. Because of this

semantic transparency, CCG is widely used in practical applications involving

semantic interpretation and inference, (Bos et al. 2004; Lewis and Steedman

2013a, b) especially for semantic parsing with special focus on question answering

(Kwiatkowski et al. 2013; Reddy et al. 2014).

In the categorial lexicon, words are associated with syntactic categories, such as

S n NP or ðS n NPÞ=NP for English intransitive and transitive verbs. Categories of

the form X n Y or X / Y are functors, which take an argument Y to their left or right

(depending on the direction of the slash) and yield a result X. Every syntactic

category is paired with a semantic interpretation (usually expressed as a k-term).

Like all variants of categorial grammar, CCG uses function application to

combine constituents, but it also uses a set of linear order-dependent syntactic

combinatory rules corresponding semantically to composition (B) and type-raising

(T). Type raising is a non-recursive lexical operation related to (morphological or

‘‘structural’’’) case. However, for fixed word-order languages without morpholog-

ical case, Hockenmaier and Steedman (2007) advocate the use of unary type-

changing? rules for reasons of efficiency, including type-raising rules and additional

rules to deal with complex adjunct categories (e.g ðNP n NPÞ ¼) S½ng� n NP for

ing-VPs that act as noun phrase modifiers). Examples of CCG combinators are:

3 Related work

Hockenmaier and Steedman (2007) developed the first English CCGbank automat-

ically from the Penn Wall Street Journal Phrase Structure Treebank (Marcus et al.

1993). For each phrase structure tree, they first determine the constituent type of

each node using heuristics adapted from Magerman (1994) and Collins (1999),

which take the label of a node and its parent into account. Then the tree is binarized

inserting dummy nodes as required into the tree such that all children to the left of

the head branch off in a right-branching tree, and then all children to the right of the

head branch off in a left-branching tree. Then CCG categories are assigned based on

whether the node is root of the sentence, complement or adjunct of the head. Finally,

Forward Application (>) X/Y Y ¼) X

Backward Application (<) Y X n Y ¼) X

Forward Composition (>B) X/Y Y/Z ¼) X/Z

Backward Composition (<B) Y n Z X n Y ¼) X n Z

Forward Crossed Composition ([BX) X/Y Y n Z ¼) X n Z

Backward Crossed Composition (\BX) Y/Z X n Y ¼) X/Z

Forward Type-raising (>T) X ¼) T=ðT n XÞ
Backward Type-raising (<T) X ¼) T n ðT/XÞ

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

headword dependencies which approximate the underlying predicate-argument

structure are obtained.

The English CCGbank (Hockenmaier and Steedman 2007) is primarily created

from the Penn Phrase Structure Treebank, which doesn’t directly capture interesting

linguistic phenomena like predicate-argument structures. Resources like PropBank

(Palmer et al. 2005) capture predicate-argument structure of the verb. Using

PropBank, Honnibal and Curran (2007) improved the complement and adjunct

distinction in the CCGbank. Using information from different resources like

PropBank and NomBank (Meyers et al. 2004), Honnibal et al. (2010) created an

updated version of CCGbank which includes predicate-argument structures for both

verbs and nouns, baseNP brackets, verb-particle constructions, and nominal

modifiers. They also trained a state-of-the-art CCG parser on this new treebank

and compared with the original treebank. Since the updated treebank contains fine-

grained details the performance of the parser was slightly lower than the one trained

on the original version.

Following Hockenmaier and Steedman (2007), there have been some efforts at

automatically extracting treebanks of CCG derivations for other languages.

Hockenmaier (2006) developed a CCGbank for German from the Tiger treebank

(Brants et al. 2002). The Tiger treebank is based on a framework which has features

from both phrase structure grammar and dependency grammar and results in graphs

rather than trees. First, these graphs are pre-processed and converted to planar trees.

Then a translation step is applied which binarizes the planar tree and extracts the

CCG derivation. Tse and Curran (2010) use an algorithm similar to Hockenmaier

and Steedman (2007) to extract a Chinese CCGbank from the Penn Chinese

Treebank (Xue et al. 2005).

There has also been work on extracting CCG lexicons (Cakici 2005) and

CCGbanks (Bos et al. 2009; Uematsu et al. 2013, 2015) from dependency

treebanks. Bos et al. (2009) created an Italian CCGbank from the Turin University

Treebank (TUT),1 an Italian dependency treebank. They first converted dependency

trees into phrase structure trees and then applying an algorithm similar to

Hockenmaier and Steedman (2007) extracted the CCG derivations. Using different

dependency resources available for Japanese like the Kyoto corpus (Kawahara et al.

2002) and the NAIST text corpus (Iida et al. 2007), Uematsu et al. (2013)

developed a CCGbank for Japanese. They first integrated the dependency resources

into phrase structure trees and then converted them into CCG derivations.

Cakici (2005) extracted a CCG lexicon for Turkish. She first made a list of

complement and adjunct dependency labels. Traversing the dependency tree, she

assigned CCG categories to each node based on complement or adjunct information.

Following Cakici (2005), we first extract a Hindi CCG lexicon from the dependency

treebank. Then we use a CKY parser based on the CCG formalism to automatically

obtain a treebank of CCG derivations from this lexicon, a novel methodology that

may be applicable to obtaining CCG treebanks in other languages as well. Our

algorithm for extracting the lexicon is similar to Cakici (2005), but with pre-

processing steps specific to Hindi. However, where Cakici (2005) extracted only a

1 http://www.di.unito.it/*tutreeb/.

B. R. Ambati et al.

123

http://www.di.unito.it/%7etutreeb/

CCG lexicon, we extended it by developing a novel methodology for creating CCG

derivations from this lexicon. Kumari and Rao (2015) have successfully applied our

method to create a CCGbank for Telugu, an Indian language, differing from Hindi

in belonging to the Dravidian language family, and being agglutinative, suggesting

that our algorithm is generic enough to be applied to other languages with little

effort.

In this paper, we first explain the process of creating a Hindi CCGbank from the

dependency treebank using the approach described in Ambati et al. (2013). Then we

consider long-range dependencies in coordination constructions and other so called

non-projective constructions and show how they can be handled within the extended

form of syntactic projection afforded by CCG.

4 Hindi dependency treebank

In this section, we first give a brief introduction to the Hindi language. Then we

provide details about the Paninian grammatical model used for Hindi dependency

annotation. Following this, we describe the Hindi dependency treebank.

4.1 Hindi language

Hindi is one of the official languages of the Republic of India, and the 4th largest

language in the world, with over 260 million speakers.2 Hindi, while basically verb

final, is a freer word-order language. This can be seen in (1), where (1a) shows the

constituents in the default SOV (Subject, Object, Verb) order, and the remaining

examples show some of the word-order variants of (1a).3

(1) a. mohan ne raam ko kitaab dii.
Mohan ERG Ram DAT book give-past-fem
“Mohan gave a book to Ram” (S-IO-DO-V)

b. [mohan ne] [kitaab] [raam ko] [dii] (S-DO-IO-V)
c. [raam ko] [mohan ne] [kitaab] [dii] (IO-S-DO-V)
d. [raam ko] [kitaab] [mohan ne] [dii] (IO-DO-S-V)
e. [kitaab] [mohan ne] [raam ko] [dii] (DO-S-IO-V)
f. [kitaab] [raam ko] [mohan ne] [dii] (DO-IO-S-V)

Hindi also has a rich case marking system, although case marking is not

obligatory. For example, in (1), while the subject and indirect object are explicitly

marked for the ergative4 (ERG) and dative (DAT) cases, the direct object is

unmarked for the accusative.

2 http://www.ethnologue.com/statistics/size.
3 S = Subject; IO = Indirect Object; DO = Direct Object; V = Verb; ERG = Ergative;

DAT = Dative.
4 Hindi is split-ergative. The ergative marker appears on the subject of a transitive verb with perfect

morphology.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

http://www.ethnologue.com/statistics/size

4.2 Paninian grammatical model

Indian Languages (ILs) including Hindi are morphologically rich and have a

relatively flexible word-order. For such languages, the syntactic notions of subject

and object are not able to explain the varied linguistic phenomena. In fact, there is a

debate in the literature whether the notions ‘subject’ and ‘object’ can at all be

defined for ILs (Mohanan 1982). Behavioural properties are the only criteria based

on which one can confidently identify grammatical functions in Hindi (Mohanan

1994); it can be difficult to exploit such properties computationally. Marking

semantic properties such as thematic role as dependency relation is also

problematic. Thematic roles are abstract notions and will require higher semantic

features which are difficult to formulate and to extract as well. The Paninian

grammatical model (Kiparsky and Staal 1969; Shastri 1973) provides a level which

while being syntactically grounded also helps in capturing semantics. In this section

we briefly discuss the Paninian grammatical model for ILs and lay down some basic

concepts inherent to this framework.

The Paninian framework considers information as central to the study of

language. When a writer/speaker uses language to convey some information to the

reader/ hearer, he/she codes the information in the language string. Similarly, when

a reader/ hearer receives a language string, he/she extracts the information coded in

it. The Paninian grammatical model is primarily concerned with: (a) how the

information is coded and (b) how it can be extracted.

Two levels of representation can be readily understood in language: One, the

actual language string (or sentence), two, what the speaker has in his mind. The

latter can also be called as the meaning. Paninian framework has two other

important levels: karaka level and vibhakti level

The surface level is the uttered or written sentence. The vibhakti level is the level

at which there are local word groups together with case endings, preposition or

Fig. 1 Levels of representation/analysis in the Paninian model

B. R. Ambati et al.

123

postposition markers. The vibhakti level abstracts away from many minor

(including orthographic and idiosyncratic) differences among languages. Above

the vibhakti level is the ‘karaka’ level. It includes karaka relations, which are

syntactico-semantic relations between a predicate and its arguments, and a few

additional relations such as purpose. The topmost level relates to what the speaker

has in his mind. This may be considered to be the ultimate meaning level that the

speaker wants to convey. One can imagine several levels between the karaka and the

ultimate level, each containing more semantic information. Thus, the karaka level is

one in a series of levels, but one which has relationship to semantics on the one hand

and syntax on the other. The levels of representation in the Paninian model are

presented in Fig. 1.

At the karaka level, we have karaka relations and verb-verb relations, etc. Karaka

relations are syntactico-semantic relations between the verbs and other related

constituents (typically nouns) in a sentence. They capture a certain level of

semantics which is somewhat similar to thematic relations but different from it

(Bharati et al. 1995). This is the level of semantics that is important syntactically

and is reflected in the surface form of the sentence(s). Begum et al. (2008b) have

subsequently proposed and developed an annotation scheme for a dependency

treebank based on the Paninian framework. They have extended the original

formulation to account for previously unhandled syntactic phenomenon.

The Paninian approach treats a sentence as a set of modifier-modified relations. A

sentence is supposed to have a primary modifiee which is generally the main verb of

the sentence. The elements modifying the verb participate in the action specified by

the verb. The participant relations with the verb are called karaka. The notion of

karaka will incorporate the ‘local’ semantics of the verb in a sentence, while also

taking cue from the surface level morpho-syntactic information (Vaidya et al.

2009). There are six basic karakas, namely;

• k1: karta (This is similar to subject or agent): the most independent participant in

the action

• k2: karma (roughly the theme or object): the one most desired by the karta

• k3: karana (instrument): which is most essential for the action to take place

• k4: sampradaan (beneficiary): recipient or beneficiary of the action

• k5: apaadaan (source): movement away or separation from a source

• k7: adhikarana (location): location of the action in time and space

From the above description, it is easy to see that this analysis is a dependency based

analysis (Kiparsky and Staal 1969; Shastri 1973), with the verb as the root of the

tree along with its argument structure as its children. The labels on the edges

between a child-parent pair show the relationship between them. In addition to the

above six labels many others have been proposed as part of the overall framework

(Begum et al. 2008b; Bharati et al. 2009). ‘‘Appendix 1’’ shows the most frequent

dependency labels with their English equivalent. In this paper we use English labels

rather than the Paninian.

In the following section, we provide details of the treebank annotated for Hindi

using this Paninian grammatical model.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

4.3 Treebank

In this work, we consider a subset of the Hindi Dependency Treebank (HDT ver-

0.5) released as part of Coling 2012 Shared Task on parsing (Bharati et al. 2012).

HDT is a multi-layered dependency treebank (Bhatt et al. 2009) annotated with

morpho-syntactic (morphological, part-of-speech and chunk information) and

syntactico semantic (dependency) information (Bharati et al. 2006, 2009). POS

and chunk information is annotated following the POS and chunk annotation

guidelines (Bharati et al. 2006). The morphological features have eight mandatory

feature attributes for each node. These features are classified as root, coarse POS

category, gender, number, person, case, post position (for a noun) or tense aspect

modality (for a verb) and suffix. The dependency annotation follows the Paninian

grammar scheme described in Sect. 4.2 which is known to be well-suited to modern

Indian languages. Dependency labels are fine-grained, and mark dependencies that

are syntactico-semantic in nature, such as agent (usually corresponding to subject),

patient (object), and time and place expressions. There are special labels to mark

long distance relations like relative clauses, coordination etc (Bharati et al.

1995, 2009). Figure 2 presents the dependency tree for an example sentence mohan
ne raam ke lie kitaab khariidi (‘‘Mohan bought a book for Ram’’).5 For readability

reasons, we will refer to dependency labels with their English equivalents (e.g., SUBJ,

OBJ, PURPOSE, CASE for k1, k2, rt, lwg__psp respectively). A list of the Hindi

dependency labels and their English equivalents are provided in the ‘‘Appendix 1’’.

In this example, the verb khariidii (‘‘bought’’) is the root of the sentence. mohan
(‘‘Mohan’’) is the subject (SUBJ) of the verb khariidii (‘‘bought’’) and kitaab
(‘‘book’’) is the object (OBJ) of the verb. Since the book is bought for raam
(‘‘Ram’’), raam is attached to the verb with PURPOSE dependency label. The post-

position markers ne (Ergative case marker) and ke_lie (equivalent to preposition

‘‘for’’) are attached to corresponding nouns with CASE dependency label.

The Hindi dependency treebank contains 12,041 training, 1233 development and

1828 testing sentences with an average of 22 words per sentence. Data is provided

in the Shakti Standard Format (Bharati et al. 2007) and CoNLL format. The CoNLL

format contains word, lemma, pos-tag, and coarse pos-tag in the WORD, LEMMA, POS,

and CPOS fields respectively and morphological features, and chunk information in

the FEATS column.6 We use CoNLL format for all our experiments.

5 Extracting a CCG lexicon

In order to assign CCG lexical categories to words in the treebank sentences, we

first make a list of argument and adjunct dependency labels in the treebank. We

obtained this list from the Hindi verb frames which make a distinction between

arguments and adjuncts for different verbs, from Begum et al. (2008a). For e.g.,

5 All examples have been taken from the corpus, although in many case they are simplified by the

omission of modifiers and conjunction.
6 http://nextens.uvt.nl/depparse-wiki/DataFormat.

B. R. Ambati et al.

123

http://nextens.uvt.nl/depparse-wiki/DataFormat

dependencies with the label SUBJ and OBJ (corresponding to subject and object

respectively) are considered to be arguments, while labels like PLACE and TIME
(corresponding to place and time expressions) are considered to be adjuncts.

Starting from the root of the dependency tree, we traverse each node. The

category of a node depends on both its parent and children. If the node is an

argument of its parent, we assign the chunk tag of the node (e.g., NP, PP) as its CCG

category. Otherwise, we assign it a category of X|X, where X is the parent’s result
category and | is directionality (n or /), which depends on the position of the node

w.r.t. its parent. The result category of a node is the category obtained once its

argument slots are saturated. For example, Sf , is the result category for

ðSf n NPÞ n NP. Once we get the partial category of a node based on the node’s

parent information, we traverse through the children of the node. If a child is an

argument, we add that child’s chunk tag, with appropriate directionality, to the

node’s category. If the child is an adjunct, the category of the node is not effected.

Consider the verb khariidii (‘‘bought’’) in the example sentence in Fig. 3. Since it

is the root of the sentence which is an argument dependency label, it gets a category

Sf , from its parent. It has three children mohan (‘‘Mohan’’), raam (‘‘Ram’’) and

kitaab (‘‘book’’). We traverse through each child and update the category of

khariidii as follows. Mohan is subject (‘‘SUBJ’’) of khariidii. Since SUBJ is a

mandatory argument, the category of khariidii is updated to Sf n NP. The

dependency label between raam and khariidii is PURPOSE which is an adjunct

label. So, the category of khariidii (‘‘bought’’) is not changed due to this child. The

third and final child kitaab is an object (‘‘OBJ’’) of the verb, which is an argument

label. As a result, the category of khariidii is updated to ðSf n NPÞ n NP.7

Now we consider again the children of the verb khariidii (‘‘bought’’). mohan
(‘‘Mohan’’) is an argument of khariidii, and hence NP is the category for this node.

mohan (‘‘Mohan’’) has a case marker ne (‘‘ERG’’) as a child with the dependency

label CASE. The category of mohan (‘‘Mohan’’) is not changed and remains NP.

Now consider the child of mohan (‘‘Mohan’’) which is ne (‘‘ERG’’). Since NP is the

result category of its parent mohan (‘‘Mohan’’) on the left, category of ne (‘‘ERG’’)

will be NP n NP.8 Categories of other nodes are assigned similarly.

ROOT mohan ne raam ke lie kitaab khariidii
Mohan ERG Ram for book buy-past-fem

ROOT

OBJ

PURPOSE

CASE

SUBJ

CASE

‘Mohan bought a book for Ram.’

Fig. 2 An example dependency tree for Hindi (ERG ergative case)

7 We return below to the question of case marking and agreement.
8 We treated CASE in this manner for the case of consistency with the dependency treebank and leave

more linguistically sophisticated treatments of CASE for future work (although see Sect. 5.1 for a type-

raising analysis).

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

The algorithm is sketched in Fig. 4 and an example of a CCG derivation for a

simple sentence, marked with chunk tags, is shown in Fig. 3. NP and Sf are the

chunk tags for noun and finite verb chunks respectively.9 Some important special

cases are described in detail in the following subsections.

The process described above yields a ‘‘coarse-grained’’ lexicon, in which case is

not distinguished. We also created a ‘‘fine-grained’’ lexicon, in which we retain

morphological information in noun categories. For example, consider the noun

chunk raam ne (‘‘Ram ERG’’). In the fine-grained lexicon, the CCG categories for

raam and ne are NP and NP½ne� n NP respectively. Morphological information such

as ergative case ‘-ne’ in noun categories is expected to help with determining their

dependency labels, but makes the lexicon more sparse. We therefore extract both a

coarse-grained and a fine-grained lexicon; details of the machine-readable format

for both lexicons is presented in ‘‘Appendix 3’’.

5.1 Morphological markers

In Hindi, morphological information is encoded in the form of post-positional

markers on nouns, and tense, aspect and modality markers on verbs. A post-

positional marker following a noun plays the role of a case-marker (e.g., raam ne
(‘‘Ram ERG’’), here ne is the ergative case marker) and a role similar to an English

preposition (e.g., mej par (‘‘table on’’), here par is the postpositional equivalent of

the English preposition ‘‘on’’). Post-positional markers on nouns can be simple one

word expressions like ne or par, or multiple words as in raam ke lie (‘‘Ram for’’).

Complex post position markers as a whole give information about how the head

noun or verb behaves. For example, ke lie is equivalent to ‘‘for’’ and ke baare me is

equivalent to ‘‘about’’. The Hindi CCGbank merges complex postpositional markers

into single words like ke_lie so that the entire marker gets a single CCG category.

For the ‘‘fine-grained’’ lexicon, we explored two variants of the lexicon: normal

and type-raised. In the normal version, the ergative case marker like ne bears a

ROOT mohan ne raam ke lie kitaab khariidii
Mohan ERG Ram for book buy-past-fem

ROOT

OBJ

PURPOSE

CASE

SUBJ

CASE

[NP mohan ne] [NP raam ke lie] [NP kitaab] [Sf khariidii]

NP NP\NP NP (Sf/Sf)\NP NP (Sf\NP)\NP
< < <

NP Sf/Sf Sf\NP
< B×

Sf\NP
<

Sf
‘Mohan bought a book for Ram.’

Fig. 3 An example dependency tree with its CCG derivation

9 VGF is the chunk tag for finite verb chunk in the Hindi dependency treebank. But for the sake of brevity

we use Sf notation here. A list of the Hindi chunk tags are provided in the ‘‘Appendix 2’’.

B. R. Ambati et al.

123

category NP½ne� n NP, looking for an NP to the left to yield the case-marked

category NP[ne]. In the type-raised version, the category of ne takes an NP to its left

and creates a category which looks for a VP category Sf n NP½ne�.

raam ne
Ram ERG
NP (S/(Sf\NP[ne]))\NP

<

S/(Sf\NP[ne])

In this variant, the result category S=ðSf n NP½ne�Þ is the full categorial realization

of a Hindi ergative cased NP for which NP[ne] is simply a shorthand.

For an adjunct like raam ke_lie (‘‘for Ram’’) in Fig. 3, we pass the adjunct

information to the post-position marker ke_lie, with NP as the category for the head

noun phrase, and the category ðSf =Sf Þ n NP for the postposition. Adjuncts that

modify adjacent adjuncts are assigned identical categories X / X making use of

CCG’s composition rule and following Cakici (2005).

6 CCG lexicon to treebank conversion

Phrase structure to CCG conversion algorithms like Hockenmaier and Steedman

(2007) first convert a phrase structure tree into a binary tree. Converting a

dependency tree into a binary tree is not possible in the presence of a non-projective

arc. For the same reason, direct conversion to CCG trees is not straight-forward.

Around 20% of sentences in the Hindi dependency treebank have at least one non-

projective arc. In a departure from previous approaches, we therefore use a CCG

parser to convert the CCG lexicon to a CCG treebank.

Using the algorithm presented in the previous section, we obtained one CCG

category for every word in a sentence. We then run a non-statistical CKY

ModifyTree(DependencyTree tree);

for (each node in tree):

handlePostPositionMarkers(node);

handleSpecialCases(node);

if (node is an argument of parent):

cat = node.chunkTag;

else:

prescat = parent.resultCategory;

cat = prescat + getDir(node, parent) + prescat;

for(each child of node):

if (child is an argument of node):

cat = cat + getDir(child, node) + child.chunkTag;

Fig. 4 Algorithm for extracting a CCG lexicon from a dependency tree

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

chart parser based on the CCG formalism10, which gives CCG derivations based on

the lexical categories. This gives multiple derivations for some sentences. We rank

these derivations using two criteria. The first criterion is correct recovery of the gold

dependencies when the CCG derivation is deterministically mapped back onto a

dependency structure. Derivations which lead to gold dependencies are given higher

weight. In the second criterion, we prefer derivations which yield intra-chunk

dependencies (e.g., verb and auxiliary) prior to inter-chunk (e.g., verb and its

arguments). For example, morphological markers (which lead to intra-chunk

dependencies) play a crucial role in identifying correct dependencies. Resolving

these dependencies first helps the parser in better identification of inter-chunk

dependencies such as argument structure of the verb (Ambati 2011). We thus extract

the best derivation for each sentence, which is then included in the Hindi CCGbank.

6.1 Evaluation

Coverage of the current conversion algorithm, i.e., the number of sentences for

which we got at least one complete derivation using this lexicon is 96%. Disabling

crossed composition reduced the coverage by around 10%, showing the importance

of this rule for a free word-order language with 20% non-projective sentences. The

remaining 4% sentences are either cases where there were inconsistent annotations

in the original treebank, or constructions which are currently not handled by our

conversion algorithm.

As a second method of evaluating the converted Hindi CCG treebank, we

obtained dependencies from the CCG treebank and evaluated them against the gold-

standard dependencies in the original dependency treebank. We followed the

standard category-indexing procedure of Clark and Curran (2007) for this purpose in

order to obtain dependency labels. For example, ðS n NP1Þ n NP2 is the indexed

version of the category of ðS n NPÞ n NP, in which the index 1 marks the subject

dependency and 2 marks the object dependency. The indices are not used in the

CCG grammar itself, but are important for labeling long-range dependencies in this

evaluation.

Following Clark and Curran (2007), we manually indexed the CCG categories

which occurred at least 10 times in the treebank data. For the rest of the categories,

we assigned default indices. The Hindi CCGbank, (which covers 96% of the

sentences in the original dependency treebank), correctly captures 99.1% of the

dependencies in the dependency treebank, which is the unlabelled recall. Manually

providing indices for all categories would give 100% recall but we leave manual

annotation of indices for a future version.

In addition, we performed full manual annotation of 165 sentences with their

CCG derivations and compared them with the derivations extracted using our

automatic conversion algorithm. Our conversion algorithm failed to provide a

derivation for two sentences. Out of these two sentences, the original dependency

annotation was wrong for one sentence; correcting the annotation helped the

algorithm to handle this sentence. The remaining sentence is the case of argument

10 http://openccg.sourceforge.net/.

B. R. Ambati et al.

123

http://openccg.sourceforge.net/

cluster coordination which is not handled in the current version of the Hindi

CCGbank. We also extracted dependencies from these CCG derivations and

evaluated with the dependencies in the dependency treebank. We could capture

99.7% (unlabelled recall) of the dependencies present in the dependency treebank.

The rest are the cases of less frequent CCG categories where the indices were not

manually annotated and are incorrect.

7 Coordination constructions

Coordination is one of the most frequent sources of long distance dependencies in

corpora. Coordination in Hindi can occur between similar components, like noun–

noun coordination and verb-verb coordination, but also between some dissimilar but

compatible components, like adjective-noun coordination. In the Hindi dependency

treebank, there are several instances where an adjectival chunk (JJP) and a noun

chunk (NP) are co-ordinated. All of these are cases where the adjectival chunk has

an elided noun which is not present explicitly. One such example is

saamajik ora sikhsha ke aadhaar par
social and education DAT based on

‘Based on social (status) and education.’

In this example, the coordination is between the adjectival chunk saamajik
(‘‘social’’) and the noun chunk sikhsha ke (‘‘education’’). The adjectival chunk

saamajik (‘‘social’’) has an elided noun sthithi (‘‘status’’). When the noun is

explicitly present as in saamajik sthithi (‘‘social status’’) then it is annotated as a

noun chunk in the original treebank. But when the noun is not present explicitly, as

in saamajik (‘‘social’’), it is annotated as an adjectival chunk. One can argue for a

different annotation scheme and annotate such adjectival chunks as noun chunks.

But, for now, to handle these cases, we allowed co-ordination between dissimilar

but compatible chunks.

The CCG category of a conjunction is ðX n XÞ=X, where a conjunction looks for a

child of type X to its right and then a child to its left of the same type X to yield a

result of the same type X. Figure 5 gives the dependency tree and CCG derivation

for an example sentence with sentential (S) coordination. In the Hindi CCGbank, it

is the supertagger that identifies the correct instantiation of the type X for the

conjunction.11

There are four major types of coordination constructions in Hindi. In this section,

we first describe each type with an example sentence and then explain how CCG

handles them.

Type 1 (Conjunction with two children): The CCG category of the conjunction is

ðX n XÞ=X where X depends on the category of the conjuncts. The example given

below in Fig. 6, raam ora shyam skool gaye (‘‘Ram and Shyam went to school’’), is

the case of noun-phrase (NP) coordination. Conjunct ora (‘‘and’’) has two noun

11 This treatment constitutes a slight difference from English CCGbank, where coordination is treated

syncategorematically, with conjunction bearing the category conj.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

phrases raam (‘‘Ram’’) and shyam (‘‘Shyam’’) as its children. Hence the category of

ora (‘‘and’’) is ðNP n NPÞ=NP. ora (‘‘and’’) is first combined with the right child

shyam and then combined with the left child raam leading to a noun phrase, which

becomes the subject argument for the verb gaye (‘‘went’’).

Type 2 (Conjunction with more than two children and not separated by commas):

In Hindi, sometimes a conjunction can have more than two children which are not

separated by commas. In such cases, CCG category of the node is type-changed

from X to a category ðX n XÞ=ðX n XÞ. Figure 7 shows the dependency tree of an

example sentence raam shyam ora sita skool gaye (‘‘Ram Shyam and Sita went to

school’’). In this example, the conjunct ora (‘‘and’’) has three children raam
(‘‘Ram’’), shyam (‘‘Shyam’’) and sita (‘‘Sita’’). CCG category of shyam is type-

changed from NP to ðNP n NPÞ=ðNP n NPÞ so that it can combine with ora and then

with raam to form an NP.

Type 3 (Conjunction with more than two children separated by commas): The

example sentence given below in Fig. 8, raam , shyam ora sita skool gaye (‘‘Ram,

Shyam and Sita went to school’’), is the same as the one presented above in Type 2

category. The only difference is that there is a comma between the nouns raam
(‘‘Ram’’) and shyam (‘‘Shyam’’). The comma gets a CCG category , which is

combined with NP to form an NP. Similar to Type 2, the CCG category of shyam is

type-changed from NP to ðNP n NPÞ=ðNP n NPÞ. This allows shyam to combine

with ora and then with raam to form an NP.

Unlike other CCGbanks which treat comma as a conjunction, we treat comma as

a punctuation here. In that way, we don’t have to change the dependency tree. If we

treat a comma as a conjunction, then we have to change the dependency tree as well,

where ora (‘‘and’’) will have comma and sita as children and comma will have raam
and shyam as children. Also, since comma can be missing as in Type 2, treating the

comma as a punctuation leads to having a single analysis irrespective of whether a

comma is present or not.

Type 4 (Argument cluster coordination): Fig. 9 presents an example sentence for

argument cluster coordination, raam ne seb ora sita ne aam khaaya (‘‘Ram ate an

apple and Sita ate a mango’’). khaaya (‘‘ate’’) is the shared verb for both the co-

ROOT raam ne seb khaaya ora shyam ne aam khaaya

ROOT

COORD

COORD

OBJ

SUBJ

CASE
OBJ

SUBJ

CASE

raam ne seb khaaya ora shyam ne aam khaaya
Ram ERG apple ate and Shyam ERG mango ate
NP NP\NP NP (Sf\NP)\NP (Sf\Sf)/Sf NP NP\NP NP (Sf\NP)\NP

< < < <

NP Sf\ SPNPN f\NP
< <

Sf Sf
>

Sf\Sf
<

Sf
‘Ram ate an apple and Shyam ate a mango.’

Fig. 5 Sentential coordination

B. R. Ambati et al.

123

ordinates. To handle such constructions, the dependency tree introduces a dummy

‘‘NULL’’ node which is co-indexed with the main verb khaaya and acts as the verb

for the 1st sentence as shown in the dependency tree in Fig. 9. CCG can handle such

constructions without introducing NULL nodes. The subject raam ne is type-raised

from NP to a category which looks for an intransitive verb, Sf =ðSf n NPÞ. Similarly,

the object seb (‘‘apple’’) is type-raised from NP to a category which looks for a

transitive verb, ðSf n NPÞ=TV .12 Now, these two nodes are combined leading to

Sf =TV which takes a transitive verb and forms a sentence. Similarly, subject and

object arguments of the second sentence, sita ne (‘‘Sita’’) and aam (‘‘Mango’’) are

type-raised and combined. Now, these type-raised arguments are combined using

the conjunction ora (‘‘and’’) which is then combined with the main verb khaaya to

form a sentence.13

ROOT raam ora shyam skool gaye

ROOT

DEST

SUBJ

COORDCOORD

raam ora shyam skool gaye
Ram and Shyam school went
NP (NP\NP)/NP NP NP (Sf\NP)\NP

> <

NP\NP Sf\NP
<

NP
<

Sf
‘Ram and Shyam went to school.’

Fig. 6 Type 1 coordination

ROOT raam shyam ora siitaa skool gaye

ROOT

DEST

SUBJ

COORDCOORD

COORD

raam shyam ora siitaa skoola gaye
Ram Syam and Sita school went
NP NP (NP\NP)/NP NP NP (Sf\NP)\NP

> <

(NP\NP)/(NP\NP) NP\NP Sf\NP
>

NP\NP
<

NP
<

Sf
‘Ram , Syam and Sita went to school.’

Fig. 7 Type 2 coordination

12 TV is the short form for ððSf n NPÞ n NPÞ, the transitive verb category.
13 We are not handling argument cluster coordination in the current version of the CCGbank since the

current version doesn’t include unary type-changing rules. We will handle these constructions in the next

version.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

8 ‘‘Non-projective’’ constructions

In the tradition of dependency grammar (Hays 1964), constructions which induce

dependency arcs which cross as in Fig. 10 are referred to as ‘‘non-projective’’,

because they cannot be generated by the core context-free dependency grammar,

and are generally supposed to arise from some separate component of the grammar,

such as transformational rules (Robinson 1970).

Such dependencies arise in all languages from processes like relativization and

various instances of coordination reduction. To call them ‘‘non-projective’’ is

confusing in the present context, since the central claim of CCG is that all
dependencies are projective, in the sense of arising directly from near-context free

syntactic projection. In the dependency parsing literature techniques like swap

ROOT raam , shyam ora sita skool gaye

ROOT

DEST

SUBJ

COORDCOORD

COORD

SYM

raam , shyam ora sita skoola gaye
Ram , Shyam and Sita school went
NP , NP (NP\NP)/NP NP NP (Sf\NP)\NP

> <

PNPN \NP Sf\NP
(NP\NP)/(NP\NP)

>

NP\NP
<

NP
<

Sf
‘Ram , Shyam and Sita went to school.’

Fig. 8 Type 3 coordination

ROOT raam ne seb NULL ora sita ne aam khaaya
Ram ERG apple NULL and Sita ERG mango eat-PAST

ROOT

COORD

COORD

OBJ

SUBJ

CASE
OBJ

SUBJ

CASE

raam ne seb ora sita ne aam khaaya
Ram ERG apple and Sita ERG mango eat-PAST
NP NP\NP NP (X\X)/X NP NP\NP NP (Sf\NP)\NP

>
PNPN

Sf/(Sf\NP) (Sf\NP)/TV Sf/(Sf\NP) (Sf\NP)/TV
> B > B

Sf/ SVT f/TV
> B

(Sf/TV)\(Sf/TV)
<

Sf/TV
>

Sf
‘Ram ate an apple and Sita ate a mango.’

Fig. 9 Type 4 coordination

B. R. Ambati et al.

123

action (Nivre 2009) or pseudo-projective parsing algorithm (Nivre and Nilsson

2005) are used to handle these crossing arcs. In case of CCG, we can extract such

crossing dependencies using indexed categories.14 Section 8.3 provides an example

derivation showing how indexed categories can be used to extract crossing

dependencies. In this section, we present different constructions and/or dependency

labels which lead to crossing arcs in the dependency treebank, and explain how

CCG can be made to handle them projectively.

Because Hindi has a comparatively free word-order, crossing dependencies are

more frequent in the Hindi dependency treebank than in comparable English data.

There are a total of 20% sentences with non-projective arcs in the Hindi dependency

treebank, amounting to 1.1% of total arcs. There is some previous work on

analyzing different non-projective constructions in Hindi and other Indian

languages (Mannem et al. 2009; Bhat and Sharma 2012). We categorize the non-

projective constructions in the Hindi dependency treebank based on this previous

work. Table 1 shows the distribution of non-projective arcs across different

constructions.

In the following sections, we discuss different constructions which lead to

crossing arcs in the dependency treebank, and explain how CCG can be made to

handle them projectively. In this process, we modified the original dependency tree

in two cases: (a) when the original annotation is wrong and (b) in the presence of

extraposed clauses. We provide details in the respective sections.

ROOT baath yaha hai ki vo kal aayegaa
fact this is that he tomorrow come-FUT-MAD

ROOT

SCOM

SUBJ CCOM

COORD

TIME

SUBJ

‘The fact is that he will come tomorrow’

Fig. 10 A dependency tree with a ‘‘non-projective’’ dependency

Table 1 Distribution of different non-projective constructions in the treebank

Type of construction Percentage (%)

Clausal complements 32.4

Relative clause constructions 19.7

Topicalization 15.3

Genitives and dislocated/discontinuous genitives 12.8

Paired connectives 10.5

Others 9.3

14 See Clark and Curran (2007) for details on how indexed categories are used to extract dependencies.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

8.1 Clausal complements

Clausal complements of NP forming a complex NP are the cases where clauses

elaborate on a noun/pronoun. These are annotated with the CCOM dependency

label. For example, in the sentence given below in Fig. 11, baat (‘‘fact’’) is the

subject (‘‘SUBJ’’) and yaha (‘‘this’’) is its noun complement (‘‘SCOM’’), which are

attached to the verb. Whereas the clause ki vo kal aayegaa (‘‘that he will come

tomorrow’’) has a dependency relation with yaha (‘‘this’’) and is denoted by CCOM

dependency label. 32% of crossing arcs in the treebank are due to this construction.

There are two options to handle this case. In the first option we don’t change the

dependency tree. Since ki (‘‘that’’) is a subordinate conjunction, its chunk tag is

CCP. As it looks for a clause/sentence to its right, CCG category for ki (‘‘that’’) will

be CCP=Sf . This gives yaha (‘‘this’’) a CCG category of NP / CCP, since the result

category of its child ki (‘‘that’’) is CCP. We can combine yaha (‘‘this’’) and hai
(‘‘is’’) using Backward Crossing Composition (\B�) which can then be combined

with ki (‘‘that’’) to establish the crossing dependency. Figure 11 gives the CCG

derivation for this example.

Another option is to systematically change the dependency trees concerned to

reflect an analysis in terms of extraposition, where ki vo kal aayegaa (‘‘that he will

come tomorrow’’’) is syntactically a sentential adjunct, and the complement is only

linked to its head baath (‘‘(the) fact’’’) by anaphora at the level of logical form. As a

result, the complementizer ki is assigned the category ðSf n SfÞ=Sf, which will first

combine with the clause to its right vo kal aayegaa, and then with the clause to its

left baat yaha hai, resulting in the derivation shown below in Fig. 12. For the

CCGbank conversion, we followed this option and modified the dependency tree so

that the CCG derivation is consistent with other extraposed constructions.15 We

return to the question of extraposition at a number of points below.

8.2 Relative clause constructions

Relative clauses are the second major type of constructions which lead to crossing

dependency arcs in the original treebank. 20% of such arcs in the data are due to

relative clauses. In the original English CCGbank, relative clauses have the category

type NP n NP, where they combine with a noun phrase on the left to give a resulting

noun phrase. Hindi has relative clauses of the type NP n NP or NP / NP based on

the position of the relative clause with respect to the head noun.

For instance, for the example sentence in Fig. 13, the relative clause has NP n NP
as its CCG category, since it is to the right of the head noun. Whereas in Fig. 14, the

category of the relative clause is NP / NP since it is to the left of the head noun.

Similar to English, in Hindi also, we pass down this information to the relative

pronoun rather than the main verb of the relative clause. As a result, the relative

pronoun will have a CCG category of (NP|NP)|X where the directionality depends

15 It is easy to re-construct the original dependency with the help of lexical item yaha (‘‘this’’). We can

find the parent of ki (‘‘that’’) and extract the lexical item yaha (‘‘this’’) from its sub-tree. Assigning it as

the parent of ki (‘‘that’’) would result in the original dependency tree.

B. R. Ambati et al.

123

on the position of the relative pronoun in the clause and the category X depends on

the grammatical role of the relative pronoun.

Embedded This is a simple case of relative clause where the relative clause is to

the right of its head noun. Mahajan (2000) calls this relative construction as

‘‘Normal’’ since it is similar to the English relative clause construction. This type of

relative clause doesn’t lead to crossing dependency arcs. Figure 13 gives an

example sentence, vo ladakaa jo khadaa hai raam hai (‘‘The boy who is standing is

Ram’’) with its dependency tree and corresponding CCG derivation.16 The relative

clause is marked within the brackets in the following figure. In this example, the

category of the relative pronoun jo (‘‘who’’) is ðNP n NPÞ=ðSf n NPÞ which is

similar to English relative pronouns. The relative pronoun jo (‘‘who’’) first combines

ROOT baath yaha hai ki vo kal aayegaa

ROOT

SCOM

SUBJ CCOM
COORD

TIME

SUBJ

baath yaha hai ki vo kal aayegaa
fact this is that he tomorrow will-come
NP NP/CCP (Sf\NP)\NP CCP/Sf NP Sf/Sf Sf\NP

< B× > B×
(Sf\NP)/CCP Sf\NP

<

Sf
>

CCP
>

Sf\NP
<

Sf
‘The fact is that he will come tomorrow’

Fig. 11 CCOM: CCG derivation (original dependency tree)

ROOT baath yaha hai ki vo kal aayegaa

ROOT

SCOM

SUBJ

CCOM

COORD

TIME

SUBJ

baat yaha hai ki vo kal aayegaa
fact this is that he tomorrow come-FUT-MAD

NP NP (Sf\NP)\NP (Sf\Sf)/Sf NP Sf/Sf Sf\NP
< > B×

Sf\ SPN f\NP
< <

Sf Sf
>

Sf\Sf
<

Sf
‘The fact is that he will come tomorrow’

Fig. 12 CCOM: CCG derivation (modified dependency tree)

16 In Hindi dependency treebank POF (part-of) dependency label is used to represent part of units such as

conjunct verbs.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

with the verb phrase khadaa hai (‘‘is standing’’) to form a relative clause with

category NP n NP. The relative clause then combines with its head noun phrase vo
ladakaa (‘‘that boy’’) which is then combined with the main verb phrase to form a

sentence Sf .

Correlative In Hindi, a relative clause can occur to the left of the head noun as

well, which is the most frequent form of the construction. This type of relative

clause also doesn’t lead to crossing dependency arcs. Figure 14 gives the

dependency tree and corresponding CCG derivation for an example sentence, jo
ladakaa khadaa hai vah raam hai (‘‘The boy who is standing is Ram’’). In this

example, as the relative pronoun jo (‘‘who’’) occurs as a demonstrative its category

is ððNP=NPÞ=ðSf n NPÞÞ=NP. The relative pronoun jo (‘‘who’’) combines with its

head noun ladakaa (‘‘boy’’) which is then combined with the verb phrase leading to

the category of relative clause NP / NP. Since the relative clause is to the left of the

head noun, its category is NP / NP rather than NP n NP which we saw in the

previous embedded relative clause.

ROOT vo ladakaa jo khadaa hai raam hai

ROOT

SCOM

SUBJ

RELC

POF

SUBJ
DEM

vo ladakaa [jo khadaa hai] raam hai
that boy who stand-MAS is Ram is

NP/NP NP (NP\NP)/(Sf\NP) Sf/Sf S\NP NP (Sf\NP)\NP
> > B× <

SPN f\NP Sf\NP
>

NP\NP
<

NP
<

Sf
‘The boy who is standing is Ram’

Fig. 13 Embedded relative clause

ROOT jo ladakaa khadaa hai vah raam hai

ROOT

SCOM

SUBJ

RELCPOF

SUBJ

DEM

[jo ladakaa khadaa hai] vah raam hai
who boy stand-MAS is he Ram is

((NP/NP)/(Sf\NP))/NP NP Sf/Sf S\NP NP NP (Sf\NP)\NP
> > B× <

(NP/NP)/(Sf\NP) Sf\NP Sf\NP
>

NP/NP
>

NP
<

Sf
‘The boy who is standing is Ram’

Fig. 14 Correlative relative clause

B. R. Ambati et al.

123

Extraposed Unlike the previous two cases of embedded and correlative

constructions where the relative clause is next to the head noun, Hindi, like

English, has constructions where the relative clause is not next to its head noun.

Figure 15 shows one such example sentence vah ladakaa raam hai jo khadaa hai
(‘‘That boy is Ram who is standing’’). This type of construction lead to a crossing

dependency arc. We can’t extract a CCG derivation with the original dependency.

Extraposed dependencies are treated anaphorically in CCG, in the semantics, with

the extraposed clause treated syntactically as a sentential adjunct. So, to handle this

construction, we change the dependency tree slightly. Instead of the relative clause

modifying the head noun, we make it modify the main verb. As a result the relative

pronoun will have a CCG category of (S|S)|X instead of (NP|NP)|X. Changing the

dependency tree is linguistically justified to the extent that extraposed dependencies

are generally regarded as not being purely syntactically mediated. Since this is a

case of extraposed/dislocated relative clause, the category of relative clause is S|S
rather than NP|NP. Figure 16 shows the modified dependency tree with corre-

sponding CCG derivation. The problematic RELC arc dependent on the noun

ladakaa in Fig. 15 is replaced by an arc with the same label dependent on the main

verb in Fig. 16. Note that it is easy to recover the dependency between the relative

clause and its head noun, as the head noun chunk will have a word whose root is vo
(‘‘that’’).17

ROOT vah ladakaa raam hai jo khadaa hai

ROOT

SCOM

SUBJ

DEM

RELC

POF

SUBJ

‘That boy is Ram who is standing’

Fig. 15 Extraposed relative clause (Example 1): original dependency tree

ROOT vah ladakaa raam hai jo khadaa hai

ROOT

SCOM

SUBJ

DEM
POF

SUBJ
RELC

vah ladakaa raam hai jo khadaa hai
that boy raam is who stand-MAS is

NP/NP NP NP (S\NP)\NP (Sf\Sf)/X Sf/Sf Sf\NP
> < > B×

NP Sf\NP Sf\NP
< >

Sf Sf\Sf
<

Sf
‘That boy is Ram who is standing’

Fig. 16 Extraposed relative clause (Example 1): modified dependency tree

17 For example, in Fig. 16, CCG derivation gives the dependency between hai (‘‘is’’) of relative clause

and hai (‘‘is’’) of main clause. As the chunk with vo (‘‘that’’) root word (here vaha) is vaha ladakaa (‘‘that

boy’’), the head of hai (‘‘is’’) as per Hindi dependency guidelines would be ladakaa (‘‘boy’’).

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

Figure 17 presents another example sentence which is similar to Fig. 15, except

that the relative pronoun is not at the starting of the relative clause and it is also not

the mandatory argument of the verb of relative clause. Here, the relative pronoun

jaisaa (‘‘like-what’’) is neither at the beginning of the clause nor a mandatory

argument. It is an adverbial modifier (ADV) for the verb kahaa (‘‘said’’). As a result,

the relative pronoun jaisaa will have a CCG category ðSf =Sf Þ=Sf . jaisaa is

combined with the verb kahaa (‘‘said’’) using forward crossed composition (B�)

which leads to a category of Sf =Sf for the relative clause in the end. Similar to the

previous example, this is a case of extraposed relative clause.

8.3 Topicalization

The node which is the object/patient of the verb is marked with OBJ dependency

label. Topicalization of the object/patient of the verb is the cause for 11.3% of

crossing dependency arcs in the treebank.

Figure 18 presents an example sentence where a crossing arc is created due to a

topicalised object (OBJ) relation. In the example sentence, khaanaa raam khaakar
dukaan gayaa (‘‘Ram after eating food went to the shop’’), there are two verbs:

khaakar (‘‘having-eaten’’), a non-finite verb and gayaa (‘‘went’’), a finite verb. raam
(‘‘Ram’’) is the shared subject (SUBJ) of both the verbs. As per Hindi dependency

guidelines, raam cannot have two parents. So it is marked as SUBJ of the main verb

gayaa (‘‘went’’). If the subject, raam, was at the start of the sentence then the

sentence would be raam khaanaa khaakar dukaan gayaa, which is the most

frequent construction. Then it would not have created the crossing arc. Shared

subject raam appearing within non-finite verb phrase khaanaa khaakar (‘‘having

eaten food’’), although grammatical, is not very common in the treebank as

compared to the topicalised variant, which is more frequent.

To handle these types of constructions, we relax the constraint of a node having

multiple parents. raam is subject of both the verbs: khaakar (‘‘having eaten’’) and

ROOT raam ne jaisaa kahaa , maine vaisaa kiyaa

ROOT

ADV

SUBJRELC

SYMADV

SUBJ

CASE

raam ne jaisaa kahaa , maine vaisaa kiyaa
Ram ERG like-what said , I-ERG like-that did
NP NP\NP (Sf/Sf)/Sf Sf\NP Sf\Sf NP Sf/Sf Sf\NP

< < B > B×
NP Sf\NP Sf\NP

> B× <

(Sf/Sf)\NP Sf
<

Sf/Sf
>

Sf
‘I did exactly what Ram said’

Fig. 17 Extraposed relative clause (Example 2)

B. R. Ambati et al.

123

gayaa (‘‘went’’). But due to the tree constraint, the subject raam cannot have two

parents. We let the CCG derivation have raam as the subject for both the verbs. As a

result, khaakar will have the CCG category ððSf =ðSf n NP2ÞÞ n NP1Þ n NP2.18 The

first part of the category, ðSf =ðSf n NP2ÞÞ, captures the information that it is a verbal

modifier which shares an argument with the main verb. khaakar (‘‘having-eaten’’)

first combines with raam and then with khaanaa (‘‘food’’) to form Sf =ðSf n NP2Þ.
This is then combined with the VP dukaan gayaa (‘‘went to shop’’) resulting in a

sentence Sf . Note that gayaa and raam are never combined directly in the

derivation. But this dependency is resolved using the indices.

8.4 Paired connectives

Paired connectives such as agar-to (‘‘if–then’’) are the cause for 10.5% of crossing

dependency arcs in the treebank. These constructions involve VMOD, verbal

modifier, dependency label. Any verbal modifier which cannot be categorised as a

specific relation like subject (SUBJ), object (OBJ) etc. is marked by a VMOD

relation.

ROOT khaanaa raam khaakar dukaan gayaa

ROOT

SUBJ

DEST

VMODOBJ

khaanaa raam khaakar dukaan gayaa
food Ram having-eaten shop went
NP1 NP2 ((Sf/(Sf\NP2))\NP1)\NP2 NP3 (Sf\NP2)\NP3

< <

(Sf/(Sf\NP2))\NP1 Sf\NP2
<

Sf/(Sf\NP2)
>

Sf
‘Ram after eating food went to the shop’

Fig. 18 Topicalization

ROOT agar unhone muh kholaa to wo unhe maar daalegaa
if they mouth opened then he them kill will

ROOT

COORD

AUX
OBJ

SUBJ

VMOD

COORD

SUBJ

OBJ

‘If they opened their mouth then he will kill them’

Fig. 19 Paired connectives: original dependency tree

18 Indices for categories are not part of the lexicon but indices are used while extracting dependencies

from the CCG derivation.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

Original Annotation Figure 19 presents an example ‘if-then’ construction. In

the original dependency tree for this sentence, agar unhone muh kholaa to wo unhe
maar daalegaa (‘‘If they opened their mouth then he will kill them’’), to (‘‘then’’) is

the ROOT of the sentence. maar (‘‘kill’’) is the child of tho (‘‘then’’) with the

dependency relation COORD. agar (‘‘if’’) is the child of maar (‘‘kill’’) with

dependency relation VMOD and kholaa (‘‘opened’’) is the child of agar (‘‘if’’) with

dependency relation COORD. VMOD relation between maar (‘‘kill’’) and agar
(‘‘if’’) leads to a crossing dependency arc here.

Modified Annotation We modified the dependency tree to handle this

construction since the original dependency annotation is wrong. In the modified

tree, to (‘‘then’’) is still the ROOT of the sentence. Both the verbs maar (‘‘kill’’) and

kholaa (‘‘opened’’) are children of to (‘‘then’’) with a COORD dependency relation.

agara (‘‘if’’) is the child of kholaa (‘‘opens’’) with the dependency relation VMOD.

In the case of English if-then constructions, the CCG category of if is (S / S) / S[dcl]
which consumes a sentence to its right, leading to an S / S category for the if-clause. It

then consumes the then-clause leading to S category. But in the case of Hindi agar
(‘‘if’’) can be optional. To capture this phenomenon, we make the category of tho
(‘‘then’’) to demand agar (‘‘if’’) clause rather than the opposite. So, the CCG category

of to (‘‘then’’) is ðSf n Sf Þ=Sf which consumes a sentence to its right forming a then-

clause with the category Sf n Sf . It then combines with a sentence to its left which is the

if-clause leading to Sf . Also, as agar (‘‘if’’) is optional it takes an adjunct category

making the main verb the head of the clause. Figure 20 shows the modified

dependency tree with the corresponding CCG derivation.

8.5 Genitives and dislocated/discontinuous genitives

The genitive/possessive relation which holds between two nouns is marked by GEN

dependency label. It mostly occurs with ‘kaa’ (masc.) or ‘kii’ (fem.) postposition

marker. A reliable cue for its identification is that the postposition agrees with the

ROOT agar unhone muh kholaa to wo unhe maar daalegaa

ROOT

COORD

COORD
AUX

OBJ

SUBJ

VMOD

SUBJ

OBJ

agar unhone muh kholaa to wo unhe maar daalegaa
if they mouth opened then he them kill will

Sf/Sf NP NP (Sf\NP)\NP (Sf\Sf)/Sf NP NP (Sf\NP)\NP Sf\Sf
< < B×

Sf\ S(PN f\NP)\NP
< <

Sf Sf\NP
> <

Sf Sf
<

Sf\Sf
>

Sf
‘If they opened their mouth then he will kill them’

Fig. 20 Paired connectives: modified dependency tree and corresponding CCG derivation

B. R. Ambati et al.

123

noun it modifies in number and gender. In the majority of cases the nouns in

genitive relation are next to each other. But, in some cases, due to the free word-

order nature of Hindi, some other word can occur between the two nouns in a

genitive relation as in the following example in Fig. 21. This construction is the

source of 7.5% of the crossing arcs in the the dependency treebank.

In the example in Fig. 21, maine uskaa mumbai mai kiraayaa dediyaa (‘‘I have

given his rent in Mumbai’’), uskaa (‘‘his’’) and kiraayaa (‘‘rent’’) are in genitive

relation. But, mumbai mai (‘‘in Mumbai’’) is between these two nouns leading to a

crossing arc. Though the dependency labels are different, the construction is similar

to the ones described in Sect. 8.5. When two nouns are in a genitive relation, if the

both the nouns are next to each other we make the noun with genitive marker

demand a noun to its right similar to genitive cases in other languages. But, if both

the nouns in genitive relation are not next to each other, then we make the head

noun demand the noun with genitive marker as in Fig. 21. In this way, we can

capture this unusual word ordering elegantly in CCG.

Hindi also has extensive use of ‘‘light’’ verbs, also called conjunct verbs. A

conjunct verb is composed of a noun or an adjective followed by a verbalizer.

Subject (SUBJ) or Object (OBJ) arguments of a conjunct verb can have the genitive

case marker. In such cases, the arguments have a dependency relation with the noun

of the conjunct verb since the agreement is with the noun of the conjunct verb and

not with the verb. The free word-order nature of adverbs and time and/or place

expressions can cause crossing arcs as in the following examples. Such construc-

tions are called dislocated/discontinuous genitives. We treat Part-OF (POF) and

subject/object of conjunct verb (CSUBJ/COBJ) as arguments. For example, in

Fig. 22, the light verb hua (‘‘happened’’) looks for an NP, udhghaatana
(‘‘inauguration’’) to its left. udhghaatana has a child mandir kaa (‘‘of temple’’)

with CSUBJ dependency relation. Since CSUBJ is an argument relation, CCG

category of udhghaatana is NP n NPgen which looks for an NP with genitive marker

to its left. udhghaatana first combines with the light verb hua and then with the

ROOT maine uskaa mumbai mai kiraayaa dediyaa

ROOT

OBJ

PLACE

SUBJ

GEN

CASE

maine uskaa mumbai mai kiraayaa dediyaa
I-ERG his Mumbai in rent have-given
NP NPgen NP (Sf/Sf)\NP NP\NPgen (Sf\NP)\NP

< < B

Sf /Sf (Sf\NP)\NPgen
> B2×

(Sf\NP)\NPgen
<

Sf\NP
<

Sf
‘I have given his rent in Mumbai’

Fig. 21 Genitive construction

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

optional time expression kala (‘‘yesterday’’) leading to Sf n NPgen. The verb phrase

Sf n NPgen is then combined with the noun phrase with genitive marker mandir kaa
(‘‘of temple’’) resulting in a sentence Sf .

Figure 23 is similar to Fig. 22, except that the noun with genitive marker

budhdhiimattaa kii (‘‘intelligence’’) is in COBJ dependency relation with the noun

of the conjunct verb taariiph (‘‘appreciate’’). Also the intervening node jamkara
(‘‘greatly’’) which is the cause for the crossing arc is an adverb (ADV) unlike the

time expression in the previous case.

8.6 Others

Other major dependency labels/constructions which lead to crossing dependency

arcs are time/place expressions (TIME/PLACE), noun modifiers (NMOD), SUBJ.

These labels corresponds to 9% of crossing arcs.

ROOT mandhir kaa kala udhghaatana hua

ROOT

POF

TIME
CSUBJ

CASE

mandir kaa kala udhghaatana hua
temple of yesterday inauguration happened
NP NPgen\NP Sf/Sf NP\NPgen Sf\NP

< < B

NPgen Sf\NPgen
> B×

Sf\NPgen
<

Sf
‘Yesterday, the temple got inaugurated.’

Fig. 22 Dislocated/discontinuous genitives (time expression)

ROOT usakii budhdhiimattaa kii jamkara taariiph kii hai

ROOT

AUXPOF

ADV

COBJ

CASE
GEN

usakii budhdhiimattaa kii jamkara taariiph kii hai
his intelligence gen greatly appreciate do is

NP/NP NP NPgen\NP Sf/Sf NP\NPgen Sf\NP Sf\Sf
> < B

SPN f\NP
< < B

NPgen Sf\NPgen
> B×

Sf\NPgen
<

Sf
‘His intellegence is greatly appreciated.’

Fig. 23 Dislocated/discontinuous genitives (adverb)

B. R. Ambati et al.

123

Similar to adverbs, time/place expressions, due to freer word-order nature of

Hindi, can occur at any place in the sentence and can be handled using crossed

composition in general cases. But, when these occur between nouns in genitive

relation or in the conjunct verbs constructions (as in Sect. 8.5), they lead to crossing

arcs, and are handled as discussed in Sect. 8.5.

NMOD is the label for noun modifier. NMOD constructions which lead to

crossing arcs are similar to those of genitives as in Sect. 8.5. SUBJ constructions

also engender crossing arcs similarly to the OBJ constructions/topicalization in

Sect. 8.3. These constructions are handled similarly to the ones described in the

previous sections.

9 Analysis of the Hindi CCGbank

In this section, we provide a brief analysis of the different CCG categories and

combinators in the Hindi CCGbank. Table 2 lists the top 12 most frequent CCG

categories in both coarse-grained and fine-grained versions of the lexicon. The most

common categories are the category for nouns (NP) and noun modifiers like

adjectives and determiners (NP / NP). The next most frequent categories are the

categories for post-position markers for nouns and auxiliary or tense, aspect and

modality (TAM) markers for verbs. Sf n Sf and NP n NP are the categories for

auxiliary or TAM markers for verbs and post-position markers for nouns

respectively. The post-position marker of an adjunct noun phrase gets the category

ðSf =Sf Þ n NP:ðNP=NPÞ n NP is the category for both genitive marker and conjunc-

tion in NP coordination. ðSf n NPÞ n NP and Sf n NP are the categories for transitive

and intransitive verbs respectively. Adjectival phrase gets a category JJP. (NP /

NP) / (NP / NP) is the category for modifier of a noun modifier and CCP=Sf is the

category for subordinate conjunction.

Table 2 Distribution of CCG categories in coarse-grained (left) and fine-grained (right) lexicon

CCG category Percentage (%) CCG category Percentage (%)

NP 28.09 NP 17.67

NP / NP 16.45 NP / NP 16.44

Sf n Sf 9.05 NP[0] 9.11

NP n NP 6.99 Sf n Sf 9.05

ðSf =Sf Þ n NP 6.66 ðSf =Sf Þ n NP 5.91

ðNP=NPÞ n NP 4.53 ðNP=NPÞ n NP 4.09

Sf =Sf 2.56 Sf =Sf 2.56

ðSf n NPÞ n NP 2.21 JJP 2.12

JJP 2.11 (NP / NP) / (NP / NP) 1.90

Sf n NP 2.05 NP½0 ne� n NP 1.84

(NP / NP) / (NP / NP) 1.90 Sf n NP½0� 1.82

CCP=Sf 1.60 NP½0 ko� n NP 1.77

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

Categories in the top 12 list of the fine-grained lexicon but not in the coarse-

grained are NP[0], NP½0 ne� n NP and NP½0 ko� n NP. In this lexicon, the coarse

category for nouns gets split into NP (the category for a noun with a separate lexical

item as a case marker) and NP[0] (the category for a noun without any case marker).

For example, in noun chunks raam ne (‘‘Ram ERG’’) and raam (‘‘Ram’’), the

category of raam is NP in first case and NP[0] in the later case. 0 here means that

the case marker appeared as a separate lexical item. For example, raam ne (‘‘Ram

ERG’’) will have NP[0_ne] as the category whereas usne (‘‘he?ERG’’) will have

NP[ne] as the category. This is the notation followed in the Hindi dependency

treebank. The remaining two categories, NP½0 ne� n NP and NP½0 ko� n NP, are the

categories for ergative (‘ne’) and dative (‘ko’) case-markers.

Table 3 shows the distribution of different CCG combinators in the Hindi

CCGbank. Since Hindi is a verb final language, the backward application and

composition combinators are more frequent than forward application and compo-

sition combinators. Due to freer word-order nature and crossing dependency arcs,

there are around 0.5% of crossed composition combinators in the Hindi CCGbank.

This shows the importance of crossed composition combinators for freer word-order

languages.

10 Conclusion

We presented an approach for automatically creating a CCGbank from a

dependency treebank for Hindi which is a morphologically rich, freer word-order

and verb final language. We created two types of lexicon: fine-grained which keeps

morphological information in noun categories and coarse-grained which doesn’t.

We have provided a detailed analysis of various long-range dependencies like

coordinate and relative constructions, and shown how to handle them in CCG. We

have also discussed in detail the different word-orders that arise from the free word-

order nature of Hindi in various constuctions, and provided a unified projective

analysis for them under CCG. We have also provided a brief statistical analysis of

the different CCG categories and combinators occurring in the Hindi CCGbank.

The approach described here has already been successfully applied to Telugu,

another Indian language (Kumari and Rao 2015). In future we would like to extract

CCG lexicons and/or CCGbanks for the many other languages for which

Table 3 Distribution of combinators in the Hindi CCGbank

CCG combinator Percentage (%)

Forward application (>) 38.61

Backward application (<) 45.90

Forward composition (>B) 0.01

Backward composition (<B) 14.99

Forward crossed composition ([BX) 0.04

Backward crossed composition (\BX) 0.45

B. R. Ambati et al.

123

dependency treebanks are available, including the languages of the CoNLL

dependency parsing shared tasks (Buchholz and Marsi 2006; Nivre et al. 2007a) and

universal dependency treebanks (McDonald et al. 2013).19 State of the art results for

parsers trained and tested on the treebank are reported in Ambati et al. (2013, 2014);

Ambati (2016).

Acknowledgements This work was supported by ERC Advanced Fellowship 249520 GRAMPLUS and
EU IST Cognitive Systems IP Xperience grants.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Hindi dependency labels

See Table 4.

Table 4 Hindi dependency labels and their English equivalents

Hindi depenency label English equivalent Description

k1 (kartha) SUBJ Subject/agent

k1s (kartha samanadhikarana) SCOM Noun complements of kartha

k2 (karma) OBJ Object/patient

k3 (karana) INST Instrument

k4 (sampradaana) RCPT Recipient

k5 (apaadaana) SRC Source

k7t (kaalaadhikarana) TIME Time expression

k7p (deshadhikarana) PLACE Place expression

r6 (shashthi) GEN Possessive/genitive marker

nmod_relc RELC Relative clause

vmod VMOD Verbal modifier

nmod NMOD Noun modifier

nmod__adj AMOD Adjectival modifier of a noun

lwg__psp CASE Case marker

lwg__aux AUX Auxiliary verb or tense, aspect and

modality marker for verb

pof POF Part-OF units such as conjunct verbs

rs CCOM Clausal complement

r6–k1 CSUB SUBJ of conjunct verb

r6–k2 COBJ OBJ of conjunct verb

19 http://universaldependencies.org/.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

http://creativecommons.org/licenses/by/4.0/
http://universaldependencies.org/

Appendix 2: Hindi chunk tags

See Table 5.

Appendix 3: Machine-readable format

CCG derivation for the first sentence in the Hindi dependency treebank guidelines

using fine-grained lexicon is given below. We follow the format of Hockenmaier

and Steedman (2007) for representing the binary CCG derivation trees with the

bracketed notation.

(< T Sf 1 2> (< T NP[ne] 0 2> (< L NP NNP NNP raam NP>) (< L NP[ne]\NP PSP PSP ne
NP[ne]\NP>)) (< T Sf\NP[ne] 1 2> (< T NP[ko] 0 2> (< L NP NNP NNP mohan NP>) (< L
NP[ko]\NP PSP PSP ko NP[ko]\NP>)) (< T (Sf\NP[ne])\NP[ko] 1 2> (< T NP[0] 1 2> (< L
NP/NP JJ JJ niilii NP/NP>) (< L NP[0] NN NN kitaab NP[0]>)) (< L ((Sf\NP[ne])\NP[ko])\NP[0]
VM VM dii ((Sf\NP[ne])\NP[ko])\NP[0]>))))

Table 5 Hindi Chunk tagset

S. No Chunk type Tag name

1 Noun chunk NP

2.1 Finite verb chunk VGF

2.2 Non-finite verb chunk VGNF

2.3 Infinitival verb chunk VGINF

2.4 Verb chunk (gerund) VGNN

3 Adjectival chunk JJP

4 Adverb chunk RBP

5 Chunk for negatives NEGP

6 Conjuncts CCP

7 Chunk fragments FRAGP

8 Miscellaneous BLK

ROOT raam ne mohan ko niilii kitaab dii
Ram ERG Mohan to black book give-past-fem

ROOT

OBJ

RCPT

SUBJ

CASE CASE
AMOD

[NP raam ne] [NP mohan ko] [NP niillii kitaab] [Sf dii]

NP NP[ne]\NP NP NP[ko]\NP NP/NP NP[0] ((Sf\NP[ne])\NP[ko])\NP[0]
< < >

NP[ne] NP[ko] NP[0]
<

(Sf\NP[ne])\NP[ko]
<

Sf\NP[ne]
<

Sf
‘Ram gave a black book to Mohan.’

Fig. 24 Example dependency tree and CCG derivation (fine-grained)

B. R. Ambati et al.

123

There are two types of nodes in the derivation trees: Leaf nodes and Non-leaf

nodes. Leaf nodes have six fields.

<L NP[ne] NNP NNP raam NP[ne]>

<L CCGCat mod-POS-tag orig-POS-tag word CCGCat2>

L represents that it is a leaf node. CCGCat is the CCG category of the node.

Unlike English, POS tag is not modified during the conversion of dependency trees

to CCG derivations. So, in Hindi CCGbank, mod-POS-tag and orig-POS-tag
both represent the POS tag of the word. Lexical item is represented using word
field. In English CCGbank, CCGCat2 slot is used to represent predicate-argument

structure of the CCG category. In Hindi CCGbank, we just use the lexical CCG

category to fill this slot.

Non-leaf nodes have four fields. T represents that the node is a non-leaf node.

CCGCat is the CCG category of the node. head takes two values: 0 if the left node

is the head and 1 if the right node is the head. Since the CCG derivation trees are

binary trees, children field will have 1 or 2 based on whether there are one or two

children. Example non-leaf node is given below.

<T NP[ne] 0 2
<T CCGCat head children
CCG derivation tree with coarse-grained lexicon is provided below in machine-

readable format along with the dependency tree and derivation (Fig. 25). Figure 24

presents the CCG derivation of the same sentence using fine-grained lexicon.

(< T Sf 1 2> (< T NP 0 2> (< L NP NNP NNP raam NP>) (< L NP\NP PSP PSP ne NP\NP>)) (<
T Sf\NP 1 2> (< T NP 0 2> (< L NP NNP NNP mohan NP>) (< L NP\NP PSP PSP ko NP\NP>)
) (< T (Sf\NP)\NP 1 2> (< T NP 1 2> (< L NP/NP JJ JJ niilii NP/NP>) (< L NP NN NN kitaab
NP>)) (< L ((Sf\NP)\NP)\NP VM VM dii ((Sf\NP)\NP)\NP>))))

References

Ambati, B. R. (2011). Hindi dependency parsing and treebank validation. Master’s thesis, International

Institute of Information Technology, Hyderabad, India.

ROOT raam ne mohan ko niilii kitaab dii
Ram ERG Mohan to black book give-past-fem

ROOT

OBJ

RCPT

SUBJ

CASE CASE
AMOD

[NP raam ne] [NP mohan ko] [NP niillii kitaab] [Sf dii]

NP NP\NP NP NP\NP NP/NP NP ((Sf\NP)\NP)\NP
< < >

NP NP NP
<

(Sf\NP)\NP
<

Sf\NP
<

Sf
‘Ram gave a black book to Mohan.’

Fig. 25 Example dependency tree and CCG derivation (coarse-grained)

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

Ambati, B. R. (2016). Transition-based Combinatory Categorial Grammar parsing for English and Hindi.

Ph.D. thesis, University of Edinburgh, UK.

Ambati, B. R., Deoskar, T., & Steedman, M. (2013). Using CCG categories to improve Hindi dependency

parsing. In Proceedings of the 51st annual meeting of the association for computational linguistics
(Vol. 2: Short Papers, pp. 604–609). Sofia, Bulgaria.

Ambati, B. R., Deoskar, T., & Steedman, M. (2014). Improving dependency parsers using combinatory

categorial grammar. In Proceedings of the 14th conference of the European chapter of the
association for computational linguistics (Vol. 2: Short Papers, pp. 159–163). Gothenburg, Sweden.

Ambati, B. R., Deoskar, T., Johnson, M., & Steedman, M. (2015). An incremental algorithm for

transition-based CCG parsing. In Proceedings of the 2015 conference of the North American
chapter of the association for computational linguistics: Human language technologies (pp. 53–63),

Denver, Colorado.

Auli, M., & Lopez, A. (2011). A comparison of loopy belief propagation and dual decomposition for

integrated CCG supertagging and parsing. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies (pp. 470–480). Portland,

Oregon, USA.

Begum, R., Husain, S., Bai, L., & Sharma, D. M. (2008a). Developing verb frames for Hindi. In

Proceedings of LREC.

Begum, R., Husain, S., Dhwaj, A., Sharma, D. M., Bai, L., & Sangal, R. (2008b). Dependency annotation

scheme for Indian languages. In Proceedings of the third international joint conference on natural
language processing (IJCNLP) (pp. 721–726). Hyderabad, India.

Bharati, A., Mannem, P., & Sharma, D. M. (2012). Hindi parsing shared task. In Proceedings of coling
workshop on machine translation and parsing in Indian languages. Kharagpur, India.

Bharati, A., Sangal, R., & Sharma, D. M. (2007). SSF: Shakti standard format guide. In Technical report
(TR-LTRC-33), LTRC, IIIT-Hyderabad.

Bharati, A., Sangal, R., Sharma, D. M., & Bai, L. (2006). AnnCorra: Annotating corpora guidelines for

POS and chunk annotation for Indian languages. In Technical report (TR-LTRC-31), LTRC, IIIT-
Hyderabad.

Bharati, A., Sharma, D. M., Husain, S., Bai, L., Begum, R., & Sangal, R. (2009). AnnCorra: TreeBanks

for Indian languages, guidelines for annotating Hindi TreeBank (version 2.0).

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guidelines/DS-guidelines-ver2-28-05-09.pdf.

Bharati, A., Chaitanya, V., & Sangal, R. (1995). Natural language processing: A paninian perspective.

New Delhi: Prentice-Hall of India.

Bhat, R. A. & Sharma, D. M. (2012). Non-projective structures in Indian language treebanks. In

Proceedings of the 11th workshop on treebanks and linguistic theories (TLT11) (pp. 25–30).

Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O., Sharma, D. M., & Xia, F. (2009). A multi-

representational and multi-layered treebank for Hindi/Urdu. Proceedings of the third linguistic
annotation workshop at 47th ACL and 4th IJCNLP (pp. 186–189). Suntec, Singapore.

Bos, J., Bosco, C., & Mazzei, A. (2009). Converting a dependency treebank to a categorial grammar

treebank for Italian. In Proceedings of the eighth international workshop on treebanks and linguistic
theories (TLT8) (pp. 27–38). Italy, Milan.

Bos, J., Clark, S., Steedman, M., Curran, J. R., & Hockenmaier, J. (2004). Wide-coverage semantic

representations from a CCG parser. In Proceedings of coling 2004 (pp. 1240–1246). Geneva,

Switzerland. COLING.

Brants, S., Dipper, S., Hansen, S., Lezius, W., & Smith, G. (2002). The TIGER treebank. In Proceedings
of the first workshop on treebanks and linguistic theories (TLT 2002). Sozopol, Bulgaria.

Buchholz, S., & Marsi, E. (2006). CoNLL-X shared task on multilingual dependency parsing. In

Proceedings of the tenth conference on computational natural language learning (pp. 149–164).

New York City, New York.

Cakici, R. (2005). Automatic induction of a CCG grammar for Turkish. In Proceedings of the ACL
student research workshop (pp. 73–78). Ann Arbor, Michigan.

Clark, S., & Curran, J. R. (2007). Wide-coverage efficient statistical parsing with CCG and log-linear

models. Computational Linguistics, 33, 493–552.

Collins, M. (1999). Head-driven statistical models for natural language parsing. Ph.D. thesis, University

of Pennsylvania.

Hays, D. (1964). Dependency theory: A formalism and some observations. Language, 40, 511–525.

B. R. Ambati et al.

123

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guidelines/DS-guidelines-ver2-28-05-09.pdf

Hockenmaier, J. (2006). Creating a CCGbank and a wide-coverage CCG lexicon for German. In

Proceedings of the 21st international conference on computational linguistics and 44th annual
meeting of the association for computational linguistics (pp. 505–512). Sydney, Australia.

Hockenmaier, J., & Steedman, M. (2002). Generative models for statistical parsing with combinatory

categorial grammar. In Proceedings of 40th annual meeting of the association for computational
linguistics (pp. 335–342). Philadelphia, Pennsylvania, USA.

Hockenmaier, J., & Steedman, M. (2007). CCGbank: A corpus of CCG derivations and dependency

structures extracted from the Penn Treebank. Computational Linguistics, 33(3), 355–396.

Honnibal, M., & Curran, J. R. (2007). Improving the complement/adjunct distinction in CCGBank. In

Proceedings of the 10th conference of the pacific association for computational linguistics
(PACLING-07) (pp. 210–217).

Honnibal, M., Curran, J. R., & Bos, J. (2010). Rebanking CCGbank for improved NP interpretation. In

Proceedings of the 48th annual meeting of the association for computational linguistics (pp. 207–

215). Uppsala, Sweden.

Iida, R., Komachi, M., Inui, K., & Matsumoto, Y. (2007). Annotating a Japanese text corpus with

predicate-argument and coreference relations. In Proceedings of the linguistic annotation workshop
(pp. 132–139). Association for Computational Linguistics.

Joshi, A., Vijay-Shanker, K., & Weir, D. (1991). The convergence of mildly context-sensitive

formalisms. In P. Sells, S. Shieber, & T. Wasow (Eds.), Processing of linguistic structure (pp. 31–

81). Cambridge, MA: MIT Press.

Kawahara, D., Kurohashi, S., & Hasida, K. (2002). Construction of a Japanese relevance-tagged corpus.

In LREC.

Kiparsky, P., & Staal, J. F. (1969). Syntactic and semantic relations in Pānini. Foundations of Language,

5(1), 83–117.

Kuhlmann, M., Koller, A., & Satta, G. (2015). Lexicalization and generative power in CCG.

Computational Linguistics, 41, 187–219.

Kumari, B., & Rao, R. R. (2015). Improving Telugu dependency parsing using combinatory categorial

grammar supertags. ACM Transactions on Asian and Low-Resource Language Information
Processing, 14(1), 3.

Kwiatkowski, T., Choi, E., Artzi, Y., & Zettlemoyer, L. (2013). Scaling semantic parsers with on-the-fly

ontology matching. In Proceedings of the 2013 conference on empirical methods in natural
language processing (pp. 1545–1556). Seattle, Washington, USA.

Lewis, M., & Steedman, M. (2013). Unsupervised induction of cross-lingual semantic relations. In

Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 681–

692). Seattle, Washington, USA.

Lewis, M., & Steedman, M. (2014). A* CCG parsing with a supertag-factored model. In Proceedings of
the 2014 conference on empirical methods in natural language processing. Doha, Qatar.

Lewis, M., & Steedman, M. (2013a). Combined distributional and logical semantics. Transactions of the
Association for Computational Linguistics, 1, 179–192.

Magerman, D. M. (1994). Natural language parsing as statistical pattern recognition. Ph.D. thesis,

Stanford University.

Mahajan, A. (2000). Relative asymmetries and Hindi correlatives. In A. Alexiadou, P. Law, A.

Meinunger, & C. Wilder (Eds.), The syntax of relative clauses (pp. 201–229). Amsterdam: John

Benjamins.

Mannem, P., Chaudhry, H., & Bharati, A. (2009). Insights into non-projectivity in Hindi. In Proceedings
of the ACL-IJCNLP 2009 student research workshop (pp. 10–17). Suntec, Singapore.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated corpus of

English: The Penn Treebank. Computational Linguistics, 19(2), 313–330.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y., Goldberg, Y., Das, D., Ganchev, K., et al. (2013).

Universal dependency annotation for multilingual parsing. In Proceedings of the 51st annual
meeting of the association for computational linguistics (Vol. 2: Short Papers, pp. 92–97). Sofia,

Bulgaria.

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B., et al. (2004). The NomBank

project: An interim report. In Proceedings of HLT-NAACL 2004 workshop: Frontiers in corpus
annotation (pp. 24–31). Boston, Massachusetts.

Mohanan, K. P. (1982). Grammatical relations and clause structure in Malayalam. In J. Bresnan (Ed.),

The mental representation of grammatical relations. Cambridge: The MIT Press.

Mohanan, T. (1994). Argument structure in Hindi. Stanford: CSLI Publications.

Hindi CCGbank: A CCG treebank from the Hindi dependency…

123

Nivre, J. (2009). Non-projective dependency parsing in expected linear time. In Proceedings of the joint
conference of the 47th annual meeting of the ACL and the 4th international joint conference on
natural language processing of the AFNLP (pp. 351–359). Suntec, Singapore.

Nivre, J., & Nilsson, J. (2005). Pseudo-projective dependency parsing. In ACL ’05: Proceedings of the
43rd annual meeting on association for computational linguistics (pp. 99–106). Ann Arbor,

Michigan.

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., et al. (2007). The CoNLL 2007 shared

task on dependency parsing. In Proceedings of the CoNLL shared task session of EMNLP-CoNLL
2007 (pp. 915–932). Czech Republic, Prague.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., et al. (2007b). MaltParser: A language-

independent system for data-driven dependency parsing. Natural Language Engineering, 13(2), 95–

135.

Palmer, M., Kingsbury, P., & Gildea, D. (2005). The proposition bank: An annotated corpus of semantic

roles. Computational Linguistics, 31(1), 71–106.

Reddy, S., Lapata, M., & Steedman, M. (2014). Large-scale semantic parsing without question–answer

pairs. Transactions of the Association for Computational Linguistics, 2, 377–392.

Robinson, J. (1970). Dependency structures and transformational rules. Language, 46, 259–285.

Shastri, C. (1973). Vyakarana Chandrodya (Vol. 1–5). New Delhi: Motilal Banarsidass. (In Hindi).

Steedman, M. (2000). The syntactic process. Cambridge, MA: MIT Press.

Tse, D., & Curran, J. R. (2010). Chinese CCGbank: Extracting CCG derivations from the Penn Chinese

Treebank. In Proceedings of the 23rd international conference on computational linguistics (Coling
2010) (pp. 1083–1091). Beijing, China. Coling 2010 Organizing Committee.

Uematsu, S., Matsuzaki, T., Hanaoka, H., Miyao, Y., & Mima, H. (2013). Integrating multiple

dependency corpora for inducing wide-coverage Japanese CCG resources. In Proceedings of the
51st annual meeting of the association for computational linguistics (Volume 1: Long Papers, pp.

1042–1051). Sofia, Bulgaria.

Uematsu, S., Matsuzaki, T., Hanaoka, H., Miyao, Y., & Mima, H. (2015). Integrating multiple

dependency corpora for inducing wide-coverage Japanese CCG resources. ACM Transactions on
Asian and Low-Resource Language Information Processing, 14(1), 1–24.

Vaidya, A., Husain, S., Mannem, P., & Sharma, D. M. (2009). A karaka-based dependency annotation

scheme for English. In Proceedings of computational linguistics and intelligent text processing
(CICLing) (pp. 41–52).

Xu, W., Clark, S., & Zhang, Y. (2014). Shift-reduce CCG parsing with a dependency model. In

Proceedings of the 52nd annual meeting of the association for computational linguistics (Vol. 1:

Long Papers, pp. 218–227). Baltimore, Maryland.

Xue, N., Xia, F., Chiou, F.-D., & Palmer, M. (2005). The Penn Chinese TreeBank: Phrase structure

annotation of a large corpus. Natural Language Engineering, 11(02), 207–238.

Zhang, Y., & Clark, S. (2011). Shift-reduce CCG parsing. In Proceedings of the 49th annual meeting of
the association for computational linguistics: Human language technologies (pp. 683–692).

Portland, Oregon, USA.

B. R. Ambati et al.

123

	Hindi CCGbank: A CCG treebank from the Hindi dependency treebank
	Abstract
	Introduction
	Combinatory categorial grammar
	Related work
	Hindi dependency treebank
	Hindi language
	Paninian grammatical model
	Treebank

	Extracting a CCG lexicon
	Morphological markers

	CCG lexicon to treebank conversion
	Evaluation

	Coordination constructions
	‘‘Non-projective’’ constructions
	Clausal complements
	Relative clause constructions
	Topicalization
	Paired connectives
	Genitives and dislocated/discontinuous genitives
	Others

	Analysis of the Hindi CCGbank
	Conclusion
	Acknowledgements
	Appendix 1: Hindi dependency labels
	Appendix 3: Machine-readable format
	References

